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Constructions of Snake-in-the-Box Codes
for Rank Modulation
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Abstract— Snake-in-the-box code is a Gray code, which is
capable of detecting a single error. Gray codes are important in
the context of the rank modulation scheme, which was suggested
recently for representing information in flash memories. For a
Gray code in this scheme, the codewords are permutations,
two consecutive codewords are obtained using the push-to-the-
top operation, and distance measure is defined on permutations.
In this paper, the Kendall’s τ -metric is used as the distance
measure. We present a general method for constructing such
Gray codes. We apply the method recursively to obtain a snake
of length M2n+1 = ((2n + 1)(2n)− 1)M2n−1 for permutations of
S2n+1, from a snake of length M2n−1 for permutations of S2n−1.
Thus, we have lim

n→∞ M2n+1/S2n+1 ≈ 0.4338, improving on

the previous known ratio of lim
n→∞ 1/

√
(πn). Using the general

method, we also present a direct construction. This direct
construction is based on necklaces and it might yield snakes of
length (2n + 1)!/2−2n + 1 for permutations of S2n+1. The direct
construction was applied successfully for S7 and S9, and hence
lim

n→∞ M2n+1/S2n+1 ≈ 0.4743.

Index Terms— Flash memory, Gray code, necklaces,
push-to-the-top, rank modulation scheme, snake-in-the-box
code, spanning tree, 3-uniform hypergraph.

I. INTRODUCTION

FLASH memory is a non-volatile technology that is
both electrically programmable and electrically erasable.

It incorporates a set of cells maintained at a set of levels
of charge to encode information. While raising the charge
level of a cell is an easy operation, reducing the charge level
requires the erasure of the whole block to which the cell
belongs. For this reason charge is injected into the cell over
several iterations. Such programming is slow and can cause
errors since cells may be injected with extra unwanted charge.
Other common errors in flash memory cells are due to charge
leakage and reading disturbance that may cause charge to
move from one cell to its adjacent cells. In order to overcome
these problems, the novel framework of rank modulation was
introduced in [8]. In this setup the information is carried by
the relative ranking of the cells’ charge levels and not by the
absolute values of the charge levels. This allows for more
efficient programming of cells, and coding by the ranking of
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the cells’ levels is more robust to charge leakage than coding
by their actual values. In this model codes are subsets of Sn ,
the set of all permutations on n elements, and the codewords
are members of Sn , where each permutation corresponds to a
ranking of n cells’ levels from the highest one to the lowest.
For example, the charge levels (c1, c2, c3, c4) = (5, 1, 3, 4)
are represented by the codeword [1, 4, 3, 2] since the first cell
has the highest level, the forth cell has the next highest level
and so on.

To detect and/or correct errors caused by injection of extra
charge or due to charge leakage we will use an appropri-
ate distance measure. Several metrics on permutations are
used for this purpose. In this paper we will consider only
the Kendall’s τ -metric [9], [10]. The Kendall’s τ -distance
between two permutation π1 and π2 in Sn is the minimum
adjacent transpositions required to obtained π2 from π1,
where adjacent transposition is an exchange of two distinct
adjacent elements. For example, the Kendall’s τ -distance
between π1 = [2, 1, 4, 3] and π2 = [2, 4, 3, 1] is 2 as
[2, 1, 4, 3] → [2, 4, 1, 3] → [2, 4, 3, 1]. Two permutations
in this metric are at distance one if they differ in exactly
one pair of adjacent elements. Distance one between these
two permutations represents an exchange of two cells, which
are adjacent in the permutation, due to a small changes in their
charge level which changes their order.

Gray codes are very important in the context of rank mod-
ulation as was explained in [8]. They are used in many other
applications, see [3], [12]. An excellent survey on Gray codes
is given in [11]. The usage of Gray codes for rank modulation
was also discussed in [5], [6], [8], and [13]. The permutations
of Sn in the rank modulation scheme represent “new” logical
levels of the flash memory. The codewords in the Gray
code provide the order of these levels which should be
implemented in various algorithms with the rank modulation
scheme. Usually, a Gray code is just a simple cycle in a graph,
in which the edges are defined between vertices with distance
one in a given metric. Two adjacent vertices in the graph
represent on one hand two elements whose distance is one by
the given metric; and on the other hand a move from a vertex
to a vertex implied by an operation defined by the metric.
A snake-in-the-box code is a Gray code in which two elements
in the code are not adjacent in the graph, unless they are
consecutive in the code. Such a Gray code can detect a single
error in a codeword. Snake-in-the-box codes were mainly
discussed in the context of the Hamming scheme, e.g. [1].

In the rank modulation scheme the Gray code is defined
slightly different since the operation is not defined by a
metric. The permutation is defined by the order of the charge
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levels, from the highest one to the lowest one. From a given
ranking of the charge levels, which defines a permutation,
the next ranking is obtained by raising the charge level of
one of the cells to be the highest level. This operation, called
“push-to-the-top”, is used in the rank modulation scheme.
For example, the charge levels (c1, c2, c3, c4) = (5, 1, 3, 4)
are represented by the codeword [1, 4, 3, 2], and by applying
push-to-the-top operation on the second cell which has the
lowest charge level, we have, for example, the charge levels
(c1, c2, c3, c4) = (5, 6, 3, 4) which are represented by the
codeword [2, 1, 4, 3]. Hence, the permutation π2 can follow
the permutation π1 if π2 is obtained from π1 by applying
a push-to-the-top operation on π1. Therefore, the related
graph is directed with an outgoing edge from the vertex
which represents π1 into the vertex which represents π2.
On the other hand, one possible metric for the scheme is
the Kendall’s τ -metric. A Gray code (and a snake-in-the-box
code as a special case) related to the rank modulation scheme
is a directed simple cycle in the graph. In a snake-in-the-box
code, related to this scheme, there is another requirement
that the Kendall’s τ -distance between any two codewords is
at least two, including consecutive codewords. For example,
C = ([1, 2, 3, 4], [4, 1, 2, 3], [2, 4, 1, 3], [3, 2, 4, 1],
[4, 3, 2, 1], [1, 4, 3, 2], [3, 1, 4, 2], [2, 3, 1, 4]) is
a snake-in-the-box code in S4. The Kendall’s
τ -distance between any two permutations in C is at
least 2.

