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In this paper a program is proposed how to determine codes with given
transitive permutation group. The approach is module theoretic, based on a
study of monomial actions and projective representations. Some highly tran-
sitive groups are discussed in detail.

There appear slightly different concepts of (linear) codes in the literature.
Following Ward [16] and Rasala {11} a code over some commutative ring F
with unity will be a triple (¥, B, C), where V is a free F-module of finite rank
with basis B and submodule C. By convention we then call C a code having
ambient space ¥ and ambient basis B. F is the alphabet of C, the rank » of
V its length, and C is an (n, k)-code if C is free of rank k. (In this paper F
will always be a field.) ‘

The Hamming weight of a vector (word) in V is the cardinality of its
support with respect to the given basis. The minimum weight of a code C is
a measure for its error-correcting capability. Hence morphisms between
codes should preserve the Hamming weight. This leads to the definition: A
morphism {V, B, C)— (V',B’,C’) of codes over F is an injective F-linear
map u: V— V" with Cu < C’ sending any e € B to a scalar multiple of some
¢ € B’. The codes C and '’ are isomorphic if g is bijective and Cu= C'.

ML(C) denotes the group of all (code} automorphisms from (¥, B, C)
onto itself, the monomial linear group of C. (ML(C) can be represented, with
respect to B, by monomial matrices.) Let B={(¢;), i€ 2= {0,...,n— 1}
Every 4 € ML(C) determines a permutation Z on £ by e,u € {¢;z). The map
gt @ is an epimorphism of ML(C) onto a subgroup PML(C) of the
symmetric group on Q. PML(C) is called the permutation group of C. C
admits a permutation group G on £ if G is a subgroup of PML(C). The
clements of ker(ut » 1) are the diagonal automorphisms of C.

Observe that the transitivity behaviour of the permutation group of a code
is a measure for its homogeneity. Codes having (multiply) transitive
permutation groups have good error-correcting properties and provide for
powerful decoding methods. Actually there are many interesting codes with a
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multiply transitive permutation group. For instance the extended quadratic
residue (QR-) code of length p + 1, p an odd prime, admits PSL(2, p). (A
generalization to symplectic groups can be found in Ward [16].) The 5-
transitive Mathieu groups MM ,,-and M,, are the permutation groups of the
extended ternary and binary Golay codes, respectively. The binary
Reed-Muller codes of length 2™ admit the affine groups Aff(2",2). (A
general reference for this is MacWilliams and Sloane [9].)

For theoretical and practical reasons one may ask for a method to
determine all codes with prescribed permutation group. In attacking this
problem we show, via some kind of Krull-Schmidt decomposition for codes,
that it suffices to construct those codes whose diagonal automorphisms are
scalar multiplications (see Section 1). Every diagonal automorphism of a
nontrivial code C is scalar, for instance, if PML(C) is primitive
(Theorem 1.3). In this case we have a central group extension

*) F* > ML(C)— PML(C),

where F* denotes the multiplicative group of the field F.

A group E is said to act (monomially) on a code (¥, B, C) if there is given
a homomorphism E — ML(C). E induces a permutation group G on {2, the
index set of B. In the situation (*) we obtain a projective representation of G
on V which lifts back to the given (ordinary) representation of E on V.
Under suitable assumptions, this projective representation can be lifted also
by stem covers of G (“Darstellungsgruppen” in Schur’s terminology).
Moreover, if G acts transitively on 2 and E, is the subgroup of E fixing
U= {e,), then the monomial action of E on V can be replaced by that
induced on U* = U ®, FE (Proposition 2.1).

This will serve as a principle for constructing codes admitting a given
primitive permutation group (G, £2): Suppose E is a stem cover of G and E,
is the inverse image in E of a point stabilizer. Then the FE-submodules of all
induced modules U%, U being a 1-dimensional FE-module, yield a complete
list of codes over F. admitting (G,2), provided Ext(G/G',F*)=0
(Theorem 3.1). This condition is fulfilled, for instance, if F is algebraically
closed or G = G’ is perfect. In general one can start with an algebraically
closed field of scalars, which is appropriate also for module theoretic
reasons. Then one has to find, for any submodule C of U*, the smallest fields
of realization. '

To illustrate the program we will determine all codes admitting alternating
groups or Mathieu groups. It turns out that the alternating groups U, of
degree n > 7 occur only in the permutation group of the repetition code and
its dual (Theorem 4.4). Here we make use of Schur’s work [12] on the
multipliers of alternating groups. The Mathieu groups only leave invariant
Golay codes, besides the repetition code and its dual. This depends on results



CODES WITH PRESCRIBED PERMUTATION GROUP 417

of Burgoyne and Fong [2] (and P. Mazet {18]) on the Schur multipliers of
the Mathieu groups.

The paper is concluded by a discussion of QR-codes. We show that the
extended QR-codes (of length p + 1) are characterized by the property that
they admit PSL(2, p) but not PGL(2, p) (Theorem 6.2). It is conjectured
that the (full) permutation group G of such a code is precisely PSL(2, p}
provided p > 23. We can prove, at least, that G is a proper subgroup of U,
if p> 5. This answers a conjecture by Rasala [11] to the affirmative. If
p> 23 and G+ PSL(2, p), then G would be an “unknown” simple group
being 4-transitive on p + 1 letters (Theorem 6.4).

1. INDECOMPOSABLE CODES

Let C be a code over F with ambient basis B = (¢)), i € 2= {0,....,n — 1}.
If B" € B then C' = CN (B') is regarded as a code with ambient space (B')
and ambient basis B’. C is called decomposable if B can be partitioned into
at least two nonempty subsets B; such that C =@ C,;, where C;=CN(B,),
and indecomposable otherwise. There is a unique partition of B into subsets
B; such that C=@ C; and each C; is indecomposable (Krull-Schmidt).

