
JID:JPAA AID:5911 /FLA [m3L; v1.236; Prn:31/05/2018; 9:13] P.1 (1-17)
Journal of Pure and Applied Algebra ••• (••••) •••–•••
Contents lists available at ScienceDirect

Journal of Pure and Applied Algebra

www.elsevier.com/locate/jpaa

Cyclotomic graphs and perfect codes

Sanming Zhou
School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC 3010, Australia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 24 November 2015
Received in revised form 4 May 2018
Available online xxxx
Communicated by I.M. Duursma

MSC:
05C25; 68M10; 94A99

We study two families of cyclotomic graphs and perfect codes in them. They are 
Cayley graphs on the additive group of Z[ζm]/A, with connection sets {±(ζim +A) :
0 ≤ i ≤ m − 1} and {±(ζim + A) : 0 ≤ i ≤ φ(m) − 1}, respectively, where ζm
(m ≥ 2) is an mth primitive root of unity, A a nonzero ideal of Z[ζm], and φ
Euler’s totient function. We call them the mth cyclotomic graph and the second 
kind mth cyclotomic graph, and denote them by Gm(A) and G∗

m(A), respectively. 
We give a necessary and sufficient condition for D/A to be a perfect t-code in 
G∗

m(A) and a necessary condition for D/A to be such a code in Gm(A), where 
t ≥ 1 is an integer and D an ideal of Z[ζm] containing A. In the case when m = 3, 4, 
Gm((α)) is known as an Eisenstein–Jacobi and Gaussian networks, respectively, and 
we obtain necessary conditions for (β)/(α) to be a perfect t-code in Gm((α)), where 
0 �= α, β ∈ Z[ζm] with β dividing α. In the literature such conditions are known 
to be sufficient when m = 4 and m = 3 under an additional condition. We give a 
classification of all first kind Frobenius circulants of valency 2p and prove that they 
are all pth cyclotomic graphs, where p is an odd prime. Such graphs belong to a 
large family of Cayley graphs that are efficient for routing and gossiping.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Perfect codes have been important objects of study ever since the dawn of coding theory in the late 1940s, 
and after more than six decades they still receive much attention today. Hamming and Golay codes are well 
known examples of perfect codes, and their importance to information theory has been widely recognised. 
So far a large number of beautiful results on perfect codes have been produced, as seen in the survey papers 
[14,37]. As generalizations of perfect codes in the classical setting, in [3] Biggs initiated the study of perfect 
codes in distance-transitive graphs, namely those graphs whose automorphism groups are transitive on the 
set of ordered pairs of vertices at distance i, for every i from 0 to the diameter of the graph. In the same 
paper he generalized the celebrated Lloyd’s Theorem in the classical setting to distance-transitive graphs. 
(Lloyd’s Theorem asserts that if a perfect e-code of length n exists, then the zeros of a certain polynomial of 
degree e must be distinct integers among 1, 2, . . . , n.) Distance-transitive graphs are distance-regular graphs, 
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which in turn can be viewed as association schemes. In [5] Delsarte pioneered the study of perfect codes 
in association schemes. Since then a great deal of work has been done in this research direction (see e.g. 
[1,5,9]).

The study of perfect codes in general graphs began with [21]. A code in a graph X = (V, E) is a 
non-empty subset of V . Given an integer t ≥ 1, the ball with radius t and centre v ∈ V is defined as 
Bt(v, X) := {u ∈ V : d(v, u) ≤ t}, where d(v, u) is the distance in X between v and u. A code C ⊆ V is 
called a perfect t-error-correcting code or a perfect t-code in X if the balls Bt(v, X) with radius t and centres 
v ∈ C form a partition of V . In graph theory, Bt(v, X) is called the t-neighbourhood of v in X, each vertex 
in Bt(v, X) is said to be t-dominated by v, a perfect t-code in X is called a perfect t-dominating set of X, 
and a perfect 1-code in X is called an efficient dominating set or independent perfect dominating set (see 
e.g. [4,22,28,29]). A q-ary perfect t-code of length n in the classical setting is simply a perfect t-code in the 
corresponding Hamming graph H(n, q).

Since H(n, q) is a Cayley graph on Zn
q , perfect codes in Cayley graphs on finite groups can be thought as 

another avenue of generalizing perfect codes in the classical setting. Perfect codes in Cayley graphs are also 
closely related to factorizations and tilings of groups [17]. So far several results on perfect codes in Cayley 
graphs have been produced, but the area is still wide open. In [22] it was proved that a ‘normal subset’ 
of a group G is a perfect 1-code in a Cayley graph on G if and only if there exists a covering from the 
Cayley graph to a complete graph such that C is a fibre of the corresponding covering projection. (In [22]
a subset C of G is called normal if gC = Cg for any g ∈ G; this is equivalent to saying that C is closed 
under conjugation.) In [8] perfect 1-codes in a Cayley graph with connection set closed under conjugation 
were studied by way of equitable partitions, yielding a nonexistence result in terms of irreducible characters 
of the underlying group. In [17] several results about when a normal subgroup of a finite group is a perfect 
1-code in some Cayley graph of the group were obtained.

In [32] it was proved that there is no perfect 1-code in any Cayley graph on SL(2, 2f ), f > 1 with respect 
to any connection set closed under conjugation. In [4] a methodology for constructing E-chains of Cayley 
graphs was given and was used to construct infinite families of E-chains of Cayley graphs on symmetric 
groups, where an E-chain is a countable family of nested graphs each containing a perfect 1-code. Perfect 
1-codes in circulants were studied in [6,12,28,29], and those in directed products of cycles were completely 
characterized in [39]. In [24] sufficient conditions for Gaussian and Eisenstein–Jacobi graphs to contain 
perfect codes were given. Quotients of Gaussian graphs and their applications to constructing perfect codes 
were further discussed in [23]. In [25] a certain Cayley graph defined on the integer quaternions right-modulo 
a fixed nonzero element was introduced and perfect 1-codes in it were constructed.

In general, it is challenging to construct perfect codes in Cayley graphs – many Cayley graphs do not 
contain any perfect code at all. Inspired by [24] and our own work [36,40] on Frobenius graphs, in this 
paper we study the following two families of Cayley graphs and perfect codes in them. Let ζm (m ≥ 2) 
be an mth primitive root of unity, say ζm = e2πi/m, and A a nonzero ideal of the ring Z[ζm] of algebraic 
integers in the cyclotomic field Q(ζm). We define the mth cyclotomic graph with respect to A, denoted by 
Gm(A), to be the Cayley graph on the additive group of the quotient ring Z[ζm]/A with respect to the 
connection set {±(ζim + A) : 0 ≤ i ≤ m − 1}. We define the second kind mth cyclotomic graph with respect 
to A, denoted by G∗

m(A), to be the Cayley graph on the same group with respect to the connection set 
{±(ζim + A) : 0 ≤ i ≤ φ(m) − 1}, where φ is Euler’s function. In the case when m = 3, 4, G3((α)) and 
G4((α)) are precisely the Eisenstein–Jacobi and Gaussian networks [13,24,26], respectively, where (α) is the 
principal ideal generated by 0 �= α ∈ Z[ζm]. These two special families of cyclotomic graphs are closely 
related to two families of Frobenius circulants as shown in [41, Lemma 5] and [36, Theorem 5].

We prove that the distance in G∗
m(A) between two vertices is the Mannheim distance [10,18] (Lemma 4.1). 

Based on this observation we give a necessary and sufficient condition (Lemma 4.2) for a subring D/A of 
Z[ζm]/A to be a perfect t-code in G∗

m(A) (that is, a perfect t-code on Z[ζm]/A with respect to the Mannheim 
distance), where t ≥ 1 and D is an ideal of Z[ζm] containing A. We also give a necessary condition for D/A



JID:JPAA AID:5911 /FLA [m3L; v1.236; Prn:31/05/2018; 9:13] P.3 (1-17)
S. Zhou / Journal of Pure and Applied Algebra ••• (••••) •••–••• 3
to be a perfect t-code in Gm(A) (Lemma 4.2). Applying this result to the case m = 4, we show that the 
sufficient condition given in [26, Theorems 18] for (β)/(α) to be a perfect t-code in the Gaussian network 
G4((α)) is also necessary (Theorem 4.5), where α and β are nonzero elements of Z[i] with β dividing α. We 
also give a necessary condition for (β)/(α) to be a perfect t-code in the Eisenstein–Jacobi network G3((α))
(Theorem 4.7), where α and β are nonzero elements of Z[ρ] (where ρ = (1 +

√
−3)/2) with β dividing α. 

