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Correcting Limited-Magnitude Errors in the
Rank-Modulation Scheme
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Abstract—We study error-correcting codes for permutations
under the infinity norm, motivated by a novel storage scheme
for flash memories called rank modulation. In this scheme, a set
of � flash cells are combined to create a single virtual multi-
level cell. Information is stored in the permutation induced by
the cell charge levels. Spike errors, which are characterized by
a limited-magnitude change in cell charge levels, correspond
to a low-distance change under the infinity norm. We define
codes protecting against spike errors, called limited-magnitude
rank-modulation codes (LMRM codes), and present several con-
structions for these codes, some resulting in optimal codes. These
codes admit simple recursive, and sometimes direct, encoding and
decoding procedures. We also provide lower and upper bounds on
the maximal size of LMRM codes both in the general case, and in
the case where the codes form a subgroup of the symmetric group.
In the asymptotic analysis, the codes we construct outperform the
Gilbert–Varshamov-like bound estimate.

Index Terms—Asymmetric channel, flash memory, infinity
norm, permutation arrays, rank modulation, subgroup codes.

I. INTRODUCTION

I N the race to dominate nonvolatile information-storage
devices, flash memory is a prominent contender. Flash

memory is an electronic nonvolatile memory that uses
floating-gate cells to store information [7]. While initially,
flash memory cells used to contains a single bit of information,
in the standard multilevel flash-cell technology of today, every
cell has discrete states, , and, therefore,
can store bits. The flash memory changes the state of a
cell by injecting (cell programming) or removing (cell erasing)
charge into/from the cell.

Flash memories possess an inherent asymmetry: writing is
more time- and energy-consuming than reading [7]. The main
reason behind this asymmetry is the iterative cell-programming
procedure designed to avoid over-programming [2] (raising the
cell’s charge level above its target level). While cells can be pro-
grammed individually, only whole blocks (today, containing ap-
proximately cells, see [7]) can be erased to the lowest state
and then reprogrammed. Since overprogramming can only be
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corrected by the block erasure, in practice a conservative pro-
cedure is used for programming a cell, where charge is injected
into the cell over quite a few rounds [2]. After every round, the
charge level of the cell is measured and the next-round injec-
tion is configured. The charge level of the cell is made to gradu-
ally approach the target state until it achieves the desired accu-
racy. The iterative-programming approach is costly in time and
energy.

Another major concern for flash memory is data reliability.
The stored data can be corrupted due to charge leakage, a long-
term factor that causes the data retention problem. The data can
also be affected by other mechanisms, including read distur-
bance, write disturbance [7], etc. Many of the error mechanisms
have an asymmetric property: they make the cells’ charge levels
drift in one direction. (For example, charge leakage makes the
cell levels drift down.) Such a drift of cell charge levels causes
errors in aging devices. The problem of data corruption is fur-
ther aggravated as the number of levels in multilevel cells in-
creases, since this reduces the safety margins for correct reading
and writing.

To address these issues, the rank-modulation scheme has been
recently suggested [17]. By removing the need to measure ab-
solute cell-charge levels, the new scheme eliminates the risk of
cell over-programming, and reduces the effect of asymmetric
errors. In this scheme, a virtual cell that is composed of cells
with distinct charge levels, induces a permutation which is used
to represent the stored information. Each cell has a rank which
indicates its relative position when ordering the cells according
to descending charge-level. The ranks of the cells induce a
permutation of .

When writing or reading the cell charge levels, we only need
to compare the charge levels between cells. Thus, the rank-mod-
ulation scheme eliminates the need to use the absolute values
of cell levels to store information. Since there is no risk of
over-programming and the cell charge levels can take contin-
uous values, a substantially less conservative cell programming
method can be used and the writing speed can be improved. In
addition, asymmetric errors become less serious, because when
cell levels drift in the same direction, their ranks are not affected
as much as their absolute values. This way both the writing
speed and the data reliability can be improved.

While the rank-modulation scheme alleviates some of the
problems associated with current flash technology, the flash-
memory channel remains noisy and an error-control mechanism
is required. In this work we consider an error model which cor-
responds to spike errors. Such errors are characterized by a lim-
ited-magnitude change in the charge level of cells, and readily
translates into a limited-magnitude change in the rank of, pos-
sibly, all cells in the stored permutation. This corresponds to a
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bounded-distance change under the -metric. We call codes
protecting against such errors limited-magnitude rank-modula-
tion codes (LMRM).

