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In this paper a program is proposed how t 
transitive permutation group. The approach is 
study of monomial actions and projective repr 
sitive groups are discussed in detail. 

rmine codes with given 
le theoretic, based on a 
ions. Some highly tran- 

There appear slightly different concepts of (linear) codes in the lite~~t~~e. 
hollowing Ward [ 161 and Rasala [ 111 a code over some commutative ring 8; 
with unity will be a triple. (V, B, C), where V is a free ~~rnod~le of finite rank 
with basis R and submodule C. By convention we then call 6: a code 

ambient space V and ambient basis B. F is the alphabet of C, the rank FZ 
V its length, and C is an (n, k)-code if C is free of rank k. (In this paper 
will always be a field.) 

The Hamming weight of a vector (word) in Y is the car~~uality of ibs 
support with respect to the given basis. The min’ f a code c is 
a measure for its error-correcting capability. sms between 
codes should preserve the Hamming weight. Th e de~~itio~: A 
morphism (V, B, C) -+ (V’, B’, C’) of codes over P is an injective F-‘-linear 
map ,u: V-+ v’ with C,u c C’ sending any e E 0 a scalar multiple of 
e’ E B’. The codes C and C’ are isomorphic i is bijeetive and CD = 

&K(C) denotes the group of all (code) automor~hi§m~ from (V, 
onto itself, the monomial linear group of C. (6) can be represented 
respect to by monomial matrices.) Le 
Every p E (C) determines a permutatio 
,ahpk is n epimorphism of ML(C) onto a 
symmetric group on 0. PML(C) 
admits a permutation group G on ~2 if G is a subgroup of 
elements of ker(u I P p) are the diagonal automorphisms of C. 

Observe that the transitivity behaviour of the permutation group of a code 
is a measure for its homogeneity. Codes having (multiply) transitive 
permutation groups have good error-correcting properties and provide for 
powerful decoding methods. Actually there are many i~tere§ti~~ codes with a 
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multiply transitive permutation group. For instance the extended quadratic 
residue (QR-) code of length p + 1, p an odd prime, admits PSL(2, p). (A 
generalization to symplectic groups can be found in Ward [ 161.) The 5- 
transitive Mathieu groups IIJZ,, .and 3JIZ4 are the p,ermutation groups of the 
extended ternary and binary Golay codes, respectively. The binary 
Reed-Muller codes of length 2” admit the afline groups Aff(2m, 2). (A 
general reference for this is MacWilliams and Sloane [9].) 

For theoretical and practical reasons one may ask for a method to 
determine all codes with prescribed permutation group. In attacking this 
problem we show, via some kind of Krull-Schmidt decomposition for codes, 
that it suffices to construct those codes whose diagonal automorphisms are 
scalar multiplications (see Section 1). Every diagonal automorphism of a 
nontrivial code C is scalar, for instance, if PML(C) is primitive 
(Theorem 1.3). In this case we have a central group extension 

(“1 1” * ML(C) --tt PAIL(C), 

where p denotes the multiplicative group of the field F. 
A group E is said to act (monomially) on a code (V, B, C) if there is given 

a homomorphism E -+ ML(C). E induces a permutation group G on Q, the 
index set of B. In the situation (*) we obtain a projective representation of G 
on V which lifts back to the given (ordinary) representation of E on V. 
Under suitable assumptions, this projective representation can be lifted also 
by stem covers of G (“Darsteilungsgruppen” in Schur’s terminology). 
Moreover, if G acts transitively on Q and E, is the subgroup of E fixing 
U= (e,), then the monomial action of E on V can be replaced by that 
induced on UE = U OEO FE (Proposition 2.1). 

This will serve as a principle for constructing codes admitting a given 
primitive permutation group (G, Q): Suppose E is a stem cover of G and E, 
is the inverse image in E of a point stabilizer. Then the FE-submodules of all 
induced modules UE, U being a l-dimensional FE,,-module, yield a complete 
list of codes over F admitting (G, Q), provided Ext(G/G’, F”) = 0 
(Theorem 3.1). This condition is fulfilled, for instance, if F is algebraically 
closed or G = G’ is perfect. In general one can start with an algebraically 
closed field of scalars, which is appropriate also for module theoretic 
reasons. Then one has to find, for any submodule C of UE, the smallest fields 
of realization. 

To illustrate the program we will determine all codes admitting alternating 
groups or Mathieu groups. It turns out that the alternating groups 211, of 
degree n > 7 occur only in the permutation group of the repetition code and 
its dual (Theorem 4.4). Here we make use of Schur’s work [ 121 on the 
multipliers of alternating groups. The Mathieu groups only leave invariant 
Golay codes, besides the repetition code and its dual. This depends on results 
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ng [2] (and P. Mazet [ 181) on the Schur multi 

luded by a discussion of -codes. we §hQW that khe 
of length p + 1) are char y the property that 
) but not PGL(2, p) (The . It is c~~~ec~~rcd 

that the (full) permutation group G of such a cod 
provided p > 23. We can prove, at least, that G is a 
if p > 5. This answers a conjecture by Rasala [ 1 
p > 23 and G # PSL(2, p>, then G would b an 66nm~n~wm~’ simple group 
being 44ransitive on p + 1 letters (Theorem 

1. INDEC~MP~SABLE Cors~s 

Let C be a code over F with ambient basis B = (e,), i E D = { 
If B’ c B then C’ = C n (B’) is regarded as a code with ambien 
and ambient basis B’. C is called decomposable if B can be par-tit 
at least two nonempty subsets Bj such that C = @ Cj, where Cj = 
and indecomposable otherwise. There is a unique partition of 
B, such that C = @ Cj and each Cj is indecomposable 

The decomposition of C into its indecomposable co 
studied from a different point of view. Call a ~5~~ero vector 21 E G 
~ndecom~osable if v is not the sum of two nonzero vectors in G with disjoi 
supports. Every vector is a sum of indecomposab~es wbic~, however, are not 
uniquely determined. If d is the minimum weight of C, th 
vector in C of weight at most 2d - 1 is indecom~osab~e. 
weight of u = C aiei is the cardinality of supp(v) = {iI i E &%I 

Define the binary relation A = A, on B to be the set of all 
that there Is an indecomposable v E C having j in its support. Let 

be the smallest equivalence relation on contriving A. Then 
(tg j) E /1 if and only if i = j or there are indeco posable vk E C (1 < 
such that ! E supp(v,), j E supp(v,), and su (vkdl) n SUCK f 
2 <k< ~a. Note that A, and 2, are invari under the automo 
WJW (C), i.e., under PAUL(C). 