It was proved in [24, Theorem 24] that this necessary condition is sufficient in the case when α = a + bρ

with gcd(a, b) = 1. We show that the condition gcd(a, b) = 1 can be removed. Therefore, in the case when 
m = 3, 4, all perfect codes in Gm((α)) of the form (β)/(α) are known explicitly. An example can be found 
at the end of the paper.

As mentioned above, one of the motivations for our work is the study of Frobenius graphs in the context 
of communication network design. Due to the work in [11,31,40] it is known that first kind Frobenius graphs 
are ‘perfect’ as far as routing and gossiping are concerned, in the sense that they achieve the smallest possible 
edge-forwarding and arc-forwarding indices [16,40] and the smallest possible gossiping time [40] under the 
store-and-forward, all-port and full-duplex model. (An arc in a graph is an ordered pair of adjacent vertices.) 
These features together with the importance of circulants as communication networks [2] make it desirable 
to classify first kind Frobenius circulants. This has been achieved in [33] and [36] in the case of valency 4 
and 6, respectively. (See also [34,35,41] for related results.) In this paper we classify first kind Frobenius 
circulants of valency 2p for any odd prime p (Theorem 5.3), and prove that all of them are pth cyclotomic 
graphs (Theorem 5.5). Before establishing this connection we prove a few basic properties of cyclotomic 
graphs (Theorem 3.2). In particular, we prove that Gm(A) is arc-transitive and rotational, and thus can be 
embedded on a closed orientable surface as a balanced regular Cayley map.

Many problems arise from our study in this paper. One of them is concerned with constructing more 
perfect codes in cyclotomic graphs, possibly with the help of Lemma 4.2 and Corollary 4.3. See Problem 5.7
in the special case where p is an odd prime such that Z[ζp] is a principal ideal domain.

2. Notation and definitions

We follow [7] and [19,38], respectively, for terminology and notation in group theory and number theory. 
If G is a group acting on a set Ω and α ∈ Ω, the stabilizer of α in G is the subgroup Gα := {g ∈ G : αg = α}
of G and the G-orbit containing α is αG := {αg : g ∈ G}. If H and K are groups such that H acts on K
as a group, the semidirect product K �H is the group defined on the set K ×H with operation given by 
(x, u)(y, v) := (xyu−1

, uv) for (x, u), (y, v) ∈ K ×H.
Given a group G and a subset S of G such that 1G /∈ S = S−1 := {s−1 : s ∈ S} (where 1G is the identity 

element of G), the Cayley graph on G with respect to S, Cay(G, S), is defined to have vertex set G such that 
x, y ∈ G are adjacent if and only if xy−1 ∈ S. A complete rotation [15] of Cay(G, S) is an automorphism 
of G which fixes S setwise and induces a cyclic permutation on S; Cay(G, S) is rotational if it admits a 
complete rotation. A Cayley graph on a cyclic group is called a circulant. More explicitly, for a subset S of 
the additive group of ring Zn such that [0] /∈ S = −S := {−s : s ∈ S}, Cay(Zn, S) is a circulant of order n
and valency |S|.

A transitive group G on Ω is called a Frobenius group [7] if it is not regular but only the identity element 
can fix two points of Ω. It is well known (see e.g. [7, Section 3.4]) that a finite Frobenius group G has a 
nilpotent normal subgroup K, called the Frobenius kernel of G, which is regular on Ω. Hence G = K �H, 
where H is the stabilizer of a point of Ω. Since K is regular on Ω, we may identify Ω with K in such a way 
that K acts on itself by right multiplication, and we choose H to be the stabilizer of 1K so that H acts on 
K by conjugation. Thus an H-orbit on K is of the form xH := {h−1xh : h ∈ H}, where x ∈ K. A first kind 
G-Frobenius graph [11,40] is a Cayley graph X = Cay(K, S) on K, where S = aH for some a ∈ K satisfying 
〈aH〉 = K, with |H| even or a an involution. By abusing terminology we say that X is a first kind Frobenius 
graph with kernel K.
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All graphs in the paper are finite and undirected. A graph X is k-valent if all its vertices have valency k; 
in this case k = val(X) is called the valency of X. A graph X is G-vertex-transitive (G-edge-transitive, 
G-arc-transitive, respectively) if G is a subgroup of the automorphism group of X that is transitive on the 
set of vertices (edges, arcs, respectively) of X.

3. Cyclotomic graphs

In this section we introduce cyclotomic graphs and prove a few basic properties of them.
It is well known (see e.g. [38, Theorem 2.6]) that the ring of algebraic integers in the cyclotomic field 

Q(ζm) is Z[ζm] := {a0 + a1ζm + . . . + am−1ζ
m−1
m : a0, a1, . . . , am−1 ∈ Z}. It is also known (see e.g. [38, 

Theorem 2.5]) that [Q(ζm) : Q] = φ(m) with 1, ζm, . . . , ζφ(m)−1
m a basis for Q(ζm) over Q.

Definition 3.1. Let m ≥ 2 be an integer and A �= {0} an ideal of Z[ζm]. Define

Gm(A) := Cay(Z[ζm]/A,Em/A)

to be the Cayley graph on the additive group of Z[ζm]/A with respect to

Em/A := {±(ζim + A) : 0 ≤ i ≤ m− 1}. (1)

Define

G∗
m(A) := Cay(Z[ζm]/A,E∗

m/A)

to be the Cayley graph on the additive group of Z[ζm]/A with respect to

E∗
m/A := {±(ζim + A) : 0 ≤ i ≤ φ(m) − 1}.

We call Gm(A) and G∗
m(A) the mth cyclotomic graph and the second kind mth cyclotomic graph with respect 

to A, respectively.
If A = (α) �= {0} is a principal ideal of Z[ζm], we write Gm(α) and G∗

m(α) in place of Gm((α)) and 
G∗

m((α)), respectively.

In other words, Gm(A) (G∗
m(A), respectively) has vertex set Z[ζm]/A such that α +A, β +A ∈ Z[ζm]/A

are adjacent if and only if α−β−ζim ∈ A or α−β+ζim ∈ A for some i with 0 ≤ i ≤ m −1 (0 ≤ i ≤ φ(m) −1, 
respectively). Of course G∗

m(A) is a spanning subgraph of Gm(A).
Let us recall a few basic definitions about Z[ζm]. The norm of a nonzero ideal A of Z[ζm], N(A), is 

defined [19, Chapter 14] as the cardinality of Z[ζm]/A. For α ∈ Q(ζm), let N(α) denote the usual norm 
NQ(ζm)/Q(α) of α (see e.g. [19, Chapter 12]). Since Q(ζm) is a cyclotomic number field, N(α) ≥ 0 is an 
integer for any α ∈ Q(ζm), and N(α) = 0 if and only if α = 0. It is well known that N((α)) = |N(α)| (see 
e.g. [19, Proposition 14.1.3]).

The multiplicative group (Z[ζm]/A)∗ of units of Z[ζm]/A acts on the additive group of Z[ζm]/A by right 
multiplication: (α + A)γ+A = (α + A)(γ + A) = αγ + A. This is an action as a group because it respects 
the addition of Z[ζm]/A. Thus the semidirect product

L := (Z[ζm]/A) � (Z[ζm]/A)∗

is well-defined. It is straightforward to verify that
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(α + A)(β+A,γ+A) = (α + β)γ + A, α + A ∈ Z[ζm]/A, (β + A, γ + A) ∈ L (2)

defines a faithful action (as a set) of L on Z[ζm]/A.
The subset Em/A of (Z[ζm]/A)∗ is a cyclic subgroup of (Z[ζm]/A)∗, which we denote by HA. We have

HA =
{
〈(−ζm) + A〉, if m is odd
〈ζm + A〉, if m is even.

(3)

In fact, if m is even, then HA = 〈(−ζm) + A, (−1) + A〉 = 〈ζm + A, (−1) + A〉 = 〈ζm + A〉 as ζm/2
m = −1.

Given a generating set S of G and a cyclic permutation ρ of S, a Cayley map [20,30] is a 2-cell embedding 
of Cay(G, S) on an orientable surface such that for each vertex g ∈ G, the cyclic permutation of the arcs 
(g, sg), s ∈ S induced by a fixed orientation of the surface coincides with ρ. A Cayley map is balanced [30]
if ρ(s−1) = ρ(s)−1 for every s ∈ S, and regular if its automorphism group is regular on the set of arcs 
of Cay(G, S). It is known that the existence of a complete rotation in a Cayley graph is equivalent to the 
existence of a 2-cell embedding of the graph on a closed orientable surface as a balanced regular Cayley 
map.