A similar error model for flash memory was considered
not in the context of rank modulation in [8], while a different
error-model (charge-constrained errors for rank modulation)
was studied in [18]. Codes over permutations are also referred
to as permutation arrays and have been studied in the past under
different metrics [3], [4], [9], [10], [14], [15], [30]. Specifically,
permutation arrays under the -metric were considered in
[24].

The main contribution of this paper is a set of constructions
and bounds for such codes. The constructions presented are
applicable for a wide range of parameters, and admit simple
decoding and encoding procedures. We also present bounds
on code parameters both for the general case, as well as for
the more restricted case of subgroup codes. Most notably,
we present an asymptotically good family of codes, with
nonvanishing normalized distance and rate, which exceed the
Gilbert–Varshamov-like lower bound estimate.

It is important to note that, independently and concurrently,
Kløve, Lin, Tsai, and Tzeng [20] describe Construction 1 and
its immediate generalization, Construction 2. As the overall
overlap is small, and since the two constructions lead to our
Construction 3, which we show to produce an optimal code, we
bring these first two here for the sake of completeness.

The rest of the paper is organized as follows. In Section II
we define the notation, and introduce the error-model as well as
the associated -metric. We proceed in Section III and present
the code constructions and encoding/decoding algorithms. In
Section IV we investigate general bounds on LMRM codes,
code-anticode bounds, and asymptotic-form bounds. We con-
clude in Section V with a summary of the results and a short
concluding remarks.

II. DEFINITIONS AND NOTATIONS

For any , , let denote the set
, where we also denote by the set .

Given any set of cardinality , we denote by the set of
all permutations over the set . By convention, we use to
denote the set .

We will use both the vector notation for permutations
, where denotes the permutation map-

ping for all , and the cycle notation,
where denotes the permutation mapping

for as well as . Given two per-
mutations , the product is a permutation mapping

for all .
Let us consider flash memory cells which we name

. The charge level of each cell is denoted by
for all . In the rank-modulation scheme defined in
[17], the charge levels of the cells induce a permutation in the
following way: The induced permutation (in vector notation) is

iff .
The rank-modulation scheme is defined by two functions:

an encoding function , which takes a symbol
from the input alphabet and maps it to a permutation

, and a decoding function . Since

no channel is devoid of noise, a stored permutation
may be corrupted by any of a variety of possible disturbance
found in flash memory (see [7]). Assuming the changed version
of , denoted , is not too corrupted, we would like the de-
coding function to restore the original information symbol, i.e.,

.
For a measure of the corruption of a stored permutation we

may use any of a variety of metrics over (see [12]). Given a
metric over , defined by a distance function

, an error-correcting code is a subset of with lower-
bounded distance between distinct members.

In [18], the Kendall- metric was used, where the distance
between two permutations is the number of adjacent transposi-
tions required to transform one into the other. This metric cor-
responds to a situation in which we can bound the total differ-
ence in charge levels, and the error-correcting codes are there-
fore named charge-constrained rank-modulation codes.

In this paper, we consider a different type of common
error—a limited-magnitude spike error. Suppose a permutation

was stored by setting the charge levels of flash
memory cells to . We say a single spike error of
limited-magnitude has occurred in the th cell if the corrupted
charge level, , obeys . In general, we say spike
errors of limited-magnitude have occurred if the corrupted
charge levels of all the cells obey

Let us denote by the permutation induced by the cell charge
levels under the rank-modulation scheme. Under
the plausible assumption that distinct charge levels are not ar-
bitrarily close (due to resolution constraints and quantization at
the reading mechanism), i.e., for some positive
constant for all , a single spike error of limited-mag-
nitude implies a constant such that

(1)

Loosely speaking, an error of limited magnitude cannot change
the rank of the cell (which is simply ) by or more
positions. Intuitively, the reason for this is that even at the worst
case, where all the cell levels are separated by , a single cell
reducing its charge by and all the rest increasing their charge
by will cause a maximal change in rank bounded by as
above.

If the bound of (1) satisfies , then any permutation
may change into any other permutation by a single spike error.
However, it is important to note that both and are indepen-
dent of , and so for any bound we can choose large enough
to be able to create meaningful error-correcting schemes as de-
scribed in the rest of the paper.

The limited-magnitude-error model has been studied in the
past in the context of the generalized -cube [1], [8], and more
related to our context, over permutations [20], [24].

We therefore find it suitable to use the -metric over
defined by the distance function
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for all . Since this will be the distance measure used
throughout the paper, we will usually omit the subscript.

