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Proposition 6: Cu is a constant-composition code with parameters
of (1).

To prove the optimality of the constant-composition codes Cu,
we need to introduce one bound on constant-composition codes.
Let Aq(n; d; [w0; w1; . . . ; wq�1]) denote the maximum size of an
(n;M; d; [w0; w1; . . . ; wq�1]; q) constant-composition code. Luo,
Fu, Vinck, and Chen [3] developed the following bound for con-
stant-composition codes.

Lemma 7: If nd� n2 + (w2

0 + w2

1 + � � �+ w2

q�1) > 0, then

Aq(n; d; [w0; w1; . . . ; wq�1]) �
nd

nd�n2+ w2

0
+w2

1
+ � � �+w2

q�1

:

Proposition 8: The codes Cu are optimal with respect to the
Luo–Fu–Vinck–Chen bound of Lemma 7.

Proof: It is straightforward to check that the condition of Lemma
7 is met, and the Luo–Fu–Vinck–Chen bound of Lemma 7 is achieved.

IV. CONCLUDING REMARKS

In this correspondence, we constructed a family of optimal ternary
constant-composition codes from a class of newly discovered perfect
nonlinear functions. It would be interesting to find out if optimal con-
stant-composition codes can be obtained directly from certain known
classes of linear or nonlinear codes.
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Combinatorial Constructions of Optimal
Constant-Composition Codes

Cunsheng Ding, Senior Member, IEEE, and Jianxing Yin

Abstract—Constant-composition codes (CCCs) are a special class of con-
stant-weight codes. They include permutation codes as a subclass. In this
correspondence, a link between CCCs and generalized double resolvable
packing designs is developed, and used to construct several infinite series
of optimal CCCs.

Index Terms—Constant-composition codes (CCCs), constant-weight
codes, generalized double resolvable packing designs.

I. INTRODUCTION

We use the standard notations for codes as follows. Let Zq denote
the set f0; 1; . . . ; q � 1g (alphabet), and Zn

q be the set of all n-tuples
(words) over Zq , where q is a positive integer. An (n;M; d; w)q con-
stant-weight code (CWC) is a codeC � Zn

q with sizeM and minimum
Hamming distance d such that the Hamming weight of each codeword
is w. An (n;M; d; [w0; w1; . . . ; wq�1])q constant-composition code
(CCC) is a code C � Zn

q with size M and minimum Hamming dis-
tance d such that in every codeword the element i appears exactly wi

times for every i 2 Zq . An (n;M; d; [w0; w1; . . . ; wq�1])q CCC is
called a permutation code if n = q and wi = 1 for all i. Hence, per-
mutation codes are a special class of CWCs. Clearly, CCCs are a sub-
class of CWCs. A code is said to be equidistant if any two of its distinct
codewords have the same Hamming distance.

We use Aq(n; d; [w0; w1; . . . ; wq�1]) to denote the maximum size
of an (n;M; d; [w0; w1; . . . ; wq�1])q CCC. Recently, the following
bound for CCCs was developed [18].

Lemma 1: If nd� n2 + (w2

0 + w2

1 + � � � + w2

q�1) > 0, then

Aq(n; d; [w0; w1; . . . ; wq�1])�
nd

nd�n2+ w2

0
+ w2

1
+ � � �+w2

q�1

:

The study of permutation codes goes back to at least 1965 [21]. In the
1970s, Blake [2]–[4], Deza and Vanstone [11], and Frankel and Deza
[14] investigated permutation codes. Recently, advances on permuta-
tion codes have been made by Chu, Colbourn, and Dukes [7], Colbourn,
Kløve, and Ling [10], Ding, Fu, Kløve, and Wei [12], and Fu and Kløve
[15]. Nonbinary CCCs were studied already in the 1960s. Both alge-
braic and combinatorial constructions have been presented. For further
information, the reader is referred to Bogdanova and Kapralov [6], Col-
bourn, Kløve, and Ling [10], Chu, Colbourn, and Dukes [8], [9], Ding,
and Yin [13], Luo, Fu, Vink, and Chen [18], Semakov and Zinoviev
[19], Semakov, Zinoviev, and Zaitsev [20], Svanström [23], Svanström,
Östergård, and Bogdanova [24], and Zinoviev [25].