Theorem 3.2. Let A �= {0} be an ideal of Z[ζm], where m ≥ 2, and let HA be as in (3). Then the following 
hold:

(a) Gm(A) is a finite, connected, undirected graph of order N(A) and valency val(Gm(A)) a divisor of 2m; 
moreover, val(Gm(A)) = 2m if and only if 1 ± ζim /∈ A for 1 ≤ i ≤ m − 1;

(b) under the assumption that 2 /∈ A and m is odd, if there exists i ≥ 1 such that 1 − ζim ∈ A, say d ≥ 1 is 
the smallest integer with this property, then val(Gm(A)) = 2d or d, depending on whether d is odd or 
even with 1 + ζ

d/2
m ∈ A; if there exists i ≥ 1 such that 1 + ζim ∈ A, then the smallest integer d with this 

property must be even and val(Gm(A)) = 2d;
(c) if 2 /∈ A and m is even, then the smallest positive integer d such that 1 − ζdm ∈ A must be even and 

val(Gm(A)) = d;
(d) Gm(A) admits (Z[ζm]/A) � HA as a group of automorphisms acting faithfully and transitively on the 

vertex set and regularly on the arc set;
(e) Gm(A) is a rotational Cayley graph and hence can be 2-cell-embedded on a closed orientable surface as 

a balanced regular Cayley map.

Proof. (a) By [19, Proposition 12.2.3], N(A) is finite, that is, Gm(A) is a finite graph with N(A) vertices. 
Since HA is closed under taking negative elements, Gm(A) is an undirected graph. Since by (3), HA is a cyclic 
subgroup of (Z[ζm]/A)∗ and (−ζm)2m + A = ζ2m

m + A = 1 + A, the order of HA (that is, val(Gm(A))) is a 
divisor of 2m. By the definition of Gm(A), there is at least one path in Gm(A) from A to any α+A ∈ Z[ζm]/A. 
(For example, if α = 2 −ζm+2ζ3

m, then the sequence A, 1 +A, 2 +A, (2 −ζm) +A, (2 −ζm+ζ3
m) +A, (2 −ζm+

2ζ3
m) +A gives a path from A to α+A.) Therefore, Gm(A) is connected. It is clear that val(Gm(A)) = 2m

if and only if ζim ± ζjm /∈ A for 0 ≤ i < j ≤ m − 1, or equivalently 1 ± ζjm /∈ A for 1 ≤ j ≤ m − 1.
(b) Suppose 2 /∈ A and m is odd. Then HA = 〈(−ζm) + A〉.
Case 1: There exists an integer i ≥ 1 such that ζim + A = 1 + A. Let d be the smallest integer with this 

property. If d is even, then HA = {1 + A, −ζm + A, . . . , ζd−2
m + A, −ζd−1

m + A}. Since −1 + A ∈ HA, we 
have −1 + A = −ζ2i+1

m + A for some 1 ≤ 2i + 1 ≤ d − 1, or −1 + A = ζ2i
m + A for some 1 ≤ 2i ≤ d − 2

(note that i �= 0 as 2 /∈ A). In the former case we obtain 1 − ζ2i+1
m ∈ A, which contradicts the assumption 

that d is the smallest positive integer such that 1 − ζdm ∈ A. In the latter case, 1 + ζ2i
m ∈ A and so 

(1 + ζ2i
m) − (1 − ζdm) ∈ A. This gives 1 + ζd−2i

m ∈ A and hence (1 + ζd−2i
m ) − (1 + ζ2i

m) = ζd−2i
m − ζ2i

m ∈ A, 
which contradicts the choice of d unless d − 2i = 2i. (In fact, if d − 2i > 2i, then by ζd−2i

m − ζ2i
m ∈ A we 
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have 1 − ζd−4i
m ∈ A, contradicting the minimality of d. If d − 2i < 2i, then 1 − ζ4i−d

m ∈ A, which again is 
a contradiction as 0 < 4i − d ≤ 2(d − 2) − d < d.) In the case when d − 2i = 2i, we have 1 + ζ

d/2
m ∈ A, 

HA = {±(1 + A), ±(−ζm + A), . . . , ±(ζ2i−2
m + A), ±(−ζ2i−1

m + A)}, and Gm(A) has valency d. Assume d
is odd. Then HA = {±(1 + A), ±(−ζm + A), . . . , ±(−ζd−2

m + A), ±(ζd−1
m + A)}. By the minimality of d we 

have 1 + A �= ζim + A for 1 ≤ i ≤ d − 1. We have also 1 + A �= −1 + A as 2 /∈ A by our assumption. If 
1 +A = −ζim +A for some 1 ≤ i ≤ d − 1, then 1 + ζim ∈ A and so ζim + ζdm = (1 + ζim) − (1 − ζdm) ∈ A. Thus 
1 + ζd−i

m ∈ A and therefore ζim− ζd−i
m ∈ A, which contradicts the choice of d as i �= d − i due to d being odd.

In summary, we have proved that in Case 1 either (i) d is even, 1 + ζ
d/2
m ∈ A and Gm(A) has valency d, 

or (ii) d is odd and Gm(A) has valency 2d.
Case 2: There exists an integer i ≥ 1 such that −ζim + A = 1 + A. Let d be the smallest integer with 

this property. If d is even, then HA = {±(1 + A), ±(−ζm + A), . . . , ±(−ζd−2
m + A), ±(ζd−1

m + A)}. Similar 
to the proof above, one can show that Gm(A) has valency 2d. If d is odd, then HA = {1 + A, −ζm +
A, . . . , −ζd−2

m +A, ζd−1
m +A}. Since −1 +A ∈ HA, we have −1 +A = −ζ2i+1

m +A for some 1 ≤ 2i +1 ≤ d −2, 
or −1 + A = ζ2i

m + A for some 1 ≤ 2i ≤ d − 1 (note that i �= 0 as 2 /∈ A). The latter case cannot happen 
as it contradicts the minimality of d. In the former case we obtain ζ2i+1

m + ζdm ∈ A and so 1 + ζd−2i−1
m ∈ A, 

which also contradicts the minimality of d.
In summary, in Case 2, d is even and Gm(A) has valency 2d.
We claim that Cases 1 and 2 coexist if and only if (i) in Case 1 occurs. In fact, let d1, d2 ≥ 1 be the 

smallest integers such that 1 − ζd1
m , 1 + ζd2

m ∈ A. Then ζd1
m + ζd2

m ∈ A and so 1 + ζd2−d1
m , 1 + ζd1−d2

m ∈ A. By 
the minimality of d2, we have d1 ≥ 2d2. We also have ζd2

m − ζd1−d2
m = (1 + ζd2

m ) − (1 + ζd1−d2
m ) ∈ A and so 

1 − ζd1−2d2
m ∈ A. By the minimality of d1, we have d1 = 2d2, yielding (i) in Case 1.

(c) Suppose 2 /∈ A and m is even. Then HA = 〈ζm + A〉. Let d be the smallest positive integer such 
that ζdm + A = 1 + A. (The existence of d is ensured by the fact that ζmm + A = 1 + A.) Then HA =
{1 + A, ζm + A, . . . , ζd−2

m + A, ζd−1
m + A} and −1 + A = ζim + A for some 1 ≤ i ≤ d − 1 (note that i �= 0 as 

2 /∈ A). So ζim+ζdm ∈ A and 1 +ζd−i
m ∈ A, which together with 1 +ζim ∈ A implies ζim−ζd−i

m ∈ A. This together 
with the minimality of d implies that d = 2i and hence HA = {±(1 + A), ±(ζm + A), . . . , ±(ζi−1

m + A)}. It 
follows that Gm(A) has valency d.

