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ABSTRACT 

Constructions of permutation arrays are presented that are optimal or nearly-optimal with 
respect to two cost measures: the so-called longest-jump measure and the longest- 
monotone-greedy-subsequence measure. These measures arise in the context of scheduling 
problems in asynchronous, shared memory, multiprocessor machines. 0 1995 John Wiley & 
Sons. Inc. 

1. INTRODUCTION 

Let [n] denote the set {1,2, . . . , n }  and let rr and u be two permutations over 
[a ] .  By a cost measure ofrr with respect t5 u we refer to any real-valued function 
( r r ,  a) -cost(rr, a).  Given a cost measure cost ( r r ,  u), we define the cost of an 
m X n array P of m permutations P , ,  P,, . . . , Pm on [n] with respect to a by 

m 
A 

cost(P, u) = c C0St(Pi, a)  . 
i =  1 

The mfximal cost of an m X n permutation array P is defined as 
cost(P) =max, cost(P, u). 

For a permutation rr on [n] ,  denote by rrj the j th element of rr, j = 1,2,  . . . , n. 
Also, let rr' denote the inverse permutation of T.  We extend these notations to 
m X n permutation arrays P by letting Pi,j denote the j th  element in the ith row of 
P, and Pi be the m x n permutation array for which (Pi)i  = (Pi)i, i = 1,2,  . . . , n. 
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In this article, we obtain constructions for n x n permutation arrays P with 
small maximal cost for each of the following two cost measures: 

1. The longest-jump measure, defined by 

A 
cost,(rr, a)  =n -mix ((a') ,  - ( r r ' ) , ) .  

That is, costl(rr, a)  is n minus the largest (signed) difference between the 
location indexes of the same element of [n] in both u and rr. For example, 
for rr = (2 ,1 ,5 ,3 ,4 )  and a = (3 ,1 ,4 ,2 ,5 )  we have ( (T ' )~ - ( T I ) ,  = 0, 

- ( 7 ~ ' ) ~  = 3 ,  (a ' ) ,  - ( r r ' ) ,  = - 3 ,  ( (T ' )~ - ( 7 ~ ' ) ~  = -2, and ( u ' ) ~  - 
( T ' ) ~  - ( T ' ) ~  = 2. Hence, in this case, cost,(rr, a)  = 5 - 3 = 2. 

2. The longest-monorone-greedy-subsequence measure (in short, the longest- 
m.g.s. measure), which we will denote by cost,(rr, a)  and define next. For a 
permutation rr,  construct the longest monotone greedy subsequence jl < j 2  < 
. . . < j , ,  of length r ,  with respect to a a5 follows: Set j l  =l .  Now, assume 
that j = j ,  has been determined. If rr, = a,, then r = s =cost2(rr, a).  Other- 
wise, set ;, + I to be the smallest integer k > j ,  such that rrk appears after r, in 
cr; i.e., k is the smallest integer greater than j such that ( ~ ' r r ) ~  > ((~'rr)~, 
where multiplication stands for permutation composition. For example, the 
longest m.g.s. of rr = (2 ,1 ,5 ,3 ,4)  with respect to u = (3 ,1 ,4 ,2 ,5 )  is j ,  = 2, 
j z  = 5. 

J = 1  

A 

A 

The following proposition is easily verified. 

Proposition 1. For every two permutations rr and (T over [n] ,  cost,(rr, a) 5 

Our treatment of these two cost measures has been motivated, in part, by 
previous work on task scheduling in asynchronous, shared-memory, faulty 
multiprocessor environments [5-7, 9, 11, 13, 14, 171. Our model follows that of 
Anderson and Woll [ 5 ]  and can be formulated as follows. Let P be an n X n 
permutation array whose ith row, P,,  is a permutation on [n] that defines the 
order in which tasks, numbered 1 ,2 ,  . . . , n,  in the system should be executed by 
processor i ,  i = I ,  2, . . . , n. The order in which tasks are completed is determined 
by a permutation u. The objective is to obtain a worst-case estimate of 
performance where the permutation CT maximizes a cost function that measures 
the work carried out by the processors. 

