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Abstract. A permutation array (or code) of length n and distance d is a set G of permutations from some

fixed set of n symbols such that the Hamming distance between each distinct x; y [G is at least d. One

motivation for coding with permutations is powerline communication. After summarizing known results,

it is shown here that certain families of polynomials over finite fields give rise to permutation arrays.

Additionally, several new computational constructions are given, often making use of automorphism

groups. Finally, a recursive construction for permutation arrays is presented, using and motivating the

more general notion of codes with constant weight composition.
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1. Introduction

Permutation codes have been studied for many years. They do not enjoy the
popularity of binary codes, but for certain communication channels such codes arise
naturally. Consider a common electric power line, for example. While the primary
function is delivery of electric power, the frequency can be modulated to produce a
family of n ‘‘close’’ frequencies that are orthogonal. At the receiver, as the power
itself is received, these small variations in frequency can be decoded as symbols (see
Pavlidou et al. [11]). This information transmission function must not interfere with
power transmission. For this reason, while minor variations in frequency (and
commensurate minor variations in power) are acceptable, it is imperative that power
output remain as constant as possible. One means to achieve this is to use block
coding (fixed length codewords of length l). Select integers r1; . . . ; rn with

Pn
i¼1 ri ¼ l.

If we choose each codeword to have exactly ri occurrences of the i-th symbol (i-th
frequency) then the code is a constant composition code. More importantly, the
power delivered in the transmission of any codeword is a constant. When codewords



are short (i.e., when l is close to n), the power envelope remains very close to
constant. In such a system, effective design of a code must address the sources of
errors unique to such a channel. While white Gaussian noise does arise, it is
dominated by two other sources of error. Electrical interference from equipment, or
from strong magnetic fields, can produce permanent narrow band noise. This masks
transmission on a small number of frequencies over a long period of time. Impulse
noise has the dual effect of masking all frequencies but for a small number of time
slots. Narrow band noise can be addressed by using many frequencies but not using
any frequency too often, while impulse noise suggests using many time slots. A
tradeoff results between these goals and the requirement for constant power
envelope. Choosing r1 ¼ � � � ¼ rn ¼ 1 and l ¼ n results in each type of noise affecting
a single symbol in a codeword, and in keeping the length ‘‘short’’. Now considering
the structure of a codeword, we find that each codeword is a permutation; moreover,
errors result in the loss of a single entry of the permutation. These practicalities
underpin the importance of permutation codes (permutation arrays) which we
introduce formally next.
Let n be a positive integer. Two distinct permutations s; t [sn have distance d if

st� 1 has exactly n – d fixed points. A permutation array of length n and minimum
distance d, denoted by PAðn; dÞ or simply PA, is a subset G of sn such that the
distance between distinct members of G is at least d. Often, we view a PAðn; dÞ of size
s as an s6n array whose rows represent the image of ð1; 2; . . . ; nÞ under the s
permutations in G.
LetMðn; dÞ denote the maximum size of a PAðn; dÞ. The following are well-known

elementary consequences of the definitions.

PROPOSITION 1.1

a: Mðn; 2Þ ¼ n!,

b. Mðn; 3Þ ¼ n!=2,

c. Mðn; nÞ ¼ n,

d. Mðn; dÞ � Mðn� 1; dÞ;Mðn; d þ 1Þ,

e. Mðn; dÞ � nMðn� 1; dÞ,

f. Mðn; dÞ � n!=ðd � 1Þ!.

Proof. Part (a) follows because any two distinct permutations have distance at least
two. For (b), let G ¼ An. The quotient of two members of G is again a member of An,
and thus cannot be a single transposition. The lower bound in (c) follows by taking G
to be a cyclic subgroup of order n, while clearly any nþ 1 permutations agree in at
least one position. To prove (d), observe that any PAðn; d � 1Þ is also a PAðn; dÞ.
Adding a new (always fixed) symbol to a PAðn� 1; dÞ produces a PAðn; dÞ. Part (e)
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follows from the fact that the subarray of a PAðn; dÞ consisting of all rows whose
first entry is k, with the first column deleted, is a PA of the same distance on the
symbols f1; . . . ; ng n fkg. Finally, (f) is a result of (c) and (e). &

A latin square of order n is a PAðn; nÞ. Two latin squares L ¼ ðLijÞ and L0 ¼ ðL0
ijÞ

are orthogonal if fðLij ;L
0
ijÞ : 1 � i; j � ng ¼ f1; . . . ; ng2. The following result was

proved in Colbourn et al. [4], using techniques from Deza and Vanstone [7].