Definition 1: An LMRM-code with parameters , is
a subset of cardinality , such that for
all , . (We will sometimes omit the parameter

.)
We note that unlike the charge-constrained rank-modulation

codes of [18], in which the codeword is stored in the permutation
induced by the charge levels of the cells, here the codeword is
stored in the inverse of the permutation.

It may be the case that the code forms a subgroup of the
symmetric group , which we will denote by . We
shall call such a code a subgroup code. Since groups offer a rich
structure, we will occasionally constrain ourselves to discuss
subgroup codes.

III. CODE CONSTRUCTIONS

In this section we describe three constructions for LMRM
subgroup codes. The first two were discovered independently
and concurrently by [20]. We begin our constructions with the
following, which bears a resemblance to the unidirectional lim-
ited-magnitude codes described in [1]. This construction will
turn out to be a simple case of a more general construction given
later.

Construction 1: Given we construct

Alternatively, for every let

and define to be the direct product of the symmetric groups
over the ’s

Theorem 2: The code from Construction 1 is an
-LMRM code with

Proof: The length and size of the code are easily seen to
be as claimed. All we have to do now is show that the minimal
distance of the code is indeed . Let be two distinct
codewords, and let be such that . Since

it follows that , and so
.

This construction allows a simple encoding procedure. To
simplify the presentation let us assume that divides . The en-
coder takes as input an integer (where is the
size of the code), e.g., by translating from a string of

binary input symbols. The number can then be written in
base , that is

where . Finally, for every we map the
th digit, , to using some function

There are numerous efficiently computable functions to satisfy
, such as the factoradic representation (see [22], [23], and

[27]), as well others (see [21] and references therein). Then, by
using the resulting encoding becomes

A straightforward decoding procedure is also obtain-
able. Let us assume that was stored, where is an

-LMRM code from Construction 1, while the re-
trieved permutation was . We further assume that the
maximum magnitude of errors introduced by the channel is

, i.e., for all .
Since is a code of minimum distance , there is a unique

codeword at distance at most from . Recov-
ering this codeword is simple and may be done independently
for each of the coordinates: For every coordinate , there
is a unique such that and

. The recovered permutation is given by
. By definition, , and by the algorithm pre-

sented we also have , hence
which is the original permutation which was stored.

Finding the original input message may be accomplished by
decomposing into a product of permutations from
and applying appropriately.

We now extend the direct-product approach and generalize
the previous construction. First we introduce a new notation.
Given , and a set of size , we denote by the
same permutation but over . More formally, assuming

, with , we set

Furthermore, given a set , we define

Construction 2: Let , and define the sets

for all . Furthermore, for all let be an
-LMRM code, with . We construct the

code
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Theorem 3: The code from Construction III is an
-LMRM with , and .

(By convention, the distance of a code with one codeword is
defined as infinity.)

Proof: Again, the length and size of the code are easily
verified. In addition, given , , it is easy to see
that is a multiple of , for any , and so the
distance of each of the constituent codes is scaled by , giving
the desired result.

Before describing the next construction we briefly observe
some properties which may be thought of as analogs to the case
of linear subspace codes. The metric defined by over is
a right invariant metric (see [12]), i.e., for any

We can then define the weight of a permutation as

where denotes the identity permutation. Thus, for any ,
an -LMRM subgroup code, it follows that

For convenience, given a set , we denote

Finally, we recall the following notation: For we
denote

Construction 3: Let and be subgroups of such that
and . We construct the code from the

following semidirect group product

Theorem 4: The code from Construction 3 is an
-LMRM subgroup code with and

Proof: It is well known (see, for example, [16]) that if
and then and

. Given and , where ,
then from the triangle inequality

Interchanging and gives the other lower bound, and so when

To finish the proof, if and either or , we have
and so .

The lower bound on the distance given in Theorem 4 , which
we shall call the design distance, is sometimes not tight as is
shown in the following example.

Example 5: Let us construct an LMRM code of length
and distance . According to construction III , the code

is a -LMRM code.
We can improve this by looking at the code defined

by

i.e., the cyclic group of size 3, which is a -LMRM code.
By Construction III , the code is a -LMRM
code, providing us a larger code than the previous one, with a
larger distance.

Finally, let us define , a -LMRM code, as

It may be verified that and can be used with
Construction III , resulting in a -LMRM code. We note
that while the design distance guaranteed by Theorem 4 is just
1, the resulting distance of the code is actually 3.

One might think that the bound of Theorem 4 can produce
only weak lower bounds. However, the following example
shows the bound not only produces a high lower bound, but is
also tight in this case.

