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Abstract—Codes for rank modulation have been recently pro-
posed as a means of protecting flash memory devices from errors.
We study basic coding theoretic problems for such codes, repre-
senting them as subsets of the set of permutations of � elements
equipped with the Kendall tau distance. We derive several lower
and upper bounds on the size of codes. These bounds enable us
to establish the exact scaling of the size of optimal codes for large
values of �. We also show the existence of codes whose size is within
a constant factor of the sphere packing bound for any fixed number
of errors.

Index Terms—Bose–Chowla theorem, flash memory, inversion,
Kendall tau distance, rank permutation codes.

I. INTRODUCTION

C ODES in permutations form a classical subject of coding
theory. Various metric functions on the symmetric group

have been considered, giving rise to diverse combinato-
rial problems. The most frequently studied metric on is the
Hamming distance. Codes in with the Hamming distance,
traditionally called permutation arrays, have been a subject of a
large number of papers; see, e.g., the works by Blake et al. [1]
and Colbourn et al. [5].

In this paper, we are interested in a different metric on
which we proceed to define. Let be a
permutation of the set . The Kendall tau dis-
tance from to another permutation is defined as
the minimum number of transpositions of pairwise adjacent el-
ements required to change into . Denote by
the metric space of permutations on elements equipped with
the distance .

The Kendall distance originates in statistics and has been
adopted as a measure of quality of codes under the so-called
rank modulation scheme first considered by Chadwick and Kurz
[3]. In this scheme, the transmitted sequences are given by per-
mutations of elements while information is carried by the rela-
tive magnitude (rank) of elements in the permutation rather than

Manuscript received August 27, 2009; revised March 27, 2010. Current
version published June 16, 2010. Research supported in part by NSF grants
CCF0830699, CCF0635271, and DMS0807411.

A. Barg is with the Department of Electrical and Computer Engineering
and Institute for Systems Research, University of Maryland, College Park,
MD 20742 USA, and also with the Institute for Problems of Information
Transmission, Moscow, Russia (e-mail: abarg@umd.edu).

A. Mazumdar is with the Department of Electrical and Computer Engineering
and Institute for Systems Research, University of Maryland, College Park, MD
20742 USA (e-mail arya@umd.edu).

Communicated by M. Blaum, Associate Editor for Coding Theory.
Digital Object Identifier 10.1109/TIT.2010.2048455

by the absolute value of the elements. The motivation for con-
sidering this scheme in [3] stems from systems in which trans-
mitted signals are subjected to impulse noise that changes the
value of the signal substantially but has less effect on the rel-
ative magnitude of the neighboring signals. Recently (and in-
dependently of [3]) rank modulation was suggested by Jiang et
al. [14], [15] as a means of efficient writing of information into
flash memories. Rewriting the contents of a group of memory
cells is easy if one needs to increase the charges of the cells or
leave some of them unchanged, and impractical if some of the
charges need to be decreased. Furthermore, reliability of the data
stored in flash memory is affected by the drift in the charge of
the cells caused for instance by aging devices or other reasons.
Since the drift in different cells may occur at different speed,
errors introduced in the data are adequately accounted for by
tracking the relative value of adjacent cells, i.e., the Kendall dis-
tance between the groups of cells in memory. These considera-
tions make rank modulation suitable for coding for flash mem-
ories. More details of both the writing and the error processes
in memory are given in [14] and references in that paper.

The focus of our work is on bounds and constructions of
codes in the Kendall space . Coding-theoretic considerations
call for estimating the volume of the sphere in because it can
be used to derive basic bounds on the size of codes. Spheres in
the Kendall space were studied by analytic means in a number
of earlier works [17], [18] relying on the well-known correspon-
dence of permutations and their inversion vectors; however, it
turned out that code bounds that can be obtained from these
works do not lead to nontrivial (other than 0 or 1) values of
the code rate. Regarding specific code families for correcting
Kendall errors, the only previous work is that by Jiang et al.
[14] who constructed a family of single-error-correcting codes
of size , i.e., at least half the maximum possible.