(d) Since HA is a subgroup of (Z[ζm]/A)∗, the semidirect product

H := (Z[ζm]/A) �HA

is a well-defined subgroup of L. Since L is faithful on Z[ζm]/A, so is H. We claim that H preserves the 
adjacency and non-adjacency relations of Gm(A). In fact, the images of α1 + A, α2 + A ∈ Z[ζm]/A under 
(β + A, ±(ζim + A)) ∈ H are ±((α1 + β)ζim + A) and ±((α2 + β)ζim + A), respectively. Since the difference 
between these two elements is ±((α1 − α2)ζim + A), it follows from the definition of Gm(A) that α1 + A

and α2 + A are adjacent in Gm(A) if and only if their images under (β + A, ±(ζim + A)) are adjacent in 
Gm(A). Therefore, H respects the adjacency and non-adjacency relations of Gm(A). Thus Gm(A) admits 
H as a group of automorphisms acting faithfully on the vertex set. The subgroup Z[ζm]/A of H is transitive 
on Z[ζm]/A by addition, and so H is transitive on the vertex set of Gm(A). In view of (2), the image of 
A ∈ Z[ζm]/A under (β + A, ±(ζim + A)) is ±(βζim + A), which is equal to A if and only if β ∈ A. Thus the 
stabilizer of the vertex A of Gm(A) under the action of H is the subgroup

H∗
A := {(A,±(ζim + A)) : 0 ≤ i ≤ m− 1}

of H, which is isomorphic to HA. It follows that this stabilizer is transitive on the neighbourhood Em/A of 
A in Gm(A), because (εζim + A)(β+A,ε′ζj

m+A) = ±(ζi+j
m + A) (where ε, ε′ = ±1) by (2). This together with 

the vertex-transitivity of H on Z[ζm]/A implies that H is transitive on the arc set of Gm(A). Moreover, 
by the orbit-stabiliser lemma, the order of H is equal to N(A) · |H∗

A| = N(A) · val(Gm(A)), which is the 
number of arcs of Gm(A). Therefore, H must be regular on the arc set of Gm(A).
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(e) In the case when m is odd, (A, (−ζm) + A) ∈ H∗
A generates the cyclic group H∗

A, fixes setwise the 
neighbourhood Em/A = {(−ζm)i + A : 0 ≤ i ≤ 2m − 1} of A, and permutes the neighbours of A in a 
cyclic manner by ((−ζm)i +A)(A,(−ζm)+A) = (−ζm)i+1 +A, 0 ≤ i ≤ 2m − 1. Therefore, (A, (−ζm) +A) is a 
complete rotation of Gm(A) and hence Gm(A) can be 2-cell-embedded on a closed orientable surface as a 
balanced regular Cayley map. Similarly, when m is even, the same result holds with (A, ζm +A) a complete 
rotation of Gm(A). �
Remark 3.3. Choose ζ3 = −ρ := −(1 +

√
−3)/2 so that ρ2 − ρ + 1 = 0. Then Z[ρ] = {x + yρ : x, y ∈ Z}

is the ring of Eisenstein–Jacobi integers with norm defined by N(x + yρ) = x2 + xy + y2. It is known that 
Z[ρ]∗ = 〈ρ〉 = {±ρi : i = 0, 1, 2}. Since Z[ρ] is an Euclidean domain, every nonzero ideal of it is a principal 
ideal (α), and G3(α) is precisely the Eisenstein–Jacobi (EJ) graph EJα [24]. (Unlike [24, Definition 19], we 
do not require gcd(a, b) = 1 in EJa+bρ. In [24] the EJ graph EJa+bω was defined as the Cayley graph on 
(the additive group of) Z[ω]/(a + bω) with respect to {±(1 + (a + bω)), ±(ω + (a + bω)), ±(ω2 + (a + bω))}, 
where ω = (−1 +

√
−3)/2. As noted in [13], although EJa+bω has a2 − ab + b2 vertices and is different from 

EJa+bρ, the family of EJ graphs is the same no matter whether Z[ρ] or Z[ω] is used.)
In the case when m = 4, we choose ζ4 = i (the imaginary unit) and so Z[ζ4] is the ring of Gaussian 

integers Z[i] with norm defined by N(x + yi) = x2 + y2. Let 0 �= α = a + bi ∈ Z[i] be such that N(α) ≥ 5. 
Then G4(α) = G∗

4(α) is exactly the Gaussian network Gα introduced in [24].

4. Perfect codes in cyclotomic graphs

Let α =
∑φ(m)−1

i=0 aiζ
i
m ∈ Z[ζm], where ai ∈ Z. Define [10]

|α| :=
φ(m)−1∑

i=0
|ai|,

where |ai| denotes the usual absolute value of ai. This defines an integer-valued weight function on Z[ζm], 
called the Manhattan weight [18] on Z[ζm]. This weight then defines the Manhattan distance |α−β| between 
α and β; this is a distance function because it is nonnegative, symmetric and satisfies the triangle inequality 
(see [10]).

Denote α + A by ᾱ for α ∈ Z[ζm] (and in particular 0̄ = 0 + A). Define

‖ᾱ‖ := min{|α− δ| : δ ∈ A}. (4)

Note that both ᾱ and ‖ᾱ‖ rely on A. Note also that ‖ᾱ‖ is independent of the choice of the representative α
in α+A. It was proved in [10, Section II-D] that this defines an integer-valued weight on Z[ζm]/A, that is, 
(i) ‖ᾱ‖ ≥ 0 with equality if and only if ᾱ = 0̄, (ii) ‖ᾱ‖ = ‖ − ᾱ‖, and (iii) ‖ᾱ+ β̄‖ ≤ ‖ᾱ‖ + ‖β̄‖. This weight 
then defines the distance ‖ᾱ− β̄‖ between ᾱ and β̄, called the Mannheim distance [10,18]. (This notion was 
introduced in [10] when A is a prime ideal, but it works well for any nonzero ideal A of Z[ζm].)

We now show that the Mannheim distance gives the distance between vertices in G∗
m(A). This observation 

is crucial for us to understand perfect codes in G∗
m(A).

Lemma 4.1. Let m ≥ 2 be an integer and A a nonzero proper ideal of Z[ζm]. Then for any ᾱ, β̄ ∈ Z[ζm]/A
the distance in G∗

m(A) between ᾱ and β̄ is equal to ‖ᾱ− β̄‖.

Proof. Since A �= Z[ζm], we have ζim /∈ A for each integer i.
We first show that ᾱ and β̄ are adjacent in G∗

m(A) if and only if ‖ᾱ − β̄‖ = 1. In fact, if ᾱ and β̄ are 
adjacent in G∗

m(A), then (α− β) ± ζim ∈ A for some 0 ≤ i ≤ φ(m) − 1, and hence ‖ᾱ− β̄‖ = min{|ζim − δ| :
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δ ∈ A} ≤ |ζim| = 1. However, ‖ᾱ − β̄‖ ≥ 1 as ᾱ �= β̄. Therefore, ‖ᾱ − β̄‖ = 1. Conversely, if ‖ᾱ − β̄‖ = 1, 
then there exists δ ∈ A such that |(α− β) − δ| = 1 and so (α− β) − δ = ±ζim for some 0 ≤ i ≤ φ(m) − 1, 
implying that ᾱ and β̄ are adjacent in G∗

m(A).
In general, let s = ‖ᾱ − β̄‖ and let t = d(ᾱ, β̄) be the distance between ᾱ and β̄ in G∗

m(A). Let 
ᾱ = ᾱ0, ᾱ1, . . . , ᾱt = β̄ be a shortest path in G∗

m(A). Since ᾱi and ᾱi+1 are adjacent in G∗
m(A), we have 

‖ᾱi − ᾱi+1‖ = 1 by what we proved in the previous paragraph. Since ᾱ− β̄ =
∑t−1

i=0(ᾱi − ᾱi+1), we obtain 
s = ‖ᾱ− β̄‖ ≤ t by the triangular inequality.

In view of (4), there exists δ ∈ A such that s = |(α − β) − δ|. So we may write (α − β) − δ = ci1ζ
i1
m +

· · · + cikζ
ik
m − (dj1ζj1m + · · · + djlζ

jl
m), where i1, . . . , ik, j1, . . . , jl are pairwise distinct integers between 0 and 

φ(m) − 1 and ci1 , . . . , cik , dj1 , . . . , djl are positive integers summing up to s. Thus the sequence

A, ζi1m + A, . . . , ci1ζ
i1
m + A, (ci1ζi1m + ζi2m) + A, . . . , (ci1ζi1m + ci2ζ

i2
m) + A, . . . , ((α− β) − δ) + A

is a path in G∗
m(A) with length ci1 + · · ·+ cik + dj1 + · · ·+ djl = s. (In each step of the sequence there is an 

increase or decrease by some ζirm .) Since ((α−β) −δ) +A = (α+A) − (β+A) (as δ ∈ A), this sequence gives 
a path in G∗

m(A) between 0̄ and ᾱ − β̄ and hence d(0̄, ᾱ − β̄) ≤ s. However, we have d(ᾱ, β̄) = d(0̄, ᾱ − β̄)
because the additive group of Z[ζm]/A is regular on the vertex set Z[ζm]/A of G∗

m(A) by addition as a group 
of automorphisms. Therefore, t ≤ s and the proof is complete. �

Denote by Bt(β̄) and B∗
t (β̄) the t-neighbourhood of β̄ ∈ Z[ζm]/A in Gm(A) and G∗

m(A), respectively. 
Since Gm(A) and G∗

m(A) are both vertex-transitive, we have |Bt(β̄)| = |Bt(0̄)| and |B∗
t (β̄)| = |B∗

t (0̄)| for 
all β̄ ∈ Z[ζm]/A. By Lemma 4.1,

B∗
t (β̄) = {γ̄ ∈ Z[ζm]/A : ‖β̄ − γ̄‖ ≤ t}.