The decomposition of C into its indecomposable components C; can be
studied from a different point of view. Call a nonzerc vector v €C
indecomposable if v is not the sum of two nonzero vectors in C with disjoint
supports. Every vector is a sum of indecomposables which, however, are not
uniquely determined. If d is the minimum weight of C, then any nonzero
vector in C of weight at most 2d — | is indecomposable. {Recall that the
weight of v =" g,e; is the cardinality of supp{v) = {i|i € 2, a,% 0}.}

Define the binary relation 4 = A on £ to be the set of all pairs (i, j) € 27
such that there is an indecomposable v € C having [, j in its support. Let
A=A, be the smallest equivalence relation on 2 containing 4. Then
(i, /) € A if and only if i = j or there are indecomposable v, € C (1 <k < m)
such that i€ supp{v,), j€ supp(v,,), and supp(v, ,)vsupplo,) # @ for
2k m Note that 4, and }I_C are invariant under the automorphism
group ML(C), ie., under PML(C).

(1.1) LemMa. Let (B;) be the partition of B corresponding to the
equivalence classes of A, and C;=CM(B)). Then C=@) C; is the decom-
position ¢f C into its indecomposable components.

Proof. If ve& C is indecomposable, supp(v) is contained in just one
equivalence class of 4. Since any v € C is a sum of indecomposable vectors
in C, it is enough to show that each C; is indecomposable. Assume
B;=B UB" (disjoint, B'#@# B") and C;=(C,N{B))® (C,N{B")).
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Since B; corresponds to an equivalence class of A, there must be an
indecomposable vector v € C; such that supp(v) meets the index sets of both
B’ and B”, which is impossible. [

The indecomposable components of C can be related to the structure of
ML(C). To explain this we introduce a further equivalence relation 4 =4,
on 2. Let (i, j) € 4 if each diagonal automorphism of C multiplies both e;
and e; with the same scalar. Of course, if #=1IF, then 4 is the universal
relation on £2. Thus 4 is interesting only when F # [F,.

(1.2) THEOREM. Suppose F+#F,. Then A. and A coincide. In
particular, C is indecomposable if and only if every diagonal automorphism
of C is a scalar multiplication.

Proof. From Lemma 1.1 it follows 4 < A, because of |F| > 2. To prove
the converse let (B}) be the partition of B associated to the equivalence
classes of 4. Let v € C. Then there are unique v; € (B}) such that v =} v;.
We claim that all v; belong to C. Define m, = max{j|v;+# 0}, m,=0. The
claim is obvious if m, < 1. Let m,=m > 1. Fix j between 1 and m — 1. By
definition of A there exists a diagonal automorphism x of C such that
vx=a,v, (1 <k m)and a;#a,. Then

m—1
w=a,v—vx= Y (a,—a,) 0,
N k=1

is in C and satisfies m, < m — 1. By induction w; = (a,, — a;) v; € C, hence
v, €C. Also v, =v— 37"} v, €C, as claimed.

We have established that, for every indecomposable v € C, supp(v) is
completely contained in some equivalence class of 4. Therefore 4 < 4, hence
also A< 4. N

We now give a sufficient condition for a code to be indecomposable in
terms of its permutation group.

(1.3) TaeOoREM. If C is a nontrivial code such that PML(C) is primitive,
then C is indecomposable and every diagonal automorphism of C is scalar.

Progf. The minimum weight d of C is at least 2, by transitivity of
G = PML(C). Consequently A is not the diagonal in £22 Since A is G-
invariant and G is primitive, it follows that A is the universal relation on £.
By (1.1) C is indecomposable. Finally apply Theorem 1.2. [

Observe that there are decomposable codes having a transitive
permutation group, e.g., ¥=F* C=(1010)@® (0101). Here C is cyclic.
However, we have the following criterion.
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(1.4) ProposiTION. Let C be cyclic. If C contains an indecomposable
vector v such that there are i, j in supp(v) with i — j coprime to the length n
of C, then C is indecomposable.

Proof. Straighforward. §

The structure of a code C is completely determined by the structure of its
indecomposable components. So, in principle, we may restrict our attention
to the study of indecomposable codes.

2. Actions oN Copes AND INDUCED MODULES

Let (V,B,C) be an (n,k)-code over F, B={(e), i € 2 ={0,.,n—1}.
Suppose we have a group homomorphism ¢: £ ~ ML(C). Then E is said 1o
act {monomially) on C (via ¢). Composing ¢ and the natural epimorphism
from ML(C) onto PML(C) yields a map E ~ PML(C) whose image G is 2
permutation group on (2.

Clearly V is an FE-module via ¢, with invariant subspace C. Assume E
{(ie., G) is transitive on £. Let E, be the largest subgroup of E leaving
invariant the 1-dimensional subspace U = (e,). Then, for each i € {2, thers
exists x; € E mapping U onto {e,). Hence

is an FE-module induced by the FE module U.

(2.1) ProrosiTION. Assume E acts on (V, B, C) and is transitive on 2.
Let E, be the subgroup of E leaving invariant U= (e, and let
V' =U®g, FE. Choose a right transversal (x,) to E in E indexed such that
eox; € (&), say e,x;=aq;e,. Let ¢, =e,® x, and B’ = (e}). Then the linear
map V'V given by e;r-ae; is a monomial isomorphism
(V',B'Y— (V, B) of FE-modules, and the preimage C' of C represents a code
isomorphic to C.

Proof. 1t is immediate that B’ = (e}) is a basis for ¥’. E operates on ¥’
by

ejx = (e0®xi)x:ciee®xj:cie},
where x;x = X,x, with X, € E, and e %; = c,e,. Since also
i i i [ 0"vi [

(a;e;) x = (e,x;) x = c;e0%; = ¢,(ase)),

4 is an FE-isomorphism. We are done. §
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Identifying ¥ and V7 in the situation of Lemma 2.1 is now justified. The
code C can be represented as a submodule of the induced module
U* = U®;, FE, U= (e,), equipped with a basis B = (e,), where ¢, = ¢, ® x;
for some right transversal (x;) to E, in E, choosing x, = 1. This notation is
fixed in the sequel.

(2.2) Remark. In theory, we may construct all codes over F admitting a
transitive permutation group (G,£2) as follows: Consider any group
extension 4 >— E - G with 4 abelian. Let £, be the inverse image in E of a
point stabilizer G,. Inducing up to E all |1-dimensional FE,-modules U we
obtain all (transitive) monomial representations of E with permutation group
(G, 2). The codes admitting (G, £2) occur as submodules of all ¥ = U*.

