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If C is self-dual, that isC’ = C*, the resulting quantum code is
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Such codes are useful in testing whether certain storage locations of

qubits are decohering faster than they should [5]. Abstract—A permutation array (PA) of length 2 and minimum distance
Consider now a linea2n, ») codeC' € A with a generator matrix < IS & Set of permutations ofr elements such that any two permutations

. . . T coincide in at mostn — d positions. Some constructions of PAs are given.

(I, A), whereA is a symmetric: X n matrix over GHg): 4 = A" .

Since(—A, I) is a generator matrix of the dual code with respect to Index Terms—Code construction, permutation array (PA), permutation

the ordinary inner product (1), the code is formally self-dual, that i§°%¢-

the Hamming weight distribution of the code and its dual coincide.

Lemma3.1: Any g-ary(2n, n) codeC' € Ais self-dual ' = C') |. INTRODUCTION

with respect to the symplectic inner product (7). We consider permutations of the distinct elements of some fixed set
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Constructions of Permutation Arrays
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An (n, d) permutation array{PA) is a subset of,, with the property (direct product). Foll. < ¢ < u, lety;;,j =1,2,...,6(n) — 1 be
that the Hamming distance between any two distinct permutationsdistinct nonzero elements of Gp;*). Let
the array is at least. The PA is called equidistant if the Hamming T . .
distance between any two distinct permutations in the array is exactly V=10 25 )L S5 < 0(n) — 1}
There are a number of papers on equidistant PA, see [2, pp. 326—-328¢n the conditions of Theorem 2 are satisfied and so Theorem 2 gives
and references therein. Less is known about PA in general. The mainarray of sizex(6(n) — 1). QED
papers are [1], [3], [5], [11]. A very recent paper is [12]. Cy¢hc n—1) . . »
PA have been studied under the name circular florentine arrays, see [£\S Usual, we get an equivalent code if we permute the positions or
pp. 480—484]. Recently, Vinck and coauthors [4], [6]-[8] used PA jReMute the elements of the dét For example, ifr;, » are permu-
an application to data transmission over power lines. In [9) the5) tations of the ringR of Theorem 2, the theorem gives the following
PA of maximal sizel8 were classified. In [10], some constructiond” ™ ~ 1) PA:
of (n, n — 1) PA were given. In this correspondence, we also mainly C={(m(v-m(x)+y)|r €R)|v €V, y € R}.
consider constructions ¢fi, n — 1) PA.

“ SOME KNOWN RESULTS ||| SOME TER’\/“NOLOGY
Let P, 4 be the maximal size of a, d) PA. Reference [3] proved | et ¢ be a PA overR of size M. We list the permutations af as
that for all» andd we have the following simple upper bound. rows of anM x n array which we also denote k. We introduce
Theorem 1: For alln > 1 we have some terminology. _
We say that” is r-boundedif no element of R appears more than
P, < n! ) r times in any column o€’'.
T (d=1)! We say that” is r-balancedif each element oR appears exactly

times in each column of'.

We say thaC' is r-separableif it is the disjoint union ofr (n, n)
PA of sizen.
We say that” is cyclic if any cyclic shift of a row inC' is a gain a

inC.

hese concepts are related. Arseparable PA ig-balanced. An
r-balanced PA is-bounded. Further, anbounded n, n — 1) PA has
Reference [3] also showed the following. size at mostn and it has size exacthyn if and only if it is »-balanced.
Finally, a cyclic PA isr-separable for some

In particular,P,,, n—1 < n(n — 1).

Proof: We include the easy proof here. L€tbe an(n, d) PA.
There aren!/(d — 1)! sequences if®”~?*" having distinct elements.
For any such sequence there is at most one permutationsitarting
with this sequence since two distinct such permutations would hal%
distanceatmost — (n —d+ 1) =d — 1. QED

Proposition 1: If n is a prime power, then
Example 1: The PA given by the construction in Theorem 2 is

Py no1=n(n—1). -separable

v

Reference [10] generalized the construction and the bound. We re- ¢ = U ¢ whereCy = {(v-a+yla € R)ly € R} .

peat the results and proofs here. vev
Theorem 2: Let R be a ring (commutative with unity) of size Let ~ Example 2: Let C" be a cyclic(n, n — 1) PA of sizern. Then
U be the set of (multiplicative) units iR. LetV be a subset dff such r
thate — ' € U for all distinctv, v' € V. Let c=a
=1

C={v-z+ylre R)|veV.yeR} where theC; are cyclic(n, n) PA. EachC; contains a row fronC

| and all its cyclic shifts. In particulaf; is r-separable. Am x n array

' containing one row from eact; is known as a circular florentine array,
see [2, pp. 480-484].