Example 6: Let , and consider to be the group
generated by (in cycle notation) and generated
by . Set . Also, let be
the group generated by .

One can easily verify that and satisfy the conditions of
Theorem 4, and also that , ,

. It follows that the code constructed by
Theorem 4 has twice the size of , and ,
thus attaining the design distance with equality.

IV. BOUNDS

A. General Bounds

The first two bounds we present are the obvious analogues of
the Gilbert–Varshamov bound, and the ball-packing bound (see,
for example, [25]). Their proofs are standard and are omitted.
We first define the ball of radius and centered about
as the set
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As aforementioned, the metric over is right invariant,
and so the size of a ball depends only on and , and not on the
choice of center. We will therefore denote by the size of
a ball of radius in .

Proposition 7: Let , , and , be positive integers such that
. Then there exists an -LMRM code.

Proposition 8: Let be an -LMRM code. Then

We now proceed to present two upper bounds which are
stronger, in general, than the ball-packing bound of Proposition
8. The first pertains to subgroup codes, while the second is more
general. Before starting, we recall some well-known results
from group theory (see [16]).

Let be a subgroup of . For any , the orbit of
under the action of is defined as the set

The stabilizer of under the action of is defined as

and is a subgroup of . Furthermore

(2)

Theorem 9: If is an -LMRM subgroup code, then

Proof: For convenience, let us denote , and
. Let us now consider as it acts on the -subsets of

. By (2) we get

where the last inequality follows from the fact that the orbit of
under contains at most all the -subsets of . We can

take another similar step and get

where denotes the orbit of under
the action of , i.e., the stabilizer of under , while

denotes the subgroup of stabilizing both
and .

Reiterating the argument above we reach

It is now easy to see that

or else the minimum distance of would be violated. Thus

We can strengthen the upper bound of Theorem 9 by showing
that codes attaining it with equality must also satisfy certain
divisibility conditions.

A group is said to be transitive if for any
there is a permutation such that . By (2), the
size of such a group must be divisible by , since the orbit of

under the action of is .
Extending this definition, we say a group is -ho-

mogeneous if for any two -sets , there exists a
permutation such that , where

. It then follows from (2), that the size of such
a group must be divisible by .

The following theorem was given in [6].
Theorem 10: Let be a -homogeneous finite group,

where . Then is also -homogeneous.
Hence, for a -homogeneous group , , the

size of the group is divisible by

Theorem 11: Let be an -LMRM subgroup
code attaining the upper bound of Theorem 9 with equality, i.e.

Then

Proof: If we examine the proof of Theorem 9, for to
attain the upper bound we must have . Thus, for
any -subset , there exists a permutation such
that . It now follows, that for any two -subsets

, we have that , and
since forms a subgroup. Hence, is -homogeneous. If

then by Theorem 10 we have .
Continuing in the same manner, the group may be

viewed as a permutation group over by deleting the
elements of and relabeling the rest. Again, we must have

which means that is also
-homogeneous. Again, if then divides

, but divides since . Reiterating
the above arguments proves the claim.

It is also important to notice that if an -LMRM sub-
group code exists, then since .

Example 12: Continuing Example 5 we would like to find an
upper bound to LMRM subgroup codes of length and
minimum distance .

We first substitute and in the ball-packing bound of Propo-
sition 8. We get an upper bound (not only for subgroup codes)
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of since the size of a ball of radius 1 in equals
13.

Setting and in Theorem 9 we get an upper
bound of size . If a -LMRM subgroup
code exists, then by Theorem 11 its size must be divisible by its
length (since it must be 1-homogeneous). However, 6 does not
divide 20, and the next candidate for an upper bound, 19, does
not divide . Thus, the resulting upper bound is 18.
This makes the -LMRM subgroup code from Example
5 optimal.

B. Codes and Anticodes

We turn to describe another powerful bounding technique.
The resulting bounds bear a striking resemblance to the code-
anticode method of Delsarte [11] and the set-antiset method of
Deza [13]. However, both methods are not directly applicable
to the case at hand.

Given a metric space with integer distances, we can construct
a graph whose vertices are the points in the space, and an edge
connects two vertices if and only if they are at distance 1 from
each other. We call this the induced graph of the metric. If the
metric distance between any two points in the space equals the
length of the shortest path between the corresponding vertices
in the induced graph (i.e., the distance in the graph), we say the
metric space is graphic.