By a monomial action of an extension E of a (transitive) permutation
group (G, 2) we always mean a monomial representation of E inducing
(G, Q).

In general, it is fairly hopeless to construct all required group extensions
of G. However, in order to obtain all those codes which are indecomposable
we have to consider only the case where A4 is central in E and isomorphic to
a subgroup of F* (Theorem 1.2). Moreover, any supplement to 4 in £ will
leave invariant the same subspaces. When F is finite we may take minimal
supplements yielding central Frattini extensions of G. There exists, to any
finite group G and any finite field F, a unique maximal (central) Frattini
extension A, > G, - G, with A, of exponent dividing |F*|, having any
other such extension of G as epimorphic image over G (i.e., inducing the
identity on G). This is a slight generalization of a classical result by
Gaschiitz [5]. We omit the details. In Section 3 we will see that one can use
without loss stem covers of G instead.

We present some basic facts concerning monomial actions and induced
modules. Throughout let E be a finite extension of the transitive permutation
group (G, 2) and V = U* for some l-dimensional FE,-module U, the basis
B = (¢;) of V indexed by 2. (If W is an FH-module and «a is (or induces) an
automorphism of H, then W, is the vector space W with module structure
wox=wx®forwE W, x€ H.)

(2.3) LEMMA. Assume G acts 2-transitively on 2. Then the F-dimension
of End. (V) is at most 2, and it is 1 if and owly if the restriction W of U to
H=E,NE} ", for any y € E — E,, is not isomorphic to W,.

y
Proof. Apply Frobenius reciprocity and Mackey decomposition. [l
Observe that the F-algebra End (V) is commutative if its dimension is at

most 2. If dim, End (V) =1, V is absolutely indecomposable such that no
proper submodule is an epimorphic image of V. In case V=FF is a
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permutation module, i.e., U is the trivial FE module F, and G acts Z-
transitively, End (V) always is of F-dimension 2.

Write e, = e, ® x; for some right transversal (x,) to E, in E. If U* = (g}
is the dual module of U, (U*)* can be viewed as the dual module V¥, with
dual basis B* = {ef ® x;). The duality W > W= from V toc V* preserves E-
invariance. So every code (V, B, C) invariant under £ corresponds to an £-
invariant code (V*,B*, C*). If U= U* then we may identify (V, B) and
(7%, B¥), This is familiar in case V= FF is a permutation module. Clearly
U= U* whenever the corresponding character is of order at most 2 {(e.g.,
|Fl1<3)

(2.4) LemMA. Suppose that o is an automorphism of E normalizing .
Let B,=(e,®x%). Then e,®x,>e,®x%" defines a monomial
isomorphism (U®, B)— (U,)E, B,) which gives a 1-1 correspondence
between E-invariant codes.

Proof. Tt is immediate that B, is a basis of V= (U,). One checks that
ee® x; - e, @ x¢ " defines a monomial isomorphism (¥, B)» (¥, B,) of
FE-modules. Moreover, the identity map (V, B)— (V,,B) is a monomial
isomorphism respecting E-invariance of subspaces, by definition of V. - &

Thus for instance the E-invariant codes in ¥ = U® and V* = (U*) are
pairwise isomorphic if there is an automorphism o of E normalizing E, and
inverting the elements in E,/Cp (V).

(2.5) LemMA. Let E be embedded in a finite group L. There exists a
monomial action of L on V = U* extending that of E if and only if there is o
subgroup L with the following properties:

(i) L=FELyand ENLy=E,;
(i} U affords an FLyaction extending that of E,.
Proof.  Straightforward. B

If the field F of scalars is sufficiently large, condition (ii) in (2.5) is
fulfilled exactly when there is a normal subgroup of L,, with cyclic factor
group, intersection E; in the centralizer C, (U). We apply Lemma 2.5 mostly
in the following situation: Suppose E is a subgroup of ML(C) for some
indecomposable code C. If E induces a perfect permutation group G = &',
then E’ is contained in any supplement L to F* in ML{C).

(2.6) LemMA. Suppose char F=p >0 and F is a p-adic field with
residue class field F. Then U can be lifted in a unigue way to an FE -module
U preserving the order of the character, and V is the reduction of

V=0®g, FE.
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Proof. The order of the character A afforded by U is prime to p. By
Hensel’s lemma there exists a unique F-character 1 having the same order
and lifting . N

We finally give some comment concerning the fields of realization for
codes. Let C be an FE-submodule of ¥ and F, a subfield of F. C can be
written in F,, (with respect to E) if there is an E-invariant code (V,, B,, C,)
over F, such that tensoring with F yields a code isomorphic to (¥, B, C).

(2.7) LEMMA. Suppose F is a splitting field for E of characteristic p > 0.
Let ¢ be a root of unity in F such that all values of the (Frobenius)
characters of the composition faciors of V =UF and of the character
afforded by U are powers of e. If every semisimple section of V is
multiplicity-free, then every code occurring as a submodule of V can be
written in Fy =T ().

Proof. Let V= U, ®g F,E, where U, affords the F-character satisfying
F® U,=U. Since Schur indices over finite fields are 1, every composition
factor of the Fy,E-module ¥V, is absolutely irreducible. Using that the
Jacobson radical J(FE) = F ® J(F,E) we may conclude that W,— F® W,
is an isomorphism from the lattice of submodules of ¥, to that of V. |

A corresponding result holds in characteristic O if the relevant Schur
indices are 1, e.g., when G is 2-transitive (2.3).

3. PROJECTIVE PERMUTATION REPRESENTATIONS

In order to construct indecomposable codes we may use Schur’s theory of
projective representations. For the theoretical background we refer to [15].

(3.1) THEOREM. Let (V, B, C) an indecomposable code over F admitting
a permutation group (G, 2), where B is indexed by Q= {0,...,.n—1}L If
Ext(G/G', F*) =0, every stem cover E of G affords an action on C inducing
(G, 2).