PROPOSITION 1.2 [4]. If there are m mutually orthogonal latin squares of order
n, then Mðn; n� 1Þ � mn. In particular, if q is a prime-power, then
Mðq; q� 1Þ ¼ qðq� 1Þ.

Suppose X is a set of size n which, for convenience, we may identify with f1; . . . ; ng.
A group G acting on X is sharply k-transitive if, for any two k-tuples u, v of distinct
points of X, there is a unique g [G such that gu ¼ v. There are nðn� 1Þ � � � ðn� kþ
1Þ elements in such a group. If G is sharply k-transitive acting on X with
g; h [G; ðg 6¼ hÞ, it follows that gð1; 2; . . . ; nÞ and hð1; 2; . . . ; nÞ can agree in at most k
– 1 positions. So the existence of a sharply k-transitive group acting on a set of size n
is equivalent to a maximum PAðn; n� kþ 1Þ. This was first pointed out in Frankl
and Deza [9].
Let q be a prime-power and Fq a finite field of order q. A special case of

Proposition 1.2 arises from the sharply 2-transitive group AGLð1; qÞ of linear
transformations x� axþ b acting on Fq. The group PGLð2; qÞ, consisting of
fractional linear transformations x� ðaxþ bÞ=ðcxþ dÞ; ad � bc ¼6¼ 0, is sharply
3-transitive acting on X ¼ Fq [ f?g. It is also well-known that the Mathieu
groups M11 and M12 are sharply 4- and 5-transitive on sets of size 11 and 12,
respectively.

PROPOSITION 1.3. Frankl and Deza [9]. If q is a prime-power, then
Mðqþ 1; q� 1Þ ¼ ðqþ 1Þqðq� 1Þ. Additionally, Mð11; 8Þ ¼ 11 ? 10 ? 9 ? 8 and
Mð12; 8Þ ¼ 12 ? 11 ? 10 ? 9 ? 8.

One does not need the group structure here, so that a sharply d-transitive set of
permutations would serve as well. However, under the restriction that the set contain
the identity and be closed under taking inverses, Bonisoli and Quattrocchi [2] have
shown that the examples in Proposition 1.3 are the only ones with d � 4.
A derangement of order k is an element of sk with no fixed points. Let Dk be the

number of derangements of order k, with the convention that D0 ¼ 1. The ball in sn

of radius r with center s is the set of all permutations of distance � r from s. The
volume of such a ball is Vðn; rÞ ¼

Pr
k¼0

n
k

� �
Dk.

PROPOSITION 1.4 [9].

Mðn; dÞ � n!

Vðn; d � 1Þ :
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This bound can be marginally improved upon by stipulating that, after one
permutation s [sn is chosen, a second t is chosen with distance exactly d from s. The
number of permutations at distance less than d from either s or t is at most
2Vðn; d � 1Þ � V2ðn; d � 1Þ, whereV2ðn; d � 1Þ is the intersection size of twoballs with
radii d � 1 and centers at distance d. In general, d permutations may be chosen with
pairwise distance exactly d, ruling out fewer than dVðn; d � 1Þ permutations for future
choice. Further results on sphere-packing may be of some interest in this context.
An often nontrivial upper bound on Mðn; dÞ can be similarly obtained by

considering balls of radius ðd � 1Þ=2. For small values of n and d, still stronger upper
bounds are found in Tarnanen [14] by the method of linear programming.

2. Direct Constructions

2.1. Computational Methods

Perhaps the first serious attempts at computer construction of permutation arrays
were reported in Deza and Vanstone [7], where it was stated that Mð6; 5Þ ¼ 18 and
Mð10; 9Þ � 32. These results are of particular interest in light of Proposition 1.2.
Here, a variety of computational methods have been employed to determine lower

bounds on Mðn; dÞ for certain small values of n and d.

Clique search
This technique involves simply building a graph Gðn; dÞ whose vertex set is all n!
permutations of order n, with an edge between two vertices if the distance between
their associated permutations is at least d. A reactive local search, such as the one
found in Battiti and Protasi [1], is then used to find a large clique in Gðn; dÞ. Due to
size constraints on Gðn; dÞ, this method is currently only practical for n � 7. One
example of its use provides:

PROPOSITION 2.1. Mð7; 4Þ � 349.