(1.1) LEMMA. Let (Bj) be the partition of Co~~espQ~di~~ to rhe 
e~~iva~e~ce classes of xc and C, = C n j). Then C = @ Cj is the deerom- 
position of C into its indecomposable co~po~e~t~. 

P”FYX$ If v E C is indecomposable, supp(~) is contain 
equivalence class of 2. Since any v E C is a sum of ind 
in 6, it is enough to show that each C, is indec 

.z 
J ’ U B” (disjoint, B’ f 0 # 23”) and Cj = (Cj n 
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Since Bj corresponds to an equivalence class of x, there must be an 
indecomposable vector u E Cj such that supp(v) meets the index sets of both 
B’ and B”, which is impossible. 1 

The indecomposable components of C can be related to the structure of 
ML(C). To explain this we introduce a further equivalence relation d =d, 
on R. Let (i, j) E d if each diagonal automorphism of C multiplies both e, 
and ej with the same scalar. Of course, if F = F, then d is the universal 
relation on R. Thus d is interesting only when F # F,. 

(1.2) THEOREM. Suppose F # F,. Then & and A, coincide. In 
particular, C is indecomposable if and only if every diagonal automorphism 
of C is a scalar multiplication. 

Proof: From Lemma 1.1 it follows A c 1, because of 1 F 1 > 2. To prove 
the converse let (Bl) be the partition of B associated to the equivalence 
classes of d. Let v E C. Then there are unique vj E (Bj) such that v = C Vj. 

We claim that all vj belong to C. Define m, = max{ j 1 vj z 0}, m, = 0. The 
claim is obvious if m, < 1. Let m, = m > 1. Fix j between 1 and m - 1. By 
definition of d there exists a diagonal automorphism x of C such that 
vkx=akvk (1 <k<m) and aj#a,. Then 

m-1 

w=a,v-vx= 2 (a,-a,)v, 
. k=l 

is in C and satisfies m, < m - 1. By induction wj = (a, - aj) Vj E C, hence 
vj E C. Also v, = v - C:!,’ vk E C, as claimed. 

We have established that, for every indecomposable v E C, supp(v) is 
completely contained in some equivalence class of d. Therefore d Ed, hence 
also dS/i. I 

We now give a sufficient condition for a code to be indecomposable in 
terms of its permutation group. 

(1.3) THEOREM. If C is a nontrivial code such that PML(C) is primitive, 
then C is indecomposable and every diagonal automorphism of C is scalar. 

ProoJ: The minimum weight d of C is at least 2, by transitivity of 
G = PML(C). Consequently z is not the diagonal in J2’. Since d is G- 
invariant and G is primitive, it follows that /r is the universal relation on 0. 
By (1.1) C is indecomposable, Finally apply Theorem 1.2. 1 

Observe that there are decomposable codes having a transitive 
permutation group, e.g., V= F4, C= (1010) @ (0101). Here C is cyclic. 
However, we have the following criterion. 
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ROPOSITION. Let C be cyclic. If C c~~t~i~s an ~~dec~rnp~s~~~e 
uch that there are i, j in supp(v) with i - j c~~~~~e lo the ~~~g~~ n 

of C, then G is indecomposable. 

ProoJ Stra~~hforward. 4 

The structure of a code C is completely determined by the st~~ct~~e of its 
indecomposable components. So, in principle, we may restrict our atte 
to the study of ~ndecomposab~e codes. 

2. ACTIONS ON CODES AND iINDUCED 

Let (iv, B, C) be an (n, k)-code over F, = (e.), i E 92 = {Cl,..., n - 11. 
Suppose we have a group homomorphism q: E -+ C). Then E is said to 
act ~monomia~ly) on C (via q2). Composing q natural e~~~~r~h~srn 
from am onto PML. (6) yields a map E --t whose image 6 is a 
permutation group on $2, 

clearly V is an FE-module via ap, with i~v~r~~t s~~s~~ce C. 
(i.e., G) is transitive on D. Let E, be the largest subgro 
invariant the l-dimensional subspace U = (e,). Then, for each i E $2, there 
exists xi E E mapping U onto (e,). Hence 

is an FE-module induced by the FE,-module k;? 

Assume E acts on (V, , G) and is tr~~siti~~e of? 
group of E leaving U = (eJ and let 

V’ = UOEO FE. Choose a right transversal (xi) to in E irzdexed such that 
C?gXj E (ej}, Sffy eoXj = ffjej. Let e; =r: e, @ Xi tDk9 = (ei), Then the veneer 
rn~~ p: Vi 3 V given by ei b aiei is Lt is~m~rp~~srn 
(V’, 23’) --+ (V, B) of FE-modules, and the ~reim~ge @’ of 6: represents a code 
~sQmorp~ic to C. 

roo$ Ht is immediate that B’ = (e;) is a basis for %“, E operates on PT 

e:x=(e,Oxj)x=cieOOxj=cieJ, 

where xix = 2i~j with R, E E, and gOTi = tie,. Since Z&Q 

(uiej) x = (e,x,) x = cieoxj = ci(ajej), 

y is an FE-isomorphism. We are done. 
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Identifying V and V’ in the situation of Lemma 2.1 is now justified. The 
code C can be represented as a submodule of the induced module 
U” = CT @:E,l FE, CT = (e,,), equipped with a basis B = (e,), where ei = e, 0 xi 
for some right transversal (xi) to E,, in E, choosing x,, = 1. This notation is 
fixed in the sequel. 

(2.2) Remark. In theory, we may construct all codes over F admitting a 
transitive permutation group (G,R) as follows: Consider any group 
extension A * E ++ G with A abelian. Let E, be the inverse image in E of a 
point stabilizer G,. Inducing up to E all l-dimensional FE,-modules U we 
obtain all (transitive) monomial representations of E with permutation group 
(G, Q). The codes admitting (G, Q) occur as submodules of all V = UF. 

