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Abstract Constant composition codes have been proposed as suitable coding
schemes to solve the narrow band and impulse noise problems associated with power-
line communication, while at the same time maintaining a constant power output. In
particular, a certain class of constant composition codes called frequency permutation
arrays have been suggested as ideal, in some sense, for these purposes. In this paper
we characterise a family of neighbour transitive codes in Hamming graphs in which
frequency permutation arrays play a central rode. We also classify all the permutation
codes generated by groups in this family.
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1 Introduction

Powerline communication has been proposed as a solution to the “last mile problem”
in the delivery of fast and reliable telecommunications at the lowest cost [13, 17].
Any coding scheme designed for powerline communication must maintain a constant
power output, while at the same time combat both permanent narrow band noise
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and impulse noise, as well as the usual white Gaussian/background noise [5, 13, 17].
Addressing the last of these, the authors introduced neighbour transitive codes (see
below) as a group-theoretic analogue to the assumption that white Gaussian noise af-
fects symbols in codewords independently at random [9], an assumption often made
in the theory of error-correcting codes [18, p. 5]. To deal with the other noise consid-
erations in powerline communication, constant composition codes (CCC) have been
proposed as suitable coding schemes [5, 6]—these codes are of length m over an al-
phabet of size q and have the property that each codeword has pi occurrences of the
ith letter of the alphabet, where the pi are positive integers such that

∑
pi = m. It

is also suggested in [5] that constant composition codes where the pi are all roughly
m/q are particularly well suited for powerline communication. Constant composition
codes where each letter occurs m/q times in each codeword are called frequency per-
mutation arrays, and were introduced in [14]. In this paper we characterise a family
of neighbour transitive codes in which frequency permutation arrays play a central
role, and we classify the subfamily consisting of permutation codes generated by
groups (each of which is associated with a 2-transitive permutation group).

We consider a code of length m over an alphabet Q of size q to be a subset of
the vertex set of the Hamming graph Γ = H(m,q), which has automorphism group
Aut(Γ ) ∼= Sm

q �Sm. We define the automorphism group of a code C to be the setwise
stabiliser of C in Aut(Γ ), and we denote it by Aut(C) (and note that this is a more
general notion than is sometimes used in the literature). We define the the set of
neighbours of C to be the set C1 of vertices in Γ that are not codewords, but are
adjacent to at least one codeword in C. We say that C is X-neighbour transitive, or
simply neighbour transitive, if there exists a group X of automorphisms such that
both C and C1 are X-orbits.

Let α be a vertex in H(m,q), and suppose that {a1, . . . , ak} is the set of letters that
occur in α. The composition of α is the set

Q(α) = {
(a1,p1), . . . , (ak,pk)

}
, (1.1)

where the pi are positive integers and there are exactly pi occurrences of the letter ai

in the codeword α. Also let I(α) = {p1, . . . , pk}, which can be a multi-set. It follows
from the definition that, for a constant composition code, k = q and Q(α) = Q(β) for
all codewords α,β . As such, we can talk of the composition of a constant composition
code, which is equal to Q(α) for each codeword α. Now, for a set I of k positive
integers that sum to m, with k ≤ q , let Π(I) be the set of vertices α in H(m,q)

with I(α) = I . Then, for any constant composition code C, there exists a set I of q

positive integers such that C ⊆ Π(I).
As automorphisms of a CCC must leave its composition invariant, it is natural to

ask what types of automorphisms might do this, particularly as we are interested in
neighbour transitive CCC’s. The group Sq (which we identify with the Symmetric
group of Q) induces a faithful action on the vertices of Γ in which elements of
Sq act naturally on each of the m entries of a vertex. We denote the image of Sq

under this action by Diagm(Sq) (since it is a diagonal subgroup of the base group Sm
q

of Aut(Γ ), see (2.1)). It follows (from Lemma 4) that Π(I) is left invariant under
Diagm(Sq). Similarly, the group L of all permutations of entries fixes Π(I) setwise.
(This holds because any permutation of the entries of a vertex α is a rearrangement of
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the letters occurring in α, leaving the composition Q(α) unchanged.) Moreover, the
group 〈Diagm(Sq),L〉 = Diagm(Sq)�L is the largest subgroup of Aut(Γ ) that leaves
invariant Π(I) for all I (for example, no other element of Aut(Γ ) fixes Π({m})).
Hence it is natural to ask which CCCs are fixed setwise by the group Diagm(Sq)�L,
or more specifically, which are X-neighbour transitive with X ≤ Diagm(Sq)�L. This
leads to the following definition.

Definition 1 A code C in H(m,q) is diagonally X-neighbour transitive, or sim-
ply diagonally neighbour transitive, if it is X-neighbour transitive for some X ≤
Diagm(Sq)�L.

Our first major result characterises diagonally neighbour transitive codes and
shows that diagonally neighbour transitive CCCs are necessarily frequency permu-
tation arrays.

Theorem 1 Let C be a diagonally neighbour transitive code in H(m,q). Then either
C is a frequency permutation array, C = {(a, . . . , a)} for some letter a, or C is one
of the codes described in Definition 2(i), (ii) or (iii), none of which is a constant
composition code.

Theorem 1 gives us a nice characterisation of diagonally neighbour transitive
codes, but it does not provide us with any examples of neighbour transitive frequency
permutation arrays. We consider permutation codes to find examples of such codes.
By identifying the alphabet Q with the set {1, . . . , q}, any permutation t ∈ Sq can be
associated with the q-tuple α(t) in H(q,q), which has ith entry equal to the image of
i under t . For example, if q = 3 and t = (1,2,3), then α(t) = (2,3,1). For a subset
T of Sq , we define C(T ) = {α(t) : t ∈ T }, called the permutation code generated by
T , and NSq (T ) = {x ∈ Sq : T x = T }.