Our results. In this paper, we discuss several possible ways to
bound the size of codes for rank modulation of a given distance,
often calling them rank permutation codes. We derive a Sin-
gleton-type bound and sphere-packing bounds on such codes.

Since the maximum value of the distance in is , this

leaves a number of possibilities for the scaling rate of the dis-
tance for asymptotic analysis, ranging from to

. These turn out to be the two extremes for the size of
optimal rank permutation codes. Namely, earlier work in com-
binatorics of permutations implies that a code with distance

occupies a vanishing proportion of the space
while a code of distance can take a close-to-one proportion
of its volume. We cover the intermediate cases, showing that the
size of optimal codes with distance scales
as . It is interesting that unlike many other
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asymptotic coding problems, the Kendall space of permutations
affords an exact answer for the growth rate of the size of optimal
codes. The proof of the bounds relies on weight-preserving em-
beddings of into other metric spaces which provide insights
into the asymptotic size of codes.

We also show the existence of a family of rank permutation
codes that correct a constant number of errors and have size
within a constant factor of the sphere packing bound. The con-
struction relies on the well-known Bose–Chowla Theorem in
additive number theory.

Section II of our paper is devoted to the relation of the
Kendall metric space to other metric spaces related to permuta-
tions. In Section III we use these insights to derive bounds on
codes for rank modulation, and conduct their asymptotic anal-
ysis. Section IV contains a construction of -error-correcting
rank permutation codes.

II. WEIGHT-PRESERVING EMBEDDINGS OF THE

KENDALL METRIC SPACE

We begin with recalling basic properties of the distance
such as its relation to the number of inversions in the permuta-
tion, and weight-preserving embeddings of into other metric
spaces. Their proofs and a detailed discussion are found for in-
stance in the books by Comtet [6] or Knuth [16, Section 5.1.1].

The distance is a right-invariant metric which means that
for any where the

operation is the usual multiplication of permutations. Therefore,
we can define the weight of the permutation as its distance to
the identity permutation . Because of the in-
variance, the graph whose vertices are indexed by the permuta-
tions and edges connect permutations one Kendall step apart, is
regular of degree . At the same time it is not distance-reg-
ular, and so the machinery of algebraic combinatorics does not
apply to the analysis of code structure. The diameter of the space

equals and is realized by pairs of opposite per-

mutations such as and .
The main tool to study properties of is provided by the in-

version vector of the permutation. An inversion in a permutation
is a pair such that and .

It is easy to see that , the total number of inver-
sions in . Therefore, for any two permutations , we have

. In other words

To a permutation we associate an inversion vector
, where

and is the set
of integers modulo . It is well known that the mapping from
permutations to the space of inversion vectors is one-to-one, and
any permutation can be easily reconstructed from its inversion
vector. Moreover

(1)

For the type of errors that we consider below we introduce the
following distance function on

(2)

where the computations are performed over the integers, and
write for the corresponding weight function (this is not a
properly defined norm because is not a linear space).1 For
instance, let then

. To compute the distance , we find

Observe that the mapping is a weight-preserving
bijection between and the set . At the same time, since
the groups and are not isomorphic (one is commutative
while the other is not), this mapping is not distance-preserving.
However, a weaker property is true, namely

(3)

Indeed, transposing two neighboring entries of a permutation
changes the inversion count by one, so the mapping

preserves distances to the identity permutation.
Thus, if there exists a code in with distance then there
exists a code in with Kendall distance at least .

Another embedding of is given by mapping each permu-
tation to a binary -dimensional vector whose coordinates
are indexed by the pairs , and if
the pair is an inversion and otherwise. Clearly
the Hamming weight of equals , and so this mapping is
an isometry between and a subset of the Hamming space.
This mapping was first considered in [4].