One of the most important problems in the research on
snake-in-the-box codes is to construct the largest possible
code for the given graph. In a snake-in-the-box code
for the rank modulation scheme we would like to find
such a code with the largest number of permutations.
In a recent paper by Yehezkeally and Schwartz [13], the
authors constructed a snake-in-the-box code of length
M2n+1 = (2n + 1)(2n − 1)M2n−1 for permutations of S2n+1,
from a snake of length M2n−1 for permutations of S2n−1.
We will improve on this result by constructing a snake of
length M2n+1 = ((2n + 1)2n − 1)M2n−1 for permutations
of S2n+1, from a snake of length M2n−1 for permutations
of S2n−1. Thus, we have lim

n→∞
M2n+1
S2n+1

≈ 0.4338, improving on

the previous known ratio of lim
n→∞

1√
πn

[13]. For these
constructions of snake-in-the-box codes we need an initial
snake-in-the-box code and the largest one known to start
both constructions is a snake of length 57 for permutations
of S5. We also propose a direct construction to form a snake
of length (2n+1)!

2 − 2n + 1 for permutations of S2n+1. The
direct construction was applied successfully for S7 and S9.
This implies a better initial condition for the recursive
constructions, and the ratio lim

n→∞
M2n+1
S2n+1

≈ 0.4743.
The rest of this paper is organized as follows. In Section II

we will define the basic concepts of Gray codes in the rank
modulation scheme, the push-to-the-top operation, and the
Kendall’s τ -metric required in this paper. In Section III we
present the main ideas and a framework for constructions of
snake-in-the-box codes. In Section IV we present a recursive
construction based on the given framework. This construction
is used to obtain snake-in-the-box codes longer than the

ones known before. In Section V, based on the framework,
we present an idea for a direct construction based on
necklaces. The construction is used to obtain snake-in-the-
box codes of length (2n+1)!

2 − 2n + 1 in S2n+1, which we
believe are optimal. The construction was applied successfully
on S7 and on S9, and we conjecture that it can be applied on
Sn for any odd n > 6. Conclusions and problems for future
research are presented in Section VI.

II. PRELIMINARIES

In this section we will repeat some notations defined and
mentioned in [13], and we also present some other definitions.

Let [n] � {1, 2, . . . , n} and let π = [a1, a2, . . . , an] be a
permutation over [n], i.e., a permutation in Sn , such that for
each i ∈ [n] we have that π(i) = ai .

Given a set S and a subset of transformations T ⊆
{ f | f : S → S}, a Gray code over S of size M , using
transitions from T , is a sequence C = (c0, c1, . . . , cM−1) of
M distinct elements from S, called codewords, such that for
each j ∈ [M −1] there exists a t ∈ T for which c j = t (c j−1).
The Gray code is called complete if M = |S|, and cyclic if
there exists t ∈ T such that c0 = t (cM−1). Throughout this
paper we will consider only cyclic Gray codes.

In the context of rank modulation for flash memories,
S = Sn and the set of transformations T comprises of push-
to-the-top operations. We denote by ti the push-to-the-top
operation on index i , 2 ≤ i ≤ n, defined by

ti ([a1, . . . , ai−1, ai , ai+1, . . . , an])
= [ai , a1, . . . , ai−1, ai+1, . . . , an].

and a p-transition will be an abbreviated notation for a
push-to-the-top operation.

A sequence of p-transitions will be called a
transitions sequence. A permutation π0 and a transitions
sequence t1, t2, . . . t� define a sequence of permutations
π0, π1, π2, . . . , π�−1, π�, where πi = ti (πi−1), for each i ,
1 ≤ i ≤ �. This sequence is a cyclic Gray code, if π� = π0
and for each 0 ≤ i < j < �, πi 	= π j . In the sequel the word
cyclic will be omitted.

Given a permutation π = [a1, a2, . . . , an] ∈ Sn , an
adjacent transposition is an exchange of two distinct adja-
cent elements ai , ai+1, in π , for some 1 ≤ i ≤ n − 1.
The result of such an adjacent transposition is the per-
mutation [a1, . . . , ai−1, ai+1, ai , ai+2, . . . , an]. The Kendall’s
τ -distance [10] between two permutations π1, π2 ∈ Sn

denoted by dK (π1, π2) is the minimum number of adjacent
transpositions required to obtain the permutation π2 from the
permutation π1. A snake-in-the-box code is a Gray code in
which for each two permutations π1 and π2 in the code
we have dK (π1, π2) ≥ 2. Hence, a snake-in-the-box code
is a Gray code capable of detecting one Kendall’s τ -error.
We will call such a snake-in-the-box code a K-snake. We fur-
ther denote by (n, M,K)-snake a K-snake of size M with
permutations from Sn . A K-snake can be represented in
two different equivalent ways:

• the sequence of codewords (permutations),
• the transitions sequence along with the first permutation.
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Let T be a transitions sequence and let π be a permutation
in Sn . If a K-snake is obtained by applying T on π then a
K-snake will be obtained by using any other permutation from
Sn instead of π . This is a simple observation from the fact that
t (π2(π1)) = π2(t (π1)), where t is a p-transition and π2(π1)
refers to applying the permutation π2 ∈ Sn on the permutation
π1 ∈ Sn . In other words applying T on a different permutation
just permutes the symbols, by a fixed given permutation, in all
the resulting permutations when T is applied on π . Therefore,
such a transitions sequence T will be called an S-skeleton.

For a transitions sequence σ = tk1 , tk2 , . . . tk� and a per-
mutation π ∈ Sn , we denote by σ (π), the permutation
obtained by applying the sequence of p-transitions in σ on π,
i.e., tk1 is applied on π , tk2 is applied on tk1 (π), and so
on. In other words, σ (π) = (tk1 ◦ tk2 ◦ . . . ◦ tk� )(π) =
tk�

(
tkl−1

(
. . . tk2

(
tk1 (π)

)))
. Let σ1, σ2 be two transitions

sequences. We say that σ1 and σ2 are matching sequences,
and denote it by σ1 � σ2, if for each π ∈ Sn we have
σ1(π) = σ2(π).

In [13] it was proved that a Gray code with permutations
from Sn using only p-transitions on odd indices is a K-snake.
By starting with an even permutation and using only
p-transitions on odd indices we get a sequence of even
permutations, i.e., a subset of An , the alternating group of
order n. This observation saves us the need to check whether
a Gray code is in fact a K-snake, at the cost of restricting the
permutations in the K-snake to the set of even permutations.
However, the following assertions were also proved in [13].

• If C is an (n, M,K)-snake then M ≤ |Sn|
2 .

• If C is an (n, M,K)-snake which contains a p-transition
on an even index then M ≤ |Sn|

2 − 1
n−1

(�n/2−1
2

)
.

This motivates not to use p-transitions on even indices. Since
we will use only p-transitions on odd indices, we will describe
our constructions only for even permutations with odd length.