Theorem 2 Let T be a subgroup of Sq . Then the permutation code C(T ) is diago-
nally neighbour transitive in H(q,q) if and only if NSq (T ) is 2-transitive. Moreover,
for any positive integer p and diagonally neighbour transitive code C(T ), the code
Repp(C(T )), given in (2.2), is a diagonally neighbour transitive frequency permuta-
tion array in H(pq,q).

In Sect. 2 we introduce the required definitions and some preliminary results.
Then, in Sect. 3, we give some examples of diagonally neighbour transitive codes
in H(m,q). Finally, we prove Theorems 1 and 2 in Sects. 4 and 5 respectively.

2 Definitions and preliminaries

Any code of length m over an alphabet Q of size q can be embedded in the vertex set
of the Hamming graph. The Hamming graph Γ = H(m,q) has vertex set V (Γ ), the
set of m-tuples with entries from Q, and an edge exists between two vertices if and
only if they differ in precisely one entry. Throughout we assume that m,q ≥ 2. The
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automorphism group of Γ , which we denote by Aut(Γ ), is the semi-direct product
B�L where B ∼= Sm

q and L ∼= Sm, see [4, Theorem 9.2.1]. Let g = (g1, . . . , gm) ∈ B ,
σ ∈ L and α = (α1, . . . , αm) ∈ V (Γ ). Then g and σ act on α in the following way:

αg = (
α

g1
1 , . . . , α

gm
m

)
, ασ = (

α1σ−1, . . . , αmσ−1

)
.

For any subgroup T of Sq , we define the following subgroup of B:

Diagm(T ) = {
(h, . . . , h) ∈ B : h ∈ T

}
. (2.1)

Let M = {1, . . . ,m}, and view M as the set of vertex entries of H(m,q). Let 0 de-
note a distinguished element of the alphabet Q. For α ∈ V (Γ ), the support of α is
the set supp(α) = {i ∈ M : αi 	= 0}. The weight of α is defined as wt(α) = | supp(α)|.
For all pairs of vertices α,β ∈ V (Γ ), the Hamming distance between α and β , de-
noted by d(α,β), is defined to be the number of entries in which the two vertices
differ. We let Γk(α) denote the set of vertices in H(m,q) that are at distance k from
α. For a1, . . . , ak ∈ Q and positive integers p1, . . . , pk such that

∑
pi = m, we let

(a
p1
1 , a

p2
2 , . . . , a

pk

k ) denote the vertex

(
a1, . . . , a1︸ ︷︷ ︸

p1

, a2, . . . , a2︸ ︷︷ ︸
p2

, . . . , ak, . . . , ak︸ ︷︷ ︸
pk

)
∈ V (Γ ).

Let α = (α1, . . . , αm) ∈ V (Γ ). For a ∈ Q, we let ν(α, i, a) ∈ V (Γ ) denote the vertex
with j th entry

ν(α, i, a)|j =
{

αj if j 	= i,

a if j = i.

We note that if αi = a, then ν(α, i, a) = α, otherwise ν(α, i, a) ∈ Γ1(α). Throughout
this paper whenever we refer to ν(α, i, a) as a neighbour of α, or being adjacent to α,
we mean that a ∈ Q\{αi}. The following straightforward result describes the action
of automorphisms of Γ on vertices of this form.

Lemma 1 Let α = (α1, . . . , αm) ∈ V (Γ ), a ∈ Q, and x = (h1, . . . , hm)σ ∈ Aut(Γ ).
Then ν(α, i, a)x = ν(αx, iσ , ahi ), and it is adjacent to αx if and only if ν(α, i, a) is
adjacent to α.

For a code C in H(m,q), the minimum distance, δ, of C is the smallest distance
between distinct codewords of C. For any γ ∈ V (Γ ), we define

d(γ,C) = min
{
d(γ,β) : β ∈ C

}

to be the distance of γ from C. The covering radius of C, which we denote by ρ, is the
maximum distance that any vertex in H(m,q) is from C. We let Ci denote the set of
vertices that are distance i from C, and deduce, for i ≤ 
(δ −1)/2�, that Ci is the dis-
joint union of Γi(α) as α varies over C. Furthermore, C0 = C, and {C,C1, . . . ,Cρ}
forms a partition of V (Γ ) called the distance partition of C. In particular, the com-
plete code C = V (Γ ) has covering radius 0 and trivial distance partition {C}; and if
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C is not the complete code, we call the non-empty subset C1 the set of neighbours
of C. Let C and C′ be codes in H(m,q). We say C and C′ are equivalent if there
exists x ∈ Aut(Γ ) such that Cx = C′, and if C′ = C, we call x an automorphism
of C. Recall that the automorphism group of C, denoted by Aut(C), is the setwise
stabiliser of C in Aut(Γ ).

Let C be a code in H(m,q) with distance partition {C,C1, . . . ,Cρ}. As we de-
fined in the introduction, we say that C is X-neighbour transitive if there exists
X ≤ Aut(Γ ) such that Ci is an X-orbit for i = 0,1. If there exists X ≤ Aut(Γ ) such
that Ci is an X-orbit for i = 0, . . . , ρ, we say that C is X-completely transitive, or
simply completely transitive.

Remark 1 The reader should note that the definition of neighbour transitivity given
in [9] is more general than the one given here in that it only requires C1 to be an
X-orbit. However, it is not unreasonable to use the definition given here because if
δ ≥ 3 and C1 is an X-orbit with X ≤ Aut(C), then X necessarily acts transitively
on C, and furthermore, it is shown in [9] that an automorphism group that fixes C1

setwise often has to also fix C setwise. Note also that completely transitive codes are
necessarily neighbour transitive.