ThenC'is an(n, n — 1) PA of sizen - |V
Proof: We first note thatv - = + y|x € R) is a permutation of
R sinceve + y = va' + y impliesv(xz — 2') = 0 and sor — 2’ =

vl -0 =0.Next,ifv-2+y =1-2+y wherev # ' (and From the proof of Theorem 1 and the definitioniebalanced, we
v, v’ € V), then immediately get the following result.
v= -y (v—0)"" Proposition 2: Any (n, n — 1) PA of sizen(n — 1) is (n — 1)-bal-
anced.
that is,z is uniquely determined. QED Let B, , denote that maximal size of arboundedn, n — 1) PA.
Clearly,
Foraninteger > 1,letrn =[], p;’ bethe standard factorization y
of n, and let By, <rn Q)
0 i 1 <i < and
(n) B Hun{Pi | =0= LL}- n = Bn,1 S Bn,? S Tt S Bn,,n—1 = Pn‘n—1 (2)
Theorem 3: For alln > 1 we have where the last equality follows from the fact that an elemenk alan

appear at most — 1 times in a column of afn, n — 1) PA.

Py o1 >n(f(n)—1). .
n-1 2 (B(n) ) Proposition 3: Forl < r < #(n) — 1, we haveB,,,, = nr.

Proof: Let Proof: TheC used to prove Theorem 3(8(n) — 1)-separable.
Taking a suitable subset of thiswe can get an-separablén, n —1)
R = GF(pi') x GF(p5?) x -+ x GF(py*) PA for anyr < #(n) — 1. QED
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Remark 1: Forg a prime power, Theorem 3 give$@— 1)-separable

979

Case Il,i1 # i2, bute;,,; = ciy, ;. (This can be the case for at

(¢, ¢—1) PA of sizeq(q—1); the construction in this case is essentiallymost one value of sinceC' is an(n, n — 1) PA): By (3), f(i1, j) #
due to [3]. Properties (1) and (2) immediately gives the following resulf(:-, j). Hence,

Proposition 4: If ¢ is a prime power, theB, ,—1 = ¢(¢ — 1).

Example 3: There exists a circular florentinex 15 array, see [2,
Table 48.17]. Hencé:5, 4+ = 60.

IV. A NEW CONSTRUCTION

du (gf(z'l,j).,tl T Cin M Yriin, )0, T Cizvﬂ’")
=dn (gf(il,j),ll» gf(z‘z,j),lz) zm—1

Case lll,ciy,; # cip, ;2 The elements of;(;, ) 4, + ciy, jm be-
long to the set

We will now introduce a method to combine two arrays to make a

larger array.

LetC' = (c¢i;) be an(n, n — 1) array of sizeM (the elements are

assumed to be frorf0, 1, ..., n — 1}).

Define f(i, j) as follows: ifc;; = « and this is theth appearance
of a in columny, counting from the top, thefi(i, j) = ¢. From this
definition we see that

if Cipj = Cigj and i, 75 i2, then f(ila J) 75 f(tz. J) (3)
Further,C is r-bounded if and only iff (¢, j) < r for all  andj.
Let C' = (c¢;;) ber-bounded and let

r=r,uru.---Ul,

be ans-separablém, m — 1) array (of sizesmn and elements from
{0, 1, ..., m — 1})wheres > r and thel',, are(m, m) PA. Denote
the permutations (rows) daf, byg, ,,v=1,2,..., m.

DefineC % I' as them M x mn matrix containingd/ x n blocks
where block(z, ) is them x m matrix

Ly gy +mei i

where.J is the all4 matrix.
We can now give the main result of this correspondence.

Theorem 4: If C is anr-boundedn, n — 1) PA andl is ans-sep-
arable(m, m — 1) PA wheres > r, thenC x I is anr-bounded
(mn, mn — 1) PA of sizem|C|. Moreover, ifC' is r-balanced, then
C = T is r-balanced.

Proof: The rows of C % ' are clearly permutations of

{0, 1, ..., mn — 1}. Letaz, y be distinct rows of” « I". Then
r= (gf(il’j)’ll + Cilyjm)j:l,z, L n
y= (gf(iQ,j),lQ + Cizyjm)]:]’z"_’n
wherem = (m, m, ..., m) (of lengthm). Hence,

du(z, y) = Z dr (Qf(i],]),z1 +Civ My Griiy 5y, T Ciz;]’”) :

j=1
We consider three cases.