III. FRAMEWORK FOR CONSTRUCTIONS OF K-SNAKES

In this section we present a framework for constructing
K-snakes in S2n+1. Our snakes will contain only even
permutations. We start by partitioning the set of even
permutations of S2n+1 into classes. Next, we describe how
to merge K-snakes of different classes into one K-snake.
We conclude this section by describing how to combine
most of these classes by using a hypergraph whose vertices
represent the classes and whose edges represent the classes
that can be merge together in one step.

We present two constructions for a (2n + 1, M2n+1,K)-
snake, C2n+1, one recursive and one direct. In this section we
present the framework for these constructions. First, the per-
mutations of A2n+1, the set of even permutations from S2n+1,
are partitioned into classes, where each class induces one
K-snake which contains permutations only from the class.
All these snakes have the same S-skeleton. Let L2n+1 be the
set of all the classes.

The construction of C2n+1 from the K-snakes of L2n+1
proceeds by a sequence of joins, where at each step we
have a main K-snake, and two K-snakes from the remaining
K-snakes of L2n+1 are joined to the current main K-snake.

A join is performed by replacing one transition in the main
K-snake with a matching sequence.

In order to join the K-snakes we need the following
lemmas, for which the first can be easily verified. In the
sequel, let σ k � σ ◦ σ ◦ . . . ◦ σ︸ ︷︷ ︸

k t imes

, i.e., performing the transi-

tions sequence σ, k times.
Lemma 1: If α, β ∈ Sn then β = ti (α) if and only if

α = t i−1
i (β).

Lemma 2: If i ∈ [n − 2] then ti � ti+2 ◦ (t i−1
i ◦ ti+2)

2.
Proof: Let α = [a1, a2, . . . , ai , ai+1, ai+2, . . . , an] be a

permutation over [n].
ti+2(α)

= [ai+2, a1, . . . , ai , ai+1, ai+3, . . . , an],
t i−1
i (ti+2(α))

= [a1, a2, . . . , ai−1, ai+2, ai , ai+1, ai+3, . . . , an],
ti+2(t

i−1
i (ti+2(α)))

= [ai+1, a1, a2, . . . , ai−1, ai+2, ai , ai+3, . . . , an],
t i−1
i (ti+2(t

i−1
i (ti+2(α))))

= [a1, a2, . . . , ai−1, ai+1, ai+2, ai , ai+3, . . . , an],
and hence we have,

ti+2(t
i−1
i (ti+2(t

i−1
i (ti+2(α)))))

= [ai , a1, . . . , ai−1, ai+1, ai+2, . . . , an]
= ti (α).

Corollary 1: If π ∈ S2n+1 then t2n−1(π) =
t2n+1

(
t2n−2
2n−1

(
t2n+1

(
t2n−2
2n−1 (t2n+1(π))

)))
.

Lemma 2 can be generalized as follows (the following
lemma is given for completeness, but it will not be used in
the sequel, and hence its proof is omitted).

Lemma 3: If i, j ∈ [n] and |i − j | = k, then ti � t j◦
(t i−1

i ◦ t j )
k .

The partition of A2n+1 into the set of classes L2n+1 should
satisfy the following properties:
(P1) The last two ordered elements of two permutations in

the same class are equal.
(P2) Any two permutations which differ only by a cyclic shift

of the first 2n − 1 elements, belong to the same class.
Corollary 2: Let π be a permutation in A2n+1.
• π and t2n+1(π) belong to different classes in L2n+1.
• π and t2n−1(π) belong to the same class in L2n+1.
We continue now with the description of the method to

join the K-snakes of L2n+1 into C2n+1. In the rest of the
paper, A2n+1 is partitioned into classes according to the last
two ordered elements in the permutations. Let [x, y] denote
the class of A2n+1 in which the last ordered pair in the
permutations is (x, y). Let T be the S-skeleton of the K-snakes
in L2n+1. Let Cπ

T be a K-snake for which T is its transitions
sequence, and π is its first permutation. If π belongs to the
class [x, y], we say that Cπ

T represents the class [x, y]. Note
that all the permutations in Cπ

T belong to the same class.
The transitions sequence T should satisfy the following

properties (these properties are needed in order to make the
required joins of cycles):
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(P3) t2n−1 is the last transition in T .
(P4) Given a permutation π = [a1, . . . , a2n, a2n+1], for each

x ∈ [2n + 1] \ {a2n, a2n+1} there exists a permuta-
tion π ′ ∈ Cπ

T whose last ordered three elements are
(x, a2n, a2n+1).

Corollary 3: For each class [x, y], a permutation
π ∈ [x, y], and z ∈ [2n+1]\{x, y}, there exists a permutation
π ′ ∈ Cπ

T whose last ordered three elements are (z, x, y),
followed by the permutation t2n−1(π

′).
Lemma 4: Let C be a K-snake which doesn’t contain

any permutation from the classes [y, z] or [z, x], let
π = [a1, a2, . . . , a2n−2, z, x, y] be a permutation in C fol-
lowed by t2n−1, and let σ be a transitions sequence such that
T = σ ◦ t2n−1. Then replacing this t2n−1 transition in C, with

t2n+1 ◦ σ ◦ t2n+1 ◦ σ ◦ t2n+1,

joins two K-snakes representing the classes [y, z] and [z, x]
into C (after π).

Proof: Observe that by Lemma 1 we have σ � t2n−2
2n−1 .

Thus, we have

π = [
a1, a2, . . . , a2n−2, z, x, y

]

↓ t2n+1[
y, a1, a2, . . . , a2n−2, z, x

]

↓ σ � t2n−2
2n−1[

a1, a2, . . . , a2n−2, y, z, x
]

⎫
⎬

⎭
K − snake
f or [z, x]

↓ t2n+1[
x, a1, a2, . . . , a2n−2, y, z

]

↓ σ � t2n−2
2n−1[

a1, a2, . . . , a2n−2, x, y, z
]

⎫
⎬

⎭
K − snake
f or [y, z]

↓ t2n+1
return to the
K − snake C

t2n−1(π) = [
z, a1, a2, . . . , a2n−2, x, y

]

The next step is to present an order for merging all the
K-snakes of L2n+1, except one, into C2n+1. This step will
be performed by translating the merging problem into a
3-graph problem. We start with a sequence of definitions taken
from [7].

Definition 5: A 3-graph (also called a 3-uniform hyper-
graph) H = (V , E) is a hypergraph where V is a set of
vertices and E ⊆ (V

3

)
. A hyperedge of H will be called triple.

A path in H is an alternating sequence of � + 1 distinct
vertices and � distinct triples: v0, e1, v1, . . . , v�−1, e�, v�, with
the property that ∀i ∈ [�] : vi−1, vi ∈ ei .

