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Abstract. Algebraic structure of codes over Fy, closed under arbitrary abelian group G of
permutations with exponent relatively prime to g, called G-invariant codes, is investigated using a
transform domain approach. In particular, this general approach unveils algebraic structure of quasi-
cyclic codes, abelian codes, cyclic codes, and quasi-abelian codes with restriction on G to appropriate
special cases. Dual codes of G-invariant codes and self-dual G-invariant codes are characterized. The
number of G-invariant self-dual codes for any abelian group G is found. In particular, this gives the
number of self-dual l-quasi-cyclic codes of length ml over Fy when (m,q) = 1. We extend Tanner’s
approach for getting a bound on the minimum distance from a set of parity check equations over an
extension field and outline how it can be used to get a minimum distance bound for a G-invariant
code. Karlin’s decoding algorithm for a systematic quasi-cyclic code with a single row of circulants
in the generator matrix is extended to the case of systematic quasi-abelian codes. In particular,
this can be used to decode systematic quasi-cyclic codes with columns of parity circulants in the
generator matrix.
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1. Introduction. Codes with rich algebraic structure are of strong interest to
coding theorists because such codes are easy to design and decode. Classical families of
cyclic codes, such as Bose-Chaudhuri-Hocquenghem (BCH) codes and Reed—Muller
codes, were the center of attention for a long time. For a cyclic code, the code’s
permutation group contains a cyclic subgroup generated by the cyclic permutation.
A cyclic code can also be viewed as an ideal of the group algebra on the cyclic group
of order n (length of the code). More generally, ideals of group algebras on abelian
groups are known as abelian codes.

A different direction of generalization gives another class of codes: quasi-cyclic
codes. A code of length n is said to be I-quasi-cyclic for some {|n if every [ times cyclic
shift of a codeword is also a codeword. Thus an [-quasi-cyclic code can be viewed as
a submodule of the [-dimensional free module (FqC%)l over the group algebra F,Cx,
where C'z is a cyclic group of order 7.

A more general, but less popular, class of codes is the class of quasi-abelian codes
[15]. For a finite abelian group G and its subgroup H, an F,H-submodule of F,G is
called a G — H quasi-abelian code. In fact, for an abelian group H and any positive
integer ¢, any submodule of (F,H )t can be considered a quasi-abelian code. In that
case, any abelian G O H with |G| = t|H| can be used to define quasi-abelian codes, as
in [15]. Thus, such codes will be called H-quasi-abelian codes. When ¢ = 1, this class
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specializes to abelian codes and, when H is a cyclic group, specializes to the class of
quasi-cyclic codes.

Transform techniques for cyclic codes and abelian codes are well known [1, 13].
Transform techniques for repeated root cyclic codes were discussed in [10]. Recently,
quasi-cyclic codes were studied in the transform domain [5, 9]. Tanner [14] introduced
ways to transform a group invariant parity check matrix into a parity check matrix
over an extension field, and he used this technique to get a lower bound on the
minimum distance of group invariant codes.

In this paper, the algebraic structure of codes closed under any arbitrary abelian
subgroup G of S,, (the group of permutations of n elements) is investigated. We call
this class G-invariant codes. When special types of G are taken, G-invariant codes
coincide with the class of quasi-abelian codes, and thus with the classes of quasi-
cyclic codes and abelian codes. Figure 1 shows the relation between different classes
of codes.

G — Invariant Codes
G : Abelian

G — Quasi—abelian
Codes

G — Invariant Codes|
G : Arbitrary

Abelian Quasi—cyclic
Codes

(G : Cyc]ic)

Codes

(t=1)

Fic. 1. Different families of codes and their defining groups of permutations.

Following are a few examples of some types of permutation groups G shown in
Figure 1.

Ezxample 1.1. For any a,b € F, a # 0, let 0, denote the permutation o, : « —
ax +b. Then G = {o,|la € F;,b € F,;} is a subgroup of S, and is called the group of
affine permutations. For ¢ > 2, G is nonabelian and the G-invariant codes are known
as affine invariant codes.