Case l,iy = i = i: Thenc;, ; = ¢, ; forall j, andly # Is.
Sincel s, ;) is an(m, m) PA, we have

dn (gf(z'l,j),tl tCin M Griin )0, T C’iwm)
=dn (gf(z‘,;’),ll= -‘lf(i.,;’),lz) =m

for all j and sodg (z, y) = mn.

{meci, j, mei,,;+1, ..., mei, ;+m—1}
and the elements @f;;, ;, ;,, + ci,, ;m belong to

{meci, j, meiy,;+ 1, ..., mei,, ; +m — 1}

Since these sets are disjoint, we have

dy (gf(il,j).ll + Ciy, My iy, iy, T Ciz,jm> =m.

Combining Cases Il and lll, we see thatiif# i,, thendy (z, y) >
mn — 1. Hence, we have shown that« T is an(mn, mn — 1) code.

By the definition ofC « T, each column of = T is a column of the
matrix

Uya,py +mey ;g
: 4)
Ty, jy + men, ;7
for somej with0 < j < n—1.Since thd(; ;) are(m, m) PA, each
column ofT;(; ;) is a permutation of0, 1, ..., m — 1}. Hence, for
any fixedx € {0, 1, ..., m—1},the element +my appears in some
fixed column of (4) the same number of times thatppears in thgth

column ofC'. HenceC = I is r-bounded (respectively-balanced) if
and only ifC is r-bounded (respectively;balanced). QED.

We illustrate the theorem with a couple of simple examples.

Example 4: Let

0 1
[0 ]
01 2 02 1
I'=1|1 2 0], T.={210 I =T,Ul..
2 0 1 1 0 2

We see thaf” is al-balanced2, 1) PAandf (i, j) = 1 foralli andj.
We get

01 2 3 4 5

1 2 0 4 5 3

Cxl = I I'y+3J _ 2 0 % 5 3 4
ry+3J Iy 34 5 0 1 2

4 5 31 2 0

5 3 4 2 01

We note thafl’; is not used sinc€’ is 1-balanced. Hencé' = I’
C x I'y. Further, we see thdt * I is 1-balanced.

Example 5: Let

= = O O
NW N =
[en)
o = W
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and letl" be the same PA as in the previous example. We sed’that
is a2-bounded (but no2-balanced) 4, 3) PA. Further,f(2, 1) = 2,
f4,5) =2forj =1,2,3,4,andf(i, 7) = 1in all other cases.

Hence, we get
g of
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V. A GENERALIZATION

Theorem 4 can be generalized in various ways. We state without
proof one immediate generalization. The proofis a simple modification

the proof of Theorem 4.

Theorem 5: If C'is anr-boundedn, n — «) PA andl is ans-sep-

Iy Lit3J I +6J T +9J7 arable(m, m — v) PA wheres > r, thenC x I is anr-bounded
Csl = Ty I'i+6J I'n+9J TI't+3J (mn, mn — uv) PA of sizem|C|. Moreover, ifC' is r-balanced, then
I'v+3J Th+9J I 'y +6J C = I is r-balanced.
LT +3J T +6J Ty To+9J
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Combining Corollary 1 and Proposition 2, we get the following.

Corollary 2: If ¢ is a prime power and < ¢, then

Bn,q, I Z an, T

If, further, B,,, . = nr, thenB,.,,,» = nqr.

Remark 2: An alternative proof of Theorem 3 by induction, on the
number of different prime powers in the standard factorizatiom, &
obtained using Proposition 4 as basis and Corollary 2 in the induction
step. More general, a similar induction gives the following result.

Proposition 5: If B,,,» = rm andf(n) > r,thenB,,, » = rnm.

Example 6: It is known thatPs, s = 18 and that there exist-bal-
anced(6, 5) PA, see [9]. ThereforeBs; 3 = 18. An examination of
[9] shows that nd6, 5) PA of sizel8 is 3-separable.

For B,., 5 in general, we get the following result.

Proposition 6: Letn = 2*3m whereged(m, 6) = 1. If (a, b) ¢
{(1,0), (0, 1), (2, 1), (1, 2)}, thenB, 3 = 3n.
Proof: Fora =b =0,a = 0andb > 2,a > 2 andb = 0, or
a > 2 andb > 2 this follows directly from Proposition 3.
Fora =b=1,a =1andb > 3,0ra > 3 andb = 1, it follows by
combining Proposition 5 and the fact tha¢ ; = 18. QED

tation codes,1IEICE Trans. Fundamentals Electron., Commun. Comp.
Sci, vol. 84, pp. 2518-2522, 2001.
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