By a monomial action of an extension E of a (transitive) permutation 
group (G, 0) we always mean a monomial representation of E inducing 
(G. Q). 

In general, it is fairly hopeless to construct all required group extensions 
of G. However, in order to obtain all those codes which are indecomposable 
we have to consider only the case where A is central in E and isomorphic to 
a subgroup of F# (Theorem 1.2). Moreover, any supplement to A in E will 
leave invariant the same subspaces. When F is finite we may take minimal 
supplements yielding central Frattini extensions of G. There exists, to any 
finite group G and any finite field F, a unique maximal (central) Frattini 
extension A, w G,.-++ G, with A, of exponent dividing IFY], having any 
other such extension of G as epimorphic image over G (i.e., inducing the 
identity on G). This is a slight generalization of a classical result by 
Gaschiitz IS]. We omit the details. In Section 3 we will see that one can use 
without loss stem covers of G instead. 

We present some basic facts concerning monomial actions and induced 
modules. Throughout let E be a finite extension of the transitive permutation 
group (G, 0) and V= U” for some l-dimensional FE,,-module U, the basis 
B = (ei) of V indexed by R. (If W is an FH-module and a is (or induces) an 
automorphism of H, then W, is the vector space W with module structure 
wox=wx”for WE W,xEH.) 

(2.3) LEMMA. Assume G acts 2-transitively on R. Then the F-dimension 
of End,(V) is at most 2, and it is 1 if and o&y if the restriction W of U to 
H = E, ~7 Ez- l, for any y E E - E,, is not isomorphic to WY. 

Proof: Apply Frobenius reciprocity and Mackey decomposition. 1 

Observe that the F-algebra End,(V) is commutative if its dimension is at 
most 2. If dim, End,(V) = 1, V is absolutely indecomposable such that no 
proper submodule is an epimorphic image of V. In case V = FE is a 



CODES WITH PRESCRIBED PERMUTATBON G 421 

~errn~tat~~~ module, i.e., U is the triviat ~~~-rn~ 
tra~s~t~ve~y~ End,(V) always is of F-dimension 2. 

rite ei = e, @ xi for some right ~ra~sv~rsa~ (xi) to 33, in E. If U* = (&j 
is the dual de of U, (iF)E cara be viewe s the dd mod 
dual basis (et @ Xi), The dua!ity WI--+ 
invariance. o every code (V, B, C) invariant 

t code (P, B”, CL). if u= v th 
)- This is familiar in case V = FE is a ~errn~ta~~~~ 

U= U* whenever the corresponding character is of order at most 2 (eg., 
IFI < 3). 

Bro0J It is immediate that B, is a basis of F= (UJ6. Cane cheeks that 
e, @ xi i--p eO @ x5-l defines a monomial isom 
~~-rn~du~~s. ~~reover~ the identity map (V, 
~s~m~r~hisrn respecting E-invariance of subsp 