Lemma 2 Let C be a code with distance partition C = {C,C1, . . . ,Cρ} and y ∈
Aut(Γ ). Then C

y
i := (Ci)

y = (Cy)i for each i. In particular, the code Cy has
distance partition {Cy,C

y

1 , . . . ,C
y
ρ }, and C is Aut(C)-invariant. Moreover, C is

X-neighbour (completely) transitive if and only if Cy is Xy -neighbour (completely)
transitive.

Proof Let β ∈ Ci . Then there exists α ∈ C such that d(β,α) = i. Since automor-
phisms preserve adjacency, it follows that d(βy,αy) = i. Thus d(βy,Cy) ≤ i. The
same argument shows that if j = d(βy,Cy), then i = d(β,C) = d((βy)y

−1
, (Cy)y

−1
)

≤ j , and hence d(βy,Cy) = i. Thus (Ci)
y ⊆ (Cy)i . A similar argument shows that

(Cy)i ⊆ (Ci)
y . Hence (Ci)

y = (Cy)i . Therefore, without ambiguity, we can denote
this set by C

y
i . Thus the distance partition of Cy is {Cy,C

y

1 , . . . ,C
y
ρ }. In particular,

if y ∈ Aut(C), it follows that (Ci)
y = (Cy)i = Ci for each i. That is C is Aut(C)-

invariant. Finally, C is X-neighbour (completely) transitive if and only if Ci is an
X-orbit for i = 0,1 (i = 0, . . . , ρ), which holds if and only if C

y
i is an Xy -orbit for

i = 0,1 (i = 0, . . . , ρ). �

Let C be a code with covering radius ρ, and let s ∈ {0, . . . , ρ}. As in [4, p. 346],
we say that C is s-regular if for each vertex γ ∈ Ci , with i = 0, . . . , s, and integer
k = 0, . . . ,m, the number of codewords at distance k from γ depends only on i and
k, and is independent of the choice of γ ∈ Ci . If s = ρ, we say that C is completely
regular.

Remark 2 It is known that completely transitive codes are necessarily completely
regular [11, Lemma 2.1]. Similarly, because automorphisms preserve adjacency, it is
straightforward to show that any neighbour transitive code is necessarily 1-regular.
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Lemma 3 Let C be a completely regular code in H(m,q) with distance par-
tition {C,C1, . . . ,Cρ}. Then Cρ is completely regular with distance partition
{Cρ,Cρ−1, . . . ,C1,C}, and Aut(C) = Aut(Cρ). Furthermore, C is X-completely
transitive if and only if Cρ is X-completely transitive.

Proof The fact that Cρ is completely regular with distance partition {Cρ,Cρ−1, . . . ,C}
is given in [16]. It then follows from Lemma 2 that Aut(C) = Aut(Cρ). By defini-
tion, C is X-completely transitive if and only if each Ci is an X-orbit, which therefore
holds if and only if Cρ is X-completely transitive. �

For α ∈ V (Γ ), recall Q(α), the composition of α defined in (1.1). For each distinct
pi that appears in Q(α), we want to register the number of distinct letters that appear
pi times. We let

Num(α) = {
(p1, s1), . . . , (pj , sj )

}

where (pi, si) means that si distinct letters appear pi times in α. We note that
∑

si =
k, the number of distinct letters that occur in α.

Lemma 4 Let α ∈ V (Γ ) with Q(α) = {(a1,p1), . . . , (ak,pk)} and x = (h, . . . , h)σ ∈
Diagm(Sq)�L. Then Q(αx) = {(ah

1 ,p1), . . . , (a
h
k ,pk)} and Num(αx) = Num(α).

Proof Let α = (α1, . . . , αm) and a ∈ Q. Note that αi = a if and only if αh
i = ah

and that αh
i = αx |iσ . Therefore for every occurrence of a in α there is a corre-

sponding occurrence of ah in αx . Thus Q(αx) = {(ah
1 ,p1), . . . , (a

h
k ,pk)}. We note

that {p1, . . . , pk} is left invariant by the action of x on α. Therefore Num(α) =
Num(αx). �

Corollary 1 Let C be a diagonally X-neighbour transitive code, and let ν ∈ Ci for
i = 0,1. Then Num(ν′) = Num(ν) for all ν′ ∈ Ci . If in addition X ≤ L, then Q(ν′) =
Q(ν) for all ν′ ∈ Ci .

For a positive integer p, we can identify the vertex set of the Hamming graph
Γ (p) = H(mp,q) with the set of arbitrary p-tuples of vertices from Γ = H(m,q).
For a group X ≤ Aut(Γ ), we let (x, σ ) ∈ X × Sp act on the vertices of Γ (p) in the
following way:

(α1, . . . , αp)(x,σ ) = (
αx

1σ−1, . . . , α
x
pσ−1

)
,

where α1, . . . , αp ∈ V (Γ ). For α ∈ V (Γ ), we let repp(α) = (α, . . . , α) ∈ V (Γ (p)),
and for a code C in Γ with minimum distance δ, we let

Repp(C) = {
repp(α) : α ∈ C

}
, (2.2)

which is a code in Γ (p) with minimum distance pδ. It follows that repp(α)(x,σ ) =
repp(αx), and so C is an X-orbit if and only if Repp(C) is an (X × Sp)-orbit. For
α, ν ∈ V (Γ ), we let μ(repp(α), i, ν) denote the vertex constructed by changing the
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ith vertex entry of repp(α) from α to ν. It follows that ν ∈ Γ1(α) if and only if
μ(repp(α), i, ν) ∈ Γ1(repp(α)) and that μ(repp(α), i, ν)(x,σ ) = μ(repp(αx), iσ , νx).