Greedy algorithm
In this method, we begin with an empty array, run through all permutations, and
add a permutation if it has distance at least d from every member of the current PA.
Of course, the order in which all permutations are considered is of great importance.
A reasonable ordering seems to be the rank order on permutations s of order n,
defined recursively by

rankðsÞ ¼ ðsð1Þ � 1Þðn� 1Þ!þ rankðs0Þ;

where the entries of the smaller permutation s0 ¼ ðsð2Þ; . . . ; sðnÞÞ are, if necessary,
relabeled to act on 1; 2; . . . in the same order. Due to the length of time required to
process all n! permutations, this method is currently only practical for n � 10 or 11,
of course with faster results for larger d.
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While none of the best lower bounds were found with the greedy algorithm alone,
an easy modification often yields some interesting results. Consider several
sequential runs through all permutations, with a small fixed number, say e, of the
permutations in the current array deleted after every run is complete. To prevent the
same e permutations from being re-added in a subsequent run, we start each run at a
randomly chosen rank r, and end at r – 1 (mod n!). If desired, a monotonically
increasing array is forced with the stipulation that adding less than the previously
deleted e permutations causes the array to revert to the old array, with a new random
start rank chosen. This method of repeated applications of the greedy algorithm
offered an improvement often around 15% of the size of an array from one greedy
run. An example of its application provides:

PROPOSITION 2.2. Mð10; 9Þ � 35.

0251467938 0387125649 0732894561 0976531824 1450923867
1569847302 2063759841 2139065784 2591384670 2648173905
3126974058 3295806147 3701245896 3967082415 4512076839
4603592178 4835720916 5017634982 5249781063 5674028391
5783916204 6182507493 6329410875 6418795320 6540239718
7230618459 7802961345 7914350268 8046312597 8175649230
8794563012 9072483156 9364271580 9406158732 9857346021

Automorphisms
A PAG has H � sn as a (left) automorphism group if hG ¼ G for all h [H. In this
case, G can be completely specified by jGj=jHj orbits under H. Stipulating a certain
automorphism group for a PA can significantly reduce computation time. The
methods discussed earlier are easily modified by using a search space of n!=jHj orbit
representatives and distance function reporting the minimum between two orbits.
Standard groups with which we have had success are the cyclic group, dihedral
group, linear group, and fractional-linear group.

LEMMA 2.3. The following lower bounds on Mðn; dÞ (Table 1) arise by direct
computation using the automorphism groups and methods indicated.

Proof. Some small examples are presented below and in the proof of Lemma 3.2.
Interested readers are asked to contact the authors for larger ones. &

ð7; 5Þ: Develop with x� xþ a (mod 7), a [Z7.

0125643 0143256 0263541 0246315 0324516 0362154
0412635 0456123 0531462 0654231 0615324

ð9; 6Þ: Represent ½ f � [Z2=hx3 þ x2 þ 1i by the integer f ð2Þ (mod 8). Develop under
PGLð2; 8Þ.
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Table 1.

ðn; dÞ Automorphism Group Method Mðn; dÞ �

ð7; 5Þ Z7 clique 1167

ð8; 4Þ PGLð2; 7Þ clique 86336

ð9; 4Þ PGLð2; 8Þ clique 366504

ð9; 5Þ AGLð1; 9Þ greedy 27672

ð9; 6Þ PGLð2; 8Þ clique 36504

ð10; 5Þ PGLð2; 9Þ greedy 196720

ð10; 6Þ PGLð2; 9Þ greedy 66720

ð11; 9Þ Z11 greedy 14611

ð12; 5Þ PGLð2; 11Þ greedy 55461320

ð12; 6Þ PGLð2; 11Þ greedy 8961320

ð13; 9Þ AGLð1; 13Þ greedy 236156

ð14; 10Þ PGLð2; 13Þ greedy 362184

?01327456 ?01547263 ?01674235

ð10; 6Þ: Represent ½ f � [Z3=hx2 þ xþ 2i by the integer f ð3Þ (mod 9). Develop under
PGLð2; 9Þ.

?014728356 ?017824563 ?018427635
?013625487 ?015326748 ?016523874

ð11; 9Þ: Develop under x�+xþ a (mod 11), a [Z11.