Proof. For each g€ G choose a preimage x, in ML(C). Then, by
Theorem 1.2, g+ x, is a projective representation in the sense of Schur.
Since Ext(G/G’,F*)=0 by hypothesis, there exists a homomorphism
¢: E—> ML(C) making the diagram

E—* ML(C)

Lo

G—— PML(C)

commutative [15, Proposition V.5.5]. 1
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(3.2) CoroLLARY. Assume (G, Q) is a primitive permutation group and
F a field such that Ext(G/G', F*)=0. Let E be a stem cover of G and E be
the inverse image in E of the stabilizer G,. Induce up to E all 1-dimensional
FE -modules. Then the submodules of the resulting FE-modules provide for a
complete list of codes over F admitting (G, £2) as permutation group.

Progf. Apply Proposition 2.1 and Theorems 1.3 and 3.1. §

(3.3) Remark. Let F be an algebraic closure of F. If (V, B, C) is a code
over F, then tensoring with F gives a code (¥, B, C) over F. If C admits
(G, Q) then so does C. Note that Ext(G/G', F*) =0 since F* is a divisible
group. Therefore we may carry out the program of (3.2) over F and then
check whether the resulting codes can be written in ¥ or not. Here
Lemma 2.7 will be useful.

Clearly Ext(G/G’, F*) =0 if G=G'. In case F is finite Ext(G/G', F*)=0
precisely when |G/G’| and |F™| are relatively prime. Then every central
Frattini extension 4 >» E -+ G with 4 of exponent dividing |F*| must be a
stem extension, hence an epimorphic image over G of any stem cover of G
[15, Proposition V.5.5]. Therefore only that part of the Schur multiplier
Hy(G)=H,(G,Z) of G will be relevant in (3.1) and (3.2) which is of
exponent dividing |F?|.

The passage to an algebraic closure can be avoided sometimes, even when
|G/G’| is not coprime to | F7|:

(3.4) ProrositioN.  Suppose (V, B, C) is an indecomposable code over
the finite field F admitting a transitive permutation group (G, 2) of degree n.
Assume the greatest common divisor of n, |G/G’|, and |F*| is 1. Let A be the
n-component of H,(G), where 7 is the set of primes dividing n. Then every
stem extension A > E — G affords an action on C inducing (G, 2).

Proof. Let L be the inverse image in ML(C) of G and L, that of G,. By
Proposition 2.1 we may assume V= U* where U= (¢,) is a I-dimensional
FLmodule and B = (¢, ® x;) for some right transversal (x,) to L, in L. By
Theorem 1.2, L is a central extension of G by F* It is immediate that
Ly=F' X C(U).

Let B be the n-component of F*. By Gaschiitz’s splitting theorem [6,
Hauptsatz 1. 17.4] there exists a supplement K to F” in L intersecting F* in
B. Since |G/G’| is relatively prime to |B| by hypothesis, we have
Ext(G/G', B)=0. Therefore there exists a homomorphism ¢: E— K such
that

E—* K

NS
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commutes |15, Proposition V. 5.5]. This completes the proof. (Alternatively
one could argue showing that any minimal supplement to B in K is a stem
extension.) 1

Investigating codes along the lines given in Corollary 3.2 the following
proposition will be useful.

(3.5) LEMMA. Let A >> E - G be a stem extension of the finite group G
and E be the inverse image in E of some subgroup G, of G. Let m = |G :G,|.
Then:

(a) ANE, is an epimorphic image of H,(G,) containing the m-th
powers of the elements in A.

(b) If the corestriction map H,(G,) - H,(G) is surjective,
A > E,—» G, is again a stem extension.

Proof. In view of the 5-term exact sequence |15, Sect. I1.3], the injection
E, > E yields the commutative diagram

Hy(Ey)) —— Hy)(Gy))—— A—— EJE; — Go/Gy— |

T I

H,(E) — H,(G) — A —— E/E' — G/G' —— |

having exact rows. By assumption the transgression H,(G)—» A4 (A = H,(4))
is epimorphic. (It is an isomorphism if and only if E is a stem cover of G.)
This proves (b) and the first part of (a).

Consider the transfer from E to Ey/E}. Since A S E'NZ(E),any x € A4 is
mapped onto Ey = x"E}. Thus x"€ AN E;. |

We shall illustrate the program of (3.2) by discussing some highly tran-
sitive groups (G, ), namely the alternating groups and the Mathieu groups.

4. ALTERNATING GROUPS

We construct, up to isomorphism, all codes of length » > 4 admitting the
alternating group %,. Of course, the repetition code ({3 e;)) and its dual
even admit the symmetric group &,. It turns out that for n > 7 no further
code occurs. For n < 6 we obtain some other codes which, however, are well
known. It is easily seen that all non-trivial codes admitting U, are
isomorphic to the repetition code or its dual.
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4.1) %,

According to (3.3) we start with an algebraically closed field F of scalars.
Up to group isomorphism, E = SL(2,3) is the unique stem cover of U,.
Following (3.2) we have to determine the nontrivial submodules of U* where
U is any l-dimensional FE;module (E, being the preimage of a point
stabilizer).

(a) Let char F=2. There are three nonisomorphic 1i-dimensional FE -
modules F, U, and U*, which are restrictions of FE-modules F, W, and W*,
respectively. The obvious module isomorphisms Uf= W® F¥,
(U*)f = W* ® FF are monomial (w.r.t. natural bases). So it is enough to
study the permutation module V=Ff (=F%). V has two distinct
submodules C, and Cj which are interchanged by ©,. These are the
(isomorphic) extended QR-codes over F.

From Lemma 2.7 it follows that the codes C, and C7 can be written
pecisely in those fields containing a primitive third root of unity.

We claim that PML(C,)=%,. At a first glance this seems to be obvious
since the permutation group &, interchanges C, and C;. But we have to
exclude that there is a monomial action of a stem cover of &, on ¥ fixing C,
(Theorem 3.1). Since H,(S,)=Z, and char F =2, we actually are reduced
to the permutation action.

{b} Assume char F = 3. There are just three irreducible FE-modules of
dimensions 1, 2, 3, which can be realized over IF,. The permutation module
splits into the repetition code and its (irreducible) dual. Inducing up to E the
unique nontrivial FE;module U gives an indecomposable FE-module
V = UF whose unique proper submodule C, has dimension 2. V affords a
monomial action of GL(2, 3} extending that of £ = 8SL(2,3) by (2.5). C, is
invariant under GL(2,3) as follows from Clifford theory. Hence
PML(C,)=8,. Of course, C, can be written in [, and then represents the
(4, 2) Hamming code.