Note that, if D is an ideal of Z[ζm] containing A, then D/A = {β + A : β ∈ D} is a subring of Z[ζm]/A. 
The following result easily follows from Lemma 4.1 and the definition of a perfect code.

Lemma 4.2. Let m ≥ 2 and t ≥ 1 be integers, and let A and D be nonzero ideals of Z[ζm] such that A ⊆ D. 
Then the following hold:

(a) D/A is a perfect t-code in G∗
m(A) if and only if

|B∗
t (0̄)| = N(D)

and

|η − δ| ≥ 2t + 1 (5)

for any δ ∈ A and η ∈ D −A;
(b) D/A is a perfect t-code in Gm(A) only when

|Bt(0̄)| = N(D)

and (5) holds for any δ ∈ A and η ∈ D −A.

Proof. By Lemma 4.1, we have: B∗
t (β̄) ∩B∗

t (γ̄) = ∅ for distinct β̄, ̄γ ∈ D/A ⇔ ‖β̄ − γ̄‖ ≥ 2t + 1 for distinct 
β̄, ̄γ ∈ D/A ⇔ ‖η̄‖ ≥ 2t + 1 for any 0̄ �= η̄ ∈ D/A ⇔ |η− δ| ≥ 2t + 1 for any δ ∈ A and η ∈ D−A. We have 
|D/A| = N(A)/N(D) as (Z[ζm]/A)/(D/A) ∼= Z[ζm]/D.
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Using the facts above, we have: D/A is a perfect t-code in G∗
m(A) ⇔ {B∗

t (β̄) : β̄ ∈ D/A} is a partition 
of Z[ζm]/A ⇔ |D/A| · |B∗

t (β̄)| = N(A) and B∗
t (β̄) ∩ B∗

t (γ̄) = ∅ for distinct β̄, ̄γ ∈ D/A ⇔ |B∗
t (0̄)| = N(D)

and (5) holds for any δ ∈ A and η ∈ D −A.
Since G∗

m(A) is a spanning subgraph of Gm(A), we have B∗
t (β̄) ⊆ Bt(β̄) for any β̄ ∈ Z[ζm]/A. Thus we 

have: D/A is a perfect t-code in Gm(A) ⇔ {Bt(β̄) : β̄ ∈ D/A} is a partition of Z[ζm]/A ⇔ |D/A| · |Bt(β̄)| =
N(A) and Bt(β̄) ∩Bt(γ̄) = ∅ for distinct β̄, ̄γ ∈ D/A ⇒ |Bt(0̄)| = N(D) and B∗

t (β̄) ∩B∗
t (γ̄) = ∅ for distinct 

β̄, ̄γ ∈ D/A ⇒ |Bt(0̄)| = N(D) and (5) holds for any δ ∈ A and η ∈ D −A. �
The following is an immediate consequence of Lemma 4.2.

Corollary 4.3. Let m ≥ 2 and t ≥ 1 be integers, and let 0 �= α, β ∈ Z[ζm] be such that β divides α. Then the 
following hold:

(a) (β)/(α) is a perfect t-code in G∗
m(α) if and only if

|B∗
t (0̄)| = N(β) (6)

and

|τβ| ≥ 2t + 1 (7)

for any nonzero τ ∈ Z[ζm];
(b) (β)/(α) is a perfect t-code in Gm(α) only when

|Bt(0̄)| = N(β) (8)

and (7) holds any nonzero τ ∈ Z[ζm].

Remark 4.4. Lemma 4.2 and Corollary 4.3 only provide necessary conditions for D/A and (β)/(α) to be 
a perfect t-code in Gm(A) and Gm(α), respectively. We are unable to tell whether these conditions are 
sufficient due to lack of knowledge of the distance in Gm(A) and Gm(α). In general, this distance is not the 
Mannheim distance as observed in [13,24] for m = 3, 4.

In the special case when m = 3, 4, by using Corollary 4.3 and the knowledge of the distance in Gm(A)
[13,26], we now prove that two sufficient conditions given in [24,26] are also necessary.

As mentioned in Remark 3.3, for 0 �= α = a + bi ∈ Z[i] with N(α) ≥ 5, G4(α) is the Gaussian network 
Gα introduced in [24]. It can be easily seen that Gα

∼= Giαj for any integer j. So we may assume a, b ≥ 0 in 
subsequent discussion about Gaussian networks. The size of the ball Bt(0̄) of radius t around 0̄ = 0 + (α)
in Gα was determined in [26] for any t ≥ 0. In particular, it was proved in [26, Theorems 10-11] that, if 
0 ≤ a ≤ b, then

|Bt(0̄)| = 4t, 0 ≤ t ≤ �(a + b− 1)/2�. (9)

In fact, this formula is also valid when a > b ≥ 0 as Ga+bi
∼= Gb+ai (see [13, Section IV]). It is known that 

two elements β, γ of Z[i] are associates of each other if and only if β = ijγ for some integer j. Since Z[i] is a 
principal ideal domain and associates generate the same principal ideal, any nonzero ideal of Z[i] is of the 
form (c + di) or (c − di) for some c, d ≥ 0.

The ‘if’ part of the following result was proved in [26, Theorem 18], which improved an earlier version 
[24, Theorem 14] that required the extra condition gcd(a, b) = 1. We complete the picture by proving the 
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‘only if’ part by using Corollary 4.3(b). (Note that the condition t ≤ �(a + b − 1)/2� is needed for otherwise 
(β)/(α) may not be a perfect t-code in Gα.)

Theorem 4.5. Let 0 �= α = a + bi ∈ Z[i] (where a, b ≥ 0), and let 0 �= β ∈ Z[i] be such that N(α) ≥ 5 and β
divides α. Let t be an integer between 1 and �(a + b − 1)/2�. Then (β)/(α) is a perfect t-code in Gα if and 
only if β is an associate of t + (t + 1)i or t − (t + 1)i.

Proof. We only need to prove the necessity. As mentioned above, we may assume 0 �= β = c ± di ∈ Z[i], 
where c, d ≥ 0. Since β divides α, we have (α) ⊆ (β), α = γβ for some γ ∈ Z[i], and N(β) = c2 + d2 divides 
N(α) = a2 + b2. Since N(α) ≥ 5, Gα has valency 4 by Theorem 3.2(c). Since 1 ≤ t ≤ �(a + b − 1)/2�, by 
(9), |Bt(0̄)| = 1 + 4 

∑t
j=1 j = 2t(t + 1) + 1.

Suppose that (β)/(α) is a perfect t-code in Gα. Then by (8) we have c2 + d2 = 2t(t + 1) + 1, and by 
(7), |τβ| ≥ 2t + 1 for any 0 �= τ ∈ Z[i]. Since |ijτβ| = |τβ| for any integer j, by multiplying τ by i, i2

or i3 when necessary, we may assume that τ = f ± gi where f, g ≥ 0 with (f, g) �= (0, 0). Note that 
τβ = (cf ∓ dg) +(df ± cg)i when β = c + di and τβ = (cf ± dg) − (df ∓ cg)i when β = c − di. In both cases, 
(7) is equivalent to

|cf − dg| + |df + cg| ≥ 2t + 1, |cf + dg| + |df − cg| ≥ 2t + 1 (10)

for any integers f, g ≥ 0 with (f, g) �= (0, 0).
Assume c ≥ d first. Choosing (f, g) = (1, 1) in (10), we obtain 2c ≥ 2t +1 and so c ≥ t +1. This together 

with c2 + d2 = 2t(t + 1) + 1 implies d ≤ t. Choosing (f, g) = (1, 0) in (10), we obtain c + d ≥ 2t + 1. If 
c + d > 2t + 1, then 2t(t + 1) + 1 = c2 + d2 > ((2t + 1) − d)2 + d2, yielding 0 > (d − t)(d − (t + 1)). However, 
this cannot happen as d ≤ t. Hence c + d = 2t + 1. Combining this with c2 + d2 = 2t(t + 1) + 1, we obtain 
cd = t(t + 1). Therefore the only possibility is that c = t + 1 and d = t.