ð0; 5; 9; 4; 7; 6; 8; 1; 10; 3; 2Þ ð0; 3; 1; 4; 2; 10; 5; 6; 8; 9; 7Þ
ð0; 4; 3; 9; 10; 8; 5; 7; 1; 6; 2Þ ð0; 2; 1; 8; 4; 7; 9; 3; 6; 10; 5Þ
ð0; 4; 9; 1; 6; 2; 10; 8; 7; 5; 3Þ ð0; 5; 2; 3; 8; 10; 6; 9; 7; 4; 1Þ
ð0; 1; 4; 5; 8; 2; 7; 10; 3; 9; 6Þ

2.2. Permutation Polynomials Over Finite Fields

Let Fq be a finite field of order q. A polynomial f over Fq is a permutation
polynomial if the mapping it defines is one-to-one. It is well known that any mapping
g : Fq ?Fq arises from the unique polynomial pg of degree less than q, where

pgðxÞ ¼
X

c [Fq

gðcÞð1� ðx� cÞq�1Þ:

In this section, we are interested in the enumeration of permutation polynomials
over Fq of given degree d � 1. We use NdðqÞ to denote the number of such
permutation polynomials. By the remarks above, we have

P
d�q�2 NdðqÞ ¼ q!. In

addition, NdðqÞ ¼ 0 if d j ðq� 1Þ. For a complete treatment of permutation
polynomials, refer to Lidl and Niederreiter [10].
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A direct construction of PAs results from permutation polynomials.

THEOREM 2.4. Let n be a prime power. Then

Mðn; n� dÞ �
Xd

l¼1

NlðnÞ:

Proof. Suppose f ðxÞ and gðxÞ are two permutation polynomials with degree no
more than n� d. Then f ðxÞ � gðxÞ ¼ 0 has at most n� d solutions because the
equation is over a field. Therefore, the distance between corresponding permutations
is at least d. &

Unfortunately, not much is known about permutation polynomials. While their
classification and enumeration are far from complete, everything is known for d < 6.
A permutation polynomial f ðxÞ is in normalized form if f is monic, f ð0Þ ¼ 0 and,
when the degree of f is not divisible by the field characteristic, the coefficient of xn�1

is 0. Note that if f ðxÞ is a normalized permutation polynomial over Fq, and
b; c; d [Fq with c 6¼ 0, then f1ðxÞ ¼ cf ðxþ bÞ þ d is also a permutation polynomial of
equal degree. For a given normalized permutation polynomial, the number of
distinct such f1 is either q2ðq� 1Þ or qðq� 1Þ, depending on whether ðq; tÞ ¼ 1 for
some t > 1 such that there is a nonzero coefficient of xt.

LEMMA 2.5. [10]. All normalized permutation polynomials with degree d � 5,
together with the total produced by each class, are given in Table 2.

Proof. The classification of normalized permutation polynomials appears in Lidl
and Niederreiter [10]. For the count in each class, we prove the entries marked with
*. The others are similar or routine.

Table 2.

Normalized Permutation Polynomials q restriction Total

x any q qðq� 1Þ
x2 q: 0 mod 2 qðq� 1Þ�
x3 q 6: 1 mod 3 q2ðq� 1Þ or qðq� 1Þ
x3 � ax (a not a square) q: 0 mod 3 qðq� 1Þ2=2
x4+3x q ¼ 7 2q2ðq� 1Þ
x4 þ a1x

2 þ a2x (if only root in Fq is 0) q: 0 mod 2 1
3
qðq� 1Þðq2 þ 2Þ�

x5 q 6: 1 mod 5 q2ðq� 1Þ or qðq� 1Þ
x5 � ax (a not a fourth power) q: 0 mod 5 3

4
qðq� 1Þ2�

x5 þ axða2 ¼ 2Þ q ¼ 9 2q2ðq� 1Þ
x5+2x2 q ¼ 7 2q2ðq� 1Þ
x5 þ ax3+x2 þ 3a2x (a not a square) q ¼ 7 q2ðq� 1Þ2
x5 þ ax3 þ 5� 1a2x (a arbitrary) q:+2 mod 5 q3ðq� 1Þ
x5 þ ax3 þ 3a2x (a not a square) q ¼ 13 1

2
q2ðq� 1Þ2

x5 � 2ax3 þ a2x (a not a square) q: 0 mod 5 1
2
q2ðq� 1Þ2�
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1. After unnormalizing x2, we have f1ðxÞ ¼ cðxþ bÞ2 þ d ¼ cðx2 þ b2Þ þ d, which
allows for any nonzero leading coefficient and any constant coefficient, a total of
qðq� 1Þ possibilities.