Lemma 5 Let C be an X-neighbour transitive code in Γ = H(m,q) with δ ≥ 2 such
that a stabiliser Xα acts transitively on Γ1(α) for some α ∈ C. Then Repp(C) is
(X × Sp)-neighbour transitive in H(mp,q).

Proof It follows from the comments above and Lemma 2 that we only need to prove
the transitivity on the neighbours of Repp(C). Let ν1, ν2 ∈ Repp(C)1. Then there ex-
ist i, j and β,γ ∈ C such that ν1 = μ(repp(β), i, νβ) and ν2 = μ(repp(γ ), j, νγ ) for
some adjacent vertices νβ, νγ of β,γ in Γ respectively. There exists x ∈ X such that

βx = γ , so ν
(x,1)
1 = μ(repp(γ ), i, νx

β), and νx
β ∈ Γ1(γ ) since adjacency is preserved

by x in Γ . As X acts transitively on C and because Xα acts transitively on Γ1(α),
there exists y ∈ Xγ such that ν

xy
β = νγ . By choosing σ ∈ Sp such that iσ = j , we

deduce that ν
(xy,σ )

1 = ν2. �

Let C be a neighbour transitive code in H(m,q) with δ = 1. Let α,β ∈ C such
that d(α,β) = 1, and ν ∈ Γ1(α)∩C1 (such a vertex exists by the transitivity on C). It
follows that ν1 = μ(repp(α),1, ν), ν2 = μ(repp(α),1, β) ∈ Repp(C)1 in H(pq,q).
However, there does not exist x ∈ Aut(C) such that βx = ν because Aut(C) fixes C

setwise, and so ν1 and ν2 are not contained in the same (Aut(C) × Sp)-orbit. Thus
the condition that δ ≥ 2 in Lemma 5 is essential.

3 Examples of neighbour transitive codes

In this section we define four infinite families of codes and prove that all codes in
these families are neighbour transitive. In Sect. 4, we use these codes to classify
diagonally neighbour transitive codes in Γ = H(m,q). In all cases m > 1.

Definition 2

(i) The repetition code in H(m,q) is

Rep(m,q) = {(
am

) : a ∈ Q
} = {

α ∈ V (Γ ) : Num(α) = {
(m,1)

}}
.

(ii) Let m < q , and define

Inj(m,q) = {
(α1, . . . , αm) ∈ V (Γ ) : αi 	= αj for i 	= j

}

= {
α ∈ V (Γ ) : Num(α) = {

(1,m)
}}

.

(iii) Let m be odd with m ≥ 3 and q = 2, and define, in Γ = H(m,2),

W
([m/2],2

) = {
α ∈ V (Γ ) : wt(α) = (m ± 1)/2

}

= {
α ∈ V (Γ ) : Num(α) = {(

(m + 1)/2,1
)
,
(
(m − 1)/2,1

)} }
.



740 J Algebr Comb (2014) 39:733–747

(iv) Let p be any positive integer, and let m = pq , and define

All(pq, q) = {
α ∈ V (Γ ) : Num(α) = {

(p, q)
}}

.

Remark 3 The codes Inj(m,q) are examples of injection codes, which were recently
introduced by Dukes [7]. Note also that All(pq, q) is the largest possible frequency
permutation array of length pq over an alphabet of size q .

Theorem 3 Let C be one of the codes in Definition 2. Then C is neighbour transitive
with Aut(C) = Diagm(Sq)�L. Moreover, C has minimum distance δ = m, 1, 1 and
2 respectively in (i), (ii), (iii) and (iv) of Definition 2.

Proof It follows from Lemma 4 that, in all cases, Aut(C) contains H = Diagm(Sq)�

L, and it is clear that the minimum distance of C is as stated. Moreover, it is easy to
check that the group H acts transitively on C (again in all four cases). Now, the set
C1 of neighbours is

C1 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{ν ∈ V (Γ ) : Num(ν) = {(m − 1,1), (1,1)} } in case (i)

{ν ∈ V (Γ ) : Num(ν) = {(2,1), (1,m − 2)} } in case (ii)

{ν ∈ V (Γ ) : Num(ν) = {((m + 3)/2,1), ((m − 3)/2,1)} } in case (iii)

{α ∈ V (Γ ) : Num(α) = {(p + 1,1), (p, q − 2), (p − 1,1)} } in case (iv)

(noting that in case (iv) we may have q = 2), and again in all cases it is straight-
forward to check that H is transitive on C1. Thus C is H -neighbour transitive. It
remains to prove that Aut(C) = H . Suppose to the contrary that Aut(C) contains
y = (h1, . . . , hm)σ such that hi 	= hj for some i 	= j . Since L ≤ H ≤ Aut(C), we
may assume that σ = 1 and that h1 	= h2. Moreover, since Diagm(Sq) ≤ Aut(C), we
may further assume that h2 = 1, so h1 	= 1. Let a, b ∈ Q be such that ah1 = b 	= a. We
consider the cases above separately and in the first two cases arrive at a contradiction
by exhibiting a codeword α ∈ C such that αy /∈ C.

(i) If C = Rep(m,q), then (am)y |1 = b and (am)y |2 = a, so (am)y /∈ C.
(ii) If C = Inj(m,q), then C contains a codeword α with α1 = a and α2 = b.

However, αy has αy |1 = αy |2 = b, so αy /∈ C.
(iii) Let q = 2, C = W([m/2],2) with m ≥ 3 and m odd, and consider

C′ = Rep(m,2) = {
0 = (0, . . . ,0),1 = (1, . . . ,1)

}
.