A cycle is a closed path, i.e. v0 = v�.
A sub-3-graph contains a subset E ′ ⊆ E and the subset

V ′ ⊆ V which contains all the vertices in E ′.
A tree T in H is a connected sub-3-graph of H with no

cycles.
Let H2n+1 = (V2n+1, E2n+1) be a 3-graph defined as

follows:

V2n+1 = {[x, y] : x, y ∈ [2n + 1], x 	= y},
E2n+1 = {{[x, y], [y, z], [z, x]} : x, y, z ∈ [2n + 1],

x 	= y, x 	= z, y 	= z}.

We denote a hyperedge {[x, y], [y, z], [z, x]}, where x < y
and x < z, by the triple 〈x, y, z〉.

The vertices in H2n+1 correspond to the classes in the
set L2n+1. Each e ∈ E2n+1 contains three vertices, which
correspond to three classes. These three classes can be rep-
resented by three K-snakes, generated from the S-skeleton,
which can be merged together by Corollary 3 and Lemma 4.
Note that for any two edges e1, e2 in H2n+1 either e1 ∩e2 = ∅

or |e1 ∩ e2| = 1. Let T2n+1 = (VT2n+1 , ET2n+1) be a tree in
H2n+1. We join |VT2n+1 | K-snakes which represent |VT2n+1 |
classes of L2n+1 to form the K-snake C2n+1, by Corollary 3
and Lemma 4. The hyperedges which represent the joins which
are performed are determined by T2n+1, but these joins are
not unique, and hence they can yield different final K-snakes.
The order in which the hyperedges are selected for these
joins is also not unique, but this order doesn’t affect the final
K-snakes. The size of the K-snake C2n+1 depends on the
number of vertices in the tree T2n+1. A tree in a 3-graph
contains an odd number of vertices [7]. Since in H2n+1 there
are (2n + 1)(2n) vertices it follows that there is no tree in
H2n+1 which contains all the vertices of V2n+1. This motivates
the following definition.

Definition 6: A nearly spanning tree in a 3-graph
H = (V , E) is a tree in H which contains all the vertices
of V except one.

Now, let T2n+1 be a nearly spanning tree in H2n+1.
Example 1: One choice for T5 is given below.

The edges in the tree T5 are:

〈1, 2, 5〉, 〈1, 2, 4〉, 〈1, 2, 3〉, 〈1, 4, 5〉,
〈2, 5, 4〉, 〈1, 3, 4〉, 〈2, 4, 3〉, 〈1, 5, 3〉, 〈2, 3, 5〉.

The order of merging K-snakes from these classes obtained
by this choice of T5 can be chosen as follows.

(1) vertex [1, 2];
(2) vertices [3, 1], [2, 3], (through the edge 〈1, 2, 3〉);
(3) vertices [4, 1], [2, 4], (through the edge 〈1, 2, 4〉);
(4) vertices [5, 1], [2, 5], (through the edge 〈1, 2, 5〉);
(5) vertices [5, 3], [1, 5], (through the edge 〈1, 5, 3〉);
(6) vertices [5, 2], [3, 5], (through the edge 〈2, 3, 5〉);
(7) vertices [3, 4], [1, 3], (through the edge 〈1, 3, 4〉);
(8) vertices [3, 2], [4, 3], (through the edge 〈2, 4, 3〉);
(9) vertices [4, 5], [1, 4], (through the edge 〈1, 4, 5〉);

(10) vertices [4, 2], [5, 4], (through the edge 〈2, 5, 4〉).
Using the S-skeleton T = t3, t3, t3 of the (3, 3,K)-snake, the

snake-in-the-box code which is obtained by T5 is a (5, 57,K)-
snake presented in Figure 1. There is no (5, M,K)-snake for
which M > 57 [13]. The S-skeleton of this code is σ 3, where

σ = t5, t5, t3, t3, t5, t3, t3, t5, t3, t5, t5, t3, t3, t5, t3, t3, t5, t3, t5
Theorem 7: If n ≥ 2, then there exists a nearly spanning

tree T2n+1 in H2n+1 which doesn’t include the vertex [2, 1].
Proof: We present a recursive construction for such

a nearly spanning tree. We start with the nearly spanning
tree given in Example 1. Note that T5 doesn’t include the
vertex [2, 1]. Assume that there exists a nearly spanning
tree, T2n−1, in H2n−1, which doesn’t include the vertex [2, 1].
Note that H2n−1 is a sub-graph of H2n+1 and therefore T2n−1 is
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Fig. 1. A (5, 57,K)-snake obtained by T5.

Fig. 2. The nearly spanning tree T7 constructed from T5.

a tree in H2n+1. The vertices of H2n+1 which are not spanned
by T2n−1 are

• [x, 2n], [2n, x], [x, 2n + 1], [2n + 1, x] for each
x ∈ [2n − 1],

• [2n, 2n + 1], [2n + 1, 2n],
• [2, 1].

The nearly spanning tree T2n+1 is constructed from T2n−1 as
follows. For each x , 2 ≤ x ≤ 2n − 2, the edges 〈x, x + 1, 2n〉
and 〈x, x + 1, 2n + 1〉 are joined to T2n+1; also the edges
〈1, 2, 2n〉, 〈1, 2n, 2n − 1〉, 〈1, 2n + 1, 2n − 1〉, 〈1, 2n, 2n + 1〉,
and 〈2, 2n + 1, 2n〉 are joined to T2n+1. It is easy to verify
that all the vertices of H2n+1 which are not spanned by T2n−1
(except for [2, 1]) are contained in the list of the edges which
are joined to T2n−1. When an edge is joined to the tree it has
one vertex which is already in the tree and two vertices which
are not on the tree. Hence, connectivity is preserved and no
cycle is formed. Hence, it is easy to verify that by joining these
edges to T2n−1 we form a nearly spanning tree in H2n+1.

Example 2: By using Theorem 7 and the nearly spanning
tree T5 of Example 1 we obtain the spanning tree T7 depicted
in Figure 2. The dashed boxes edges and the double lines
nodes are added to T5 in order to form T7.

IV. A RECURSIVE CONSTRUCTION

In this section we present the recursive construction for a
(2n + 1, M2n+1,K)-snake from a (2n − 1, M2n−1,K)-snake.
The construction is based on the nearly spanning tree T2n+1

presented in the previous section. Each of its vertices represent
a class in which a K-snake based on the (2n − 1, M2n−1,K)-
snake is generated. Those K-snakes are merged together into
one (2n + 1, M2n+1,K)-snake using the framework presented
in the previous section. We conclude this section with analyz-
ing the length of the generated K-snake compared the total
number of permutations in S2n+1.