2. By considering the linear and constant terms, we have qðq� 1Þ distinct
permutation polynomials for each x3 þ a1xþ a2 [Fq½x�. The number of irredu-
cible polynomials of degree 3 over Fq with trace equal to 0 is

1

3
ðq3 � qÞ � ðq� 1Þ 1

3q
ðq3 � qÞ ¼ 1

3
ðq2 � 1Þ

according to Theorem 1.1 in Ruskey et al. [12]. Setting a1 ¼ a2 ¼ 0 yields an
additional qðq� 1Þ distinct polynomials.

3. Each normalized x5 � ax corresponds to qðq� 1Þ distinct permutation poly-
nomials when q is a power of five. In this case, exactly one quarter of all elements
of F�

q are fourth powers. So the count for this class is 3
4
qðq� 1Þ2.

4. Since the polynomials x5 � 2ax3 þ a2x have a nonzero coefficient of x3, and since
ð3; qÞ ¼ 1, we have q2ðq� 1Þ possible permutation polynomials for each choice of
a. There are ð1=2Þðq� 1Þ possible nonsquares a. Each gives a disjoint collection of
permutation polynomials, again by analyzing the linear portion. &

The case n ¼ 2k with d close to n appears to be of interest for applications. When
n� 1 has few divisors, some particularly robust lower bounds result from Theorem
2.4. For instance:

COROLLARY 2.6. Let n ¼ 2k. If n 6: 1 mod 3, then

Mðn; n� 3Þ � ðnþ 2Þnðn� 1Þ and Mðn; n� 4Þ � nðn� 1Þ n
2 þ 3nþ 8

3
:

By evaluating the totals from Lemma 2.5 for 7 � q � 23, we get the following (Table
3) for NdðqÞ. For some values, careful checking for overlap in normalized
polynomial families is required.

Table 3.

q n d 1 2 3 4 5

7 42 0 0 588 4410

8 56 56 448 1848 3584

9 72 0 360 0 648

11 110 0 1210 0 0

13 156 0 0 0 38,532

16 240 240 0 20,640 0

17 272 0 4624 0 78,608

19 342 0 0 0 6498

23 506 0 11,638 0 279,312
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Although an arbitrary collection of permutation polynomials of degree greater
than d in general fails to produce a PA with minimum distance n� d, it appears
that such polynomials of degree slightly more than d lead to a favorable
restriction on the search space for PAðn; n� dÞ. For example, there is a PAð7; 5Þ
of size 77, as in the last section, such that all corresponding polynomials are of
degree 1 or 4. This is noteworthy because, from the table above, only 630 of all
5040 permutations have degree 1 or 4. No larger array has been obtained by
adding the remaining (degree 5) polynomials. A simple result of similar flavor is
presented next.

THEOREM 2.7. Suppose n ¼ q is a prime-power and that there are E monic
permutation polynomials over Fq of degree less than or equal to d þ 1. Then
Mðn; n� dÞ � E.

Proof. The difference between a pair of such polynomials has degree at most d.
&

COROLLARY 2.8. If n is a prime-power, n 6: 2 mod 3, then Mðn; n� 2Þ � n2.

In general, obtaining NdðqÞ is a finite (albeit sometimes complex) problem.

THEOREM 2.9 [5]. Let E be the number of distinct solutions of the following system of
linear equations over Fq (with primitive element o), where xi 6¼ 0 and xi 6¼ xj for any
i 6¼ j. Then NdðqÞ ¼ ðq� 1ÞE.

x1 þ oðq�d�1Þx2 þ o2ðq�d�1Þx3 þ � � � þ oðq�2Þðq�d�1Þxq�1 ¼ 1

x1 þ oðq�d�2Þx2 þ o2ðq�d�2Þx3 þ � � � þ oðq�2Þðq�d�2Þxq�1 ¼ 0

� � �
� � �

x1 þ ox2 þ o2x3 þ � � � þ oðq�2Þxq�1 ¼ 0:

This gives us a possible computational method to get certain values of NdðqÞ with
d � 6. For example, we have found that

N6ð11Þ ¼ 29,040; N7ð11Þ ¼ 272,250; and N7ð13Þ ¼ 233,220:

A standard implementation can consist of two parts. First, a list of all solutions for
the system of linear equations is generated, and then second part checks each
solution against the conditions in the theorem. Unfortunately, checking qd possible
solutions is very time consuming when d is large.
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3. Recursive Constructions

3.1 Disjoint Arrays

For later reference, we give two results on disjoint permutation arrays.