In this correspondence, we consider optimal CCCs meeting the
upper bound of Lemma 1. In Section II, a link between CCCs and
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generalized double resolvable packing designs is discussed. Combi-
natorial constructions of several infinite series of optimal CCCs are
presented in Section III.

II. THE LINK BETWEEN CCCS AND GENERALIZED

DOUBLE PACKING DESIGNS

Suppose that there exists a set X of v points and that from these a
collection A of subsets, or blocks, is drawn. The ordered pair (X;A)
is called a design of order v. In design theory there are normally a
number of additional rules imposed when the blocks are selected [1].
A design (X;A) is referred to as a packing design, or a packing for
short, of index � if every pair of distinct points ofX occurs in at most �
blocks inA. Throughout this correspondence, we call such packing an
(n; �; v)-packing when every point ofX appears in precisely n blocks.
Here, there are no restrictions on the block sizes in an (n; �; v)-packing
and a block is allowed to have size 1. In the extreme case, where every
pair of distinct points of the packing occurs in exactly its � blocks, the
packing is commonly termed a pairwise balanced design (PBD), and
we write an (n; �; v)-PBD instead of an (n; �; v)-packing. Note that a
PBD having blocks of the same size is known as a balanced incomplete
block design (BIBD).

For an arbitrary design (X;A), an �-parallel class is a set of blocks
in A such that each point of X occurs in precisely its � blocks. It is
simply called a parallel classwhenever� = 1. A resolution of a design
is a partition ofA into certain classes. A design is said to be resolvable
if it admits at least one resolution so that each resolution class forms a
parallel class. For more information on resolvable designs, the reader
is referred to [16].

Resolvable designs have played an important role in coding theory.
In 1968, Semakov and Zinoviev [19] showed that there is a one-to-one
correspondence between resolvable BIBDs and certain equidistance
CWCs. A generalization of this result was made by Bogdanova et al.
[5], which can be applied to the broader class of resolvable PBDs. A
combinatorial interpretation for permutation codes was given by Deza
and Vanstone [11] in 1978. This idea was recently further developed by
Colbourn et al. [10]. The designs they employed are “double resolvable
packings,” which are widely used in design theory (see, for example,
Hartman and Phelps [17]). A design is termed double resolvable if it
admits two resolutions into parallel classes in which any two parallel
classes from the two distinct resolutions intersect in at most one block.
To extend their idea to constructing CCCs, we define the notion of gen-
eralized double resolvable designs in the following.

Consider a design (X;A). Suppose that it admits two resolutions.
The first is a partition ofA into u classes: An �0-parallel class, . . ., an
�u�1-parallel class in turn, which we call an [�0; �1; . . . ; �u�1]-reso-
lution. The second is a [�0; �1; . . . ; �w�1]-resolution whose w resolu-
tion classes constitute a �0-parallel class, . . ., a �w�1-parallel class in
turn. If each �i-parallel class (0 � i � u� 1) intersects every �j -par-
allel class (0 � j � w� 1) in at most one block, then we say that this
design is ([�0; �1; . . . ; �u�1]; [�0; �1; . . . ; �w�1])-double resolvable.

We now consider a ([1; 1; . . . ; 1]; [�0; �1; . . . ; �q�1])-double re-
solvable (n; �; v)-packing, (X;A). As every point appears in pre-
cisely n blocks of the packing, there must be exactly n parallel classes
in the [1; 1; . . . ; 1]-resolution, and n = q�1

j=0
�j . So, we are always

able to arrange the blocks of such a packing into a q � n array R in
such a way that:

1) the rows of R are labeled 0; 1; . . . ; q � 1 corresponding to the
�i-parallel classes of its [�0; �1; . . . ; �q�1])-resolution;

2) the columns of R are labeled by 1; 2; . . . ; n corresponding to
the n parallel classes of its [1; 1; . . . ; 1]-resolution;

3) the intersection of row i and column j is occupied by the
common block of the �i-parallel class and the jth parallel class,

or empty if the �i-parallel class and the jth parallel class do not
share any common block.

Employing generalized double resolvable packings, we have the fol-
lowing combinatorial characterization of CCCs, which is a generaliza-
tion of related results in [5], [10], [11], [19].