Ezample 1.2. Figure 2 (ignore the solid, dashed, and dotted boxes for now) shows
the cycle structure of the generator o of a permutation group G = (o) C S14. Here
G is abelian, and G-invariant codes cannot be seen as G-quasi-abelian codes.

Ezample 1.3. Consider a permutation group G = (01, 02) C Ss4. Figure 3 shows
the cycles of o1 with solid lines with arrows and the cycles of oo with dashed lines
with arrows. Here G is abelian, and G-invariant codes are the same as G-quasi-abelian
codes of length 54.

All abelian codes on an abelian group G are decomposable as a direct sum of
minimal abelian codes if and only if the exponent of G is relatively prime to q. The
same is true for [-quasi-cyclic codes if and only if 7 is relatively prime to ¢ [2]. Tt will
be shown that this is true for any G-invariant code (G abelian); i.e., for an abelian
subgroup G C S,,, any G-invariant code of length n can be decomposed as a direct
sum of minimal G-invariant codes if and only if the exponent of G is relatively prime
to q.
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F1c. 3. Cycle structure of the generators of G in Example 1.3.

Karlin [7] showed a way to decode a class of one-generator quasi-cyclic codes.
Heijnen and van Tilborg [6] proposed another decoding technique for the class of one-
generator quasi-cyclic codes, which uses the same basic idea as Karlin’s technique but
achieves some computational advantages by better usage of the quasi-cyclic property
of the code. In this paper, Karlin’s approach is extended to a class of quasi-cyclic
codes, not necessarily one-generator. When restricted to one-generator quasi-cyclic
codes, this method reduces to Karlin’s method. Moreover, this method also applies
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to a class of quasi-abelian codes specified in subsection 7.1.

In section 2, the DFT on abelian group is reviewed, and in section 3 is used to
define a DFT for G-invariant codes for any abelian group G of permutations with
exponent relatively prime to q. Such G-invariant codes are characterized in the trans-
form domain, and their structural properties are investigated in section 4. Dual codes
of G-invariant codes and self-dual G-invariant codes are characterized in section 5.
The number of G-invariant self-dual codes for any abelian group G is also found. In
section 6, we extend Tanner’s approach for getting a bound on the minimum distance
from a set of parity check equations over an extension field and outline how it can
be used to get a minimum distance bound for G-invariant codes. Quasi-abelian codes
are discussed in section 7, and Karlin’s approach [7] for decoding systematic quasi-
cyclic codes with parity circulants in a single row is extended to the case of systematic
quasi-abelian codes. In particular, this approach can be used to decode systematic
quasi-cyclic codes which are not necessarily one-generator, which was the case left
open by Karlin.

2. Review of the DFT for abelian codes. Let G be an abelian group with
exponent v such that (v,q) = 1. Let r be the smallest positive integer such that
v|(¢" — 1). Then the group of all distinct Fyr-characters of G is isomorphic to G. In
fact, an isomorphism x + 1(,) can be chosen (see, for example, [3] and the references
therein) such that ;) (y) = ¥y (x). We denote ;) (y) as ¥(z,y), considering it a
map ¢ : G x G — Fr. It satisfies the following properties:

(1a) Y(z,yz) = Pz, y)P(e, 2),
(1b) V(r,y) = Yy x),
(L) (Y(z,y) =¢(@' y) Yy € G) <= z =21/,

. |G| ify=1,
(1d) %w( 'y) {0 ify 1,

where |G| and 1 denote, respectively, the cardinality of G and the identity element in
G.

