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a b s t r a c t

Transitive permutation groups are recurrent in the study of automorphism groups of
combinatorial objects. For binary error-correcting codes, groups are here considered that
act transitively on the pairs of coordinates and coordinate values. By considering such
groups in an exhaustive manner and carrying out computer searches, the following new
bounds are obtained on A2(n, d), the maximum size of a binary code of length n and
minimumdistance d:A2(17, 3) ≥ 5632,A2(20, 3) ≥ 40960,A2(21, 3) ≥ 81920,A2(22, 3) ≥

163840, A2(23, 3) ≥ 327680, A2(23, 9) ≥ 136, and A2(24, 5) ≥ 17920.
© 2017 Elsevier B.V. All rights reserved.

1. Introduction

A binary code C of length n is a set of binary vectors of length n, the elements c = (c1, c2, . . . , cn) of which are called
codewords. The minimum distance of a code C is min{dH (c, c ′) : c, c ′

∈ C, c ̸= c ′
}, where dH (c, c ′) is the Hamming distance,

which is defined as the number of coordinates where c and c ′ differ. The size (or cardinality) of C is the number of codewords
that it contains. A code with length n, sizeM , and minimum distance at least d is called an (n,M, d) code.

Let A2(n, d) denote the maximum size of a binary code of length n and minimum distance d. The problem of determining
the value of A2(n, d) for different parameters is a long-standing problem in information theory [15]. The exact values of
A2(n, d) for n ≤ 15 are known, but for n > 15 only lower and upper bounds on A2(n, d) are generally known.

Lower bounds on A2(n, d) can be obtained by constructing corresponding binary codes. Computers have been employed
to getmost of the recent new results on lower bounds for binary error-correcting codes, such as [5,11,16,20]. Alsowhen using
computers to search for codes, it is necessary to limit the search, for example, by making assumptions about the structure of
the codes. A common technique, used in the studies [5,11,20] mentioned above, is to prescribe automorphisms of the codes.

Two binary codes are said to be equivalent if one of the codes can be obtained from the other by a permutation of the
coordinates and permutations of the coordinate values (0 and 1), separately for each coordinate. Such a mapping from
a code onto itself is called an automorphism of the code; all automorphisms form a group under composition, called the
automorphism group. A subgroup of the automorphism group is called a group of automorphisms.

In the current work, we search for binary error-correcting codes with prescribed groups of automorphisms. The groups
considered are transitive permutation groups that act transitively on the pairs of coordinates and coordinate values. The
approach and the groups are discussed in detail in Section 2. The search leads to new codes that improve seven currently
best known lower bounds on A2(n, d) when n ≤ 24 and d is odd. These bounds are summarized in Table 1, and an up-to-date
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Table 1
New lower bounds for A2(n, d).

Old lower bound New lower bound

A2(17, 3) ≥ 5312 [4] A2(17, 3) ≥ 5632
A2(20, 3) ≥ 36864 A2(20, 3) ≥ 40960
A2(21, 3) ≥ 73728 A2(21, 3) ≥ 81920
A2(22, 3) ≥ 147456 A2(22, 3) ≥ 163840
A2(23, 3) ≥ 294912 [24] A2(23, 3) ≥ 327680
A2(23, 9) ≥ 128 [8] A2(23, 9) ≥ 136
A2(24, 5) ≥ 16384 [2] A2(24, 5) ≥ 17920

Table 2
Lower and upper bounds for A2(n, d).

n d = 3 d = 5 d = 7 d = 9

16 2816–3276 256–340 36 6
17 5632–6552 512–673 64–72 10
18 10496–13104 1024–1237 128–135 20
19 20480–26168 2048–2279 256 40
20 40960–43688 2560–4096 512 42–47
21 81920–87333 4096–6941 1024 64–84
22 163840–172361 8192–13674 2048 80–150
23 327680–344308 16384–24106 4096 136–268
24 524288–599184 17920–47538 4096–5421 192–466

table of bounds on A2(n, d) for 16 ≤ n ≤ 24 and 3 ≤ d ≤ 9, d odd, is shown in Table 2, where the old results are combined
from [1,7,16–18,21]. It is well known that A2(n, d) = A2(n+ 1, d+ 1) when d is odd, so it suffices to consider odd d. The new
lower bounds are shown in boldface. No references are given in Table 1 for bounds that follow from A2(n, d) ≥ A2(n+1, d)/2
and other bounds in the table.