III. BOUNDS ON THE SIZE OF RANK PERMUTATION CODES

An code is a set of permutations in
which any two distinct permutations are at least distance units
apart. Let be the maximum size of the code in with
distance . For the purposes of asymptotic analysis, we define
the rate of a code of size as . Let

be the capacity of rank permutation codes of distance (our
proof of Theorem 3.1 will imply that the limit exists). The main
result of this section is given in the following theorem whose
proof is given in Sections III-B and III-C below.

Theorem 3.1:

(4)

1This metric is reminiscent of the asymmetric distance function on the set of
integer �-tuples, ������ ���� � � ����� � ������ [8].



3160 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 7, JULY 2010

Remark: As will be seen from the proof, the equality
holds under a slightly weaker condition, namely,

, where grows slower than any positive power
of .

A. Singleton Bound

Theorem 3.2: Let then

(5)

Proof: Let be an code. Since the metric
is right invariant, we can assume that contains the identity
permutation .

Let and let be a code derived from in the
following way. Let be a mapping that acts on

by deleting elements from it. Thus, is a
permutation on elements that maintains the relative positions
of the elements of given by .

Let be the greatest number such that is not injective.
Then is injective, and . Suppose that permu-
tations are such that . Because
of the last equality, none of the first entries of the permutation

contain pairs that form inversions. Therefore

This gives

which proves inequality (5). This estimate is nontrivial if
which is equivalent to the condi-

tion .

To gain an insight into this bound, let . Using the
inequality in (5), we obtain the asymptotic in-
equality

where the constant does not depend on . As we will show
in the next section, the in this bound can in fact be im-
proved to a quantity that decays as as grows.

B. Sphere Packing Bounds

Sphere packing bounds on codes in the Kendall space are
related to the count of inversions in permutations. In this section,
we discuss several classic and new results in this area, showing
that they imply the asymptotic scaling order of for very
small or very large values of .

Denote by the ball of radius in . Clearly

(6)

The embeddings of into other metric spaces considered in
the previous section can be used to derive estimates of
based on these inequalities. In particular, computing the volume
of the metric ball in and using (3), we will derive a lower

bound in (6). At the same time, both lower and upper bounds
will follow from the embedding of in the Hamming space

described above.
Let be the number of

permutations with inversions. By (1), is the number of
solutions of the equation

where

Then clearly for and

for

The number of inversions in a random permutation is asymptot-
ically Gaussian with mean and variance ,
[10, p.257]. This suggests that codes with distance greater than

cannot have large size. We show that this is indeed the case
in Section III-D.

The generating function for the numbers has the form

(7)

For the number of permutations with inversions
can be found explicitly [16]

(8)

where and the summation extends for as long
as the binomial coefficients are positive (it contains about
terms).

For the expression for is given above. In
particular, it implies that , and . As
shown in [18], for

(9)

The case of is much more difficult to analyze. An obvious
route for finding asymptotic approximation of is to start
with the integral representation of the coefficients of (7).
Namely, since converges for every in the finite plane,
we can write

where is a circle around the origin. Asymptotic analysis of
this expression involves saddle point calculations and is rather
involved [17]. The next theorem is a combination of results of
Margolius [18] and Louchard and Prodinger [17], stated here in
the form suitable for our context.
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Theorem 3.3: There exist constants and such that

The implicit constants in this theorem can be found in the cited
references.

From this theorem and inequalities (6), we obtain the two
boundary cases of the expression for in (4).

C. Bounds From Embedding in the Space

In this section we prove the remaining case of Theorem 3.1.
Our idea is to derive bounds on by relating the Kendall
metric to the metric on . From the results of Diaconis and
Graham [9],

(10)

where . Therefore, any code
with Kendall distance must have distance at least

and any code with distance must have Kendall
distance at least .

Remark: Define to be the number of inversions of
(not necessarily adjacent) symbols needed to change into .
Paper [9] in fact shows that

which is a stronger inequality than the one given above. We,
however, will not use it in the derivations below.