Theorem 2: A ([1; 1; . . . ; 1]; [�0; �1; . . . ; �q�1])-double
resolvable (n; �; v)-packing exists if and only if an
(n;M; d; [w0; w1; . . . ; wq�1])q CCC exists, where

M = v; n =

q�1

j=0

�j ; d = n� �

and �j = wj for 0 � j � q � 1.
Proof: Let (X;A) be a ([1; 1; . . . ; 1]; [�0; �1; . . . ; �q�1])-

double resolvable (n; �; v)-packing. Without loss of generality, we
may take its point set to be Zv . The blocks of A are arranged as a
q� n arrayR, as indicated above. We then form a v� n array C over
Zq from R in such a way that its (i; j) entry (i 2 Zv ; 1 � j � n) is
u 2 Zq if and only if the point i appears in the block at the intersection
of row u and column j of R. Now, since any pair of distinct points
of Zv occurs in at most � blocks of the packing, any two rows agree
in at most � positions, or equivalently, any two rows disagree in at
least n � � positions. In addition, since the blocks in each row i of
R constitute a �i-parallel class of the packing, the symbol i 2 Zq

appears in every row of C precisely wi (=�i) times. Finally, since the
blocks in each column of R constitute a parallel class of the packing,
any cell of C is occupied by a unique element of Zq . Therefore, C
represents an (n;M; d; [w0; w1; . . . ; wq�1])q CCC.

Conversely, given an (n;M; d; [w0; w1; . . . ; wq�1])q CCC, C . We
represent it as an M � n array over Zq whose rows consist of the
M codewords, and then label its rows from 0 to v � 1. It follows that
the array R corresponding to the ([1; 1; . . . ; 1]; [�0; �1; . . . ; �q�1])-
double resolvable (n; �; v)-packing over Zv can be produced by re-
versing the above process.

Setting q = n and �0 = �1 = . . . ; �q�1 = 1 in Theorem 2, we
obtain the following corollary [10, Theorem 2.2] on permutation codes.
Hence Theorem 2 about CCCs is a generalization of Theorem 2.2 on
permutation codes in [10].

Corollary 3: [10] The existence of a double resolvable
(n; �; v)-packing is equivalent to that of a permutation code of
length n, size v, and Hamming distance n � �.

Theorem 2 suggests that various recursive and direct construction
techniques in design theory might be utilized to yield CCCs. In the
next section, we will take advantage of this fact to establish a number
of combinatorial constructions of optimal CCCs.

III. THE CONSTRUCTIONS OF OPTIMAL CCCS

We now present our constructions of CCCs. Since we are mainly
concerned with optimal (n;M; d; [�0; . . . ; �q�1])q CCCs meeting the
bound in Lemma 1, the constraints that

nd� n
2 + (�20 + �

2

1 + � � �+ �
2

q�1) > 0

and

(nd� n
2 + �

2

0 + �
2

1 + � � �+ �
2

q�1) jnd

are always assumed for any (n;M; d; [�0; . . . ; �q�1])q CCC
throughout this section. By Theorem 2, there is a one-to-one
correspondence between double resolvable packings and CCCs. We
call a ([1; 1; . . . ; 1]; [�0; �1; . . . ; �q�1])-double resolvable (n; �; v)-
packing optimal if its corresponding

(n;M; n� �; [�0; �1; . . . ; �q�1])q
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CCC is optimal, namely

v = M =
n(n� �)

�20 + �21 + � � �+ �2q�1 � �n
:

For convenience, we adopt the following notations:

d := n� �;

N := nd� n2 +
0�i�q�1

�2i =
0�i�q�1

�2i � �n

�� := gcdf�i : i = 0; 1; . . . ; q � 1g

�N := N=��

�n := n=��:

The upper bound in Lemma 1 then is �nd= �N (= �n(n��)= �N), since
both n = 0�i�q�1 �i and N are obviously divisible by ��.

With the observations above, we are now able to explain the feature
of optimal (n;M; d; [�0; �1; . . . ; �q�1])q CCCs meeting the bound of
Lemma 1 in the language of designs, which is the basis of our combina-
torial constructions of optimal CCCs. This is done with the following
lemma whose proof is ommitted here.

Lemma 4: A ([1; 1; . . . ; 1]; [�0; �1; . . . ; �q�1])-double re-
solvable (n; �; v)-packing is optimal if and only if it is a
([1; 1; . . . ; 1]; [�0; �1; . . . ; �q�1])-double resolvable (n; �; v)-PBD
which satisfies the following properties.