The DFT of any element a = ) _,a,x € F;G is defined as A =) - A,z €
FyrG such that A, = > s¢(z,y)ay. The inverse DFT is obtained as a, =

|G -1 ZyEG 1/)(% y)ilAy'
3. DFT for G-invariant codes. We consider codes of length n over F with
components indexed by a set I. Let G C Perm(I) be an abelian subgroup of the

group of permutations of /. Let the characteristic of F, be p.
Suppose I1,...,I; are the orbits of I under the action of GG. Let us denote G =

{gM|g € G} for k = 1,...,t, where g(¥) 2 glr, € Perm(I}) is the permutation g
restricted to I. Since Gj is abelian and acts on [ faithfully and transitively, the
stabilizer of any ¢ € Ij is {1} (15 denotes the identity element of Gy). Thus, for
any i1 € I, there is a unique g € Gy, such that i, = g(¢). This defines a one-to-one
correspondence between Gy, and Ij. Using this, the symbols can be indexed by the
elements of G, instead of I} by first associating a fixed element i € I}, with the identity

element 1;. Hence, the code symbols are indexed by G 2 U!_,G; instead of I. Then
the element g of G acts on G as z +%> g™z when z € Gj,. For any a = (az)zeg € Fqg,

g € G acts on a as a +% b = g(a) such that b, = a,-1, when z € Gi. Henceforth,
we’ll use the letters f, g, and h, possibly with subscripts, to denote elements of G,
and use the letters z, y, and z to denote elements of G.
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Let the exponent of G, exp(G) = lem ({exp(Gy)|k = 1,...,t}) be relatively prime
to ¢, and let 7 be the smallest positive integer such that exp(G) divides (¢" —1). Then
on each orbit, DFT is defined as discussed in the last section; i.e., the DFT of a € Fqg

is defined as A = (Ay)zeg € Fqgr, where

A, = Z Ui (z,y)ay Vr € Gy, Vk.
yEGy

Here vy, is as defined in the last section for Gy. For any two x,y € G, define

U(z,y) = Yr(x,y) when z,y € Gy, for some k,
=0 when x € Gy, and y € Gy,, s.t. k1 # ka.

With this notation, the DFT can be rewritten as A, = > 5 ¥(z,y)a,Vz € G.
Clearly, A satisfies Ay« = AL Vo € G. For any h € G and = € G, we define the symbol

(2) (h,x) 2 Yr(h™) ) when z € Gy.

It follows from this definition that the DFT of b = h(a) is given by B, = (h,z)A,.
Suppose hi,hs € Gy. Then using (1a) and (1c), we have (g, h1)! = (g, ha) Vg € G if
and only if A} = hs.

For any element = € G, it is in G, for some k, and thus a cyclotomic coset of x
is defined as [z]? 2 {y € Gily = 27" for some nonnegative t}. Cardinality of [2]7 will

be denoted as r,. For any subset S C G, we define [S]? = Uses[s]9.

COROLLARY 3.1. For any x € G, r, is the smallest positive integer such that
(g,x)9"" = (g,x) Vg € G. Thus, r, is the least common multiple (lcm) of the lengths
of the conjugacy classes of (g,x) Vg € G.

The residue class of z € G is defined as & 2 {z1 € G|{g, 1) = (g, x) for each g €
G}. Cardinality of @ will be denoted by e,. For any subset X = {z1,23,...,2;} C G,
Ax denotes the ordered tuple (A, Azy, ..., Ay, ) with an arbitrary fixed order in
X. In particular, for any residue class 91 = {y1,¥2,...,¥y}, we denote by Afyv the
ordered [-tuple (A,,,A,,,...,Ay,) with an arbitrarily chosen fixed order on y. For
some ordered tuples Ty = (t11,...,t15),--.,71 = (t1,1,...,%;) the concatenated
tuple (t1717 RN STT TR 7% PO atl,jl) is denoted (Tl, e ,T[)

The cyclotomic residue class of z € G is defined as (z)? £ {1 € G| for some non-
negative t,(g,z1)? = (g,x) Vg € G} = [Z]?. Figure 4 shows the relation between a
cyclotomic residue class and the cyclotomic cosets and residue classes in it. By the
conjugacy constraint, the values of the DFT components in one residue class determine
the values of the other transform components in the same cyclotomic residue class.