Anderson and Woll used in [ S ]  the longest-m.g.s. cost function for measuring 
that work. They showed that if an array is chosen uniformly at random from an 
ensemble of all N x N permutation arrays, then, with high probability, there 
exists an N x N permutation array Q for which cost,(Q) 5 cN log N ,  where c is 
an absolute constant. Up to a scalar multiplier, this maximal cost is the smallest 
possible for any N X N permutation array [S]. An N x N permutation array Q 
with the smallest maximal cost was then used by Anderson and Woll as a building 
block for constructing n X n permutation arrays n(n )  with cost,(n(n)) 5 n l+o l l ( l ) ,  
where on( 1) stands for an expression which tends to zero as n goes to infinity. 
Taking n to be sufficiently large relative to N ,  an exhaustive search for the 

cost, ( r r ,  u) . 
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permutation array Q-and, subsequently, the overall time required to construct 
II(n)--can be made at most polynomially large in n. 

In Section 2 we provide a construction of n X n permutation arrays & with 
cost,(&) = 0(n312). The optimality (up to a scalar multiplier) of this construction 
is established by proving a lower bound of 0 ( n 3 ’ * )  on the maximal cost of any 
n X n permutation array P with respect to the longest-jump measure. 

In Section 3 we address the longest-m.g.s. measure. We first provide a 
construction for n x n permutation arrays with cost,(II(n)) 5 n’+”n( ’ )  . Our basic 
construction is somewhat similar to the one of Anderson and Woll; however, the 
presentation is different than the one in [5]  and involves the definition of 
Kronecker product of permutation arrays. Then, we present a variation of the 
basic construction that avoids the need for a search for the aforementioned best 
N X N permutation array Q .  To this end, we employ a technique similar to the 
one used in coding theory to obtain the well-known Justesen codes [lo]. 

It should be noted that permutation arrays with other optimality properties 
were considered elsewhere. See, for example, Alon [3]. 

2. CONSTRUCTIONS FOR THE LONGEST-JUMP MEASURE 

In this section we provide an optimal construction for n X n permutation arrays 
for the longest-jump measure. We start by deriving a construction for n X n 
permutation arrays with maximal cost O(n5’3). Then, we apply this construction 
recursively to obtain permutation arrays of maximal cost We conclude 
this section by proving an G!(n3’2) lower bound on the maximal cost according to 
the longest-jump measure, thus establishing the optimality of the construction. 

Throughout this section, “cost” means a cost with respect to the longest-jump 
measure. 

2.1. A Construction of Maximal Cost O(N5’3)  

Let IT be a permutation on [n] and let k be a positiveinteger not greater than n. 
We define the k-support of IT by the set  IT, k) ={IT,,  IT^, . . . ,  IT^} and its 
complement set  IT, k)  by [n] - Y(T, k). 

Let IT and u be two permutations on [n] .  We say that IT is k-intersecting with u 
if  IT, k) C l  g(u, n - k) # 0. Note that when v is k-intersecting with u, then there 
exists an element j E [n] for which (u’), 2 n - k + 1 and ( T I ) ,  5 k, implying 

Our goal is to construct a class of n x n permutation arrays s (n ) ,  such that for 
any permutation u over [n],  “most” of the rows in 2(n)  are k-intersecting with u 
for a relatively “small” k. To this end, we associate a permutation array 2(n ,  k) 
with a certain k-regular n-vertex directed graph %(n, k). Under such an associa- 
tion, a permutation u defines a set S of k vertices in %(n, k), and the ith row in 
s ( n ,  k) is k-intersecting with u if vertex i in %(n, k) is adjacent to some vertex in 
S .  We choose the graph %(n, k) so as to guarantee that, for any set S of k vertices 
in %(n, k), at least n - k vertices in %(n, k )  are adjacent to some vertex in S.  We 
then take 2(n)  to be a permutation array 2(n ,  k) with the smallest k for which 
such graphs %(n, k) exist. 

cost,(T, a)  ~ f i  - ((u’), - (1~’ ) , )12k  - 1. 