We generate a (2n + 1, M2n+1,K)-snake, C2n+1, whose
transitions sequence is tk1 , tk2 , . . . , tkM2n+1

. C2n+1 has the
following properties:

(Q1) k j is odd for all j ∈ [M2n+1].
(Q2) kM2n+1 = 2n + 1.
(Q3) For each z ∈ [2n + 1] there exists a permutation

π ∈ C2n+1 such that π(2n + 1) = z.

The starting point of the recursive construction is 2n + 1 = 3.
The transitions sequence for 2n + 1 = 3 is t3, t3, t3, and the
complete (3, 3,K)-snake is C3 � {[1, 2, 3], [3, 1, 2], [2, 3, 1]}.
Clearly (Q1), (Q2), and (Q3) hold for this transitions sequence
and C3.

Now, assume that there exists a (2n − 1, M2n−1,K)-snake,
C2n−1, which satisfies properties (Q1), (Q2), (Q3), and let
T2n−1 = tk1 , tk2 , . . . , tkM2n−1

be its S-skeleton, i.e., T2n−1
is the transitions sequence of C2n−1. Note that (Q1), (Q2),
and (Q3) depend on the transitions sequence T2n−1 and are
independent of the first permutation of C2n−1. We construct a
(2n + 1, M2n+1,K)-snake, C2n+1, where M2n+1 = ((2n + 1)
(2n) − 1)M2n−1, which also satisfies (Q1), (Q2), and (Q3).
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First, all the permutations of A2n+1 are partitioned into
(2n + 1)(2n) classes according to the last ordered two ele-
ments in the permutations. This implies that (P1) and (P2) are
satisfied. In addition, (P3) and (P4) for T2n−1 are immediately
implied by (Q2) and (Q3) for C2n−1, respectively. Hence T2n−1
can be used as the S-skeleton for the K-snakes in L2n+1. Now,
we merge the K-snakes of the classes in L2n+1 (except [2, 1]),
by using Lemma 4 and the nearly spanning tree T2n+1 of
Theorem 7. We have to show that (Q1), (Q2), and (Q3) are
satisfied for C2n+1. (Q1) is readily verified. Clearly, t2n+1 was
used to obtain C2n+1 (see Lemma 4), and therefore we can
always define T2n+1 in such a way that its last transition is
t2n+1, and hence (Q2) is satisfied. For each z ∈ [2n + 1] there
exists a class [x, z] whose K-snake is joined into C2n+1, and
therefore (Q3) is satisfied. Thus, we have

Theorem 8: Given a (2n −1, M2n−1,K)-snake which satis-
fies (Q1), (Q2), and (Q3), we can obtain a (2n+1, M2n+1,K)-
snake, where M2n+1 = ((2n + 1)(2n) − 1)M2n−1, which also
satisfies (Q1), (Q2), and (Q3).

Following [13], we define D2n+1 = M2n+1
(2n+1)! as the

ratio between the number of permutations in the given
(2n + 1, M2n+1,K)-snake and the size of S2n+1. Recall that
if C is an (2n + 1, M,K)-snake then M ≤ |S2n+1|

2 , and we
conjecture that the optimal size is M = (2n+1)!

2 − 2n + 1.
Thus, it is desirable to obtain a value D2n+1 close to half
as much as possible. In our recursive construction M2n+1 =
((2n + 1)(2n) − 1)M2n−1. Thus, we have

D3 = 1

2
,

∞∏

n=2

D2n+1

D2n−1
= 12

√
π

5(1 + √
5)�( 1

4 (5 − √
5))�( 1

4 (1 + √
5))

,

which implies that

lim
n→∞ D2n+1 = 1

2
· 12

√
π

5(1 + √
5)�( 1

4 (5 − √
5))�( 1

4 (1 + √
5))

≈ 0.4338.

This computation can be done by any mathematical tool,
e.g., WolframAlpha. This improves on the construction
described in [13], which yields M2n+1 = (2n + 1)(2n − 1)
M2n−1 and lim

n→∞ D2n+1 = lim
n→∞

1√
πn

.

V. A DIRECT CONSTRUCTION BASED ON NECKLACES

In this section we describe a direct construction to form
a (2n + 1, M2n+1,K)-snake. First, we describe a method to
partition the classes which were used before into subclasses
that are similar to necklaces. Next, we show how subclasses
from different classes are merged into disjoint chains. Finally,
we present a hypergraph and a graph in which we have to
search for certain trees to form our desired K-snake which we
believe is of maximum length. Such K-snakes were found in
S7 and S9.

We present a direct construction for a (2n + 1, M2n+1,K)-
snake, C2n+1. The goal is to obtain M2n+1 = (2n+1)!

2 −(2n−1),
and hence D2n+1

D2n−1
≥ 1 − 1

(2n)! . We believe that there is always a

(2n+1, M2n+1,K)-snake with M2n+1 = (2n+1)!
2 −(2n−1) and

there is no such K-snake with more codewords. We are making
a slight change in the framework discussed in Section III. First,
all the permutations of A2n+1 are partitioned into (2n + 1)(2n)
classes according to the last ordered two elements. We denote
by [x, y] the class of all even permutations in which the last
ordered pair in the permutation is (x, y). Each class is further
partitioned into subclasses according to the cyclic order of the
first 2n − 1 elements in the permutations, i.e., in each class
[x, y], the (2n−1)!

2 permutations are partitioned into (2n−2)!
2

disjoint subclasses. This implies that (P1) and (P2) are satisfied
for both classes and subclasses. Let’s denote each one of the
subclasses by [α] − [x, y] where α is the cyclic order of the
first 2n − 1 elements in the permutations of the subclass. Let
α1, α2 be two permutations over [2n +1] \ {x, y}. If α1 and α2
have the same cyclic order, we denote it by α1 � α2, otherwise
α1 	� α2. Note that if α1 � α2 then [α1]−[x, y] = [α2]−[x, y].
For example [1, 2, 3] − [4, 5] represents the subclass with the
permutations [1, 2, 3, 4, 5], [3, 1, 2, 4, 5], and [2, 3, 1, 4, 5].

Let L2n+1 be the set of all classes, and let T = t2n−1
2n−1

be the S-skeleton of the K-snakes in L2n+1. Note that a
K-snake generated by T spans exactly all the permutations
in one subclass. Hence (P3) and (P4) are immediately implied
for both classes and subclasses. Such a K-snake will be called
a necklace. The slight change in the framework is that instead
of one K-snake, each class contains (2n−2)!

2 disjoint K-snakes,
all of them have the same S-skeleton.