To be specific, A~ = A% for any a € Fqg7 where the power of the vector A~ is taken
zd T

componentwise. Thus, the values of the transform components in one representative
residue class from each cyclotomic residue class specify a vector completely.

Ezample 3.1 (continuation of Example 1.2). The index set has four orbits under
the action of G and G ~ Gy ~ Zs3, and G3 ~ G4 ~ Zs. Let a set of generators of the
groups G1, G2, G3, and G4 be g1, g2, g3, and g4, respectively. If o € Fj» is an element
of order 15, then we define DFT in Fq16 ~ Fqg with respect to the maps 1, defined
by ¥1(g1,91) = ¥2(92,92) = o, ¥3(g3,93) = ¥4(g4,94) = a. The residue classes in
G are shown in Figure 2 with dashed boxes. The figure shows the cyclotomic cosets
with solid boxes and the cyclotomic residue classes with dotted boxes for ¢ = 2 mod
3, ¢g=4 mod 5 (e.g., g =29,59).
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F1G. 4. A generic cyclotomic residue class (x)9.

4. Transform domain characterization of G-invariant codes. A linear
code C C Ff is G invariant if for every codeword a € C and h € G, h(a) € C. The
equivalent condition in the transform domain is that for any h € G, A = DFT(a)
for some a € C and B € Fqgr with B, = (h,z)A, Vx € G = B = DFT(b) for some
beC.

For any ordered tuple (z1,%2,...,2;) on G, we say (Ag,, Az, - - -, Ag, ) takes values
from {(Az,, Aszys ..., Az)|a€C}ior C. Iffor C, (A4, Ay, - - -, Ayg,) takes values from
V C F). and U C V, then the subcode {a € C|(Aq,, As,, ..., Ag,) € U} will be
referred to as the subcode obtained from C by restricting (A, , A4, ..., Az,) to U.

LEMMA 4.1. For any G-invariant code C and x € G, A~ takes values from a
subspace of qu#; .

Proof. Suppose A~ takes values from an Fj-subspace (since the code is linear)
V C qufw for C. When any element g € G acts on a codeword a, Ag is multiplied
by (g,z). Since the code is G-invariant, (g,xz)v € V for each ¢ € G and v € V.
Thus, V is closed under multiplication by elements of Spang, (({(g,z)|lg € G})) =
Fol{{g, z)lg € G}] = Fore. U

For any G-invariant code C and = € G, suppose A~ takes values from a subspace
V C F;ﬁﬂ. Then for any subspace U C V/, the subcode obtained by restricting A~ to
U is also G-invariant. For a linear code C, suppose, A~ takes values from a subspace
V C Fq"’ﬁ;, and V = Vi + V5. If the subcodes obtained by restricting A; to V1 and V5
are, respectively, C; and Cs, then C = C; 4 Cs.

DEFINITION 4.2. Let Xy, Xos,...,X; be some disjoint subsets of G and suppose
Rx, = {Ax,la € C} for j = 1,2,...,1. The sets of transform components {A|x €
X;}, 1 < j <, are said to be unrelated in C if {(Ax,,Ax,,...,Ax,)]aeC} =
Rx, x Rx, X -+ x Rx,. They are said to be related if they are not unrelated.

Let z1,72,...,7; be a set of representative residue classes of all the distinct
cyclotomic residue classes. Suppose we fix arbitrary subspaces V;,i = 1,2,...,1,
of F;f;i .1 = 1,2,...,1, respectively, and consider the code C = {a € Fqg|Ax~i €
Vifori =1,2,..., l}. Clearly, the code is G-invariant. But it is not clear whether
any G-invariant code can be obtained this way by choosing suitable V;, i =1,2,... 1.
That is, are Ag{ , 1 =1,...,1, unrelated for any G-invariant code? Theorem 4.6 will



Downloaded 01/01/13 to 152.3.102.242. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

CODES CLOSED UNDER ABELIAN PERMUTATION GROUP 7

answer this question in the affirmative.