The code-anticode method of Delsarte requires a graphic
metric space which forms a distance-regular graph. In our
case, the -metric over is not even graphic, and hence the
code-anticode method does not apply. The set-antiset method
requires a metric over which is both right and left invariant.
Again, the metric-fails to meet the method’s requirements
since it is not left invariant.

Given a set , we denote

We also denote the inverse of as

Definition 13: Two sets, are said to be a set and
an antiset if

The following is the set-antiset bound for right-invariant met-
rics over .

Theorem 14: Let be a distance
measure inducing a right-invariant metric. Let be a
set and an antiset. Then

Proof: It is obvious that

We contend that . Let us
assume the contrary, i.e., that there exist and

such that but not both and .
In that case, it follows that . We now have

But then

implying that and , a contradiction.

To apply the set-antiset method to LMRM codes we need the
following definition.

Definition 15: An LMRM anticode with parameters
, is a subset of cardinality , such that

for all .

Corollary 16: Let be an -LMRM code, and let
be an -LMRM anticode. Then .

Proof: By the definition of a code and an anticode it is
easily seen that . The claim is then a direct
consequence of Theorem 14.

Corollary 16 generalizes previous results. It may be easily
verified that a ball of radius centered about the
identity permutation is an -LMRM anticode. Thus,
the ball-packing bound of Proposition 8 is a special case of
Corollary 16.

The following is a generalization of Theorem 9 to LMRM
codes which are not necessarily subgroups.

Theorem 17: If is an -LMRM code, then

Proof: We construct the following -LMRM
anticode : Let us denote

We now define the anticode as

It is easy to verify that is indeed an anticode of maximum
distance , and that its size is

By Corollary 16, , and the claim on the maximal
size of an LMRM code follows.

It should be noted that Theorem 17 does not make Theorem
9 redundant, since through the proof of the latter we were able
to provide stricter necessary conditions for potential subgroup
codes attaining the bound with equality, as seen in Theorem 11.

The next obvious question is: What is the size of the maximal
size of an -LMRM anticode?
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Theorem 18: Let be an -LMRM anticode.
Then .

Proof: For all let . It is
easy to see that , otherwise there would exist

such that which contradicts that maximal
distance of .

Let be the following binary matrix, where
iff there exists such that , otherwise . It
is well known (see for example [28]) that

since all summands are either 0 or 1, and every permutation in
corresponds to a nonvanishing summand.
According to Brégman’s Theorem (see [5]), for any

binary matrix with 1’s in the th row

In our case, every row of contains at most 1’s. We can cer-
tainly change some 0’s into 1’s in so that every row contains
exactly 1’s, and by doing so, only increase the value of .
It now follows that

Thus, for the case of we have an optimal anticode:

Corollary 19: The anticode constructed as part of Theorem
17 is optimal when .

When does not divide the anticodes constructed in the
proof of Theorem 17 are not necessarily optimal. The following
theorem shows we can build larger anticodes.

Theorem 20: Let us denote . Then there exists
an -LMRM anticode of size

Proof: Consider the following binary
matrix :

where (respectively, ) denotes the all 1’s (respectively,
all 0’s) matrix of size . It may now be verified that

We now construct the following binary matrix :

. . .

where along the diagonal we have blocks of .
All the rows contain a contiguous block of 1’s of size , and

thus, all the permutations contributing to form an anti-
code of maximum distance . It can be easily seen that

as claimed.

With these anticodes we get the following two theorems.

Corollary 21: If is an -LMRM code, then

where .

Proof: Simply use the size of the anticodes of Theorem 20
with Corollary 16.

Corollary 22: The optimal -LMRM code, ,
has size 3.

Proof: By Corollary 21 we have the following upper bound
on the size of -LMRM codes:

even
odd

and since the size must be an integer, it cannot exceed 3. Such a
code can be easily constructed for any and is simply the
cyclic group of order 3 on the coordinates :

given in cycle notation.

On a side note, Corollary 22 was also shown in [20] using dif-
ferent arguments. Whether other infinite families can be shown
to be optimal using these anticodes is still unresolved.

C. Asymptotic Bounds

Some of the constructions and bounds presented in previous
sections take on a simple asymptotic form, which we explore
below. We will compare the resulting asymptotic bounds with
those implied by the previous constructions of [24].
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Definition 23: Given an -LMRM code, we say it has
rate and normalized distance .

A slight peculiarity arises here: One might expect the rate of
a code to be defined as and not since
the ambient space is of size . However, doing so results in
asymptotic bounds equal to 0. Furthermore, the rates reported
in the following sequence of theorem, are no longer bounded to
the interval . This is the case in applications in which the
alphabets at the input and output of the encoder are different,
binary tuples as input and permutations as output in our case
(for example, see [26] and [29]). The intuition, though, remains
the same: is the number of input bits we can encode into
flash cells using an LMRM-code of rate .