Thus for instance the E-invariant codes in V= UE and P = (U*)E are 
~a~rw~se ~s~rn~r~hic if there is an ~~tomor~~isrn fx of E ~~rrna~~zi~~ & and 
~~~~rt~~g the elements in ~~/C~~(~~. 

(i) L=EL,andEnL,=E,; 

(ii) U ~~~~~ds an ~L*-act~o~ ~~te~di~g that of&, 

Proc$ Straightforward. 

If the field F of scalars is sufficientiy large, c~nd~t~~~ (ii) in (2.5) is 
f~~~I~ed exactly when there is a normal s~~~r~~p of k,, with cyclic factor 
group, intersection E, In the centralizer CEO(U) We apply 
in the following situation: Suppose E is a subgroup of 
~~d~corn~osa~~~ code C. Ef E induces a perfect ~erm~tat 
then E” is contained in any su~~~erneut L to %;xi in Gus 
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Proof The order of the character d afforded by U is prime to p. By 
Hensel’s lemma there exists a unique p-character x having the same order 
and lifting 1. m 

We finally give some comment concerning the fields of realization for 
codes, Let C be an FE-submodule of V and F0 a subfield of F. C can be 
written in F, (with respect to E) if there is an E-invariant code (V,, B,, C,) 
over F0 such that tensoring with F yields a code isomorphic to (V, B, C). 

(2.7) LEMMA. Suppose F is a splitting field for E of characteristic p > 0. 
Let E be a root of unity in F such that all values of the (Frobenius) 
characters of the composition factors of V = UE and of the character 
afforded by U are powers of E. If every semisimple section of V is 
multiplicity-free, then every code occurring as a submodule of V can be 
written in F0 = fFB(e). 

Proof Let V, = U, OEe FOE, where U, affords the F,,-character satisfying 
F @ U, = U. Since Schur indices over finite fields are 1, every composition 
factor of the F,,E-module V,, is absolutely irreducible. Using that the 
Jacobson radical J(FE) = F @ J(F,E) we may conclude that W, I-+ F 0 W, 
is an isomorphism from the lattice of submodules of V, to that of V. 1 

A corresponding result holds in characteristic 0 if the relevant Schur 
indices are 1, e.g., when G is 2-transitive (2.3). 

3. PROJECTIVE PERMUTATION REPRESENTATIONS 

In order to construct indecomposable codes we may use Schur’s theory of 
projective representations. For the theoretical background we refer to [15]. 

(3.1) THEOREM. Let (V, B, C) an indecomposable code over F admitting 
a permutation group (G, a), where B is indexed by B = {O,..., n - 1). If 
Ext(G/G’, p) = 0, every stem cover E of G affords an action on C inducing 
(G, 0). 

Proof For each g E G choose a preimage xg in ML(C). Then, by 
Theorem 1.2, g w x, is a projective representation in the sense of Schur. 
Since Ext(G/G’,F#) = 0 by hypothesis, there exists a homomorphism 
p: E--f ML(C) making the diagram 

E&ML(C) 

1 1 
G - PML(C) 

commutative [ 15, Proposition VSS]. 1 
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(3.2) C~IZOLLARY. Assume (G, 0) is a primitive ~errn~t~t~Q~ group a 
F a field such that Ext(G/G’, F#) = 0. Let E be a stem cover of G and E, 
the inverse image in E of the stabilizer G,. Induce up to E all ~-dirnens~o~a~ 
FEN-modules. Then the submodules of the resulting FE-rno~~~es ~rav~de~or a 
complete list of codes over F admitting (G, Q) as ~errn~tat~o~ group. 

roposition 2.1 and Theorems 1.3 and 3.1. 

(3.3) ark. Let F be an algebraic closure 
over F, tensoring with F gives a code (VT 
(G, Q) then so does c. Note that Ext(G/G’, F#) = 
group. Therefore we may carry out the program o 
check whether the resulting codes can be written in F or not. 
Lemma 2.7 will be useful. 

Clearly Ext(G/G’, F) = 0 if G = G’. In case P is finite Ext(G/G’, F#) = 0 
precisely when ] G/G’ 1 and IF] are relatively prime. Then every ~~~t~~~ 
Frattini extension A F-+ E -++ G with A of exponent 
stem extension, hence an epimorphic image over G of any stem cover of 
[ 15, ~ro~osit~o~ V.5.51. Therefore only that part of the Schur multi 

will be relevant in (3.1) and (3.2) which is of 
exponent dividing 1 F# /. 

The passage to an algebraic closure can be avoided sometimes~ even when 
]G/G’/ is not coprime to IF]: 

OPOSITION. Suppose (V, B, C) is an i~de~om~osab~e code over 
Ed F admitting a transitive permutation group (G, Sk) of degree n. 

Assume the greatest common divisor of n, /G/G’ j, and /F# is 1. A be the 
x-component of H,(G), where 71 is the set ofprimes dividing n. en every 
stem extension A w E -++ G affords an action cw C ~~d~~ing (G, fJ>. 

Prooj Let L be the inverse image in ML(C) of 
osition 2.1 we may assume V = UL where U= ( 

odule and B = (e, @ xi) for some right transver 
rem 1.2, L is a central extension of G by P’. It is ~mrned~at~ t 

be the n-component of F. By ~as~b~t~~~ s~~itt~~g theorem j6: 
auptsatz I. 17.41 there exists a supplement K to F# in 

is relatively prime to 
Therefore there exists a 
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commutes [ 15, Proposition V. 5.51. This completes the proof. (Alternatively 
one could argue showing that any minimal supplement to B in K is a stem 
extension.) I 

Investigating codes along the lines given in Corollary 3.2 the following 
proposition will be useful. 

(3.5) LEMMA. Let A >--) E ++ G be a stem extension ofthefinite group G 
and E, be the inverse image in E of some subgroup G, of G. Let m = I G : G, 1. 
Then: 

(a) A ~7 Eb is an epimorphic image of H,(G,) containing the m-th 
powers of the elements in A. 

(b) If the corestriction map H,(G,) + H,(G) is subjective, 
A >--f E, +-+ G, is again a stem extension. 

Proof: In view of the 5-term exact sequence [ 15, Sect. 11.31, the injection 
E, ME yields the commutative diagram 

HA%) - H,(Go)- A - E,/Eb - Go/G;- 1 

/ 1 II I 1 
H,(E) - H,(G) -A - E/E’ - G/G’ - 1 

having exact rows. By assumption the transgression H,(G) + A (A = H,(A)) 
is epimorphic. (It is an isomorphism if and only if E is a stem cover of G.) 
This proves (b) and the first part of (a). 

Consider the transfer from E to E,/Eb. Since A E E’ n Z(E), any x E A is 
mapped onto E; = xmEb. Thus xm E A n Eb. 1 

We shall illustrate the program of (3.2) by discussing some highly tran- 
sitive groups (G, Q), namely the alternating groups and the Mathieu groups. 

4. ALTERNATING GROUPS 

We construct, up to isomorphism, all codes of length n > 4 admitting the 
alternating group 8,. Of course, the repetition code ((C ei)) and its dual 
even admit the symmetric group 6,. It turns out that for n > 7 no further 
code occurs. For n < 6 we obtain some other codes which, however, are well 
known. It is easily seen that all non-trivial codes admitting 9l, are 
isomorphic to the repetition code or its dual. 



According to (3.3) we start with an algebraically closed field F of seal 
Up to group isomorphism, E = SL(2,3) is the unique stem cover of 
%;oklowing (3.2) we have to determine the ~~ntr~via~ s~bmod~~es of U’ where 
U is any l-dimensional FE,-module (E, being the ~~eirn~ge of a point 
stabilizer). 

(a) Let char F = 2. There are three no 
rn~d~~es F, U, and U*, which are restrictio 

The obvious module 
@FE are monomial (w.r.t. nat 
permutation module Y = FE 

snbmod~les CI and C$ which are interchanged by 4. These are the 
(~somorpbic) extended QR-codes over F. 

From Lemma 2.7 it follows that the codes C, an Ci can be ~~r~tt~~ 
ely in those fields containing a primitive third root of unity. 
e claim that PML(C,) = ‘u,. At a first glance this see 

the permutation group G, interchanges C, and C: 
exclude that there is a monomial action of a stem cover of 
(Theorem 3.1). Since H2(G4) = Z, and char F = 2, we ac 
to the permutation action, 

) Assume char F = 3. There are just three ~r~ed~~~b~e 
nsions 1,2, 3, which can be realized over F,. The 

splits into the repetition code and its (irreducible) dual. Inducing up to E the 
unique nontrivial FE,-module U gives an in om~osab~e ~~-rnod~~~ 
V= UE whose unique proper submodule C2 has ension 2. Y affords a 
monomial action of GL(2, 3) extending that of E = SL( 

iant under GL(2, 3) as follows from Cliffor 
(C,) = 6,. Of course, C, can be written in iF, and 

amming code. 
(c) It remains to consider the semisimple situation. e make use of the 

character table of SL(2,3) [4, Theorem 38.1]. Let U 
~~~-l~~d~le affording the unique character of order 2, V= UE. Then 
V= C, @ C,, where C, and C, are irreduci le (but ~o~isornor~b~~~ FE- 
modules of dimension 2. By (2.5) we can extend the rno~orn~~~ action. of E 
on V to GL(2,3) in two different ways. In both c 5 3) int~r~~a~~~~~ 
C, and C4, which are the (isomorphic) extended over F. 6, and 
C, can be written just in such fields ~o~ta~~~~~ a ~r~rn~t~ve third root of 

ted FE-modules of interest are of type W& V or W@ FE where 
W is a l-dimensional FE-module. But the ~errn~tat~o~ module FE only yields 
the repetition code and its dual. 
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We assert that PML(C,) = ‘u,. Assuming the contrary there is a 
monomial action on V of the stem cover L = GL(2, 3) of G, leaving C, 
invariant. The restriction defines a monomial action of E = SL(2, 3) leaving 
C, invariant. The preceding discussion shows that L cannot fix C,. I 