If, in a G-invariant code, two transform components A, and A, are unrelated,
then consider the subcodes C; and Co obtained by restricting, respectively, A, and
A, to {0}. Clearly, the original code is the sum of the codes C; and Cy. Suppose
S1,...,S; are some disjoint subsets of the index set such that z,y € U!_;S;. Then
the transform components in Si,...,5; are unrelated in C if and only if they are
unrelated in C; and Cy. This process can be continued on C; and Cy and repeated
on the resulting subcodes to get a set of subcodes whose sum is C and in each of
which either there is only one nonzero transform component or any pair of nonzero
transform components is related. So, if the transform components in Si,...,S; are
related in C, then there is a G-invariant subcode of C, where two transform components
Ay, Ay, x € S,y € 55,1 # j, are related.

Suppose, in a G-invariant code, two transform components A, and A, are related.
Then they must take values from Fy~. and Fyry, respectively. The relation must be
by a bijection (so ry =1y) 0 : Fgra — Fyr. since the subcode obtained by restricting
A, or Ay to {0} is G-invariant. Since the code is linear G-invariant, ¢ must be an
Fy-linear isomorphism satisfying

(3) 0(<g,x>v) = <gvy>0(v) vy € G7 Vo € Fq"'z'

For a map o of a finite field, we denote by f,(X) a polynomial which induces o,
that is, o(a) = fs(a).

LEMMA 4.3. Let o, 3 € Fyu be such that the length of the Fy-conjugacy class of
a is l1. Suppose a € F;l and o : aFy, — Fy is an Fy-linear nonzero map. Then o
satisfies o(ab) = Bo(b) Vb € aF,, if and only if § = a? and f,(X) = cX? for some
unique ¢ € Fp and j <l;.

Proof. The reverse implication is obvious. For the forward implication, let us

consider the Fy-linear map ¢’ : Fu, — Fp; 0tz — Uo((af)). Clearly, o’(a?) = 3¢ for

i > 0. Thus, ¢’ is a field isomorphism of F,[a] onto Fy[5]. So for some j, o/(x) = 27
Vx € Fyla] = F,. Therefore,

o(z) =o(a)o’ (2) = a(a)a_qjxqj for any = € aF, . 0

LEMMA 4.4. Let o, 3, and l; be as in Lemma 4.3 and V' be an h-dimensional
Fi, -subspace of Fyi. Suppose o : V. — Fyi is a nonzero Fy-linear map. If o satisfies
o(ab) = Ba(b) Vb € V, then B = o and f,(X) = Z?:_ol ;X9 for some unique
ci € Fy for0<i<h-—1.

Proof. Suppose V' = 69?:_01%, where V; = s;F 1, . Since o is nonzero, its restriction
on at least one of V;,0 < i < h — 1, is nonzero, and thus by Lemma 4.3, the first

statement follows. Suppose o; = oly,. Then, f,,(X) = ;X7 for some unique c;.
Thus,

h—1
Jo(X) = 3 cwX T
w=0

wly+j

h—1
& c(sia)? = Z Cu(sia)? Va € Fy,, Vi€ [0,h—1]
w=0

wiy ;i

h—1
& s = Z cw (sH)? Vie[0,h—1], where s; = (s;)9
w=0

K3
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Now, {s0,51,82,...,5n1} are linearly independent over Fy:, since V; = @?:_Olsinzl.
Thus, {sg, 81, 85, ..., 5,_; } are also linearly independent over Fii, = the h x h matrix

in (4) is nonsingular, and thus there exists a unique solution of (4) for
Co,C1y---,Ch—1- 0

LEMMA 4.5. Let oy, 1 <i < k, be some elements of Fu with length of conjugacy
classes l; , i =1,...,k, respectively. Suppose I" = lem(ly,...,lx) and o : Fo — Fyu
is a nonzero Fy-linear map. If o satisfies o(c;b) = Bio(b) Vb € F,uv for some B3; €
Fu,i=1,...,k, then there exists an integer j > 0 such that B; = ag] fori=1,...k,
and f5(X) = X9 for some unique ¢ € F,.