{c) It remains to consider the semisimple situation. We make use of the
character table of SL(2,3) [4, Theorem 38.1]. Let U be the 1-dimensional
FEymodule affording the unique character of order 2, V= U% Then
V=C,®C,, where C; and C, are irreducible (but nonisomorphic) FE-
modules of dimension 2. By (2.5) we can extend the monomial action of F
on Vto GL(2, 3) in two different ways. In both cases GL(2, 3) interchanges
C, and C,, which are the (isomorphic) extended QR-codes over F. C; and
C, can be written just in such fields containing a primitive third root of
unity, because of (2.7).

All induced FE-modules of interest are of type W® V or W® FF where
W is a l-dimensional FE-module. But the permutation module F¥ only yields
the repetition code and its dual.
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We assert that PML(C,)=%U,. Assuming the contrary there is a
monomial action on V of the stem cover L = GL(2, 3) of &, leaving C,
invariant. The restriction defines a monomial action of E = SL(2, 3) leaving
C, invariant. The preceding discussion shows that L cannot fix C,. }

4.2)

As H,(U;)=Z, [12], by (3.2) and (3.5a) we only have to investigate
monomial actions of U, (with permutation part ).

The permutation module F¥ yields the repetition code and its dual. If the
field F does not contain a primitive third root of unity we do not get a
proper monomial action.

Assume F contains a primitive third root of unity. Then the nontrivial 1-
dimensional FU,-modules induce up to an FU,-module V" and its dual V*.
is absolutely irreducible when char F # 2. (Note that char F+# 3.) When
char F =2, V has a unique composition series 0 = C; = C; < V where C; is
a (5,2) QR-code and Cj is the expurgated QR-code.

Since A, has an automorphism normalizing %A, and inverting U/}, by
Lemma 2.4 the dual module V* gives codes isomorphic to Cs and C;. We
claim that PML(C,) = U,. Otherwise, by passage to an algebraic closure, we
have a monomial action of a stem cover L of &5 (Theorem 3.1). Lemma 2.5
and the remark following it lead to the desired contradiction.

Observe that C,, written over F,, is the I-perfect (5,3) Hamming
code. 1

(4.3) U,

In view of (4.2) just the repetition code and its dual will occur when
char F # 2 or F does not contain a primitive third root of unity. So assume
F,&F.

It is known that H,(U¢)=Z, [12]. Since char F =2 we only have to
investigate te monomial actions of the 3-fold cover 4 >» E -+ U, (|4|=3; E
is the so-called Valentiner group). Let E, be the inverse image in E of a
point stabilizer As. Since H,(U,;) = Z, we have E, = Ey X A. Inducing up to
E the nontrivial 1-dimensional FE,-modules gives an FE-module ¥ and its
dual V*,

There is a noninner involutory automorphism & of U, normalizing A,. By
[15, Proposition V. 5.5] @ can be lifted to an automorphism a of E. Since
S =(a,U,) and H,(S,)=Z,, a cannot centralize 4. Therefore a inverts
E,/E}. By Lemma 2.4 every E-invariant code in V* is isomorphic to one in
V. V contains a unique proper submodule C;, the extended (6, 3) QR-code.

E has a 2-transitive subgroup H = PSL(2, 5) such that V' = F" as an FH-
module. FZ has two distinct submodules Cy; and Cy of dimension 3 being
interchanged by PGL(2,5) (see also Theorem 6.2 below). Since PGL(2, 5)
supplements A in S, we may conclude from (2.5) that PML(C¢) =U,. 1
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{(4.4) THEOREM. Let C be a nontrivial (n, k)-code over F. If n > 7 and
PML(C)2¥U,, then C is isomorphic to the repetition code or its dual,

Progf. The permutation module for %, has the repetition code and. its
dual as unique proper submodules [7]. The theorem is established by
showing that every monomial action of the stem cover E of ¥, is the natural
permutation action of U,,.

Let £, be the inverse image in E of a stabilizer ¥, _, (fixing the letter
n— 1). We have to show that £, = E}. This will be a conseguence of the fact
that the corestriction H,(¥,_,)— H,(%,) is epimorphic, because of
Lemma 3.5(b). In order to prove this we make use of Schur’s work [12]. One
knows that H,{(¥,)=Z, and H,(YU,) = Z, for n > 8. However, we need more
details and have to examine Schur’s arguments more closely.

Consider the Moore presentation R >+ L —» %, of %,, L being free on
Xyses X,_, and R generated as an L-group by x3, x? for 2<ig<n~2,
(;%;,5) for 1<i<n—3, and (x;x,)% where 1 <j<i—1, i<n—2. The
explicit presentation is given by x,—(012), x,+— Qi+ 1) for
2<i<n—2 Setting T'={x;,...,x,_;) and §=TMNR we obtain a free
presentation S >— T U, _,, and the corestriction H,(U, )~ H,(¥,) is
the natural map 7" N §/[T, S| - L NR/[L,R].

Schur [12, p. 117] proved that there is a word z in X,,.., X, such that
z[L, R] generates L' M R/[L, R]. (One may take, for instance,

2= XXX X, X Ay 3,y ey Iy e ey e, x,)

Since n > 7 we have also "N S/[T, S] = (z|T, S]). This gives the desired
conclusion.. §

(4.5) Remark. It readily follows from Lemma 3.5 that the corestriction
H,(¥U,_,)— H,(N,) is epimorphic if 7 is odd, n > 5. Using this information
one can establish Theorem 4.4 inductively by shortening the codes of even
length.

5. MATHIEU GRroOUPS

For a discussion of the Mathieu groups M, we refer to Conway [3] and
Liineburg [8]. It is known that the (extended) Golay codes admit Mathieu
groups as permutation groups [3]. We will show that there are no further
interesting codes with this property.

(5.1) My,

As H,(M,)=0 [2], by (3.2) we have to investigate induced modules
V= U™, where U is a l-dimensional FI,,-module over some field F. The
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commutator factor group of the point stabilizer M,, has order 2. The
permutation module F™ yields the repetition code and its dual [7, Satz 4].
In case char F % 2 we have a nontrivial 1-dimensional FIt,,-module U. Let
V = U™ for that U.