2. Code construction

Although the definition of an automorphism group of a binary code allows both permutations of coordinates and
permutations of coordinate values, in earlier studies only one of these two types of automorphisms has typically been
considered when prescribing automorphisms. For example, in the search of cyclic codes one has only permutations of
coordinates; see [11] for examples of prescribing larger groups permuting only coordinates. On the other hand, only
permutations of coordinate values are considered in, for example, [5,20]; then we get binary codes that are cosets of a linear
code.

One obvious reason why arbitrary automorphism groups have not been studied to a greater extent is the very large
number of such groups, so one would need some further ideas about what groups to consider. The motivation for our choice
of groups is as follows.

In the study of automorphisms of binary codes, it is convenient to consider codes in the framework of set systems by
mapping a codeword c = (c1, c2, . . . , cn) to a set {i + nci : 1 ≤ i ≤ n}. That is, every codeword is then a transversal of the
sets

{1, n + 1}, {2, n + 2}, . . . , {n, 2n}. (1)

This idea is inherent in the mapping of a binary code to a graph in [22].

Example.With the definedmapping, the binary code {000, 111} leads to the set system {{1, 2, 3}, {4, 5, 6}} over {1, 2, . . . , 6}.
When studying equivalence and automorphism groups in the set system formalism, the subgroup of the symmetric group

S2n to consider is now precisely the stabilizer of the partition (1).

Example (cont.). The binary code {000, 111} has an automorphism that permutes all coordinates in a cyclic manner. This
corresponds to the permutation (1 2 3)(4 5 6) of the set system. Another automorphism transposes the coordinate values in
all coordinates simultaneously, and corresponds to (1 4)(2 5)(3 6).

Transitive permutation groups are recurrent in the study of automorphism groups of combinatorial objects. Indeed, one
of the main ideas of the current work is to search for codes with an automorphism group that acts transitively on the 2n
elements in the set system formalism. In the original setting, this means that the automorphism group acts transitively on
the 2n pairs of coordinates and coordinate values. By looking at codes attaining A(n, 3) or A(n+ 1, 4), for each length n ≤ 15
there is indeed an optimal code that can be derived from codes with an automorphism group of this type.

The number of elements in the set on which a permutation group acts is called the degree of the group. All transitive
permutation groups have been classified [3,9] up to degree 47. For example, the groups up to degree 30 are available in
GAP [6]. Consequently, we have an exhaustive catalogue of transitive groups for the cases 2n ≤ 47, that is, n ≤ 23.
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Note, however, that we may not consider arbitrary permutation groups, but the group should stabilize the partition (1).
Actually, it suffices that the group stabilizes some partition of {1, 2, . . . , 2n} into 2-element subsets because then there is
a conjugate subgroup of S2n that stabilizes (1). In group-theoretic terms, the group should be imprimitive and have a block
system with blocks of size 2. It is a standard task to find such block systems; note that one group may have several block
systems.

Given the length of a code, n, we can now consider all transitive permutation groups of degree 2n and all possible block
systemswith blocks of size 2. Regardless ofwhetherweprefer to consider the objects as set systems or codes,wehave arrived
at the classical setting of constructing codes with a prescribed automorphism, and the approach described, for example, in
[12] can be applied. That is, having specified theminimum distance d, orbits of words with pairwise distances smaller than d
are disregarded and the admissible orbits become vertices in a weighted graph G. The weight of a vertex in G is the length of
the corresponding orbit. There is an edge between two vertices in G exactly when all pairwise distances between the words
in the two orbits are greater than or equal to d. A clique in G gives a desired code, and the weight of a clique is the size of the
code. Consequently, software for finding weighted cliques can now be employed to construct codes.

There are several obvious modifications of this idea. By the equality A(n, d) = A(n+1, d+1) for d odd, one may consider
both the odd-weight and the even-weight case. One may further let a group fix some (typically one) coordinates and their
values. Finally, one may let a group act on half of the coordinates with an identical copy of the group acting on the other
half (this can obviously be generalized to more than two parts, but for small parameters two parts are the most promising
choice).

3. Results

We applied the method described in Section 2 and used the Cliquer [19] software to search for maximumweight cliques.
Since too large graphs cannot be processed within a reasonable time, we did not consider graphs with more than 5000
vertices. In total, the search tookmany years of CPU time, but the timewas not evenly distributed amongst the cases. Actually,
all the successful searches were quite fast.