Proof. Suppose I, = %’ ,i=1,...,k. By Lemma 4.4, 5, = 04,2-1“ for some nonneg-

i

ative j;, ¢ = 1,...,k. Now, 3 a unique polynomial f,(X) of degree < ql/. Applying
Lemma 4.4 for each i, we see that o is induced by f;(X) = Z%i_:lo ci,hinh”#”, where
;0 < h; <1 — 1, are some unique constants. Since all the polynomials f;(X) are
of degree < ql/7 they have to be the same. In particular, their smallest degree terms
are the same, and that means, say, j = hily + j1 = --- = hilp + jr. Now, if there
is any nonzero monomial other than X7, then such a monomial is of degree, say,
j/ = hllll +jg=-= h;clk + Jk- Thus,

(R =)l = -+ = (B — Tl
=1 = lcm(ll, A ,lk)|(h/1 — hl)ll.
This contradicts the fact that (b} — hy) < I} = % Thus, f,(X) = ¢X4 for some

unique constant ¢ and a; = Z‘-]],i =1,...,k O

By (3) and Lemma 4.5, for a linear G-invariant code, two transform components
cannot be related unless they are in the same cyclotomic residue class. Thus, we have
the following theorem.

THEOREM 4.6. Let (z;)?,4 = 1,2,...,k, be the distinct cyclotomic residue
classes. Then for any linear G-invariant code, {Az|x € (x;)4},i = 1,2,...,k, are
unrelated.

COROLLARY 4.7. Let (x;)?,i = 1,2,...,k, be the distinct cyclotomic residue

classes. Then, any linear G-invariant code C is

k
(5) C=EPCu
i=1

where C(z,)a denotes the subcode of C obtained by restricting all the transform compo-
nents outside (x;)? to zero.

For quasi-cyclic codes, this gives the primary components of a code [8], and for
cyclic and abelian codes, these subcodes, when nonzero, are minimal cyclic and abelian
codes, respectively.

A nonzero linear G-invariant code is called minimal if it does not have any non-
trivial linear G-invariant subcode. For a minimal G-invariant code, transform com-
ponents in only one cyclotomic residue class (z)? are nonzero and A~ takes values



Downloaded 01/01/13 to 152.3.102.242. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

CODES CLOSED UNDER ABELIAN PERMUTATION GROUP 9

from a one-dimensional subspace of F% . Since any vector space is a direct sum of
one-dimensional vector spaces, we have the following theorem.

THEOREM 4.8. Any G-invariant code is a direct sum of minimal G-invariant
codes.

However, the decomposition of a G-invariant code in terms of some minimal G-
invariant codes is not unique, though for the special case of abelian codes, such a
decomposition (as a direct sum of minimal abelian codes) is unique.

It is known that if (exp(G),q) # 1, then there are abelian codes on that group,
which cannot be decomposed as a direct sum of minimal abelian codes. If (exp(G), q)
# 1, then for some k, (exp(Gk),q) # 1. Then we can take an abelian code on Gj,
which cannot be decomposed as a direct sum of minimal abelian codes. That code
can be padded with zeros in all other orbits to get a G-invariant code, which is not
decomposable as a direct sum of minimal G-invariant codes.

THEOREM 4.9 (transform domain characterization). Let G be an abelian group
of permutations with order relatively prime to q. Then a code is G-invariant if and
only if the following hold:

(i) For any x € G, A~ takes values from a subspace of Fy, .
(ii) If z1,...,xzk are representatives of the distinct cyclotomic residue classes of
g, then AQ;1 et ,A;k are unrelated.