Now assume c < d. Setting (f, g) = (1, 1) in (10), we have 2d ≥ 2t + 1 and so d ≥ t + 1. This together 
with c2 + d2 = 2t(t + 1) + 1 implies c ≤ t. Choosing (f, g) = (1, 0) in (10), we obtain c + d ≥ 2t + 1. Similar 
to the argument above, we then obtain c = t and d = t + 1.

We conclude the proof by noting that (t + 1) + ti = i(t − (t + 1)i) and (t + 1) − ti = i3(t + (t + 1)i). �
Remark 4.6. Theorem 4.5 can be restated as follows: Let β = t ± (t + 1)i with t a positive integer. Then 
for any α = (x + yi)β or (x − yi)β, where x, y ≥ 0, (x, y) �= (0, 0), Gα has (β)/(α) as a perfect t-code. 
Moreover, up to isomorphism these are the only cyclotomic graphs Gγ with β dividing γ that admit (β)/(γ)
as a perfect t-code in Gγ .

We now move on to the third cyclotomic graphs EJα = G3(α) (see Remark 3.3), where 0 �= α = a + bρ

and ρ = (1 +
√
−3)/2. Since Gα

∼= Gρjα for any integer j, without loss of generality we may assume a, b ≥ 0
in EJα. The size of the ball Bt(0̄) of radius t around 0̄ = 0 + (α) in EJα was determined in [13] for any 
t ≥ 0. In particular, it was proved in [13, Theorem 27] that, if a ≥ b ≥ 0, then

|Bt(0̄)| = 6t, 0 ≤ t < (a + b)/2. (11)

Note that this formula is also valid when 0 ≤ a < b as Ga+bρ
∼= Gb+aρ (see [13, Section IV]). It is known 

that two elements β, γ of Z[ρ] are associates of each other if and only if β = ρjγ for some integer j. Since 
Z[ρ] is a principal ideal domain and associates generate the same principal ideal, any nonzero ideal of Z[ρ]
is of the form (c + dρ) or (c − dρ) for some integers c, d ≥ 0.

In [13, Section IV], the ρ-taxicab norm of γ ∈ Z[ρ] was defined as

|γ|ρ := min{|x| + |y| + |z| : γ = x + yρ + zρ2, x, y, z ∈ Z}
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and the EJ-norm of γ̄ = γ + (α) in EJα was defined as

‖γ̄‖E := min{|γ − ηα|ρ : η ∈ Z[ρ]}.

Since ‖γ̄1‖E = ‖γ̄2‖E whenever γ1 ≡ γ2 mod α, ‖γ̄‖E is well-defined. It was proved in [13, Section IV] (see 
also [24]) that the distance in EJα between β̄ and γ̄ is given by ‖β̄ − γ̄‖E .

The ‘if’ part of the next result was proved in [24, Theorem 24] under the assumption gcd(a, b) = 1. (Note 
that in [24, Theorem 24] β has a different form due to the usage of ω = (−1 +

√
−3)/2 there.) We now show 

that the condition gcd(a, b) = 1 can be removed, by using [13, Theorem 27] and the argument in the proof 
of [24, Theorem 24]. Moreover, by using Corollary 4.3(b), we prove that the ‘only if’ part is also true.

Theorem 4.7. Let 0 �= α = a + bρ ∈ Z[ρ] (where a, b ≥ 0), and let 0 �= β ∈ Z[ρ] be such that N(α) ≥ 7 and 
β divides α. Let t be an integer between 1 and �(a + b − 1)/2�. Then (β)/(α) is a perfect t-code in EJα if 
and only if β is an associate of (t + 1) + tρ or t + (t + 1)ρ.

Proof. As noted above, we may assume 0 �= β = c ± dρ ∈ Z[ρ], where c, d ≥ 0. Since β divides α, we have 
(α) ⊆ (β), α = γβ for some γ ∈ Z[i], and N(β) = c2 ± cd + d2 divides N(α) = a2 + ab + b2. Since N(α) ≥ 7, 
EJα has valency 6 by Theorem 3.2(b). Since 1 ≤ t ≤ (a + b − 1)/2, by (11), |Bt(0̄)| = 1 + 6 

∑t
j=1 j =

3t(t + 1) + 1.
Necessity. Suppose that (β)/(α) is a perfect t-code in EJα. Then by (8), c2 ± cd + d2 = 3t(t + 1) + 1, 

and by (7), |τβ| ≥ 2t + 1 for every 0 �= τ ∈ Z[ρ]. Since |ρjτβ| = |τβ| for any integer j, multiplying τ by an 
appropriate ρj when necessary we may assume τ = f ± gρ, where f, g ≥ 0 with (f, g) �= (0, 0). Note that 
τβ = cf+(df±cg)ρ ±dgρ2 = (cf∓dg) +(df±(c +d)g)ρ when β = c +dρ, and τβ = cf−(df∓cg)ρ ∓dgρ2 =
(cf ± dg) − (df ∓ (c − d)g)ρ when β = c − dρ.

Case 1: β = c + dρ. In this case, c2 + cd + d2 = 3t(t + 1) + 1 by (8), and (7) is equivalent to

|cf − dg| + |df + (c + d)g| ≥ 2t + 1, |cf + dg| + |df − (c + d)g| ≥ 2t + 1 (12)

for any integers f, g ≥ 0 with (f, g) �= (0, 0). Setting (f, g) = (1, 0), we obtain c + d ≥ 2t + 1.
Assume c ≥ d first. In this case we have c ≥ t + 1 as c + d ≥ 2t + 1. This together with c2 + cd + d2 =

3t(t + 1) + 1 implies

d = 1
2

(
−c +

√
4(3t(t + 1) + 1) − 3c2

)
≤ 1

2

(
−(t + 1) +

√
4(3t(t + 1) + 1) − 3(t + 1)2

)
= t.

If c + d > 2t + 1, then 3t(t + 1) + 1 = c2 + cd + d2 > ((2t + 1) − d)2 + ((2t + 1) − d)d + d2, yielding 
0 > (d − t)(d − (t + 1)). Since this contradicts the fact d ≤ t, we must have c + d = 2t + 1. This together 
with c2 + cd + d2 = 3t(t + 1) + 1 implies cd = t(t + 1). Therefore, (c, d) = (t + 1, t).

Now assume c < d. Then 2d > c + d ≥ 2t + 1 and so d ≥ t + 1. Similar to the previous paragraph, we 
then have c ≤ t and based on this we can further prove that (c, d) = (t, t + 1).

Case 2: β = c − dρ. In this case, c2 − cd + d2 = 3t(t + 1) + 1 by (8), and (7) is equivalent to

|cf + dg| + |df − (c− d)g| ≥ 2t + 1, |cf − dg| + |df + (c− d)g| ≥ 2t + 1 (13)

for any integers f, g ≥ 0 with (f, g) �= (0, 0).
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Assume c ≥ d first. Since c2 − cd + d2 = 3t(t + 1) + 1, we have

d = 1
2

(
c±

√
4(3t(t + 1) + 1) − 3c2

)
. (14)

Since d is a real number, we have 3c2 ≤ 4(3t(t + 1) + 1) = 3(2t + 1)2 + 1, which implies c ≤ 2t + 1. On the 
other hand, setting (f, g) = (0, 1) in (13), we obtain c = d + |c − d| ≥ 2t + 1. Hence c = 2t + 1. Plugging 
this into (14), we obtain d = t + 1 or t. Therefore, (c, d) = (2t + 1, t + 1) or (2t + 1, t).

Next assume c < d. Similar to (13), we have

c = 1
2

(
d±

√
4(3t(t + 1) + 1) − 3d2

)
, (15)

which implies d ≤ 2t +1. On the other hand, setting (f, g) = (1, 1) in (13), we obtain d = |c −d| +|d +(c −d)| ≥
2t + 1. Hence d = 2t + 1. Plugging this into (15), we obtain c = t + 1 or t. Therefore, (c, d) = (t + 1, 2t + 1)
or (t, 2t + 1).

It can be verified that (2t +1) −(t +1)ρ = ρ5[(t +1) +tρ], (2t +1) −tρ = ρ5[t +(t +1)ρ], (t +1) −(2t +1)ρ =
ρ4[t + (t + 1)ρ] and t − (2t + 1)ρ = ρ4[(t + 1) + tρ]. So the ideals (β) in Case 2 give rise to the same perfect 
t-codes as in Case 1.