The new codes found improve seven lower bounds on A2(n, d), as we have seen in Table 1. These bounds follow from the
existence of four codes and the application of A2(n − 1, d) ≥ A2(n, d)/2. The codes are described in Appendix together with
some information about the prescribed group. Also the recent bound A2(16, 3) ≥ 2816, from [16], follows directly from the
new bound A2(17, 3) ≥ 5632.

In particular, the code attaining A2(24, 4) ≥ 327680 is very good; it would be interesting to know whether this code has
some algebraic or combinatorial explanation. This code was found using two copies of a transitive group of degree 24 (recall
that the authors only had the transitive groups up to degree 47 available). It then turned out that the automorphism group
of one of the codes found (which is listed in Appendix) is larger than the prescribed group and in fact is transitive of degree
48. The codes attaining A2(24, 5) ≥ 17920 and A2(24, 10) ≥ 136 were found in a similar manner; the automorphism group
of the former is also transitive.

The new codes lead to infinite families of codes, as the following theorems show. Note, however, that due to the results
of [10], for each such family there is an integer n′ such that none of the codes of length n ≥ n′ is optimal. Theorem 1 follows
from the well-known |u|u + v| construction [15] (see also [24]), and Theorem 2 is a reformulation of [23].

Theorem 1. A2(2n + 1, 3) ≥ A2(n, 3) · 2n.

Theorem2. If there is an (n,m2k, 3) code consisting of m cosets of a linear (n, 2k, 3) code, then A2(m−1, 3) ≥ (n+1)·2m+k−n−1.

The linear code in Theorem2 can be found by determining the kernel of a code C , defined asK (C) = {x : x+C ∈ C}. One can
actually deduce the kernel by finding the subgroup of the automorphism group of the code that stabilizes each coordinate.
Then it is indeed necessary to consider the automorphism group rather than the prescribed group of automorphisms (since
the latter may be a proper subgroup of the former).

Corollary 1. A2(79, 3) ≥ 3 · 271.

Proof. By puncturing the code in Appendix that attains A2(24, 4) ≥ 327680 in (any) one coordinate, we get a code that
attains A2(23, 3) ≥ 327680 and has a kernel of size 212. The result follows by applying Theorem 2. □

Note that the kernel of the code in Appendix that attains A2(24, 4) ≥ 327680 has the same length and dimension as the
extended binary Golay code, but the minimum distance is 4 here.

The results for the best known codes with length n andminimumdistance 3 are summarized in Table 3 for 15 ≤ n ≤ 512.
The new results are shown in boldface. The table updates a table published in [13]; all subsequent improvements follow
either from [14] (with the additional observation that a code of length 66 leads to a code of length 133 by Theorem 1) or
from the results of the current paper.
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Table 3
Lower bounds for A2(n, 3), 15 ≤ n ≤ 512.

n A2(n, 3)

15 1 · 211

17 11 · 29

18 41 · 28

23 5 · 216

31 1 · 226

35 11 · 226

37 41 · 226

47 5 · 239

63 1 · 257

64 414253 · 239

66 828505 · 240

70 1657009 · 243

79 3 · 271

95 5 · 286

127 1 · 2120

129 414253 · 2102

133 828505 · 2106

141 1657009 · 2113

159 3 · 2150

191 5 · 2181

255 1 · 2247

256 127659128537782365 · 2191

258 255318257075564729 · 2192

262 510636514151129457 · 2195

270 1021273028302258913 · 2202

283 1657009 · 2254

319 3 · 2309

383 5 · 2372

511 1 · 2502

512 127659128537782365 · 2446

Appendix. Codes for the new lower bounds

Bound: A2(17, 3) ≥ 5632
Generators of G:
(2 5 3 4 19 22 20 21)(6 34 7 33 23 17 24 16)
(8 15 9 14 25 32 26 31)(10 13 28 29 27 30 11 12),
(2 34 3 33 19 17 20 16)(4 14 22 32 21 31 5 15)
(6 12 7 13 23 29 24 30)(8 27 9 11 25 10 26 28),
(2 33 28 9 19 16 11 26)(3 34 27 8 20 17 10 25)
(4 15 13 7 21 32 30 24)(5 14 12 23 22 31 29 6),
(2 6 3 24 19 23 20 7)(4 34 22 16 21 17 5 33)
(8 29 26 30 25 12 9 13)(10 32 28 14 27 15 11 31).
Fixed coordinates: 1
Transitive on non-fixed coordinates: yes
Order of G: 512
Orbit representatives:
1000111111111111101110000000000000, 0010011111111111111011000000000000,
0100101111111111110110100000000000, 1011001111111111101001100000000000,
0111010111111111110001010000000000, 0101011011111111110101001000000000,
1001110011111111101100011000000000, 1110110011111111100010011000000000,
0000010011111111111111011000000000, 0101110101111111110100010100000000,
1000000001111111101111111100000000, 1001011010111111101101001010000000,
0011011010011111111001001011000000.