5. Duals of G-invariant codes. To characterize duals of G-invariant codes,
some generalizations of Euclidean and Hermitian dual codes are needed. Let v =
(v1,...,m) C Fé be a vector with each component nonzero. For any two vectors
a,beF, ql, the v-weighted Euclidean inner product (or Ey-inner product) of a and b
is defined as

l
(6) Ev(aa b) = Z Vg Ozby .
r=1

Similarly, for any v € Fé, the v-weighted Hermitian inner product, or Hy-inner
product, of a € Fé2 and b € Fé2 is defined as

l
(7) Hy(a,b) = vya.bl.
=1

When v is an “all-ones” vector, the v-weighted Euclidean inner product and v-
weighted Hermitian inner product reduce to the usual Euclidean and Hermitian inner
products, respectively.

Two vectors are called orthogonal w.r.t. an inner product if the inner product of
the vectors is zero. Two linear codes C; and Cy are called the dual of each other with
respect to an inner product if Cy is the set of all the vectors which are orthogonal to
every vector in C;. When no inner product is specified, it is assumed to be a Euclidean
inner product. A code is called self-dual when it is the dual of itself.

For any x € G, 7, will denote the cardinality of the orbit containing x. For any
residue class 7, 7~ will denote the e,-tuple with components 7, , y € 7, in the same
order as A, in A~. With abuse of notation, T;_ ! will denote the componentwise inverse
(in F, C Fy) of T~

THEOREM 5.1. For a G-invariant code C, a vector b € Fqg is orthogonal to C if
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and only if Va € C,

(8) ZT;lAyBy—l =0 VY cyclotomic residue classes ().
yeﬂxw

Proof. Clearly, b is orthogonal to C if and only if

albVacC« Y ayb, =0 VacC

yeg

= > 7, AyB =0 VaeC
yeg
re—1

(9) = Z ZT;lquiB(yqi)fl =0 for each (z)9, VaeC

=0 yé{
Te—1 qi

= Y (Tnias,. | =o ’
=0 \yex

—1
— Trg,,F, ZTy AyB,1 | =0 ”
yeg

(10) = > 7, A,B1 =0 "
yeg

To get (9), we use the fact that the transform components in different cyclotomic
residue classes are unrelated for a G-invariant code, and to obtain (10) we use the
fact that A~ takes values from a subspace of F, e O

Note that if (8) is satisfied for a residue class z, then it is also satisfied for any
other residue class in the same cyclotomic residue class. Thus, it is sufficient to
consider only one representative residue class in each cyclotomic residue class. When
two residue classes T and z—! are considered, compatible orders are taken in them:;
i.e., if we take

then we also take

Amf\:l = (Az—l,Azl—l,...,Aze—Tl_l).

Let {x1,xa,...,x;} be a set of representatives of the distinct cyclotomic residue
classes of G. Suppose, for the codes C; and C,, A; takes values from V, and U,,
respectively. Then V,, and U, can also be considered linear codes of length e, over
Fyro. Using Theorem 5.1, the dual code of a G-invariant code can be characterized
as follows.

THEOREM 5.2. Two G-invariant codes C1 and Co are the dual of each other if
and only if for each x;, 1 =1,2,...,1, Vy, and U -1 are the E_-1-dual of each other.

z

5.1. Self-dual G-invariant codes. Let us classify the cyclotomic residue classes
into the following three types:
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1. Type A: Self-inverse cyclotomic residue classes (z)? with 2 = z=!. In this
case, suppose * =z~ € Gy, i.e., 2 = 1;. Then either x = 1, or order of G}, is even
= ¢ is odd (since (¢, |Gg|) =1) = 2?l=z =1, = 1.

2. Type B: Self-inverse cyclotomic residue classes (z)? with  # z~!. In this
case,

x7t =27 for some i < r,, i#0.

Thus,

i

T = (xil)_l = (:vqi)f1 = (zfl)q =27 = r2|2i = 2|r, and i = %

3. Type C: Cyclotomic residue classes (z)? which are not self-inverse, i.e., v7! ¢
(a)1.
The cyclotomic cosets are also assigned a “type” based on the type of cyclotomic
residue classes they are in. Let us denote the distinct cyclotomic residue classes as

Type A: (xl)q, ceey (zil)qa
Type B: (y1)?, ..., (9i,) %,
Type C: (21)%, (zfl)q ooy (205)9, (z;sl)q.