The necklaces (subclasses) [α] − [x, y] are similar to
necklaces on 2n − 1 elements. Joining the necklaces into one
large K-snake might be similar to the join of cycles from the
pure cycling register of order 2n−1, PCR2n−1, into one cycle,
which is also known as a de Bruijn sequence [2], [4]. There
are two main differences between the two types of necklaces.
The first one is that in de Bruijn sequences the necklaces do
not represent permutations, but words of a given length over
some finite alphabet. The second is that there is rather a simple
mechanism to join all the necklaces into a de Bruijn sequence.
We would like to have such a mechanism to join as many as
possible necklaces from all the classes into one K-snake.

Let T2n+1 be the nearly spanning tree constructed by
Theorem 7. By repeated application of Lemma 4 according
to the hyperedges of T2n+1 starting from a necklace in the
class [1, 2] we obtain a K-snake which contains exactly one
necklace from each class [x, y] 	= [2, 1]. Such a K-snake will
be called a chain. If the chain contains the necklace [α]−[1, 2],
we will denote it by c[α]. For two permutations α1 and α2 over
[2n + 1] \ {1, 2} such that α1 � α2 we have c[α1] = c[α2].
Note that there is a unique way to merge the three necklaces
which correspond to a hyperedge of T2n+1, and hence there
is no ambiguity in c[α] (even so the order of the joins is not
unique), Note also that the transitions sequence of two distinct
chains is usually different. The number of permutations in a
chain is ((2n + 1)(2n) − 1)(2n − 1). The following lemma is
an immediate consequence of Lemma 4.

Lemma 9: Let [x, y], [y, z], and [z, x] be three classes, and
let α be a permutation of [2n + 1] \ {x, y, z}. The necklaces
[α, z]−[x, y], [α, y]−[z, x], and [α, x]−[y, z] can be merged
together, where α, z is the sequence formed by concatenation
of α and z.
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Lemma 10: Let [x, y], [y, z], and [z, x] be three classes.
All the subclasses in these classes can be partitioned into
disjoint sets, where each set contains exactly one necklace
from each of the above three classes. The necklaces of each
set can be merged together into one K-snake.

Proof: For each permutation α over [2n + 1] \ {x, y, z},
the necklaces [α, z]− [x, y], [α, y]− [z, x], and [α, x]− [y, z]
can be merged by Lemma 9. Thus, all the subclasses in these
classes can be partitioned into disjoint sets.

Corollary 4: The permutations of all the classes except for
[2, 1] can be partitioned into disjoint chains.

By Corollary 4 we construct (2n−2)!
2 disjoint chains which

span A2n+1, except for all the even permutations of the
class [2, 1]. Recall that we have the same number, (2n−2)!

2 ,
of [2, 1]-necklaces, which span all the permutations of the
class [2, 1]. Now, we need a method to merge all these chains
and necklaces, except for one necklace from the class [2, 1],
into one K-snake C2n+1. Note that for 2n + 1 = 5 we have
only one chain. Thus, this chain is the final K-snake C5. This
K-snake is exactly the same K-snake as the one generated by
the recursive construction in Section IV.

Lemma 11: Let x be an integer such that 3 ≤ x ≤ 2n + 1,
let α be a permutation of [2n + 1] \ {x, 2, 1}, and assume that
the permutations [α, 1, x, 2] and [α, 2, 1, x] are contained in
two distinct chains. We can merge these two chains via the
necklace [α, x] − [2, 1].

Proof: Let c1 be the chain which contains the permu-
tation π1 = [α, 1, x, 2], c2 be the chain which contains the
permutation π2 = [α, 2, 1, x], and η be the necklace which
contains the permutation π3 = [α, x, 2, 1]. Note that all
the chains contains only the p-transitions t2n+1 and t2n−1.
The permutation t2n+1(π1) appears in c2, the permutation
t2n+1(π2) appears in η, and the permutation t2n+1(π3) appears
in c1. Therefore, π1, π2, and π3 are followed by t2n−1 in c1,
c2, and η, respectively. Let σi , i ∈ {1, 2}, be a transitions
sequence such that σi , t2n−1 is the transitions sequence of ci ,
and therefore t2n−1(σi (πi )) = πi . By Lemma 1 we have
σ1 � t2n−2

2n−1 � σ2. Similarly to Lemma 4, by replacing the
transition t2n−1 which follows π3 in η, with t2n+1 ◦σ1 ◦ t2n+1 ◦
σ2◦t2n+1, we merge c1, c2 and η into a K-snake. Thus, we have

π3 = [a1, a2, . . . , a2n−2, x, 2, 1]
↓ t2n+1

[1, a1, a2, . . . , a2n−2, x, 2]
↓ σ1 � t2n−2

2n−1 the chain c1

π1 = [a1, a2, . . . , a2n−2, 1, x, 2]
↓ t2n+1

[2, a1, a2, . . . , a2n−2, 1, x]
↓ σ2 � t2n−2

2n−1 the chain c2

π2 = [a1, a2, . . . , a2n−2, 2, 1, x]
↓ t2n+1 return to the necklace η

t2n−1(π3) = [x, a1, a2, . . . , a2n−2, 2, 1]

For each x , 3 ≤ x ≤ 2n + 1, and for each permutation α
of [2n + 1] \ {x, 1, 2}, the merging of two distinct chains

which contain the permutations [α, 1, x, 2] and [α, 2, 1, x] via
the necklace [α, x] − [2, 1] as described in Lemma 11, will
be denoted by M[x]-connection. Note that if x ∈ {3, 4, 5}
then the permutations [α, 1, x, 2] and [α, 2, 1, x] are contained
in the same chain. Thus, there are no M[3]-connections,
M[4]-connections, or M[5]-connections.

Lemma 11 suggests a method to join all the chains and
all the [2, 1]-necklaces except one into a K-snake of length
(2n+1)!

2 − (2n −1). This should be implemented by (2n−2)!
2 −1

iterations of the merging suggested by Lemma 11. The current
merging problem is also translated into a 3 − graph problem
(see Definition 5). Let Ĥ2n+1 = (V̂2n+1, Ê2n+1) be a 3-graph
defined as follows.

V̂2n+1 = {c[α] : α is a permutation of [2n + 1] \ {1, 2}}
∪ {[β] − [2, 1] :

β is a permutation of [2n + 1] \ {1, 2}}
Ê2n+1 = {{c[α1], c[α2], [β] − [2, 1]} :

c[α1] and c[α2] can be merged together

via [β] − [2, 1] by Lemma 11}.
The vertices in V̂2n+1 are of two types, chains and
[2, 1]-necklaces. Each e ∈ Ê2n+1 contains three vertices, two
chains and one necklace, which can be merged together by
Lemma 11. Therefore, the edge will be signed by M[x] as
described before. Note that Ê2n+1 might contains parallel
edges with different signs.