Let α ∈ V (Γ ) be such that wt(α) = k for 1 ≤ k ≤ m − 1. Then d(α,0) = k and
d(α,1) = m− k. If k ≤ (m− 1)/2, then k ≤ m− 1 − k < m− k, and so d(α,C′) = k.
If k ≥ (m + 1)/2, then k ≥ m + 1 − k > m − k, and so d(α,C′) = m − k. It follows
that d(α,C′) is maximised when k = (m − 1)/2 or k = (m + 1)/2, and in both cases
d(α,C′) = (m − 1)/2. Thus C′ has covering radius ρ = (m − 1)/2. It also follows
that

C′
ρ = W

([m/2],2
) = C.
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It is known that C′ is completely transitive and hence completely regular [10, Sec. 2].
Moreover, we have just proved that Aut(C′) = H . Therefore, by Lemma 3, Aut(C) =
Aut(C′) = H .

(iv) Let ν ∈ V (Γ ) and suppose Q(ν) = {(a1,p1), . . . , (ak,pk)} with p1 ≥ p2 ≥
· · · ≥ pk . Then k ≤ q and p1 + · · · + pk = m = pq , and in particular p1 ≥ p.
There exists σ ∈ L ≤ Aut(C) such that νσ = (a

p1
1 , a

p2
2 , . . . , a

pk

k ). Consider the code-
word α = (a

p

1 , a
p

2 , . . . , a
p
q ) ∈ C. Then νσ and α agree in at least the first p entries.

Therefore d(νσ ,α) ≤ p(q − 1), and so d(ν,C) = d(νσ ,C) ≤ p(q − 1). Therefore
ρ ≤ p(q − 1). Now consider ν = (a, . . . , a) for some a ∈ Q. It follows from the def-
inition of C that d(ν,α) = p(q − 1) for all α ∈ C. Therefore d(ν,C) = p(q − 1),
and so ρ = p(q − 1). Moreover, Rep(m,q) ⊆ Cρ . Now suppose ν ∈ Cρ and Q(ν) =
{(a1,p1), . . . , (ak,pk)} with k ≥ 2 and p1 ≥ p. There exists σ ∈ L ≤ Aut(C) such
that νσ = (a

p

1 , a
p2
2 , a

p1−p

1 , a
p3
3 , . . . , a

pk

k ). Since σ ∈ Aut(C), Lemma 2 implies that
νσ ∈ Cρ also. Consider the codeword α = (a

p

1 , a
p

2 , . . . , a
p
q ). Then νσ and α agree

in the first p + p2 > p, therefore d(νσ ,α) ≤ pq − (p + 1) < p(q − 1), which is a
contradiction as νσ ∈ Cρ . It follows that Cρ = Rep(m,q). In particular, by Lemma 2,
Aut(C) leaves Rep(m,q) invariant, and so Aut(C) is contained in Aut(Rep(m,q)),
which, as we have just proved, is equal to H . �

The proof of Theorem 3 yields the following immediate corollary.

Corollary 2

(i) If q = 2 and m ≥ 3 is odd, then C = W([m/2],2) has covering radius ρ =
(m − 1)/2 and Cρ = Rep(m,2). Furthermore, C and Cρ are completely transi-
tive.

(ii) If m = pq for some p, then C = All(pq, q) has covering radius ρ = p(q − 1)

and Cρ = Rep(m,q).

4 Characterising diagonally neighbour transitive codes

In this section we characterise diagonally neighbour transitive codes in Γ = H(m,q).
However, before we consider such codes, we first prove some interesting results about
connected subsets � of V (Γ ) (that is to say, the subgraph of Γ induced on � is
connected).

Lemma 6 Let � be a connected subset of V (Γ ). Let C be a code that is a proper
subset of �. Then C1 ∩ � 	= ∅.

Proof Let α ∈ C and β ∈ �\C. Since � is a connected subset, there exists a path

α = α0, α1, . . . , α� = β

such that each αi ∈ �. Because α ∈ C and β /∈ C, there is a least i < � such that
αi ∈ C and αi+1 /∈ C. Since d(αi, αi+1) = 1, it follows that αi+1 ∈ C1. �
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Lemma 7 The codes Inj(m,q) (with 1 < m < q) and W([m/2],2) (with m odd and
m ≥ 3) are connected subsets of V (Γ ).

Proof Firstly we consider �1 = Inj(m,q). Let α,β ∈ �1. We shall prove that α,β

are connected by a path in �1 using induction on the distance d(α,β) in Γ . This
is true if d(α,β) = 1, so assume that d(α,β) = w > 1 and the property holds for
distances less than w. Let S = {k : αk = βk}, i ∈ M\S and α∗ = ν(α, i, βi). Then
α∗ is adjacent to α in Γ . If βi 	= αk for all k ∈ M\(S ∪ {i}), then α∗ ∈ �1 and
d(α∗, β) = w − 1. Therefore, by the inductive hypothesis, α∗ and β are connected
by a path in �1, and hence so are α and β . Thus we may assume that βi = αj for
some j ∈ M\(S ∪ {i}). We note that j is unique since α ∈ �1. Also α∗

j = α∗
i , and so

α∗ /∈ �1. Since m < q , there exists a ∈ Q\{α1, . . . , αm}. Let α♦ = ν(α, j, a). Then
α♦ ∈ �1 ∩ Γ1(α). If a = βj , then d(α♦, β) = w − 1. Therefore, by the inductive
hypothesis, α♦ and β are connected by a path in �1, and hence so are α and β . If
a 	= βj , then d(α♦, β) = w. In this case let α♥ = ν(α♦, i, βi). It follows that α♥ ∈
�1 ∩ Γ1(α

♦) and d(α♥, β) = w − 1. Therefore by the inductive hypothesis, α♥ and
β are connected by a path in �1, and hence so are α and β . Thus �1 is connected by
induction.