1) For any i (0 � i � q�1), all blocks in its �i-parallel class have
the same size given by (n� �)�i=N , and hence, (n� �)�i=N
must be an integer.

2) �N j (n� �), and hence, v = �n(n� �)= �N is a multiple of �n.

Lemma 4 tells us that for given parametersn; d = n�� and constant
composition [�0; �1; . . . ; �q�1] with N jn(n � �), an optimal CCC
meeting the bound in Lemma 1 is equidistant (as remarked in [18]), and
the distribution of values in a coordinate is (up to permutation) uniquely
given by (n��)�

N
. As an immediate consequence of Lemma 4, we see

that for some parameters q; n; �; and �0is, even if N jn(n � �), an
(n;M; n��; [�0; �1; . . . ; �q�1])q CCC cannot attain the upper bound
in Lemma 1. For example, if a (21;M; 16; [7; 7; 7])3 CCC exists, then
its sizeM must be less than the upper bound 21�16=N = 8. Otherwise,
if M = 8, then d= �N = 8=3 is an integer by Lemma 4, a contradiction.
We state this in the following lemma using the notations above.

Lemma 5: If N > 0; N jnd; and d is not divisible by �N , then

Aq(n; d; [�0; �1; . . . ; �q�1]) �
nd

N
� 1:

The feature of an optimal packing explored in Lemma 4 trans-
lates an optimal (n;M; n � �; [�0; �1; . . . ; �q�1])q CCC into a
([1; 1; . . . ; 1]; [�0; �1; . . . ; �q�1])-double resolvable (n; �; v)-PBD
with two prescribed properties. This leads us to construct optimal
CCCs by way of the difference method in design theory. To do this,
we need the notion of difference families defined as follows.

Let G be an Abelian group of order v whose operation is written
additively, as usual. Let F = fDj : 0 � j � t � 1g be a family
of subsets (called base blocks) of G. We say that F is a difference
family (DF) if any nonzero element of G occurs exactly � times in the
difference list (multiset) of F ;�F = 0�j�t�1�Dj , where

�Dj = fa� b : a; b 2 Dj and a 6= bg

which is the difference list (multiset) of Dj(0 � j � t � 1). Here
we use the notation “

i2I Ti” to denote the formal sum of jIj mul-
tisets Ti(i 2 I). It is identified with the usual union of sets

i2I Ti
if and only if Ti is a set for any i 2 I . In the sequel, we call F

a (v; [jD0j; jD1j; . . . jDt�1j]; �)-DF and a (v;K; �)-DF interchange-
ably, whereK is the set of sizes of the base blocks. The above definition
is equivalent to saying that ifF is a (v; [jD0j; jD1j; . . . jDt�1j]; �)-DF,
then the difference function

dF(g) =
D2F

j(D + g) \Dj = �

for any nonzero element g of G. When F = fDg, then one often
writes D for F and calls it a difference set (DS) or a (v; jDj; �)-DS.
If the base blocks of a (v; [jD0j; jD1j; . . . jDt�1j]; �)-DF are
mutually disjoint, then it is said to be disjoint and denoted by
(v; [jD0j; jD1j; . . . jDt�1j]; �)-DDF. If the base blocks of a
(v; [jD0j; jD1j; . . . jDt�1j]; �)-DF form a partition ofG, then it is said
to be partitioned and denoted by (v; [jD0j; jD1j; . . . jDt�1j]; �)-PDF.

We remark that the sizes of base blocks in a DF are often required to
be greater than 1 in literature. However, block size 1 is allowed in our
definition. It is clear that�D = ; for any base blockD of cardinality 1.

With the preparations above, we are now ready to describe our com-
binatorial construction of optimal CCCs. Based on Lemma 4, our con-
structions split naturally into two cases depending whether N j(n� �)
or not. We begin with the case where N j(n� �). In this case, we may
write t = n��

N
. Then the PBD corresponding to an optimal CCC has

order v = tn, block sizes t�i (0 � i � q�1), and index � by Lemma
4. The following construction works for the case N = n � � (and
hence, t = 1 and n = v).