Proposition 3.4: Let be the metric ball of radius
with center at in the space with the

metric. Then the maximum size of a code in with distance
satisfies

where .
Proof: Under the trivial embedding the dis-

tance does not change, so any code in with distance
is also a code in with the same distance and as such, must
satisfy the Hamming bound. Together with (10) this gives the
upper bound of our statement.

Turning to the lower bound, let us perform the standard
“Gilbert procedure” in the space of permutations with respect
to the distance, aiming for a code with distance . The
resulting code satisfies

Since , we can replace the volume
in with the volume in in the last inequality. Viewed as

a packing of , the code will then have Kendall distance at
least .

Below, we consider only spheres in the space and omit
the reference to it from the notation .

Lemma 3.5: Let . Then for any

Proof: Suppose that and
. Consider the mapping

where , where is
given by

if
if

Clearly, and for ,
so every point within distance of is sent to a point within
distance of . Furthermore, this mapping is injective because
if are two distinct points in then their images can
coincide only if in some coordinates

However, the left-hand side of this equality is while the
right-hand side is by definition of . This proves the right
inequality.

To prove the lower bound, write as , where
is the set of differences:

Writing in the same way as , we have

By taking the absolute values of the coordinates, any point in
is sent to a point in , and no more than points have

the same image under this mapping. This proves our claim.

These arguments give rise to the next proposition.

Proposition 3.6:

(11)

where
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and .

This claim is almost obvious because, by the previous lemma

Next

where is the number of integer solutions of the equation

where . The expression for
given in the statement is well known (e.g., [13, p.1037]).

Expression (11) gives little insight into the behavior of the
bound. In the remainder of this section we estimate the asymp-
totic behavior of this bound and derive an estimate of the code
capacity.

Lemma 3.7: Suppose that . Then

Proof: Let . The lemma will
follow if we prove that

and (12)

Under the assumption on we have

Thus, for

Therefore, for all . Since
the sum starts with a negative term and the sum
with a positive one, the required inequalities in (12) follow.

From the foregoing arguments, we now have the following
explicit bounds on

(13)

Here, the right part is obvious and for the left inequality we

used (11), Lemma 3.7, and the identity

. Now we are ready to complete the proof of

Theorem 3.1. Assume that for some .
The two boundary cases of (4) were established in the previous
section. Let us prove the middle equality. From (13)

To estimate the denominator, write

(because of .) So starting
with some we can estimate the denominator below by

. Therefore

Next

On the other hand, using

and , we obtain from (13)

Taking the logarithms and the limit, we find that .
This completes the proof of Theorem 3.1.
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D. Bounds From Embedding in Hamming Space

Since the embedding of into the Hamming space of

dimension is isometric, the known results for codes

correcting Hamming errors can be used to derive estimates and
constructions for codes in the Kendall space. In particular, the
known bounds on codes in the Hamming space can be rewritten
with respect to the space . For instance, the Plotkin bound
implies that

and thus any code with distance greater than the av-
erage (i.e., ) satisfies . Given the image of a
code in it is easy to reconstruct the code itself.
Indeed, it is immediate to find the inversion vector of a permu-
tation given the image of in , and then to recover from
its inversion vector.

Of course, not every code in will have a code in cor-
responding to it. The next simple proposition shows that never-
theless, binary codes in can be used to claim existence of
good rank permutation codes.

Proposition 3.8: Suppose that there exists a binary linear

code . Then there exists an rank

permutation code.
Proof: One of the cosets of in must contain

at least vectors that map back to valid permutations.

For example, let us assume that the value is such that there
exists a -error-correcting binary BCH code of length (if not,
we can add zeros to a shorter BCH code). Its dimension is at
least . This shows the existence of a -error-
correcting rank permutation code of size . On
the other hand, by the sphere packing bound in the size of
a -error-correcting code in is at most . Thus,
using the embedding we are not able to close a
gap between the existence results and the upper bounds. In the
next section we use a different method to construct codes that
achieve the sphere packing bound to within a constant factor for
any given .