42 NAOR AND ROTH 

We now describe the construction of 9(n ,  k )  in detail. For a directed 
(respectively undirected) graph G = (V, E )  and a subset S V ,  let p(G, S )  denote 
the number of vertices in G with no edges outgoing (respectively connecting) to 
any of the vertices of .F. For a positive integer r 5 IV(, let p ( G ;  r )  be defined by 

Let %(n, k) denote a k-regular n-vertex graph for which p(%(n, k ) ;  k )  5 k ;  a 
construction of such graphs is provided later on. Given %(n, k), we construct a 
permutation array 2?(n,k) out of % ( n , k )  for which 9’((9(n,k)),) is the set of 
terminal vertices of the outgoing edges from vertex i in %(n, k )  for all i =  
1 , 2 , .  . . , n. In other words, an edge i - j  in %(n, k )  implies that the element J 

appears in the k-prefix of ( 2 ( n ,  k)), [i.e., among the first k elements in the ith row 
of 9 ( n ,  k)]. The order of elements within the k-prefix, and respectively within the 
(n  - k)-suffix, of each row of 9 ( n ,  k )  is arbitrary and, therefore, the construction 
of 9 ( n ,  k )  out of %(n, k )  is not unique. Given a permutation (T, the number of 
rows in 2(n,  k )  which are not k-intersecting with (T is at most p(%(n,  k ) ,  Y((T, n - 
k ) )  5 p(%(n, k);  k) i k and, therefore, the total cost with respect to (T of these 
non-k-intersecting rows is at most k . n. On the other hand, the cost with respect 
to (T of a row in e(n, k ) ,  which is k-intersecting with (T, is at most 2k - 1. Hence, 

cost(9(n, k ) )  5 k . n + (2k - 1)n = O(k . n )  . (1) 

To construct % ( n , k ) ,  we make use of a generalization of the expander 
construction given by Lubotzky, Phillips, and Sarnak [15]. The next theorem, 
proved in [4], will be used to bound from above the value of p(%(n, k); k ) .  

Theorem 1 [4]. Let H = ( V ,  E )  be an undirected A-regular graph with IV( = n and 
let A denote the second largest absolute value of any eigenvalue of the adjacency 
matrix of H .  Let S V be o f  size IS1 = r. Then, 

A2(n - r)n A2n2 
5-. 

rA2 CL(H?S)S rA2 

In the construction of %(n, k), we use the generalization of the Lubotzky- 
Phillips-Sarnak construction as it appears in [4], and which is summarized here 
for the sake of completeness. Let p and q be two primes congruent to 1 modulo 4 
such that p is a quadratic residue modulo q. Let h be a positive integer and 
denote by Z y h  the ring of integers modulo q”. Also, let 2 denote all 2 X 2 
matrices over Z,I, of determinant 1, where both matrices A and - A  are regarded 
as the same element ? A .  It can be readily verified that % contains +(q3h  - q3”-*)  
elements. 

Given p ,  q, and h ,  we now define the undirected graphs Hp,q,h as Cayley 
graphs of 2? in the following manner: The vertices of Hp,q,h are all n = $ ( q  
q3h-2) elements of 2, and two such elements A and B are adjacent if and only if 
A K ’  is a matrix of the form 

1 a,, + La, a2 + Laj 

3h - 

1 +-[ -a,+La, a,,-ia, ’ 
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where L is an integer satisfying L *  = -1 (mod qh),  a,  is an odd positive integer, 
and a , ,  a , ,  a3 are even integers satisfying a; + a: + a: + a: = p .  (Note that the 
square root of p modulo qh does exist; see [4] for details.) The resulting graphs 
Hp,q,h turn out to be ( p  + 1)-regular graphs with n = 3(43h - q3h-2)  vertices and 

Now fix q (to, say, 5 )  and let n be an integer of the form n = +(q3h - q3h-2) for 
some integer h .  For such integers n,  we construct the k-regular directed graphs 
%(n, k )  as follows: Let p ( k )  be the largest prime smaller than k which is congruent 
to 1 modulo 4 and which is a quadratic residue modulo q [e.g., when q = 5 ,  we 
take p ( k )  to be the largest prime smaller than k which is congruent to 1 or 9 
modulo 201. Now, to obtain % ( n , k ) ,  make each edge in Hp(k),q,h into two 
antiparallel edges and add k - p ( k )  - 1 outgoing edges from each vertex in 
Hp(k),q,h to obtain out-degree k at each vertex. Note that, by the distribution of 
prime numbers, we have p ( k )  = k( 1 - ok( l)), where ok( 1) stands for an expres- 
sion which tends to zero as k goes to infinity. 

A ( H p , q . h )  2@ 115, 41. 