We first show that V is irreducible if char F# 3. Let F=C. Applying
(2.3) we see that the QIt,,-module V is absolutely irreducible. In view of
(2.6) we have to verify that V remains irreducible modulo 11 and 5
(M,;l=11.10-9.8). This is clear mod 11 since ¥ belongs to an 11-block
of defect O [4 Sect. 62]. Looking up the character table for M,, in |2] one
realizes the character decomposition

Xas =Xyt Xu +Xis + X¥s

on S-regular elements (y,, = character of V; y,(1)=mn). There are five 5-
blocks of defect O and 9 conjugacy classes of 5-regular elements. Since the
Sylow 5-subgroups of M,, have order 5, the decomposition numbers are O or
1 by Brauer-Dade [4, Theorem 68.1]. We may conclude that the restrictions
to S-regular elements of y,, xi1s Xiss X¥s are just the irreducible Brauer
characters in the principal 5-block for M,,. In particular, V is irreducible as
well when F is a field of characteristic S.

So let char F=3. Then V is a uniserial FM,,-module with composition
seriecs 0 C;, «C,, <V, where C,, is the ternary Golay code of
dimension 6. (Note that C;, is the expurgated Golay code.) All these facts
can be established using the information given in Conway [3]. C;, is
absolutely irreducible because its dimension is the prime 5 [4,
Theorem 24.6]. From (2.3) it follows that Cj, is not isomorphic to V/C,,
which, in fact, is the dual module of C;,. B

(5.2.) M,

By [2]| H,(M,,)=Z,. Let E be the stem cover of M,, and E, the inverse
image in E of a point stabilizer M,,. Then E, is a direct product of Z, and a
copy of M,;. As before the permutation module gives only the repetition
code and its dual. If char F # 2, the unique nontrivial 1-dimensional FE,-
module induces up to an FIN ,-module V. When char F = 3, V" has a unique
proper submodule C,, = Cy,, the extended ternary Golay code of dimension
6. C,, is an absolutely irreducible FI,,-module being not isomorphic to its
dual V/C,,. If char F# 3, V is irreducible by (5.1). 1}

(5.3) M,,

It is known that H,(MM,,)=2Z,, [18]. Let A >» E - M,, be the stem
cover of M,, and E,; be the inverse image in £ of a point stabilizer
M,, = PSL(3,4). By Lemma 3.5(a), 3 divides {4 NE}|. Assuming 4 £ E,
we get a character of order 2 of E,/E}, producing a faithful complex module
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M of dimension 22 for the 2-fold proper covering E of M,,. By (2.3) M has
at most two irreducible components. But £ has only faithful irreducible
complex representations of degree 10 and of degree larger than 55 {2, p. 304]
and M,, only those of degree 21 and at least 55 [2, p. 744]. This forces
ACE}=EF;. (As a matter of fact, we see that 12 divides |H,(W,,)l; it is
known that H,(M,,)=Z,, X Z,.)

In order to determine the codes admitting ¥,, we therefore have to
discuss the permutation module ¥ = F™2 If char F # 2, we just obtain the
repetition code C, and its dual C; [7, Satz 4]. Suppose F=1F,. It is well
known that 9M,, leaves invariant a (22, 12)-code C,, over F, which is
obtained by shortening the binary Golay code C,,. We have V'=C} + C,,
and C; N Cyy = Cp @ Cy,. My, acts trivially on C,,/Cs, and, as 11 does not
divide 2° — 1 for a < 10, irreducibly on C;, = (V/C,,)*. From |7, Satz 4] it
follows that Cz/C, is (absolutely) indecomposable.

Hence all interesting M, ,-invariant codes (over F,) are situated between
C,, and Cy,. We claim that C3, is an absolutely irreducible F, M, ,-module.
Note first that Cy, is the set of all vectors in C,, of weights 0, 8, 12, 16. C3,
contains 77 vectors of weight 16 complementary to the blocks of the Steiner
system S(3,6,22). The stabilizer T in M,, of a vector of weight 16 is a
maximal subgroup having two orbits of length 6 and 16 on the 22 letters {3,
Table 3]. Hence T fixes only 2 vectors in Cy,. It follows Endy, (C3,)=F,.

Thus the situation is the same for F2 F,. §

(5.4) M,,

As H,(M,;)=0 [2] and M,,=M,,, we just have to investigate the
permutation module ¥ = F™», As before only the case where char F =2 is
interesting. Then V'=C,.@® C,, where Cy has a unigue proper submodule
Cs;. C33 = C. @ Cy, is the “binary” (23, 12) Golay code. #

(5:5) My,

As H,(M,,) =0 [2] and M,, = M),, again only the permutation module
V = F™ is of interest, where char F = 2. Then ¥ has a unique composition
series 0« CprcC,,=Cyj,cCic V. Here C,, is the extended “binary”
(24, 12) Golay code. The indecomposability of C;/C;. again follows from |7,
Satz 4]. By weight consideration (over F,), using the fact that M,, acts
transitively on the set of dodecads [3], one realizes that C,, is {absolutely}
indecomposable. H§

{(5.6) Permutation Groups

We determine the permutation groups PML{C),). Clearly the Golay codes
are (extended) QR-codes. We will see in Section 6 that an extended QR-code
of length p + 1 does not admit PGL(2, p). Since 9, is a maximal subgroup
of ¥%,, we may conclude from Theorem 4.4 that PML(C, )=, for
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n=12,24. This holds also for n= 11,23, because M,; and M,, have no
outer automorphisms. Of course, these facts are well known |3,
Theorems 2.4 and 3.6].