(4.2) 3, 
AS H2((u5) = 2, [12], by (3.2) and (3Sa) we only have to investigate 

monomial actions of !?I, (with permutation part a,). 
The permutation module I;“-[s yields the repetition code and its dual. If the 

field F does not contain a primitive third root of unity we do not get a 
proper monomial action. 

Assume F contains a primitive third root of unity. Then the nontrivial l- 
dimensional F&-modules induce up to an F&-module I’ and its dual p. V 
is absolutely irreducible when char F # 2. (Note that char F # 3.) When 
char F = 2, V has a unique composition series 0 c CL c C, c I’ where C, is 
a (5,2) QR-code and CL is the expurgated QR-code. 

Since ‘?I, has an automorphism normalizing ?I, and inverting %,/‘?I~, by 
Lemma 2.4 the dual module v” gives codes isomorphic to C, and C;. We 
claim that PML(C,) = ‘?I,. Otherwise, by passage to an algebraic closure, we 
have a monomial action of a stem cover L of G, (Theorem 3.1). Lemma 2.5 
and the remark following it lead to the desired contradiction. 

Observe that C,, written over IF,, is the l-perfect (5, 3) Hamming 
code. I 

(4.3) ‘u, 
In view of (4.2) just the repetition code and its dual will occur when 

char F # 2 or F does not contain a primitive third root of unity. So assume 
IF,ZF. 

It is known that H2(21s) = Z, [12]. Since char F = 2 we only have to 
investigate te monomial actions of the 3-fold cover A >--f E * ‘?I, (/A ) = 3; E 
is the so-called Valentiner group). Let E, be the inverse image in E of a 
point stabilizer ?I,. Since H2(215) = Z, we have E, = EL X A. Ind.ucing up to 
E the nontrivial l-dimensional FE,-modules gives an FE-module I’ and its 
dual VYF. 

There is a noninner involutory automorphism 6 of 21u, normalizing ‘u,. By 
[ 15, Proposition V. 5.51 Es can be lifted to an automorphism a of E. Since 
6, = (& U,) and H,(G,) = Z,, 01 cannot centralize A. Therefore (r inverts 
E,,/EA. By Lemma 2.4 every E-invariant code in v” is isomorphic to one in 
K V contains a unique proper submodule C,, the extended (6,3) QR-code. 

E has a 2transitive subgroup HZ PSL(2,5) such that I’= FH as an FH- 
module. FH has two distinct submodules C, and Ct of dimension 3 being 
interchanged by PGL(2,5) (see also Theorem 6.2 below). Since PGL(2,5) 
supplements U, in Gh, we may conclude from (2.5) that PML(C,) = ‘ZI,. u 
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(4.4) T~EQREM. Let C be a no~tr~vi~~ (n, ~)-~o~e over F. 
PML(C) 2 ‘u,, then C is isomorphic to the re~et~ti~~ code or i 

~~o~~ The permutation module for (u, has the r~~~t~t~~~ 
dual as unique proper submodules [7]. The theorem is 
showing that every monomial action of the stem cover E of 
permutation action of !?I,. 

Let E, be the inverse image in E of a stabilizer -1 (axing the letter 
n - 1) We have to show that E, = Eh. This will be a i-sequence of the fact 
that the ~orestri~tion H2(%?In--I) t ~*~~~) is e~irno~hi~~ be~a~~se of 
Eemma 3.5(b). In order to prove this we make use of 
knows that ~~~~,) = Z, and H,(Yl,) = Z, for yt 2 8. 
details and have to examine Schur’s ~~~rne~~s mor 

Consider the Moore presentation R H L -++ an of a, 
-rl$**-Y q-2 and R generated as an L-group by xi, xf 
(xjxj+ I)3 for f < i < n - 3, and (xixj)“, where 1 < j < E” - 1, i < n - 2. The 
explicit presentation is given by xr t-4 (0 1 2), 
2 < i < ?o - 2. Setting T= {x1 ,..*) x,-~) and S = T 
~r~s~~t~tiu~ S w T-t, 8,-i, and the ~orestr~~ti~~ 
the natural map T’ n A’/[ T, S] -+ L’ n R/jL, 

r [ 12, p. I B7f proved that there is a word z in x~$*~.~ x4 such that 
4 generates L’ f? R/IL, R J. (One may take, f0r ~~~~~~~e, 

z=x,x,x,x,x;2X;3X3Xg1X;1x~~X;~X;1X~XiX$’) 

have also T’ n S/[ T, S] = (z [ T, S]). This gives the 

(4.5) Remark. It readily follows from Eemma 3.5 that the co~est~ic~~~~ 
2(%,-,) + H,(2I,) is epimorphic if YE is odd, YH > 5. Usin 

one can establish Theorem 4.4 inductively by shorte~~~~ e csdes of even 
length. 