We begin with the asymptotic form of Corollary 21, and re-
mind that the binary entropy function is
defined as

Theorem 24: For any -LMRM code

Proof: According to Corollary 21

where . Moving to the and notation and
slightly simplifying the expression we get

At this point we use the well-known Stirling’s approximation,
. After rearranging we get

We take of both sides, divide by , and do some rearranging
to reach

as claimed.

For the next two asymptotic forms we need an estimate on
the size of a ball in the -norm. While for any fixed radius ,
tight asymptotic bounds on are given in [28], we require
an estimate for . The best estimate, to our knowledge,
for , was given in [19]:

(3)

(4)

For our purposes, however, we do require an upper bound on
for the entire range . Therefore, we present

an augmentation of (4) in the following lemma.

Lemma 25: For all

,

.

Proof: It is easily seen that is the set of all permu-
tations corresponding to nonvanishing terms in where

is the binary banded Toeplitz matrix defined by iff
. This observation has been used both in [28] and in

[19].
The upper bound is immediately derived by using Brégman’s

Theorem. For example, for , the matrix has
rows with 1’s, and two rows with 1’s for each

.

We now state the asymptotic form of the Gilbert–Varshamov-
like bound of Proposition 7.

Theorem 26: For any constant there exists an
infinite sequence of -LMRM codes with and
rate satisfying , where

.

Proof: By Proposition 7 we are guaranteed the existence of
an -LMRM code of size . We can
now use Lemma 25 and replace with an appropriate
upper bound.

Suppose (the proof for the other case
is similar). Then by Lemma 25

We now have
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Taking of both sides and dividing by completes the proof.

The ball-packing bound of Proposition 8 has the following
asymptotic equivalent.

Theorem 27: For any -LMRM code

Proof: The bound of Proposition 8 together with the lower
bound of (3) becomes

where . Changing to the and no-
tation, using Stirling’s approximation, and then taking and
dividing by gives as

as desired.

Finally, we analyze the asymptotics of the codes produced by
Construction 1.

Theorem 28: For any constant , Construction 1
produces codes of rate

Proof: For any -LMRM code produced by Con-
struction 1 we know that

Just like before, we change to the and notation:

We then take of both sides, and divide by to reach the
claimed result.

All the asymptotic bounds are shown in Fig. 1. Several inter-
esting observations can be made. First, the ball-packing bound
of Theorem 27 is weaker than the code-anticode bound of The-
orem 24. This, however, may be due to a poor lower bound on
the size of a ball from (3). It was conjectured in [19] that this
lower bound might be improved substantially. We also note that
Construction 1 produces codes which asymptotically out-per-
form the Gilbert–Varshamov-like bound of Theorem 26 for a
wide range of (with crossover at ), and appear
to be quite close to the bound otherwise. Again, this might be a
result of a weak upper bound on the size of a ball. Finally, the
codes presented by [24] are severely restricted since they are de-
rived from binary codes in the -cube, and as such, are bounded

Fig. 1. (a) Gilbert–Varshamov bound in the �-cube. (b) The MRRW bound
in the �-cube. (c) The rate of the code from Construction 1. (d) The Gilbert-
Varshamov-like bound of Theorem 26. (e) The code-anticode bound of Theorem
24. (f) The ball-packing bound of Theorem 27.

by the -cube versions of the Gilbert–Varshamov bound and the
MRRW bound (see, for example, [25]).

V. CONCLUSION

We have studied codes for the rank modulation scheme which
protect against limited-magnitude errors. We presented several
code constructions (one explicit and two recursive) which, in
some cases, produce optimal codes. The codes constructed can
also be encoded and decoded recursively, while the code of Con-
struction 1 may be encoded/decoded directly using a simple pro-
cedure with small loss in rate. We note that all the constructions
we presented create codes which are subgroups of .

We also explored bounds on the parameters of these codes.
The strongest upper bound appears to be the code-anticode
bound of Theorem 17. In the asymptotic study of these bounds,
the simple code from Construction 1 shows a better rate than
the one guaranteed by the Gilbert–Varshamov-like bound of
Theorem 26, and the ball-packing upper bound of Theorem
27 is always weaker than that of the code-anticode bound of
Theorem 24. Both, however, may be a result of a loose bound
on the size of a ball in the -metric.
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