The situation is different for M,,. Aut(M,,) is a permutation group of
degree 22 [8, 12.5], having 9M,, as a normal subgroup of index 2 [3]. In fact,
Aut(IM,,) is induced by the normalizer Ny (M,,) and so leaves invariant
C,, and Cj,. There is only one 9M,,-invariant code of dimension 11 which
admits Aut(9M,,), namely, C,, N Cy. Since Aut(M,,) is a maximal subgroup
of 8,,, (4.4) gives PML(C,,) = Aut(M,,). 1

6. ExTENDED QR-CODES

By the Gleason—Prange theorem [1, Theorem 3.1] the extended QR-codes
of length p + 1, p an odd prime, admit PSL(2, p). We will characterize these
codes by the property that their permutation group contains PSL(2, p) but
not PGL(2, p). The case p=13 is already handled in (4.1) so that we may
assume p > 5. Then PSL(2, p) is simple.

G =PSL(2, p) is 2-transitive on p + 1 letters, the points of the projective
line 2 over F,. It is known that E = SL(2, p) is the unique stem cover of G
[6, Satz V. 25.7]. Because of Theorem 3.1 we have to investigate monomial
actions of E. Write a=(§ ,%) for some generator v of F% and let
u=(_98,c=(@19). We have u—lau=a"'. E = (a, c) is the normalizer of
the Sylow p-subgroup S = (c) of E. H = {a) complements S in E,. E, is the
inverse image of a point stabilizer G, (fixing c0). The normalizer N = N (H)
is generated by a and u. For any x € H with x?#1, Cg(x)=H and
Np({(x))=N.

The above notation is fixed through (6.1), (6.2).

(6.1) LemMa. Suppose U is a l-dimensional FE,module affording a
character A of order greater than 2; let V = UE. Then End. (V) is of F-
dimension 1. If char F + p, V is absolutely irreducible.

Proof. Clearly u€E—E, and H=E,NE*". Since u inverts the
elements of H and A has order greater than 2, by (2.3) Endg(}) has
dimension 1. Hence V is absolutely irreducible if char F does not divide
|E|=(p+ 1)p(p—1). We may assume that F is an algebraically closed
field such that char F = g divides p*— 1. Note that the order of 1 is prime
tog.

Let F be a g-adic field with residue class field F. According to Lemma 2.6
we can lift ¥ in a natural way to an FE-module V. ¥ is absolutely
irreducible. If g is odd and a divisor of p + 1, the order of a Sylow g-
subgroup of E divides p + 1. If ¢=2, G=PSL(2, p) operates on V, and



CODES WITH PRESCRIBED PERMUTATION GROUP 431

p+ 1 is divisible by the order of a Sylow 2-subgroup of G when p=3
(mod 4). In these cases ¥ and ¥ belong to a g-block of defect 0 and thus ¥V
is irreducible [4, Sect. 62].

Assume therefore that either g=2 and p=1 (mod4) or g is odd and a
divisor of p — 1. Let D = {x) be a Sylow g-subgroup of H. Denote by x the
(ordinary) character afforded by V. From the character table of SL(2,p) {4,
Theorem 38,1} one sees that

xGep)=A(y)+A*(y)  (modg)

for all y € H; A* is the dual character to . Now H = C{x)since |D|> 2. If
A|H belongs to the block » of FH, then y belongs to the g-block B =&F by
Brauer’s second main theorem {4, Theorem 63.2]. Clearly D is a defect
group of b. As A has order # 1, 2 and u inverts the elements of H, we have
Ny(by=H=C,(D). Applying Brauer’s first main theorem [4,
Theorems 64.10 and 58.3] shows that D is also a defect group of B. From
[4, Theorem 68.1] it follows that V is the unique irreducible FE-module in
the block B. This completes the proof. §

(6.2) THEOREM. Besides the repetition code and its dual, there are (up to
isomorphism) precisely the following proper codes admitting G = PSL(2, p):

(i} IfcharF=2and F,CF, thereis a (p+ 1, (p+ 1)/2)-code over
F it can be written in I, if and only if p= +1 (mod 8).

(iiy If char F is different from 2 and p and (—1)?" Y? p is a square in
F? there is a (p+ 1, (p + 1)/2)-code over F.

(ili} fn case char F = p there exist (p + 1, k)-codes over F, one for
each k between 2 and p — 1.

The codes in (iii) admit PGL(2, p); the codes appearing in (i}, (i} are the
extended QR-codes which do not admit PGL(2, p).

Progf. Recall that PGL(2, p) is sharply 3-transitive on £2. It is
immediate that GL(2, p) is a stem cover of PGL(2, p). Every monomial
action of E = 8SL(2, p) can be extended, in various ways, to GL(2, p).

(i) charF=2.

In view of (6.1) we only have to study the permutation module
V = F%= F*). Assume first that F is algebraically closed. Let 1 + w be the
complex permutation character of G = PSL(2, p). From the character table
[4, Theorem 38.1] one obtains that there are irreducible characters #,, #, (of
G) of degree (p — 1)/2 such that

y=1+n,+mn,

481/67/2-12
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on 2-regular elements; #, and 7, differ on 2-regular elements, and they have
there values in Qg), where &2 = (—1)?~V2p,

Now G, is a Frobenius group with kernel the image § of S in G.
Application of [6, Satz V.16.13] and Mackey decomposition shows that the
restriction of y to G, can be written as

where 77 and #, are different irreducible characters of degree |G,/S|=
(p— 1)/2. Since n}, 7, are in a 2-block of defect O for G, we may deduce
that #, and 7, remain irreducible as Brauer characters. Hence V has (unique)
submodules C,< C; of dimensions 1 resp. p and M = C;/C, has two
nonisomorphic composition factors of dimension (p — 1)/2.

Viewing V as the permutation module for PGL(2, p), M is irreducible.
This follows, for instance, from the fact that the permutation character of a
point stabilizer is of type 1 + y, where y is irreducible of degree p — 1 and so
is in a 2-block of defect 0. Consequently (Clifford) M = C, ® C, for some
nonisomorphic irreducible FG-modules C,= C;/C,. As codes the C; are
isomorphic since they are interchanged by PGL(2, p). Clearly C, and C, are
the (isomorphic) extended QR-codes over F. (For an alternate approach see
[16] or [11].)

Since #,, #, have their values in the quadratic field Q(e), from Lemma 2.7
it follows that the codes C; can be written in the field F, and, by elementary
properties of 2-adic squares, in F, precisely when p= +1 (mod 8).

Finally, since char F = 2, the permutation action of G cannot be extended
to a proper monomial action of GL(2, p). Hence PGL(2, p) € PML(C)).