We now consider the set �2 = W([m/2],2). Let α,β ∈ �2 such that wt(α) =
wt(β) = (m + 1)/2. Furthermore let S = supp(α) ∩ supp(β), J = supp(α)\S =
{j1, . . . , j�} and K = supp(β)\S = {k1, . . . , k�}. Let α0 = α and for i = 1, . . . ,2�,
let αi be the vertex in V (Γ ) with

supp
(
αi

) =
{

supp(αi−1)\{j(i+1)/2} if i is odd,

supp(αi−1) ∪ {ki/2} if i is even.

It follows that wt(αi) = (m − 1)/2 or (m + 1)/2 if i is odd or even respectively.
Moreover, d(αi, αi−1) = 1 for i = 1, . . . ,2�. Thus,

α = α0, α1, . . . , α2� = β

is a path in �2 from α to β . A similar argument shows that there exists a path in
�2 between two vertices of weight (m − 1)/2. Now suppose that α,β ∈ �2 are
such that they have different weights with, say, α having weight (m − 1)/2. Let
k ∈ supp(β)\ supp(α) and α1 be such that supp(α1) = supp(α) ∪ {k}. Then α1 is
adjacent to α and has weight (m + 1)/2, and as we have just shown, there exists a
path in �2 from α1 to β . �

Theorem 4 Let C be a diagonally X-neighbour transitive code in Γ = H(m,q).
Then one of the following holds:

(i) C = {(a, . . . , a)} for some a ∈ Q;
(ii) C = Rep(m,q);

(iii) C = Inj(m,q) where m < q;
(iv) C = W([m/2],2) where m ≥ 3 and odd;
(v) there exists a positive integer p such that m = pq and C is contained in

All(pq, q).
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Proof Let α ∈ C and suppose that α has composition

Q(α) = {
(a1,p1), . . . , (ak,pk)

}

with p1 ≥ p2 ≥ · · · ≥ pk and k ≤ q . Let H = Diagm(Sq)�L. We break our analysis
up into the cases k = 1 and k ≥ 2.

Case k = 1: In this case, α = (a1, . . . , a1) and

C = αX ⊆ αH = Rep(m,q).

If |C| = 1, then X ≤ Hα = Diagm(Sq−1) � L and C1 = {ν(α, i, b) : 1 ≤ i ≤ m, b ∈
Q\{a1}}. As Hα fixes setwise C and C1, and is transitive on both, it follows that C is
Hα-neighbour transitive. By the above reduction we only find C = {(a1, . . . , a1)}, but
of course the examples here are {(a, . . . , a)} for all a ∈ Q, as in (i). Suppose now that
|C| ≥ 2. Since C ⊆ Rep(m,q), it follows that δ = m. By Remark 2, C is 1-regular,
and because δ = m, C is equivalent to Rep(m,q) by [10, Sec. 2]. Thus |C| = q and
C = Rep(m,q), as in (ii).

Case k ≥ 2: Suppose first that p1 = 1. Then k = m and

α ∈ Ĉ =
{

All(q, q) if m = q,

Inj(m,q) if m < q.

Since H fixes Ĉ and X ≤ H , we have that C = αX ⊆ αH = Ĉ. If m = q , then (v)
holds. Thus assume that m < q and Ĉ = Inj(m,q). In this case C1 contains ν =
ν(α,m,α1), and Num(ν) = {(2,1), (1,m − 2)}. By Corollary 1, Num(ν′) = Num(ν)

for all ν′ ∈ C1, and in particular, C1 ∩ Ĉ = ∅. If C is a proper subset of Ĉ, then,
by Lemmas 6 and 7, we have that C1 ∩ Ĉ 	= ∅, which is a contradiction. Thus C =
Inj(m,q), and (iii) holds.

We can now assume that p1 ≥ 2. As Sm acts m-transitively, there exists σ ∈ L such
that ασ = (a

p1
1 , . . . , a

pk

k ) ∈ Cσ . By Lemma 2, Cσ is Xσ -neighbour transitive, and as
Diagm(Sq) is centralised by L, it follows that Xσ ≤ H . Let X̄ = Xσ , ᾱ = ασ and
C̄ = Cσ . Suppose that k < q . Then q ≥ 3, and there exists a ∈ Q that does not occur
in ᾱ. Consider ν1 = (a, a

(p1−1)

1 , a
p2
2 , . . . , a

pk

k ) and ν2 = (a
(p1+1)

1 , a
(p2−1)

2 , . . . , a
pk

k ),
which are both adjacent to ᾱ. Then Num(ν1), Num(ν2) and Num(ᾱ) are pairwise
distinct, which is a contradiction to Corollary 1. Thus k = q . If pj = p1 for all j ,
then m = pq (where p = p1) and Num(ᾱ) = {(p, q)}. Thus ᾱ ∈ All(pq, q) and

C̄ = ᾱX̄ ⊆ ᾱH = All(pq, q).

As σ ∈ Aut(All(pq, q)), it follows that C = C̄σ−1 ⊆ All(pq, q) and (v) holds. Thus
we now assume that p1 > pk . Let t be minimal such that p1 > pt , that is, p = p1 =
p2 = · · · = pt−1 > pt , and note that t ≥ 2. Define ν1 ∈ Γ1(ᾱ) by

ν1 =
{

(a
p

1 , . . . , a
p

t−2, a
p+1
t−1 , a

pt−1
t , . . . , a

pq
q ) if t ≥ 3,

(a
p+1
1 , a

pt−1
t , a

pt+1
t+1 , . . . , a

pq
q ) if t = 2,



744 J Algebr Comb (2014) 39:733–747

Table 1 Neighbours of ᾱ

Line Case ν2 ∈ Γ1(ᾱ)

1 t > 2 (a
p+1
1 , a

p−1
2 , a

p
3 , . . . , a

p
t−1, a

pt
t , . . . , a

pq
q )

2 t = 2, p2 ≤ p − 2 (a
p−1
1 , a

p2+1
2 , a

p3
3 , . . . , a

pq
q )

3 t = 2, p2 = p − 1, q ≥ 3 (a
p
1 , a

p
2 , a

p3−1
3 , . . . , a

pq
q )

and note that (p + 1,1) ∈ Num(ν1) for all t , and (p, t − 2) ∈ Num(ν1) if t ≥ 3, while
no element of Num(ν1) has first entry p if t = 2. As (p, t − 1) ∈ Num(ᾱ), it follows
that Num(ν1) 	= Num(ᾱ), and so Corollary 1 implies that ν1 ∈ C̄1. We claim that
t = 2, pt = p2 = p − 1 and q = 2.