5. MATHIEU GROUPS 

For a discussion of the Mathieu groups we refer to Conway 
~~~eb~~g [S]. It is known that the (extended; Golay codes admit 
groups as permutation groups (3j. We will show that there are n 
interesting codes with this property. 

As H,Wm,,) =O PI> by (3.2) we have to investigate induced 1x10 
Y= CPll, where U is a l-dime~sionai l~-m~dule over some fie 
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commutator factor group of the point stabilizer !JJIi,, has order 2. The 
permutation module k”mti yields the repetition code and its dual f7, Satz 41. 
In case char F # 2 we have a nontrivial l-dimensional RJR,,-module U. Let 
V= Urn,’ for that CJ. 

We first show that V is irreducible if char F # 3. Let F = Q. Applying 
(2.3) we see that the QY.Jl,,-module V is absolutely irreducible. In view of 
(2.6) we have to verify that V remains irreducible modulo 11 and 5 
(1 %I, i / = 11 . 10 . 9 . 8). This is clear mod 11 since Y belongs to an I 1 -block 
of defect 0 14 Sect. 621. Looking up the character table for W,, in [ 21 one 
realizes the character decomposition 

x44=x1 +x11 +X*6 +xTe 

on 5regular elements (xl1 = character of Y, ~“(1) = n). There are live 5 
blocks of defect 0 and 9 conjugacy classes of 5-regular elements. Since the 
Sylow 5subgroups of 9J,, have order 5, the decomposition numbers are 0 or 
1 by Brauer-Dade [4, Theorem 68.11. We may conclude that the restrictions 
to 5-regular elements of xl, x,,, x16, ~7~ are just the irreducible Brauer 
characters in the principal 5-block for 9Jl, i . In particular, V is irreducible as 
well when F is a field of characteristic 5. 

So let char F = 3. Then V is a uniserial FAIR, ,-module with composition 
series 0 c C;, c Cl, c V, where C,, is the ternary Golay code of 
dimension 6. (Note that C;, is the expurgated Golay code.) All these facts 
can be established using the information given in Conway [3]. C;, is 
absolutely irreducible because its dimension is the prime 5 [4, 
Theorem 24.61. From (2.3) it follows that Cf, is not isomorphic to V/C,, 
which, in fact, is the dual module of Ci,. 1 

(5.2.) ml, 

By (21 Hz(%Q,12) = Z,. Let E be the stem cover of 9JI,2 and E, the inverse 
image in E of a point stabilizer !JR,, . Then E, is a direct product of Z, and a 
copy of %JI,,. As before the permutation module gives only the repetition 
code and its dual. If char F # 2, the unique nontrivial l-dimensional FE,- 
module induces up to an FIlR,, -module V. When char F = 3, V has a unique 
proper submodule Cl2 = CT,, the extended ternary Golay code of dimension 
6. Cl, is an absolutely irreducible FIUl,,-module being not isomorphic to its 
dual V/C,,. If char F # 3, V is irreducible by (5.1). i 

(5.3) w,, 
It is known that H,(!JJlm,,) = Z,, [ 181. Let A >+ E -++ 9Jlz2 be the stem 

cover of 9Jl,, and E, be the inverse image in E of a point stabilizer 
%U,, = PSL(3,4). By Lemma 3.5(a), 3 divides ]A A EL/. Assuming A @E; 
we get a character of order 2 of E,/Eh, producing a faithful complex module 
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of dimension 22 for the 2-fold proper covering E of 
at most two irreducible components. But E has on1 

x representations of degree 10 and of degree larger t 
22 only those of degree 21 and at least 55 12, p 

O = E,. (As a matter of fact, we see that 22 divides 
~*PJL) = Zl, x Z.4.) 
to determine the codes admitting !BIz2 therefore have to 
permutation module V = pzzB If char F we just obtain the 

repetition code CF and its dual Ci [7, Satz 41. suppose 6: = F,. It is welf 
known that 9Bz, leaves invariant a (22, 12)-code 
obtained by shortening the binary Colay code C,, I 
and C; n C,, = C, @ Ci,. YJ&2 acts trivially on C,,/C& and, as E 1 
divide 2” - 1 for a! < 10, irreducibly on C& E (V/C,,>*. l&-ram [7, 
follows that CF/C, is (absolutely) indecomposable. 

ence all interesting ‘9&,-invariant codes (over ff J are 
We claim that C& is an absolutely irred~~~bi 

Note first that Ck, is the set of all vectors in C,, of weights 
contains 77 vectors of weight 16 complementary to the blocks of the 
system S(3,6,22). The stabilizer T in !J&, of a vector of weight 
maximal subgroup having two orbits of length 6 and 16 on the 22 letters [3, 
Table 31. Hence T fixes only 2 vectors in C:, . I 

Thus the situation is the same for F 3 IF,. 

&=Q [2] and !J&=9&, we just have to ~~~es~ig~~~ t 
~ermutatlo~ module V = P23. As before only the case where char 8’ = 2 IS 
Enteresting. Then V = CF @ C’;, where Ck has a un’ 
CF~. C,, = CF @ C& is the “binary” (23, 12) Golay c 

& = 0 [2] and !IJIz3 = YJI;,, again only the ~errn~tat~o~ mo 
IS of interest, where char F = 2. Then V has a unique co 

series 8 c CF c c,, = c,L, c e; c v. ere C,, is the extended “binary” 
olay code. The indecomposability of CbjC, 

weight consideration (over FJ, using t 
tra~sitiveiy on the et of dodecads [3], one realizes that C,, is ( 
indecQm~osable. 

etermine the permutation groups PML(C,). Clearly the 
ar nded) (JR-codes. We will see in Section 6 that an exten 
of length p + 1 does not admit PGL(2, p). Since 
of ns we may conclude from Theorem 4.4 that 
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n = 12,24. This holds also for n = 11,23, because 9R,, and mm23 have no 
outer automorphisms. Of course, these facts are well known [3, 
Theorems 2.4 and 3.61. 

The situation is different for !I.RZ2. Aut(!IJ&,) is a permutation group of 
degree 22 [8, 12.51, having YJI,, as a normal subgroup of index 2 [3]. In fact, 
Aut(llR,,) is induced by the normalizer N~,,(VJ&) and so leaves invariant 