IV. TOWARDS OPTIMAL -ERROR-CORRECTING CODES

The representation of permutations by inversion vectors
provides a way to construct error-correcting rank permutation
codes. In this section we construct codes in the space of in-
version vectors and claim the existence of rank permutation
codes by the inequality on the code distances (3).

We begin with constructing codes over the integers that cor-
rect additive errors. Once this is accomplished, we will be able
to claim existence of good rank permutation codes. Let be
some subset of and let be the space of -tuples of integers
from equipped with the distance (2). A code is
said to correct additive errors if for any two distinct code vec-
tors and any , both of weight at most

We assume that and are such that is well defined: for
instance, below we will take where is some integer
sufficiently large compared to .

If in the above definition for all , the code is said to
correct asymmetric errors. However, below we need to con-
sider the general case, focusing on a particular way of con-
structing codes which we proceed to describe.

Definition 4.1: Let and let
be a set of integers. Define the code as follows:

(14)

This code construction was first proposed by Varshamov and
Tenenholtz [20] for correction of one asymmetric error (it was
rediscovered later by Constantin and Rao [7] and, in a slightly
different context, by Golomb and Welch [11]). Generalizations
to more that one error as well as to arbitrary finite groups were
studied by Varshamov [19], Delsarte and Piret [8], and others;
however, these works dealt with asymmetric errors. Below we
extend this construction to the symmetric case.

Proposition 4.2: The code defined in (14) corrects ad-
ditive errors if and only if for all the sums

are all distinct and nonzero modulo .
This proposition is obvious as it amounts to saying that all the
syndromes of error vectors of weight up to are different and
nonzero.

We will need the following theorem of Bose and Chowla [2].

Theorem 4.3: (Bose and Chowla) Let be a power of a prime
and . There exist integers

in such that the sums

are all different modulo .
This theorem provides a way of constructing an asymmetric

-error-correcting code of length . This is because for any error
vector with such that , the sums

involve at most of the numbers and thus are all
different. This theorem was previously used to construct codes
in a different context in [12] as well as in some later works.

Theorem 4.4: For let

for odd
for even

where the numbers are given by the Bose–Chowla theorem.
Let if is odd and if is even.
For all such that the sums are all
distinct and nonzero modulo .

Proof: Let be odd and let . Ob-
serve that

(15)

i) For any , the sums
are all distinct modulo and, therefore, also modulo .
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These sums are also nonzero modulo except for the
case when all the ’s are 0.

ii) Moreover, for any , the sum

and is, therefore, nonzero modulo .
iii) Finally, for any and any

(16)

Let us now suppose that there exist both of
weight at most such that

However, assuming this contradicts properties (i)–(iii) above.
The claim for even is proved in an analogous way. Namely,

we will have

and

instead of (15) and (16), respectively. The rest of the proof re-
mains the same.

Together with Proposition 4.2 this theorem implies the exis-
tence of a -error-correcting code of length over the
alphabet that corrects additive errors. Recall that our goal
is to construct a -error-correcting code over the set of inversion
vectors which is a subset of . Since is a group code
with respect to addition modulo , its cosets in parti-
tion this space into disjoint equal parts. At least one such coset
contains vectors from . Invoking (3), we now
establish the main result of this section.

Theorem 4.5: Let , where
is a power of a prime. There exists a -error-correcting

rank permutation code in whose size satisfies

odd
even

This theorem establishes the existence of codes whose size is of
the same order as given by the sphere packing bound
of the previous section. The loss of a constant multiple of the
optimal code size is due to the fact that we construct codes over
the integer alphabet instead of a more restricted alphabet

.
As a final remark, note that the construction is explicit except

for the last step where we claim existence of a large-size code
in some coset of the code .
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