Lemma 1. For every graph %(n, k )  and for  any positive integer r 5 n ,  

Proof. By Theorem 1 we have, for each subset S of vertices of Hp,q,h, 

The lemma now follows by the inequality p(%(n, k ) ,  S) I P ( H ~ , ~ , ~ ,  S ) .  0 

Returning now to the discussion that led to Eq. (l), we require that 
p(%(n, k ) ;  k )  be at most k .  By Lemma 1, we can guarantee that by requiring 
k 3 ( l  - o,(l)) 2 4nZ. Henie, we can take k = k(n)  = O(n213)), thus yielding an n x n 
permutation array 9(n)  = 9(n,  k(n))  with maximal cost O(n513). 

2.2. A Construction of Maximal Cost O ( n 3 1 2 )  

In this section we obtain a construction of n x n permutation arrays with maximal 
cost O(n’”) by applying the construction of Section 2.1 recursively. More 
specifically, we construct a family of n x n permutation arrays A(n ,  8) ,  8 2 0, 
such that the maximal cost of any [n/4‘] x n subarray of A(n ,  8) is 6(n3”/2‘). 
In particular, the maximal cost of A(n,  0) will be O(n3’2). 

The arrays A(n ,  8) are obtained in decreasing order of 8 as follows. Let kn,e 
denote the integer 2‘+3 [ f i l .  When kn,e 2 n ,  we take A ( n ,  8) to be an arbitrary 
n X n permutation array. As for smaller values of 8, assume that &(a, 8 + 1) has 
been constructed. To obtain A(n,  8 ) ,  we first apply the construction of Section 
2.1, using %(n, k n , ‘ ) ,  to obtain an n X n permutation array 9 ( n ,  k, , ‘ ) .  Note that 
this requires that n be a value for which the construction %(n, k , , , [ )  exists [e.g., 
n = 3 ( 5 3 h  - 5 3 h - 2 ) ] .  For i = 1 , 2 ,  . . . , n,  we take the k,,,-prefix of (JU(n, 8))i  to be 
the k,,,-prefix of (9(n,  k n , P ) ) r .  The (n - k,,,)-suffix of (A(n ,  8)),  is obtained by 
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taking the last n - kn , t  entries of ( s (n ,  k,,,)O, permuted according to their order 
of appearance in (A(y1, e + l ) ) , .  

Proposition 2. Let n und 4 denote integers for which the construction %(n, kn,p)  
exists. Then, the maximal cost of any [nl4'] X n subarray of A ( n ,  &) is O(n"'/ 
2'). In particular, cost,(M(n, 0)) = 0 ( n 3 ' * ) .  

Proof. Let k = k n , (  and m, 5 [nl4'], We prove by a backward induction on f? 
that the maximal cost of any m, x n subarray of A ( n ,  e )  is at most 28m,. 
2 ' [ f i ] ,  whenever n is greater than some absolute constant N which is in- 
dependent of e. (We remark that the constant 28 is not the smallest possible, but 
it makes the proof relatively simple.) 

The claim is trivial when k 2 n. We now consider smaller values of 8 for which 
k < n. The next two observations can be easily verified: 

A 

0 For i = 1,2 ,  . . . , n and for any permutation u, 

c o s t , ( ( q n ,  e)),, U )  ~ c o s t , ( ( ~ ( n ,  e + I ) ) , ,  a)  + k , ( 2 )  

since each element of (A(n ,  e + l)), is "shifted" in (Jtz(n, f ? ) ) ,  at most k 
positions to the right. 

0 If ( 9 ( n ,  k ) ) ,  is k-intersecting with u, then cost,((A(n, ()I,, a) 5 2k - 1. 

Now fix some permutation u. By Lemma 1, the number of rows in 2(n ,  k )  that 
are non-k-intersecting with u is at most 4n2/(k2(1 - o,(l))) 5 n/4"' for every 
n > N ,  where N is an absolute integer independent of 8. In particular, the number 
of rows in 2 ( n ,  k )  that are non-k-intersecting with u is at most m,,, . Note also 
that m,,, s m m , / 4 .  

Let M be an m, x n subarray of A ( n ,  t?) and let M '  be an m,,, X n subarray of 
M that includes all rows of M whose k-prefixes have been originated, while 
constructing A ( n ,  t ) ,  from rows of 2(n ,  k )  that are non-k-intersecting with (T. 

Also, denote by M" the m, +, x n subarray of A ( n ,  e + 1) consisting of rows from 
which the (n - k)-suffixes of the rows of M '  have been originated. By the 
induction hypothesis, 

cost, (M", a> 5 28m, + , .2'+' [fi] . 