Sufficiency: We use essentially the same argument as in the proof of [24, Theorem 24], but we do not 
require gcd(a, b) = 1. Suppose first that β = (t +1) + tρ divides α. We aim to prove that (β)/(α) is a perfect 
t-code in EJα. Since |Bt(0̄)| = N(β) = 3t(t + 1) + 1, it suffices to prove that the distance ‖γ̄ − δ̄‖E in EJα
between any two vertices γ̄, ̄δ ∈ (β)/(α) is at least 2t + 1 (see the proof of Lemma 4.2), or equivalently, 
‖γβ‖E ≥ 2t + 1 for any 0 �= γ ∈ Z[ρ]. Suppose otherwise. Since β divides α, there exist 0 �= η ∈ Z[ρ]
and integers x, y, z such that ηβ = x + yρ + zρ2 and ‖γβ‖E = |x| + |y| + |z| ≤ 2t. Set η = f + gρ, where 
(f, g) �= (0, 0) are integers. Then ηβ = (f(t + 1) − gt) + (ft + g(2t + 1))ρ. On the other hand, we have 
ηβ = (x − z) + (y+ z)ρ. Hence x − z = f(t + 1) − gt, y+ z = ft + g(2t + 1) and x + y = f(2t + 1) + g(t + 1). 
It follows that |x| + |z| ≥ |f(t +1) −gt|, |y| + |z| ≥ |ft +g(2t +1)| and |x| + |y| ≥ |f(2t +1) +g(t +1)|. Thus, 
if |f | < |g|, then |y| + |z| ≥ |g(2t + 1)| − |ft| ≥ (|f | + 1)(2t + 1) − |f |t ≥ 2t + 1. Similarly, if |f | > |g|, then 
|x| + |y| ≥ 2t + 1. Moreover, if f = g �= 0 then |x| + |y| ≥ 2t + 1, and if f = −g �= 0 then |x| + |z| ≥ 2t + 1. 
In any case, we have |x| + |y| + |z| ≥ 2t + 1, a contradiction. Therefore, the distance in EJα between any 
two distinct vertices of (β)/(α) is at least 2t + 1. Consequently, the balls Bt(γ̄), γ̄ ∈ (β)/(α) are pairwise 
disjoint. However, there are N(α)/N(β) such balls and each of them has size N(β). Therefore, these balls 
form a partition of the vertex set Z[ρ]/(α) of EJα. That is, (β)/(α) is a perfect t-code in EJα.

It can be verified that, for β = t +(t +1)ρ and η = f+gρ, we have ηβ = (ft −g(t +1)) +(f(t +1) +g(2t +1))ρ. 
Using this and a similar argument as above, one can show that (β)/(α) is a perfect t-code in EJα provided 
that β divides α. �
5. Circulant cyclotomic graphs

In this section we present a family of circulant cyclotomic graphs of valency twice an odd prime, namely 
2p-valent first kind Frobenius circulants. We give a classification of all such graphs in Theorem 5.3 and then 
prove that they are indeed cyclotomic in Theorem 5.5.

Since Z[ζm] is a Z-module with integral basis 1, ζm, . . . , ζφ(m)−1
m , we may write

ζim =
φ(m)−1∑

j=0
cijζ

j
m, 0 ≤ i ≤ m− 1, (16)

where all cij ∈ Z are determined by ζm. Note that, for 0 ≤ i ≤ φ(m) − 1, we have cii = 1 and cij = 0 when 
i �= j. The next result gives a construction of circulant cyclotomic graphs.
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Lemma 5.1. Let m ≥ 2 and n ≥ 3 be odd integers, and let cij be defined by (16). Suppose that a is a positive 
integer such that

ai ≡
φ(m)−1∑

j=0
cija

j mod n, φ(m) ≤ i ≤ m− 1 (17)

and am ≡ 1 mod n but ai �≡ ±1 mod n for 1 ≤ i ≤ m − 1. Then Cay(Zn, 〈[−a]〉) ∼= Gm(Am,n,a), where

Am,n,a :=

⎧⎨
⎩

φ(m)−1∑
i=0

aiζ
i
m ∈ Z[ζm] :

φ(m)−1∑
i=0

aia
i ≡ 0 mod n

⎫⎬
⎭ . (18)

Proof. Define

f

⎛
⎝φ(m)−1∑

i=0
aiζ

i
m

⎞
⎠ =

φ(m)−1∑
i=0

aia
i mod n, ai ∈ Z. (19)

Since 1, ζm, . . . , ζφ(m)−1
m is an integral basis for the Z-module Z[ζm], f is a well-defined mapping from 

Z[ζm] to Zn. Obviously, f is surjective. Using (16)–(19), one can verify that f
(∑k

i=0 aiζ
i
m

)
=

∑k
i=0 aia

i, 
0 ≤ k ≤ n − 1. This can be easily extended to arbitrary k, that is, for any k ≥ 0,

f

(
k∑

i=0
aiζ

i
m

)
=

k∑
i=0

aia
i mod n. (20)

We claim that f is a ring homomorphism from Z[ζm] to Zn. In fact, for α =
∑m−1

i=0 aiζ
i
m ∈ Z[ζm] and 

β =
∑m−1

i=0 biζ
i
m ∈ Z[ζm], it is evident that f(α + β) = f(α) + f(β). Since ζmm = 1, we have

αβ =
m−1∑
k=0

⎛
⎝ ∑

i+j=k

aibj

⎞
⎠ ζkm +

2(m−1)∑
k=m

⎛
⎝ ∑

i+j=k

aibj

⎞
⎠ ζk−m

m .

Thus, by (20) and the assumption am ≡ 1 mod n,

f(αβ) =
m−1∑
k=0

⎛
⎝ ∑

i+j=k

aibj

⎞
⎠ ak +

2(m−1)∑
k=m

⎛
⎝ ∑

i+j=k

aibj

⎞
⎠ ak−m mod n

=
(

m−1∑
i=0

aia
i

)(
m−1∑
i=0

bia
i

)
mod n

= f(α)f(β).

Therefore, f is a surjective homomorphism from Z[ζm] to Zn.
The kernel of f is exactly A = Am,n,a as defined in (18). By the homomorphism theorem for rings, we 

have Z[ζm]/A ∼= Zn and f̄(x + A) := f(x), x ∈ Z[ζm] defines the corresponding isomorphism from Z[ζm]/A
to Zn. Since f(ζim) = ai mod n by (20), f̄ maps ±(ζim + A) to ±[ai], 0 ≤ i ≤ m − 1. Since m is odd, 
it follows that the subset Em/A of Z[ζm]/A defined in (1) with respect to A above is the pre-image of 
〈[−a]〉 = {±[ai] : 0 ≤ i ≤ m − 1} ≤ Z∗

n under f̄ . Since n is odd and am ≡ 1 mod n, n is not a divisor 
of 2ai for 0 ≤ i ≤ m − 1. This together with the assumption ai �≡ ±1 mod n, 1 ≤ i ≤ m − 1 implies 
that 〈[−a]〉 has order 2m. Therefore, Em/A has size 2m and f̄ gives a bijection from Em/A to 〈[−a]〉. In 
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other words, Gm(A) has valency 2m. It is readily seen that f̄ gives rise to an isomorphism from Gm(A) to 
Cay(Zn, 〈[−a]〉). �
Lemma 5.2. ([33, Lemma 4]) Let n ≥ 3 be an integer. A subgroup H of Z∗

n is semiregular on Zn \ {[0]} if 
and only if [h − 1] ∈ Z∗

n for all [h] ∈ H \ {[1]}.

Theorem 5.3. Let p be an odd prime and n ≥ 2p + 1 an integer. Then a 2p-valent circulant Cay(Zn, S) with 
[1] ∈ S is a first kind Frobenius graph with cyclic kernel if and only if n ≡ 1 mod 2p and S = 〈[a]〉 for some 
positive integer a such that ap + 1 ≡ 0 mod n and gcd(ai ± 1, n) = 1 for 1 ≤ i ≤ p − 1. Moreover, in this 
case Cay(Zn, 〈[a]〉) is a Zn � 〈[a]〉-arc transitive first kind Zn � 〈[a]〉-Frobenius circulant.