Assume to the contrary that the claim is false. Then t , p2, q satisfy the conditions
in column 2 of Table 1 for exactly one of the lines. For each line of Table 1, let ν2 be
the vertex in column 3. In each case, ν2 ∈ Γ1(ᾱ) and Num(ν2) 	= Num(ᾱ). We also
have that Num(ν1) 	= Num(ν2): this is clear in lines 2 and 3 since then no element
of Num(ν2) has first entry p + 1, while in line 1, (p, t − 3) ∈ Num(ν2) if t > 3 and
no entry of Num(ν2) has first entry p if t = 3. Since Num(ν2) 	= Num(ᾱ), it follows
from Corollary 1 that ν2 ∈ C1. However, Corollary 1 then implies that Num(ν2) =
Num(ν1), which is a contradiction. Thus the claim is proved. As t = 2, p2 = p − 1
and q = 2, it follows that m = 2p − 1 ≥ 3 and ᾱ = (a

p

1 , a
p−1
2 ). By identifying Q

with {0,1}, it follows that ᾱ has weight p = (m + 1)/2 or p − 1 = (m − 1)/2, and
therefore so does α = ᾱσ−1

, since σ ∈ L. Thus α ∈ W([m/2],2) and

C = αX ⊆ αH = W
([m/2],2

)
.

Let ν ∈ Γ1(α). Then ν has weight (m + 3)/2 or (m − 3)/2 and Num(ν) = {((m +
3)/2,1), ((m − 3)/2,1)}. Thus Num(ν) 	= Num(α) and Corollary 1 implies that ν ∈
C1. Hence Corollary 1 implies that Num(ν′) = Num(ν) for all ν′ ∈ C1, in particular
C1 ∩ W([m/2],2) = ∅. If C is a proper subset of W([m/2],2) then, by Lemmas 6
and 7, C1 ∩ W([m/2],2) 	= ∅, which is a contradiction. Thus C = W([m/2],2), and
(iv) holds. �

Remark 4 Theorem 4 gives us a proof of Theorem 1. None of the codes in cases
(i)–(iv) of Theorem 4 are constant composition codes, and any subset of All(pq, q)

is necessarily a frequency permutation array.

5 Neighbour transitive frequency permutation arrays

We first consider frequency permutation arrays for which each letter from the alpha-
bet Q appears exactly once in each codeword. Such codes are known as permutation
codes. Permutation codes were first examined in the mid 1960s and 1970s [2, 3, 8,
19], but there has been renewed interest due to the possible applications in powerline
communication, see [1, 5, 15, 20] for example.
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In order to describe permutation codes, we identify the alphabet Q with the set
{1, . . . , q} and consider codes in the Hamming graph Γ = H(q,q). For g ∈ Sq , we
define the vertex

α(g) = (
1g, . . . , qg

) ∈ V (Γ ).

Recall that for a subset T ⊆ Sq , we define the permutation code generated by T to be
the code

C(T ) = {
α(g) ∈ V (Γ ) : g ∈ T

}
.

For a permutation g ∈ Sq , the fixed point set of g is the set fix(g) = {a ∈ Q : ag = a},
and the degree of g is equal to deg(g) = q − |fix(g)|. For g,h ∈ Sq , it is known that
d(α(g),α(h)) = deg(g−1h) [1]. Thus, for T ⊆ Sq , it holds that C(T ) has minimum
distance δ = min{deg(g−1h) : g,h ∈ T , g 	= h}, and if T is a group, this is called
the minimal degree of T [3].

Recall that the Hamming graph Γ has automorphism group Aut(Γ ) = B � L

where B ∼= S
q
q and L ∼= Sq . To distinguish between automorphisms of Γ and per-

mutations in Sq , we introduce the following notation. For y ∈ Sq , we let xy =
(y, . . . , y) ∈ B , and we let σ(y) denote the automorphism induced by y in L. For
α(g) ∈ V (Γ ),

α(g)xy = (
1g, . . . , qg

)(y,...,y) = (
1gy, . . . , qgy

) = α(gy).

Now, suppose that iy = j for i, j ∈ Q. Then, by considering α(g) as the q-tuple
(α1, . . . , αq), it holds that α(g)σ(y)|j = αi = ig = jy−1g . Thus α(g)σ(y) = α(y−1g),
proving Lemma 8.

Lemma 8 Let α(g) ∈ V (Γ ) and y ∈ Sq . Then α(g)xy = α(gy) and α(g)σ(y) =
α(y−1g).

Recall from Remark 2 that neighbour transitive codes are 1-regular. It turns out
that there exists exactly one 1-regular permutation code with minimum distance δ =
2. Before we prove this, we introduce the following concepts. We regard 1 ∈ Q as the
analogue of zero from linear codes, and define the weight of a vertex β ∈ V (Γ ) to be
d(α,β), where α = (1, . . . ,1) ∈ V (Γ ). For β = (βi), γ = (γi) ∈ V (Γ ), we say that
β is covered by γ if βi = γi for each i such that βi 	= 1. Furthermore, we say that a
non-empty set D of vertices of weight k in H(q,q) is a q-ary t-(q, k, λ) design if for
every vertex ν of weight t , there exist exactly λ vertices in D that cover ν.