However, by Eq. ( 2 )  we have 

cost , ( M ' ,  u) I cost , (M", a)  + mp + , * k . 

Hence, 

cost,(M, (7) < 28m, +, .2"' [ f i l  + me+, . k + (m, - me +,) .2k 

= (16m, +48m,+,).2'[VZ] 

5 (16m, + 48(m,/4)). 2e [fi] 

= 28m, .2' [fi] , 

as claimed. 
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It is easy to verify that the construction of &(n, 0) can be carried out in 
polynomial time. Nevertheless, the description-and consequently the construc- 
t ion-of  &(n, 0) can be considerably simplified if we replace the graph sequence 
{%(n, kn,e) }e  by a sequence of n-vertex graphs { 2 ( n ,  f ? ) } ,  which are nested; that 
is, X(n ,  8,) is a subgraph of X(n ,  12) whenever el < t2. 

One easy way to obtain such a graph sequence isAas follows: Let em,, denote 
the largest integer e for which k,,e 5 n. Set X(n,  0) = %(m. Z n , O )  and, for 0 < t I- 

let 
e -  1 

X(n ,  f ? )  X(n ,  e - 1) U %(n, f? - 1) = U %(n, kn,r )  , 
r=O 

where union of graphs should read as union of their edges (resulting parallel 
edges are merged into one). The out-degree of each vertex in X ( n ,  f ? ) ,  e > 0, is 
bounded from above by kn,r < k, ,e  = k  and, so, we can add edges to X(n,  f ? )  
to have out-degree exactly k at each vertex. Furthermore, by Lemma 1 we have, 
for f? > 0, 

A 

It can be readily verified that Proposition 2 still holds when we construct 
A ( n ,  8 )  out of X(n ,  f ? ) ,  instead of %(n, k n , e ) .  Once we construct &(n, 0) this 
way, the description of each row 7~ = ( A ( n ,  0)), becomes quite straightforward: 

0 For the index range 1 5 j 5 8[v‘E1, the elements nj are the terminal vertices 
of the edges emanating from vertex i in X(n,  0). 
For O<eze,,,,, and the index range 2‘+*[f i l  < j r 2 e + 3 [ f i ] ,  the ele- 
ments n; are the terminal vertices of all edges which emanate from vertex i 
in X ( n ,  f ? )  and which do not appear in X(n ,  f? - 1). 
For the index range 2emax+3 r f i ]  < j 5 n (if nonempty), the elements T, can 
be set arbitrarily to complete row T into a permutation. 

2.3. A lower Bound of f l ( n ’ ” )  

Theorem 2. For every n X n permutation array P, 

cost,(P) 2 f n 3 ’ 2 .  

A 
Proof. Let P be an n x n permutation array and let k = L+v‘E]. Denote by A 
the n x n matrix over (0, l} whose ith row is the characteristic vector of Y ( P j ,  k ) ;  
that is, A , , j  = 1 if j E Y ( P i ,  k )  and A , , j  = 0 otherwise. Clearly, each row of A 
contains exactly k nonzero entries and, therefore, the total number of nonzero 
entries in A is n . k .  

Let X denote the set of indexes of those columns in A that contain at most 2k 
nonzero entries. It can be readily verified that 1x1 1 n / 2 ,  or else there would have 
been more than n . k nonzero entries in A .  Let X’ be any subset of X of size k .  
The n x k submatrix A,. of A defined by the columns indexed by X’  contains at  
most 2k2 nonzero entries. Hence, there exist at least n - 2k2 2 n / 2  all-zero rows 
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in Ax,. Denote by Y the set of indexes of the all-zero rows in Ax,. Note that for 
each i E Y we have 

~ ( ~ , , k ) n x ~ = 0 .  (3) 

Now, take (T to be a permutation with g(v, n - k )  = X ‘ .  By (3) it follows that 
for every i E Y ,  row PI is non-k-intersecting with (T and, therefore, cost,(P,, u) 2 

k + 1. Hence, 

cost , (P)2cost , (P,(T)2 c c o s t , ( P , , ~ ) ~ ~ Y ~ - ( k +  l ) > $ n ” * .  0 
r E Y  

We remark that by optimizing over the constants involved in the last proof, we 
can obtain a lower bound cost , ( P )  2 % n3’2 for any fixed E > 0 and sufficiently 
large n. However, for the sake of simplicity, we chose to present Theorem 2 in its 
current form. 