C,, and Ci,. There is only one ‘%$,-invariant code of dimension 11 which 
admits Aut(W,,), namely, C,, n Cj. Since Aut(W,,) is a maximal subgroup 
of GZ2, (4.4) gives PML(C,,) = Aut(W,,). 1 

6. EXTENDED QR-CODES 

By the Gleason-Prange theorem [ 1, Theorem 3.11 the extended QR-codes 
of length p + 1, p an odd prime, admit PSL(2, p). We will characterize these 
codes by the property that their permutation group contains PSL(2, p) but 
not PGL(2, p). The case p = 3 is already handled in (4.1) so that we may 
assume p > 5. Then PSL(2, p) is simple. 

G = PSL(2, p) is 2-transitive on p + 1 letters, the points of the projective 
line 52 over lFp. It is known that E = SL(2, p) is the unique stem cover of G 
[6, Satz V. 25.71. Because of Theorem 3.1 we have to investigate monomial 
actions of E. Write a = (0” U!l) for some generator v of I$ and let 
u = (-y ,$ c = (: y). We have u-‘au = a-‘. E, = (a, c) is the normalizer of 
the Sylow p-subgroup S = (c) of E. H = (a) complements S in E,. E, is the 
inverse image of a point stabilizer G, (fixing co). The normalizer N= N,(H) 
is generated by a and U. For any x E H with x2 # 1, C,(x) = H and 
Nd(x)) = N. 

The above notation is fixed through (6.1), (6.2). 

(6.1) LEMMA. Suppose U is a l-dimensional FE,-module affording a 
character 1 of order greater than 2; let V = UE. Then End,(V) is of F- 
dimension 1. If char F # p, V is absolutely irreducible. 

ProoJ: Clearly u E E - E, and H =E, n EE-‘, Since u inverts the 
elements of H and 1 has order greater than 2, by (2.3) End,(V) has 
dimension 1. Hence V is absolutely irreducible if char F does not divide 
1 El = (p + l)p(p - 1). We may assume that F is an algebraically closed 
field such that char F = q divides p2 - 1. Note that the order of A is prime 
to q. 

Let P be a q-adic field with residue class field F. According to Lemma 2.6 
we can lift V in a natural way to an FE-module I? P is absolutely 
irreducible. If q is odd and a divisor of p + 1, the order of a Sylow q- 
subgroup of E divides p + 1. If q = 2, G = PSL(2, p) operates on p, and 
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p -+ 1 is divisible by the order of a Sylow 2-subgroup of G when p = 3 
(mod 4). In these cases V and P belong to a q-block of defect 
is irreducible 14, Sect. 62]. 

Assume therefore that either q = 2 and p = I (mod 4 
divisor of p - 1. Let D = (x) be a Sylow q-subgroup of 
(ordinary) character afforded by I? From the character 
Theorem 38.11 one sees that 

X(XY> = 4Y) + n*(Y) (mod s> 

bar all y E H; A* is the dual character to /2. Now H= C,(x) since / 
]M belongs to the block b of FH, then x belongs ?o the q-b 
rauer’s second main theorem 14, Theorem 63.21. Clearly 

group of b. As ,I has order # 1,2 and u inverts the elements 
N,(b) = H = C,(D). Applying Brauer’s first main 
Theorems 64.10 and 58.31 shows that D is also a defect gro 
14, Theorem 68.11 it follows that V is the unique irred~~ib~~ 
the block B. This completes the proof. 

(6.2) THEOREM. Besides the repetition code and its leal, there are (up to 
~s~~~rp~is~) precisely the following proper co s ~d~~tti~g G = PSL(2, pi): 

(i) If char F = 2 and F4 SF, there is a (p + 
F; it can be written in IF, if and only ifp E f 1 (mod 

(ii) If char F is different from 2 and p and (--I 
F#, there is a (p + 1, (p + 1)/2)-code over F. 

(iii) fpn case char F = p there exist (p + 1, k)-codes over F, me for 
each k between 2 and p - 1. 

The codes in (iii) admit PGL(2, p); the codes a~pea~~~g in (i), (ii) are I 
extended QR-codes *which do not admit PGL(2, p)* 

ProoJ all that PGL(2, p) is sharply 3-transitive on 
immediate GL(2, p) is a stem cover of PGL(2, p). Every 
action of E = SL(2, p) can be extended, in various ways, to GL(2, p). 

(i) char F = 2. 

n view of (6.1) we only have to study the permutation module 
V = FG(= FE). Assume first that F is algebraically closed. Let 1 i- w be the 
complex permutation character of G = PSL(2, . From the character table 
[4, Theorem 38.11 one obtains that there are irr cible characters yl, qaz (of 
6) of degree (p - 1)/2 such that 

481/67/2-12 
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on 2-regular elements; vi and r/2 differ on 2-regular elements, and they have 
there values in a(s), where s* = (-l)(fl-1)‘2p. 

NOW G, is a Frobenius group with kernel the image ,.?? of S in G. 
Application of [6, Satz V. 16.131 and Mackey decomposition shows that the 
restriction of v/ to G, can be written as 

vlG,=l+v:+~~, 

where r; and r; are different irreducible characters of degree /GO/s] = 
(p - 1)/2. Since $, r’, are in a 2-block of defect 0 for G,, we may deduce 
that vi and r2 remain irreducible as Brauer characters. Hence V has (unique) 
submodules C, c Cj of dimensions 1 resp. p and M = Ci/C, has two 
nonisomorphic composition factors of dimension (p - 1)/2. 

Viewing V as the permutation module for PGL(2, p), M is irreducible. 
This follows, for instance, from the fact that the permutation character of a 
point stabilizer is of type 1 + y, where y is irreducible of degreep - 1 and so 
is in a 2-block of defect 0. Consequently (Clifford) A4 = c, 0 CZ for some 
nonisomorphic irreducible FG-modules Ci = CJC,. As codes the Ci are 
isomorphic since they are interchanged by PGL(2, p). Clearly C, and C, are 
the (isomorphic) extended QR-codes over F. (For an alternate approach see 
[16] or [ll].) 

Since vi, y/* have their values in the quadratic field O!(s), from Lemma 2.7 
it follows that the codes Cj can be written in the field F, and, by elementary 