LEMMA 3.1. There are six disjoint PAðn; 4Þ of size Mðn; 4Þ.

Proof. Consider the images of applying a PAð3; 2Þ to the last three columns of a
PAðn; 4Þ. Any two permutations resulting from this either differ because of the
PAð3; 2Þ, or because of the first n� 3 positions. &

LEMMA 3.2. The groups7 can be partitioned into 15 PAð7; 4Þ of size 336. The group
s8 can be partitioned into 15 PAð8; 4Þ of size 2688.

Proof. Consider the fractional linear group G ¼ PGLð2; 7Þ. Each column of
permutations below, when developed under G, forms a PAð8; 4Þ of size
8 ? 8 ? 7 ? 6 ¼ 2688 ¼ 8!=15. Fifteen disjoint PA with these parameters are obtained
by applying a 5-cycle on the last five positions in each of the three PAs.

?0163254 10165423 10163425
?0164532 10162345 10164253
?0152634 10156243 10152463
?0136452 10134625 10136245
?0146235 10143265 10146523
?0142356 10142653 10142635
?0125436 10126435 10125643
?0124653 10124563 10124365

Delete ? and consider the group AGLð1; 7Þ for the s7 partition. It is a tedious
exercise to verify the partitions. &

3.2. Main Result

Let C be a k-ary code of length n and distance d, say on the alphabet f1; . . . ; kg. It is
said that C has constant weight composition ðn1; . . . ; nkÞ if every codeword has ni
occurrences of i for i ¼ 1; . . . ; k. A PAðn; dÞ can be viewed as such a code with k ¼ n
and constant composition ð1; 1; . . . ; 1Þ.
Suppose X is a set partitioned into subsets Xi, where jXij ¼ gi for i ¼ 1; . . . ; k. A

transversal packing of distance d and type g1g2 � � � gk is a collection T of k-subsets of
X with jA \ Xij ¼ 1 for each i and A [T and such that jA \ Bj � k� d for every
A;B [T . When d ¼ k, it is, of course, optimum to take jT j ¼ mini fgig disjoint k-
subsets of X. Most of the current literature on transversal packings concerns
d ¼ k� 1. However, there is a well-known construction for arbitrary distance d with
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each gi � q for q a prime power such that d � k � q. Indeed, suppose X ¼ ðFqÞq and
F � Fq½x� is the set of all degree k� d polynomials. The images of Fq under each
f [F are identified with q-subsets of X, and no two of these can intersect in more
than k� d points.

THEOREM 3.3. Let C be a k-ary code of length n, distance d, and constant weight
composition ðn1; . . . ; nkÞ. Suppose that for each i ¼ 1; . . . ; k;Gi is a PAðni; diÞ which
can be written as a disjoint union Gi ¼ [jG

ð jÞ
i of PAðni; d 0

i Þ. Suppose there are
transversal packings Tj of distance d and type jGð jÞ

1 j � � � jGð jÞ
k j for each j. Let d �

d1 þ � � � þ dk and suppose that the sum of any d of the d 0
i is at least d. Then there is a

PAðn; dÞ of size

jCj
X

j�1

jTjj:

Proof. Construct the Gi on disjoint sets of symbols, so the total number of symbols
is n. Now fix j and consider the Gð jÞ

i as a partition for the transversal packing Tj.
Form concatenations of rows of Gð jÞ

i according to the members of Tj. By the
condition on d-wise sums of the d 0

i , it follows that the minimum distance within this
sub-array is at least d. By the fact that d � d1 þ � � � þ dk, concatenations from
different indices j have distance at least d. For each word of C, we form a PAðn; dÞ
in this manner by placing the symbols of Gi on the positions indexed by symbol i.
Since the minimum distance in C is d, the same is true for the union of all resulting
PAs. &

Theorem 3.3 can be stated still more generally as a recursive construction for codes
with constant weight composition. We do not here make an exhaustive exploration
of even the possible PA constructions by this method. However, some special cases
of interest are now mentioned.