Lemma 9 Let T be a subset of Sq . Then C(T ) is 1-regular with δ = 2 if and only if
T = Sq .

Proof The reverse direction follows from Theorem 3 and observing that All(q, q) =
C(Sq). To prove the converse, we first claim that there exists a positive integer λ such
that |Γ2(α(t)) ∩ C(T )| = q(q − 1)λ/2 for all α(t) ∈ C(T ). The code C(T ) is equiv-
alent to a 1-regular code C with minimum distance 2 that contains α = (1, . . . ,1).
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By interpreting a result of Goethals and van Tilborg [12, Theorem 9], it follows that
Γ2(α) ∩ C forms a q-ary 1-(q,2, λ) design for some positive integer λ. By count-
ing the pairs (ν,β) ∈ Γ1(α) × (Γ2(α) ∩ C) such that β covers ν, we deduce that
|Γ2(α) ∩ C| = q(q − 1)λ/2. As C is 1-regular, this holds for all codewords β ∈ C.
Furthermore, this property is also preserved by equivalence, so the claim holds.

Let α(g1) ∈ C(T ) and S = Γ2(α(g1)) ∩ C(T ). As C(T ) is 1-regular with δ = 2, it
follows that S 	= ∅. Let α(g2) ∈ S. Then d(α(g2g

−1
1 ), α(1)) = 2, and so g2g

−1
1 = t ′

is a transposition. Consequently, for each α(g) ∈ S, there exists a transposition
t ∈ Sq such that g = tg1. There are exactly q(q − 1)/2 transpositions in Sq , so
|S| ≤ q(q −1)/2. However, by the above claim, |S| ≥ q(q −1)/2. Thus S = {α(tg1) :
t is a transposition in Sq }. Any permutation can be written as a product of transposi-
tions, so for g ∈ T , we have that g = t1t2 . . . t� for some transpositions t1, . . . , t� ∈ Sq .
We have just shown that t1g = t1t1t2 . . . t� = t2 . . . t� ∈ T . Repeating this argument,
we first deduce that 1 ∈ T and then that every permutation is in T . �

Let T be a subgroup of Sq . As any group has a regular action on itself by right
multiplication, it follows from Lemma 8 that Diagq(T ) = {xy : y ∈ T } acts regularly
on C(T ). We also define

A(T ) = {
xyσ (y) : y ∈ NSq (T )

}
,

where NSq (T ) = {y ∈ Sq : T y = T }. For xyσ (y) ∈ A(T ), Lemma 8 implies that
α(t)xyσ (y) = α(y−1ty) for all α(t) ∈ C(T ). As y ∈ NSq (T ), we deduce that A(T ) ≤
Aut(C(T ))α(1). We now prove Theorem 2.

Proof Suppose that C(T ) is diagonally X-neighbour transitive in H(q,q), and
suppose first that δ = 2. By Remark 2, C(T ) is 1-regular, and so Lemma 9 im-
plies that T = Sq . In this case, NSq (Sq) = Sq is 2-transitive. Now suppose that
δ ≥ 3 and consider the neighbours ν(α(1), i1, i2), ν(α(1), j1, j2) for i1 	= i2 and
j1 	= j2. There exists x = xyσ (z) ∈ X such that ν(α(1), i1, i2)

x = ν(α(1), j1, j2),
and as x ∈ Aut(C(T )), it follows that α(t)x ∈ C(T ) for all α(t) ∈ T . By Lemma 8,
α(t)x = α(z−1ty), so z−1ty ∈ T for all t ∈ T . In particular, since T is a sub-
group, z−1y ∈ T , and so y−1z ∈ T . Hence y−1zz−1ty = y−1ty ∈ T for all t ∈ T ,
that is, y ∈ NSq (T ). Since y−1z ∈ T , it follows that z ∈ NSq (T ). By Lemma 1,
ν(α(1), i1, i2)

x = ν(α(z−1y), iz1, i
y

2 ), and because δ ≥ 3, it follows that α(z−1y) =
α(1). Thus z = y, iz1 = j1 and iz2 = j2. In particular, NSq (T ) acts 2-transitively on Q.

Now assume that NSq (T ) is 2-transitive, and let X = 〈A(T ),Diagq(T )〉. As
Diagq(T ) acts regularly on C(T ), it follows that X acts transitively on C(T ). Con-
sider ν(α(1), i1, i2), ν(α(1), j1, j2) ∈ Γ1(α(1)). As NSq (T ) is 2-transitive, there ex-
ists y ∈ NSq (T ) such that i

y

1 = j1 and i
y

2 = j2. Let x = xyσ (y) ∈ A(T ). By Lemma 1,
ν(α(1), i1, i2)

x = ν(α(y−1y), i
y

1 , i
y

2 ) = ν(α(1), j1, j2). Thus A(T ) acts transitively
on Γ1(α(1)). Because X acts transitively on C(T ), we deduce that X acts transitively
on the set of neighbours of C(T ). This proves the first statement in Theorem 2.

Finally suppose that C(T ) is a diagonally neighbour transitive code in H(q,q)

and let p be a positive integer. By the previous argument it follows that NSq (T ) is
2-transitive and C(T ) is X-neighbour transitive with X = 〈A(T ),Diagq(T )〉.
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Moreover Xα(1) = A(T ) acts transitively on Γ1(α(1)). Thus, by Proposition 5,
Repp(C(T )) is (X × Sp)-neighbour transitive in H(pq,q), and because X ≤
Diagq(Sq)�L, it follows that X × Sp ≤ Diagpq(Sq)� Spq . �
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