Bound: A2(24, 4) ≥ 327680
Generators of G:
(1 19)(2 21)(3 23)(4 22)(5 24)(6 20)(7 13)(8 18)(9 14)(10 16)(11 15)(12 17)(25 43)
(26 45)(27 47)(28 46)(29 48)(30 44)(31 37)(32 42)(33 38)(34 40)(35 39)(36 41),
(1 26 30)(2 6 25)(3 28 5 27 4 29)(7 35 36 31 11 12)(8 9 34)(10 32 33)(13 38 18)
(14 42 37)(15 16 41 39 40 17)(19 47 24)(20 45 22 44 21 46)(23 48 43),
(1 28 25 4)(2 26)(3 27)(7 34 31 10)(8 11)(9 12)(13 40 37 16)(17 41)(18 42)
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(19 22 43 46)(20 23)(21 48)(24 45)(32 35)(33 36)(44 47),
(1 16 25 40)(2 38)(3 42 27 18)(4 37 28 13)(5 41)(6 15 30 39)(7 22 31 46)
(8 23 32 47)(9 45)(10 43 34 19)(11 44 35 20)(12 48)(14 26)(17 29)(21 33)(24 36).
Fixed coordinates: 0
Transitive on non-fixed coordinates: yes
Order of G: 1572864
Orbit representatives:
111111111111111111111111000000000000000000000000,
000011001111111111111111111100110000000000000000,
000101011111011111111111111010100000100000000000,
011001001111011111111111100110110000100000000000.

Bound: A2(24, 5) ≥ 17920
Generators of G:
(1 37)(2 38)(3 39)(4 16)(5 17)(6 42)(7 43)(8 44)(9 45)(10 22)(11 47)(12 48)(13 25)
(14 26)(15 27)(18 30)(19 31)(20 32)(21 33)(23 35)(24 36)(28 40)(29 41)(34 46),
(1 8 11 25 32 35)(2 30 12)(3 31 9)(4 5 10 28 29 34)(6 36 26)(7 33 27)
(13 20 23 37 44 47)(14 42 24)(15 43 21)(16 17 22 40 41 46)(18 48 38)(19 45 39),
(1 27 25 3)(2 4)(5 8 29 32)(6 7)(9 34)(10 33)(11 36 35 12)(13 39 37 15)(14 16)
(17 20 41 44)(18 19)(21 46)(22 45)(23 48 47 24)(26 28)(30 31)(38 40)(42 43).
Fixed coordinates: 0
Transitive on non-fixed coordinates: yes
Order of G: 3072
Orbit representatives:
110111010111111111111111001000101000000000000000,
011111101101111111111111100000010010000000000000,
100000010010111111111111011111101101000000000000,
011001000111011111111111100110111000100000000000,
011101011001011111111111100010100110100000000000,
100010101001011111111111011101010110100000000000,
101001110001011111111111010110001110100000000000,
010110001110011111111111101001110001100000000000,
100000100100001111111111011111011011110000000000,
010101001011110111111111101010110100001000000000,
111011000110110111111111000100111001001000000000,
011001110010110111111111100110001101001000000000.

Bound: A2(24, 10) ≥ 136
Generators of G:
(1 29 6 35)(2 10 31 28)(3 32 12 33)(4 26 34 7)(5 30 11 25)(8 36 9 27) (13 47 21 48)
(14 38)(15 42 17 44)(16 22)(18 41 20 39)(19 43)(23 45 24 37)(40 46),
(1 25)(2 11 26 35)(3 28 27 4)(5 10 29 34)(6 32)(7 36 31 12)(8 30)(9 33)
(13 44 21 42)(14 15 22 48)(16 23 19 41)(17 40 47 43)(18 37 20 45)(24 38 39 46).
Fixed coordinates: 0
Transitive on non-fixed coordinates: no
Order of G: 192
Orbit representatives:
100101010010000111111111011010101101111000000000,
000110101111000110101111111001010000111001010000,
010010111001011101101101101101000110100010010010.
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