COROLLARY 3.4. Suppose there are disjoint PAðn1; 4Þ of sizes s1; . . . ; sp and disjoint
PAðn2; 4Þ of sizes t1; . . . ; tp. If c is the size of a binary code of length n ¼ n1 þ n2,
distance 4, and constant weight n1, then there is a PAðn; 4Þ of size c

Pp
j¼1 sjtj.

Proof. In Theorem 3.3, take k ¼ 2; d ¼ d 0
i ¼ 4; di ¼ 2, and each Tj to be the

complete set of sjtj pairs, which is trivially a distance 1 transversal packing. &

Applying Corollary 3.4 to 10 � n � 16, and n1 ¼ bn=2c produces the following
lower bounds on Mðn; 4Þ (Table 4). The partitions are given by Lemmas 3.1 and 3.2,
while the codes are found in Brouwer et al. [3].
For comparison, the above bound for Mð16; 4Þ is over 7.5 times the bound from

Proposition 1.4. For n=2 > 8, a reasonable partition into disjoint PAs can be found
via a greedy coloring algorithm. For instance, this approach for n ¼ 18 gives a
partition of s9 into 58PAð9; 4Þ with the sum of squares of part sizes equal to
3110271800. The resulting bound on Mð18; 4Þ is about 1:161013.
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Table 4.

n c
P

sjtj Mðn; 4Þ �

10 36 6 (20)2 86,400

11 66 6 (20)(120) 950,400

12 132 6 (120)2 11,404,800

13 166 6 (120)(349) 41,712,480

14 325 15(336)2 550,368,000

15 585 15(336)(2688) 7,925,299,200

16 1170 15(2688)2 126,804,787,200

COROLLARY 3.5. If n ¼ qþ q0 is a sum of two prime powers with 0 � q0 � q � 2,
then Mðn; n� 2Þ � 2qðq� 1Þ.

Proof. In the theorem, take k ¼ d ¼ 2; d1 ¼ d 0
1 ¼ q� 1 and d2 ¼ d 0

2 ¼ q0 � 1. We
use the two-word binary code C of length n, weight q, and distance
d ¼ n� ðq0 � qÞ. &

EXAMPLE 3.6. A quaternary code with composition ð4; 4; 4; 4Þ and d ¼ 9 of size 403
can be found by running a greedy algorithm similar to that in Section 2. In Theorem
3.3, take d ¼ 3; di ¼ d 0

i ¼ 3 for all i to get Mð16; 9Þ � 403ð12Þ2 ¼ 58,032. This is
exceeded by the trivial lower bound Mð16; 9Þ � 97,569. However, it should be
mentioned that the latter is not constructive, while the recursive method offers more
structure for the resulting PA.

Although the best use of Theorem 3.3 is often with binary codes, it is hoped that
further study of constant composition codes with k > 2 may furnish nice examples of
permutation arrays.

4. Conclusions

Table 5 and the list below summarize some various old and new lower bounds on
Mðn; dÞ. The subscript c represents values obtained from direct computer
construction in Section 2.1; p represents values obtained from permutation
polynomials in Section 2.2; and r represents values obtained from the recursive
method in Section 3. A subscript d denotes that this value is obtained from lower
entries by part (e) of Proposition 1.1. Bold entries in Table 5 are exact.

Mð14; 4Þ � 550368000r Mð14; 10Þ � 6552c
Mð15; 13Þ � 2ð42Þ ¼ 84r Mð16; 12Þ � 21120p
Mð17; 12Þ � 83504p Mð22; 20Þ � 2ð110Þ ¼ 220r
Mð23; 18Þ � 291456p Mð32; 28Þ � 372992p
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Table 5.

4 5 6 7 8 9 10 11 12 13

4 4

5 20 5

6 120 18 6

7 349c 77c 42 7

8 2688c 560p 336 56 8

9 18144c 1944c 1512c 504 72 9

10 86400r 13680c 4320c 720 35c 10

11 950400r 60940d 9790d 7920 154c 110 11

12 11404800r 731280c 117480c 95040 1320 60 12

13 41742480r 878778 271908p 3588c 156 13

n
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