(ii) char F#2, p.

The permutation module V' = Ff now yields only the repetition code and
its dual. This can be checked by applying [13, Corollary 2]. (One can verify
this also by means of [7, Satz 8] in case char F does not divide p + 1, and by
a block theoretic argument otherwise.)

In view of (6.1) it remains to consider V= U%, where U is the I-
dimensional FE,-module affording the unique linear character A of order 2.
Assume first that F is algebraically closed. In the semisimple situation from
f4, Theorem 38.1] (and its proof) it follows that V'=C,® C, for some
irreducible FE-modules C; of dimension (p + 1)/2. So let char F =g be an
odd divisor of p? — 1.

There is a g-adic field F, with residue class field F, which is a splitting
field for E. Lift ¥ to an FE-module ¥ as in (2.6). We already know that
there are irreducible characters ¢&,, &, of degree (p + 1)/2 such that &, + &, is
the character of V. From the character table we infer that ¢, and ¢, differ on
g-regular elements and have their values in Q(¢), ¢ as in (i). We claim that
¢&,, &, are irreducible also as Brauer characters mod g.
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Let D be a Sylow g-subgroup of E. If g is a divisor of p + 1, | D| divides
the degree of the & and we are done. Suppose next that g is a divisor of
p—1. We may assume DS H. From [4, Theorem 38.1] once more we
obtain that there is an irreducible character y of E (with values in F),
induced from a linear character of E, of order 2|D|, such that

¥=¢+¢

on g — regular elements. Let B denote the g-block containing x, hence also &,
and &,. Since H2 D is cyclic and B is not of defect 0, application of {4,
Theorem 68.1] shows that &, and &,, restricted to g-regular elements, are the
unique irreducible Brauer characters in B.

Consequently ¥ has two nonisomorphic composition factors of dimension
(p+ 1)/2. By (2.3) dim, End. (V)= 2. Thus, as before, V=C, @ C, for
some irreducible FE-modules C, of dimension (p + 1)/2.

In any case, €, and C, represent the extended QR-code over F. In fact,
GL(2, p) interchanges C, and C, in any monomial action extending that of
E. This also can be seen from the character table. From (3.1} and the remark
following (2.5) we may conclude that the codes C, do not admit GL(Z2, p}.

The codes C; can be written in F (&) resp. Q(e), where &* = (—1)?~"? p.
This follows from (2.7); (2.3) guarantees that the Schur index of £; over Q
is 1.

(iii) char F=p.

By Brauer—Nesbitt there is, up to isomorphism, exactly one (absolutely)
irreducible FE-module W, of dimension k (1 <k < p) |6, V.5.13]. From [4,
Theorem 71.3] one obtains that the various 1l-dimensional FE,modules
induce up to FE-modules V, having a submodule C,= W, such that
VilCi=W,.i_ (1<kgp—1). Furthermore V., ,,=U" where U
affords the character of E, of order 2. Obviously V', is the permutation
module, and ¥V, =C, ® C;.

By (2.3), (6.1) End.(V,) has F-dimension 2 precisely when k=1 or
k= (p+ 1)/2. Since both composition factors of V,,,,, are isomorphic,
Vips1y2 must be indecomposable. This is immediate in the other cases.
Hence C, is the unique proper submodule of V,, k=12,.., p — 1. The code
C, admits PGL(2, p) by Clifford theory. §

The codes in (iil) are extensions of the optimal codes in characteristic p
desecribed by Assmus and Mattson {1, Sect. 2].
(6.3) Permutation Groups

Suppose C is an extended QR-code of length p+ 1 over F and
G =PML(C). Then G contains PSL(2, p) but not PGL(2, p). Only four
cases are known where G = PSL(2, p), namely,
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(1) p=5, F2F,: G=9,,

2) p=1, char F=2: G =Aff(3,2),
() p=11, char F=3: G=M,,,

4) p=23, charF=2: G=M,,.

It is conjectured that G = PSL(2, p) provided p > 23. We cannot settle this
in generality, but here is some further evidence for its truth.

(6.4) THEOREM. Let C be an extended QR-code over F of length
p+ 128, and let G be a subgroup of PML(C) containing PSL(2, p). Then

(i) G is a proper subgroup of U, ,.
(i) Ifp> 7 and G+ PSL(2, p), then G is 4-transitive and simple.

Proof. Let N be the normalizer in &,,, of a Sylow p-subgroup S of
PSL(2, p). N has order p(p—1) and contains a (p— 1)-cycle. It follows
that N supplements PSL(2, p) in PGL(2, p), and U, , in &, ,. Since G
contains PSL(2, p) but not PGL(2, p), the normalizer N=Ng(S) is a
subgroup of PSL(2, p).

S is a Sylow p-subgroup of GN¥U, ;. Hence from NcPSL(2,p)c
GNY,,, it follows G U, , by the Frattini argument. Because of (4.4) G
is a proper subgroup of %, ,.

Now assume G # PSL(2, p) and p > 7. By Neumann |10, Theorem 2.1]
then G is 4-transitive. Suppose M # 1 is a normal subgroup of G. M cannot
be regular [17, Theorem 11.3], hence is at least 3-transitive. This implies that
S <M and PSL(2, p) = M, by simplicity of PSL(2, p). Moreover we have
G =MN, again by the Frattini argument. Now from N < PSL(2, p) it
follows G =M, as desired. I

A group G as in Theorem 6.4(ii) would be an “unknown” simple group,
provided p > 23. Theorem 6.4(i) answers a conjecture of Rasala to the affir-
mative [11, p.470]. It should be possible to establish this by more
elementary arguments than those used in (4.4). (But the argumentation by
Shaughnessy [13, p.402] cannot work, as follows from |1, Theorem 2.2].)
Under additional assumptions, Theorem 6.4 can be improved so that
PML(C)=PSL(2, p). For instance, this holds if p—2 is a prime [10,
Corollary 2.2], or if (p—1)/2 is a prime and 23 < p4079. (The latter
result has been already stated in [1, p. 146]. But, as Rasala [11] noted, it
depends on the validity of his conjecture, i.e., on Theorem 6.4(i).)
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