properties of 2-adic squares, in IF, precisely when p 5 f 1 (mod 8). 

Finally, since char F = 2, the permutation action of G cannot be extended 
to a proper monomial action of GL(2, p). Hence PGL(2, p) & PML(Ci). 

(ii) char F # 2, p. 

The permutation module V= FE now yields only the repetition code and 
its dual. This can be checked by applying [ 13, Corollary 21. (One can verify 
this also by means of [7, Satz 81 in case char F does not dividep + 1, and by 
a block theoretic argument otherwise.) 

In view of (6.1) it remains to consider V= UE, where U is the l- 
dimensional FE,-module affording the unique linear character ,J of order 2. 
Assume first that F is algebraically closed. In the semisimple situation from 
[4, Theorem 38.11 (and its proof) it follows that V= C, @ C, for some 
irreducible FE-modules Ci of dimension (p + 1)/2. So let char F = q be an 
odd divisor of p2 - 1. 

There is a q-adic field F, with residue class field F, which is a splitting 
field for E. Lift I’ to an FE-module P as in (2.6). We already know that 
there are irreducible characters {, ,<, of degree (p + 1)/2 such that cl + r2 is 
the character of l? From the character table we infer that 5i and & differ on 
q-regular elements and have their values in a(s), E as in (i). We claim that 
tl, c2 are irreducible also as Brauer characters mod q. 



be a Sylow q-subgroup Of E. If q is a divisor 
ee Of the ci and we are done. Suppose next t 
e may assume D C N. From [4, Theorem 
at there is an irreducible character x E (with values In PI, 
Om a linear character Of E, of order 2 / 

Onq-r lar elements. Let B denote the q-block ~O~tai~i~g x, 
and &. rice H 3 D is cyclic and B is not Of defect 0, a 
Theorem 6X. 11 shows that {I and c2) re ricted 10 q-regular ekements, are the 
unique irreducible Brauer characters in 

~O~se~~ent~y V has two nonisomorp 
y (2.3) dim, End,(V) = 2. Thus, as before, V= C, 0 Cz for 
ible FE-modules Ci Of dimension (p 

In any case, 6, and C, represent the extended -code Over F. In fact, 
GH,(2,p) interchanges C, and C, in any monomial action extend 
E. This also can be seen from the character table. F 
following (2.5) we may conclude that the codes C, 

The codes Ci can be written in IFJs) resp. Q(E), where E 
This fOllows from (2.7); (2.3) guarantees that the Schut in 
is 1. 

(iii) char F = p. 

y Brauer-Nesbitt there is, up to isomor~hism, exactly One (abso~~te~~) 
irreducible FE-module W, of dimension k (I < k < p) 16, V.5.131. From [ 
Theorem 7 I.31 One obtains that the various ~-dimensional ~~~-rnod~~~s 
induce up to FE-modules V, having a s~bmodu~e @,z Wk such that 
Vk/C,z Wpilek (1 <k<p- 1). Furth more Vcpilu2 = F, where U 
affords the character of E, of order 2. bviously V, is the ~e~rn~t~t~~~ 
rnod~~e~ and V, = C, @ Ct. 

y (2.3), (6.1) End,(V,J has F-dimension 2 
k = (p + 1)/2. Since both composition factors Of p+ 1j,2 are is~rnOr~~~~~ 
v (P+ PY2 must be indecomposable. This is immediate in the other cases 

ence C, is the unique proper submodule f Vk/k, k = 2,..<, p - 1. The csde 
C, admits PGL(2, p) by Clifford theory. 

The codes in (iii) are extensions of the Optimal CO 
described by Assmus and Mattson [ 1, Sect. 21. 

er~~t~tion Groups 

Suppose C is an extended @Z-code Of lengt 
G = PiUL(C). Then G contains PSL(2, p) but not 
cases are known where G # PSL(2, p), namely, 
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(1) P=5, I;? F,: G=‘2&, 

(2) P=7, charF=2: G = Aff(3,2), 

(3) P= 11, charF=3: G = Wz, 
(4) ~=23, char F= 2: G = ‘9124. 

It is conjectured that G = PSL(2, p) provided p > 23. We cannot settle this 
in generality, but here is some further evidence for its truth. 

(6.4) THEOREM. Let C be an extended QR-code over F of length 
p + 1 > 8, and let G be a subgroup of PAIL(C) containing PSL(2, p). Then 

(i) G is a proper subgroup of ZI,,+ 1. 

(ii) Ifp > 7 and G # PSL(2, p), then G is Uransitive and simple. 

ProoJ: Let N be the normalizer in 6,+, of a Sylow p-subgroup S of 
PSL(2, p). N has order p(p - 1) and contains a (p - 1)-cycle. It follows 
that N supplements PSL(2, p) in PGL(2, p), and 21P+, in-G,+,. Since G 
contains PSL(2, p) but not PGL(2, p), the normalizer N = NG(S) is a 
subgroup of PSL(2, p). 

S is a Sylow p-subgroup of G n aP+i. Hence from NZ PSL(2, p) g 

Gn%+, it follows G E 21P+ i by the Frattini argument. Because of (4.4) G 
is a proper subgroup of (u, + I . 

Now assume G # PSL(2, p) and p > 7. By Neumann [ 10, Theorem 2.11 
then G is 4-transitive. Suppose Mf 1 is a normal subgroup of G. M cannot 
be regular [17, Theorem 11.31, hence is at least 3-transitive. This implies that 
S c M and PSL(2, p) EM, by simplicity of PSL(2, p). Moreover we have 
G = Mm, again by the Frattini argument. Now from flit PSL(2, p) it 
follows G = it4, as desired. 1 

A group G as in Theorem 6.4(ii) would be an “unknown” simple group, 
provided p > 23. Theorem 6.4(i) answers a conjecture of Rasala to the affir- 
mative [ll, p. 4701. It should be possible to establish this by more 
elementary arguments than those used in (4.4). (But the argumentation by 
Shaughnessy [ 13, p. 4021 cannot work, as follows from [ 1, Theorem 2.21.) 
Under additional assumptions, Theorem 6.4 can be improved so that 
PAIL(C) = PSL(2, p). For instance, this holds if p - 2 is a prime [lo, 
Corollary 2.21, or if (p - 1)/2 is a prime and 23 < p < 4079. (The latter 
result has been already stated in [l, p, 1461. But, as Rasala [ll] noted, it 
depends on the validity of his conjecture, i.e., on Theorem 6.4(i).) 
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