Let T̂2n+1 = (VT̂2n+1
, ET̂2n+1

) be a nearly spanning tree

in Ĥ2n+1. Note that such a nearly spanning tree must contain
all the vertices in V̂2n+1 except for one [2, 1]-necklace. If such
a nearly spanning tree exists then by Lemma 11, we can merge
all the chains via [2, 1]-necklaces to form the K-snake C2n+1.
This K-snake contains all the permutations of A2n+1 except
for 2n − 1 permutations which form one [2, 1]-necklace.

The joins which are performed are determined by the edges
of T̂2n+1. Note that there is a unique way to merge the three
vertices which correspond to a hyperedge of T̂2n+1 signed
by M[x]. Hence, by using the given spanning trees T2n+1 and
T̂2n+1, there is no ambiguity in C2n+1 (even so the orders of
the joins are not unique). However, different nearly spanning
trees can yield different final K-snakes. Note that the K-
snake C2n+1 generated by this construction has only t2n+1
and t2n−1 p-transitions, where usually t2n−1 is used. The p-
transition t2n−1 is the only transition in the K-snake of the
subclasses. On average 3 out of 4n sequential p-transitions
of C2n+1 are the p-transition t2n+1. A similar property exists
when a de Bruijn sequence is generated from the necklaces of
pure cycling register of order n [2], [4].

Finding a nearly spanning tree T̂2n+1 is an open question.
But, we found such trees for n = 3 and n = 4. We believe that
a similar construction to the one which follows in the sequel
for n = 3 and n = 4, exists for all n > 4.

Conjecture 1: For each n ≥ 2, there exists a (2n + 1,
M2n+1,K)-snake, where M2n+1 = (2n+1)!

2 − (2n −1) in which
there are only t2n−1 and t2n+1 p-transitions.

Example 3: For n = 3, a (7, 2515,K)-snake is constructed
by using the tree T7 of Example 2, and the tree T̂7
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defined below. T̂7 contains 12 chains, where each chain
contains 41 necklaces. It also contains 11 [2, 1]-necklaces
and 11 hyperedges. Denote an edge in Ĥ7 by ({ci , c j , ηk}, x)

where M[x] is the sign of the edge. T̂7 is defined as follows.
T he chains in T̂7:
c1 = [3, 4, 5, 6, 7] − [1, 2], c2 = [3, 4, 6, 7, 5] − [1, 2],
c3 = [3, 4, 7, 5, 6] − [1, 2], c4 = [3, 5, 4, 7, 6] − [1, 2],
c5 = [3, 5, 6, 4, 7] − [1, 2], c6 = [3, 5, 7, 6, 4] − [1, 2],
c7 = [3, 6, 4, 5, 7] − [1, 2], c8 = [3, 6, 5, 7, 4] − [1, 2],
c9 = [3, 6, 7, 4, 5] − [1, 2], c10 = [3, 7, 4, 6, 5] − [1, 2],
c11 = [3, 7, 5, 4, 6] − [1, 2], c12 = [3, 7, 6, 5, 4] − [1, 2].
T he necklaces in T̂7:
η1 = [3, 4, 5, 7, 6] − [2, 1], η2 = [3, 4, 6, 5, 7] − [2, 1],
η3 = [3, 4, 7, 6, 5] − [2, 1], η4 = [3, 5, 4, 6, 7] − [2, 1],
η5 = [3, 5, 6, 7, 4] − [2, 1], η6 = [3, 5, 7, 4, 6] − [2, 1],
η7 = [3, 6, 4, 7, 5] − [2, 1], η8 = [3, 6, 5, 4, 7] − [2, 1],
η9 = [3, 6, 7, 5, 4] − [2, 1], η10 = [3, 7, 4, 5, 6] − [2, 1],
η11 = [3, 7, 5, 6, 4] − [2, 1].
T he edges in T̂7:
e1 = ({c11, c6, η9}, 6), e2 = ({c6, c1, η2}, 6),
e3 = ({c2, c12, η11}, 6), e4 = ({c12, c7, η4}, 6),
e5 = ({c5, c3, η3}, 6), e6 = ({c3, c4, η7}, 6),
e7 = ({c9, c10, η10}, 6), e8 = ({c10, c8, η5}, 6),
e9 = ({c12, c9, η8}, 7), e10 = ({c9, c3, η1}, 7),
e11 = ({c2, c11, η6}, 7).
Ĥ7 contains another [2, 1]-necklace, η12 = [3, 7, 6, 4, 5] −

[2, 1], and the following additional edges:
e12 = ({c1, c11, η12}, 6), e13 = ({c7, c2, η1}, 6),
e14 = ({c4, c5, η8}, 6), e15 = ({c8, c9, η6}, 6),
e16 = ({c10, c2, η2}, 7), e17 = ({c8, c1, η3}, 7),
e18 = ({c11, c10, η4}, 7), e19 = ({c3, c12, η5}, 7),
e20 = ({c6, c7, η7}, 7), e21 = ({c4, c8, η9}, 7),
e22 = ({c1, c4, η10}, 7), e23 = ({c5, c6, η11}, 7),
e24 = ({c7, c5, η12}, 7).

An additional different illustration of Ĥ7 is presented in the
sequel (see Example 4).

For each n ≥ 3, let G2n+1 = (V2n+1, E2n+1) be a multi-
graph (with parallel edges) with labels and signs on the
edges. The vertices of V2n+1 represent the (2n−2)!

2 chains and
hence |V2n+1| = (2n−2)!

2 . There is an edge signed with M[x],
where 6 ≤ x ≤ 2n + 1, between the vertex (chain) c1 and
vertex (chain) c2, if c1 contains a permutation [α, 2, 1, x]
and c2 contains the permutation [α, 1, x, 2], where c1 	= c2.
The label on this edge is the necklace [α, x] − [2, 1].
Note that the label on the edge is a necklace which can
merge together the chains of its corresponding endpoints by
M[x]-connection. Note also that the pair α, x might not be
unique and hence the graph might have parallel edges. A
spanning tree in G2n+1 which doesn’t have two edges with the
same label, will be called a chain tree. The following Lemma
can be easily verified.

Lemma 12: There exists a nearly spanning tree in Ĥ2n+1 if
and only if there exists a chain tree in G2n+1.

Henceforth, T2n+1 will be the nearly spanning tree
constructed in Theorem 7, and the chains are constructed
via T2n+1.