Construction 6: If a (v; [�0; �1; . . . ; �q�1]; �)-PDF exists, then
there is an optimal (n; n; n � �; [�0; �1; . . . ; �q�1])q CCC meeting
the bound of Lemma 1.

Proof: Suppose that F = fDj : 0 � j � q � 1g is the given
(v; [�0; �1; . . . ; �q�1]); �)-PDF over an Abelian group G. Then, as is
usually done (see, for example, [1]), we get a PBD (G;A) with block
sizes �i (i = 0; 1; . . . ; q � 1), where

A = fDj + g : 0 � j � q � 1; g 2 Gg

and D + g = fdi + g : 0 � i � kg if D = fdi : 0 � i � kg 2 F .
It is easily seen that Ag = fDj + g : 0 � j � q � 1g; g 2 G,

constitute a [1; 1; . . . ; 1]-resolution of this PBD into n (=v) parallel
classes, while Bj = fDj + g : g 2 Gg; 0 � j � q � 1; form a
[�0; �1; . . . ; �q�1]-resolution. All blocks in the �j -parallel class have
the same size �j for any j (0 � j � q�1). The assertion then follows
from Lemma 4.

Without giving a proof, we state that one can apply Construction 6
and Lemma 4 to obtain optimal CCCs with the following parameters
which meet the bound of Lemma 1.

1) An (n; n; n � q; [2q � 1; 2; . . . ; 2])q CCC, where n = 4q � 3
is any prime power.

2) An (n; n; n�k+1; [k; k; . . . ; k; 1])q CCC, where q= n+k�1
k

; k is
a positive integer, n is a prime power, and n� 1 � 0 (mod k).

3) An (n; n; n� k�1
2
; [k; k; . . . ; k; 1; 1; . . . ; 1])q CCC, where k is

an odd integer, n is a prime power, n � 1 � 0 (mod 2k); q =
n�1
2k

+ n+1
2

, and the value of k occurs n�1
2k

times.
4) A (q(q + 1); q2; q2; [q + 1; q + 1; . . . ; q + 1])q CCC, where q

is a prime power.
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A Construction of Binary Constant-Weight Codes From
Algebraic Curves Over Finite Fields

Chaoping Xing and Jie Ling

Abstract—By employing the narrow ray class groups of algebraic curves,
we give a construction of constant weight codes. This construction is a gen-
eralization of the one proposed by Xing. It turns out that this generaliza-
tion gives an improvement on the lower bound of binary constant codes in
the earlier work of Xing, while the latter one improves an earlier result of
Graham and Sloane.

Index Terms—Constant codes, curves, maps, ray class groups.

I. INTRODUCTION

Binary constant-weight codes are of great importance due to both
practical applications and theoretic interests. These codes have at-
tracted the attention of many researchers through the last few decades.
The reader may refer to [1] for a survey on this topic. Many construc-
tions of binary constant-weight codes have been proposed. Among
these constructions, only a few make use of algebraic tools. In [2],
group structures are used to obtain a class of binary constant-weight
codes and a lower bound on the size of binary constant-weight codes
for given length, minimum distance, and weight is derived. This
lower bound is improved slightly by Xing [9] using residue rings
of polynomials. In this correspondence, we generalize the result of
[9] from the projective line (i.e., polynomials) to arbitrary curves. It
turns out that further improvements can be obtained. We illustrate our
improvement using examples of curves with small genus.

In Section II, we introduce the narrow ray class group of algebraic
curves and related background. The main construction is presented in
Section III and some examples of using curves of small genus are used
to illustrate our improvement on the bound given in [9].

II. NARROW RAY CLASS GROUP

Before proceeding to our construction in the next section, we briefly
introduce narrow ray class group of algebraic curves. For the detailed
result, the reader may refer to [6] and [3].

When we speak of an algebraic curve X over the finite field q , we
always mean a smooth, projective and absolutely irreducible algebraic
curve defined over q , simply denoted by X= q .

Let us fix some notations that are used for the entire paper.

• g(X )—the genus of X= q;
• N(X )—the number of q-rational points of X= q ;
• q(X )—the function field of X= q;
• �P—the normalized discrete valuation with respect to a place P

of q(X );
• Cl(X )—divisor class group of degree zero of X= q;
• h(X )—the divisor class number, i.e., the cardinality of Cl(X ).
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