3. THE LONGEST-MONOTONE-GREEDY-SUBSEQUENCE CASE 

In this section we first present a construction for n x n permutation arrays P(n)  
whose maximal cost with respect to the longest-m.g.s. measure is O(nl+On(l)) .  We 
then discuss a variation of the basic construction that avoids the exhaustive search 
which is required in the basic scheme. 

Throughout this section, “cost” means a cost with respect to the longest m.g.s. 
measure. 

3.1. Kronecker Product of Permutation Arrays 

Let r be a permutation on [m]  and x be a permutation on [n].  The Kronecker 
product of rr and x is a permutation rr @,y on [m n]  defined by 

A 
( r r@,x ) (  , - , )  n + Y = ( r , - l ) . n + ~ r ,  j = 1 , 2 , .  . . , m ,  C = l , 2  , . . .  , n .  

Similarly, for an m X m permutation array P and an n X n permutation array Q ,  
we define the Kronecker product of P and Q as the (m n)  x ( m  n )  permutation 
array P C3 Q given by 

( P C 3 Q ) ( f - I ) ~ + ~ . ( , - l ) f l + ~  - (PI @Qk)( , - l )n+e , i, j = 1,2, . . . , k ,  f =  1,2 ,  . . . ,n . 

For example, 

- 

11 2 3 4 5 6\ 
2 1 3 5 4 6  
1 3 2 4 6 5  

5 4 6 2 1 3  
\ 4 6 5  i 3 2 J  

Proposition 3. For every two permutation arrays P and Q ,  

cost,(P@Q) ~cos t , (P ) . cos t , (Q) .  
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Proof. 
from cr as follows: 

Let u be any permutation on [rn n] .  We construct a permutation T on [m] 

( T ' ) ~  < ( T ' ) ~  if and only if m&((ui)(u-l)n+p) <mix((cr')(u-l)n+f) . 

That is, an integer u has a smaller location index in T than that of an integer u if 
and only if there exists an integer a E [n] such that (u - 1)n + 1, (u - 1)n + 
2 ,  . . . ,un all have smaller location indexes in cr than that of (v - 1)n + a .  

[m] be the set of indexes in the longest m.g.s. of a row rr = P, with 
respect to T and let s be an integer in [m]. 

e= i e = i  

Let 9 

Case 1: ~$9. We claim that none of the integers (s - 1)n + 1, (s - 1)n + 
2, . . . , sn appears in the longest m.g.s. of a row rr '23 Q k ,  with respect to cr, for all 
k = l , 2  , . . . ,  n. 

To see this, note that since s is not in the longest m.g.s. of rr with respect to T ,  

then there exists some index t <s such that 

( T i ) n ,  = (Ti7T), < (Ti7T), = ( T i ) n ,  . 

Hence, by construction, there exists an integer a E [n] such that 

mix  e = i  ( (~ ' ) ( , - l ) ,+O <(l+')(n,-l)n+a . (4) 

Letting b, denote the location index, ((Q,)'),, of a in the row Qk,  we can rewrite 
(4) as 

( ~ ' ( r  @ Q k ) ) ( s  - 1 ) n  + t < ( ( T ~ ( ~ ~ O S ~ Q ~ ) ) ( ~ - ~ ) ~ + ~ ~  for all k ,  & =  1 , 2 , .  . . , n  

On the other hand, noting that ( t -  1)n + b k < ( s  - 1)n + & for all k ,  & =  
1,2,  . . . , n ,  we conclude that none of the indexes (s - 1)n + & appears in the 
longest m.g.s. of a row n - 8  Q k  with respect to u for all k ,  4 = 1 ,2 ,  . . . , n. 

Case 2: s €2. 
longest m.g.s. of r r 8 Q k  with respect to cr and let 

For k = 1 , 2 , .  . . , n ,  Let Lfk denote the set of indexes in the 

2 k ( s )  '{t E [n]:  (s - 1)n + & E 9 k )  * 

Also, let x be a permutation on [ n ]  defined by 

( x i ) U  < ( X I ) ,  if and only if ( u ' ) ( n $ - i ) n + u  < ( ( + ' ) ( n , - l ) n + u  ' 