Definition 13: Let G1 = (V1, E1) and G2 = (V2, E2) be two
multi-graphs with labels and signs on the edges, where the
set of the labels of Gi denoted by Li , i ∈ {1, 2}. We say that
G1 is isomorphic to G2 if there exist two bijective functions
f : V1 → V2 and g : L1 → L2, with the following property:
(u, v) ∈ E1 with the label η and sign M[x], if and only if
( f (u), f (u)) ∈ E2 with the label g(η) and sign M[x].

Definition 14: For each n ≥ 4, a sub-graph of G2n+1 which
is isomorphic to G2n−1 is called a component of G2n+1, and
denoted by A = (VA,LA) where VA consists of the vertices
(chains) of the component, LA consists of the labels ([2, 1]-
necklaces) on the edges in the component. Note that |VA| =
|LA|, i.e., the numbers of the distinct labels is equal to the
number of the vertices.

Definition 15: Two components, A = (VA,LA) and B =
(VB,LB), in G2n+1 are called disjoint if VA ∩ VB = ∅ and
LA ∩LB = ∅, i.e., there is no a common vertex (chain) or a
common label ([2, 1]-necklace) in A and B.

Lemma 16: For each n ≥ 4, G2n+1 consists of (2n − 3)
(2n −2) disjoint copies of isomorphic graphs to G2n−1, called
components. The edges between the vertices of two distinct
components are signed only with M[2n] and M[2n + 1].

Proof: The M[x]-connections are deduced by the tree
T2n+1, which was used for the construction of the chains.
In particular, the path between the vertices [1, x] and
[x, 2] in T2n+1 determines the M[x]-connections in G2n+1.
By Theorem 7, T2n−1 is a sub-graph of T2n+1. Therefore, for
each x , x ≥ 3, the path between the vertices [1, x] and [x, 2]
in T2n+1 is equal to the path between the vertices [1, x] and
[x, 2] in T2k+1 for each x ≤ 2k + 1 ≤ 2n + 1. The number of
the vertices (chains) in G2n+1 is equal to (2n−2)!

2 , and each
component contains (2n−4)!

2 vertices. Thus, G2n+1 consists of
(2n−3)(2n−2) disjoint copies of isomorphic graphs to G2n−1
connected by edges signed only with M[2n] and M[2n+1].

For each n ≥ 4, let Ĝ2n+1 = (V̂2n+1, Ê2n+1) be the
component graph of G2n+1. The vertices of V̂2n+1 represent
the components of G2n+1, There is an edge signed with M[x],
x ∈ {2n, 2n +1}, between the vertices (components) A and B,
if the chain that contains the permutation [α, 2, 1, x] is con-
tained in A, and the chain that contains the permutation
[α, 1, x, 2] is contained in B . The label on this edge is the
necklace [α, x] − [2, 1]. We define Ĝ7 to be G7, i.e., each
component of Ĝ7 consists of exactly one chain (and also
one distinct [2, 1]-necklace in order to follow the properties
of Ĝ2n+1).

Definition 17: A components spanning tree, T̂2n+1 is a
spanning tree in Ĝ2n+1, where in the set of the labels of the
tree’s edges, there are no two labels from the same component,
i.e., each label in the set of the labels of the tree’s edges
belongs to a different component.

Example 4: Ĝ7 is depicted in Figure 3, where the vertices
numbers and the edges labels corresponds to the chains and
the necklaces in Example 3, respectively. The vertical edges
are signed with M[6], while the horizontal edges are signed
with M[7]. The double lines edges correspond to the edges
of T̂7.
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Fig. 3. The graph Ĝ7 and its component spanning tree T̂7.

Fig. 4. The graph Ĝ9.

Conjecture 2: For each component A in Ĝ2n+1, n ≥ 3, and
for each label η of A, there exists a components spanning tree,
where there is no edge in the tree with the label η.

Conjecture 2 implies Conjecture 1, i.e.,
Theorem 18: If Conjecture 2 is true then for each n ≥ 2,

there exists a (2n + 1, M2n+1,K)-snake, where M2n+1 =
(2n+1)!

2 − (2n − 1) in which there are only t2n−1 and t2n+1
p-transitions.

Conjecture 2 was verified by computer search for n = 3
and n = 4. By using Conjecture 2 recursively, for each n ≥ 3,
and for each necklace η in class [2, 1], we can construct a
chain tree T in G2n+1, which doesn’t include η as a label on
an edge in T .

Corollary 5: There exist a (7, 2515,K)-snake and
a (9, 181433,K)-snake, and hence lim

n→∞
M2n+1
S2n+1

≈ 0.4743.

Note that the ratio lim
n→∞

M2n+1
S2n+1

would be improved, if there

exists a (2m+1, (2m+1)!
2 −(2m−1),K)-snake for some m > 4.

Conjecture 3: The (2n − 3)(2n − 2) components in Ĝ2n+1
can be arranged in a (2n − 3) × (2n − 2) grid. The edges
which are sign by M[2n] define 2n−2 cycles of length 2n−3.
Each cycle contains the vertices of exactly one column, and
is called an M[2n]-cycle. The edges which are sign with
M[2n + 1] are between two components in different columns,
and they also define 2n−2 cycles of length 2n−3. Such a cycle
will be called an M[2n + 1]-cycle. Each multi-edge between
two components has (2n−4)!

2 parallel edges (the number of
chains in the component). Parallel edges have the same sign x,
x ∈ {2n, 2n + 1}, but different labels (i.e., M[x]-connection,
but with different [2, 1]-necklaces).

Example 5: An illustration for the structure of Ĝ2n+1 for
n = 3 is presented in Example 4, and for n = 4 is depicted
in Figure 4. In Ĝ9 there are 30 components, where each
component is isomorphic to Ĝ7 (thus, it contains 12 chains
and 12 [2, 1]-necklaces).

VI. CONCLUSIONS AND FUTURE RESEARCH

Gray codes for permutations using the operation push-to-
the-top and the Kendall’s τ -metric were discussed. We have
presented a framework for constructing snake-in-the-box codes
for Sn . The framework for the construction yield a recursive
construction with large snakes. A direct construction to obtain
snakes which might be optimal in length was also presented.
Several questions arise from our discussion and they are
considered for current and future research.

1) Complete the direct construction for snakes of length
(2n+1)!

2 − 2n + 1 in S2n+1.
2) Can a snake in S2n+1 have size larger than

(2n+1)!
2 − 2n + 1?

3) Prove or disprove that the length of the longest snake
in S2n is not longer than the length of the longest snake
in S2n−1.

4) Examine the questions in this paper for the �∞ metric.
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