Proof. Let Cay(Zn, S) be a first kind Frobenius circulant with order n such that [1] ∈ S and the kernel of 
the underlying Frobenius group is Zn. Then there exists a subgroup H of Z∗

n such that |H| = 2p, Zn �H

is a Frobenius group and Cay(Zn, S) is a first kind Zn �H-Frobenius circulant. Thus H is semiregular on 
Zn \ {[0]}, and in particular n ≡ 1 mod 2p. Moreover, S is an H-orbit on Zn and hence H is regular on S. 
Since [1] ∈ S, it follows that S = H. Since H is Abelian with |H| = 2p, it is a cyclic group of order 2p, as 
an Abelian group of order 2p must be cyclic. So we may assume H = 〈[a]〉 = {[ai] : 0 ≤ i ≤ 2p − 1}, where 
[a] is an element of Z∗

n with order 2p. Since [1] ∈ S and S is closed under taking negative elements, we have 
−[1] ∈ S = H and so there exists i with 2 ≤ i ≤ 2p − 1 such that [ai] = −[1] (note that [a] �= −[1] as [a] has 
order 2p > 2 in Z∗

n). Thus [a2i] = [1] and so 2p divides 2i. Since p is a prime, we have i = p and therefore 
ap + 1 ≡ 0 mod n (so that H = {±[1], ±[a], ±[a2], . . . , ±[ap−1]}). Since H is semiregular on Zn \ {[0]}, by 
Lemma 5.2, the integers ai ± 1 are all coprime to n for 1 ≤ i ≤ p − 1.

Conversely, if n ≡ 1 mod 2p and a is a positive integer such that ap+1 ≡ 0 mod n and ai±1, 1 ≤ i ≤ p −1
are coprime to n, then H = 〈[a]〉 ≤ Z∗

n is semiregular on Zn \ {[0]} with order |H| = 2p. Therefore, Zn �H

is a Frobenius group and Cay(Zn, 〈[a]〉) is a first kind Zn �H-Frobenius graph. Moreover, Cay(Zn, 〈[a]〉) is 
Zn �H-arc-transitive by [40, Lemma 2.1]. �
Remark 5.4. Since ap+1 = (a +1) 

∑p−1
i=0 (−1)iai and a2−1 = (a −1)(a +1), the conditions in Theorem 5.3 are 

equivalent to that ap−1 ≡
∑p−2

i=0 (−1)i+1ai mod n and gcd(ai±1, n) = 1 for 2 ≤ i ≤ p −1. Thus each [u] ∈ Zn

can be expressed as [u] = [
∑p−2

i=0 uia
i] for some integers u0, u1, . . . , up−2. Obviously this representation is 

not unique and without loss of generality we may assume ui ≥ 0 for 0 ≤ i ≤ p −2. The neighbours of [u] are 
[u] + [aj ], 0 ≤ j ≤ 2p − 1, and H = 〈[a]〉 cyclically ‘rotates’ the ‘directions’ [aj ] at [u] in the obvious way. 
From a geometric point of view this determines a cyclic permutation of the edges incident with [u] and thus 
defines an embedding of Cay(Zn, 〈[a]〉) on a closed orientable surface as a balanced regular Cayley map (see 
[35, Corollary 2.9]). Note that Cay(Zn, 〈[a]〉) is a rotational Cayley graph.

Theorem 5.5. Let p be an odd prime and n ≥ 2p + 1 an integer with n ≡ 1 mod 2p. Then the first kind 
Frobenius circulant Cay(Zn, 〈[a]〉) in Theorem 5.3 is isomorphic to Gp(Ap,n,−a).

Proof. We have φ(p) = p − 1, ζp−1
p = − 

∑p−2
j=0 ζ

j
p, and Ap,n,−a = {

∑p−2
i=0 aiζ

i
p ∈ Z[ζp] :

∑p−2
i=0 ai(−a)i ≡

0 mod n}. Since ap + 1 ≡ 0 mod n and a + 1 is coprime to n, we have (−a)p−1 ≡ − 
∑p−2

j=0(−a)j mod n, 
which means that −a satisfies the condition (17). So Cay(Zn, 〈[a]〉) ∼= Gp(Ap,n,−a) by Lemma 5.1. �
Remark 5.6. In general, Am,n,a defined in (18) is not necessarily a principal ideal. However, it must be a 
principal ideal if m is one of the following integers:

3, 4, 5, 7, 8, 9, 11, 12, 13, 15, 16, 17, 19, 20, 21, 24, 25, 27, 28, 32, 33, 35, 36, 40, 44, 45, 48, 60, 84.
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Fig. 1. A perfect 1-code in EJ1+9ρ ∼= TL91(10, 9, 1).

This is because there are precisely 29 cyclotomic fields Q(ζm) with Z[ζm] a principal ideal domain and 
they are given by these integers m [27]. Thus, by Theorem 5.5, we know that for p = 3, 5, 7, 11, 13, 17, 19, 
Cay(Zn, 〈[a]〉) in Theorem 5.3 is isomorphic to Gp(α) for some 0 �= α ∈ Z[ζp]. It would be interesting to 
investigate when the converse of this statement is true (see [36, Theorem 5(b)] in the case when p = 3).

Problem 5.7. Let t ≥ 1 be an integer. For p = 5, 7, 11, 13, 17, 19, find necessary and sufficient conditions for 
(β)/(α) to be a perfect t-code in Gp(α) (or G∗

p(α)), where 0 �= α, β ∈ Z[ζp] such that β divides α.

In view of Corollary 4.3, the first key step towards this problem may be to acquire detailed knowledge of 
the distance in Gp(α) (or G∗

p(α)) and the size of the t-neighbourhood of a vertex in the graph.
In the case when p = 3, Theorem 5.5 asserts that, for any odd integer n ≥ 7 and positive integer a such 

that a2 − a + 1 ≡ 0 mod n and a2 ± 1 is coprime to n, the 6-valent first kind Frobenius circulant

TLn(a, a− 1, 1) := Cay(Zn, 〈[a]〉)

is isomorphic to the Eisenstein–Jacobi graph EJα = G3(A3,n,−a) (see Remark 3.3), a result noticed in [36, 
Theorem 5(a)] (with more details), where A3,n,−a = {c + dρ ∈ Z[ρ] : c + da ≡ 0 mod n} = (α) for some 
0 �= α ∈ Z[ρ] as Z[ρ] is an Euclidean domain.

We finish this paper by the following example to illustrate Theorems 4.7 and 5.5.

Example 5.8. Let a = 10 and n = a2 − a + 1 = 91. Then by Theorem 5.5 (see also [36, Example 2]) 
TL91(10, 9, 1) is isomorphic to EJα for some 0 �= α ∈ Z[ρ]. In fact, by [36, Theorem 5(a)], α = 1 + 9ρ
and f : x + 10y mod 91 �→ x + yρ mod α is an isomorphism from TL91(10, 9, 1) to EJ1+9ρ, where x and 
y are integers. By Theorem 4.7, the only perfect t-codes in EJ1+9ρ of the form (β)/(1 + 9ρ) are given by 
β = (t + 1) + tρ, t + (t + 1)ρ with β dividing 1 + 9ρ, where 1 ≤ t ≤ 4. One can see that, for t = 2, 3, 4, 
N(β) is not a divisor of N(1 + 9ρ) = 91 and so β does not divide 1 + 9ρ. Moreover, 1 + 2ρ does not divide 
1 + 9ρ whilst 1 + 9ρ = (2 + ρ)(4 − ρ). Therefore, the only perfect code in EJ1+9ρ of the form (β)/(1 + 9ρ)
is (2 + ρ)/(1 + 9ρ), which is a perfect 1-code with size N(1 + 9ρ)/N(2 + ρ) = 13.

It can be verified that (2 + ρ)/(1 + 9ρ) = {j(1 + 2ρ) mod (1 + 9ρ) : 0 ≤ j ≤ 12}. Since f−1 :
j(1 + 2ρ) mod (1 + 9ρ) �→ 21j mod 91, 0 ≤ j ≤ 12, we may view (2 + ρ)/(1 + 9ρ) as the perfect 1-code 
C := {0, 21, 42, 63, 84, 14, 35, 56, 77, 7, 28, 49, 70} (mod 91) in TL91(10, 9, 1). Following [36, Section 5], we 
can represent this graph by its minimum distance diagram as shown in Fig. 1 (the area with numbers), 
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where each vertex is adjacent to the six vertices in the neighbouring cells. By the discussion in [36, Sec-
tion 5], the whole plane can be tessellated by copies of this minimum distance diagram. The 13 coloured 
vertices (numbers) in Fig. 1 constitute the perfect 1-code C, and the ball of radius one centred at each 
coloured vertex consists of the coloured vertex itself and its six neighbours. For example, the ball of radius 
one centred at 84 is {84, 3, 2, 83, 74, 75, 85}, and that centred at 42 is {42, 52, 51, 41, 32, 33, 43}. Equivalently, 
we can label the hexagonal cells by the elements of Z[ρ]/(1 + 9ρ), say, 21 = 1 + 2 · 10 can be replaced by 
1 + 2ρ, 78 = 8 + 7 · 10 by 8 + 7ρ, and so on.
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