It can be readily verified that Tk(s )  is a set of indexes of a (not-necessarily 
longest) m.g.s. of Qk with respect to x and, therefore, 12k(s)Is cost,(Qk, x). 
Hence, 

n 

C / 9 k ( s ) l  Icostz(Q,  X )  5cOst~(Q) . 
k = l  

Ranging over all values s E 2, we thus obtain, 
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k = l  ~ € 2  k = l  

5 IBI.cost,(Q)=cost,(~,~).cost,(Q). 

Finally, summing over all rows 7~ of P yields the desired inequality 

cost,(P@Q, u) ~ c o s t , ( P ,  T). cost,(Q) ~cos t , (P ) . cos t , (Q) .  0 

We point out the analogy between Proposition 3 and the technique suggested 
by Abbot in [ 11 to construct Ramsey graphs through graph products. 

3.2. The Basic Construction 

The basic construction of ri X n permutation arrays with respect to the longest 
m.g.s. measure is obtained by applying Proposition 3 recursively. Let Q be an 
N X N permutation array and, for n = N",  let P(n) denote the n X n permutation 
array obtained by taking the Kronecker product Q C3 Q €9. . . €3 Q of m copies of 
Q. Clearly, 

Now, assume that Q has the smallest maximal cost among all N X N permuta- 
tion arrays. By the probabilistic proof given in [ 5 ] ,  there exists an absolute 
constant c such that cost,(Q) 5 cN log N .  Hence, by ( 5 ) ,  

cost2(9(n)) 5 n l + c ( N )  , (6) 

where E ( N )  = (log(c log N))/(log N )  = oN(l). Taking m to be sufficiently large, 
we can afford an exhaustive search over all ( N ! ) N  permutation arrays for the 
optimal permutation array Q in time complexity which is polynomial in n. To this 
end, we can take N to be as large as O ( f i / d G )  = O(*/log log n) ,  in 
which case we obtain E ( N )  = O((1og log log n)/log log n)  = o,(l). 

A stricter complexity requirement might be that of "explicitness," where the 
computation of each entry in the permutation array should be polynomial in the 
presentation of the indexes of that entry. In such a case, the exhaustive search for 
Q should be olylogarithmic in n and, therefore, N can be taken to be as large as 

The resulting permutation array P(n) obtained by the above construction 
resembles the one given in [ 5 ] .  Yet, our characterization of 9 ( n )  and the analysis 
of its cost through Kronecker product of arrays differ from the treatment in I S ] .  
[For the sake of comparison, note that for an array P with the smallest maximal 
cost among all n X n permutation arrays we have cost,(P) 5 n'+'(") , where 

O( + log log n / log log log n).  

.(n) = ((log log n)/log n)  + O( l).] 

3.3. Avoiding the Search 

To avoid the search for the N x N permutation array Q in the construction of 
Section 3.2, we apply a technique that has been used in coding theory in several 
applications, e.g., in constructing Justesen codes [ 101 that attain the Zyablov 
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bound [18]: Instead of taking a Kronecker product of m copies of the same N x N 
permutation array with the smallest maximal cost, we take the Kronecker product 
of m distinct N X N permutation arrays. In fact, setting m = ( N ! ) N ,  we can take 
the Kronecker product of all N x N permutation arrays. Now, the probabilistic 
proof given in [5] implies the existence of not only one N X N permutation array 
Q with cost,(Q) 5 CN log N ,  but rather the existence of at least (1 - 6 N ) ( N ! ) N  
such permutation arrays, where 6, tends to zero at least as fast as l / log N when N 
goes to infinity. Taking m = ( N ! ) N ,  and letting 9(Nm) be the Kronecker product 
of all N X N permutation arrays (according to some lexicographic order), we 
obtain 

log cost2(9(N")) 5 c log cost,(P) 
N x N  arrays P 

5 m . (1 - 6,). log(cN log N )  + m * 8, log(N2) , 

as the maximal cost of those permutation arrays P with cost,(P) 2 cN log N is 
bounded from above by N2.  Hence, for m = (N!)N and n = N", 

log cost2(9(n)) - m( 1 - 8,) log(cN log N )  2m6, log N - 
log n m . l o g N  + m . l o g N  

O( 1) + log log N 
5 1 +  log N + ' N  

= 1 + E(N) , 
where E ( N )  is essentially the same as in (6). Note that the computation of any 

time which is polylogarithmic in n and that n = N ( N ! ) N  implies 
log log n) ,  as in the "explicit" version of the construction of 

Section 3.2. 
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