THEOREM 5.3. Let C be a G-invariant code, where A~ A;, Az:, and A~ take
values from the subspaces Vi, Vi, Vo, and V-1, respectively, fori=1,... ,11?1 ,J =
k
1,...,i9, k=1,...,i3. The code is self-dual if and only if
(i) Vi, is an E_-1-self-dual code fori=1,... i;.
(i) Vy, is an H_-1-self-dual code for j =1,... is.

Yj

(ili) Vi, is the E_—1-dual code of V-1 for k =1,..., 1.
-~ k
Proof. If the code isk self-dual, then by Theorem 5.2, V, . is the E_-1-dual of Vy—l.
. = ;

Now,

x x

Vy,; is E_-1-dual of Vy;l =V, = {V € F;fjj ‘ET;I (v,u) =0 Yue Vyjl} .

3

But,

Thus,

Vy, is E_-1-dual of Vy;1 =V, = {V € F:f;’j |H_—1(v,u) =0 Yu e VyJ}

T T

< V,, is H_-1 self-dual.

vy

The rest of the proof follows directly from Theorem 5.2. ]
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Let Ng,(q,1) and Ny, (q,1) denote the number of, respectively, Ey-self-dual codes
and H-self-dual codes of length | over F,. Also, let N(q,!) denote the number of
subspaces of Fé. All these numbers are known [11, 12] when v is all-ones and the
values are as given below.

l

i-1
(1)  Nah=> [

i i’
i0j=0 1 — 4

éz_ll (¢" +1)  for ¢ and I even,
Lo, .
(12)  Ng,(q,0) = 2H12:11(q1 +1) for g=1mod 4, [ even,

2 H;Z_ll(qi +1) for g =3 mod 4, [ is divisible by 4,
0

otherwise,
-1, 441 .
(13) N, (q.l) = { 2o (¢""2 +1), when [ is even,
0, otherwise.

Theorem 5.3 directly gives Theorem 5.4.
THEOREM 5.4. The number of self-dual G-invariant codes over Fy is

Yj

i1 i2 i3
H NET;l (g, ex,) H NHT (a7 ey,) H N(q"™*, ez,),
=1 j=1 k=1

where the empty product is 1 by convention.
When |G| = |G2| = --- = |G¢| mod p, the E_-1-duality and H_-:-duality are the

vj
same as the Fuclidean and Hermitian dualities, respectively. So in that case,

NETfl (qrm"’ ) eri) = Ng, (quj ’ el’i)?
NHT:1 (qryj 3 eyj) = NH1 (quj ) €y )

T4

Ezample 5.1 (continuation of Example 3.1). In the following, the number of
self-dual G-invariant codes is found for different ¢ s.t. |G1| = |G2| = - -+ = |G| mod
p.

g =1mod 3, ¢ =4 mod 5, and 3 = 5 mod p (e.g., ¢ = 4): Different types of
cyclotomic residue classes are Type A {11, 12,13, 14}; Type B {¢2, 93, 93, g3}, {93, 94,
93,91 }; and Type C {g1, 92}, {97, 95}. So the number of self-dual G-invariant codes
over F, is Ng(q,4)N(q,2)(Nu(q?2))%

The number of self-dual G-invariant codes over F for other values of ¢ can be
calculated similarly as follows.

g=1mod 3, ¢=1mod 5, and 3 =5 mod p (e.g., ¢ = 16): Ng(q,4) (N(q,?))g.

g=2mod3,qg=2or3mod5,and 3 =5modp (e.g., ¢ = 2,8): Ng(q,4)Nr(q?,2)
NH(q4, 2) .

The values of Ng,(g,!) and Ny, (¢?,1) are not known for arbitrary v. The fol-
lowing theorem allows computation of these quantities for certain cases.

THEOREM 5.5. If either all components of v € Fé are quadratic residues in F,
or all components are quadratic nonresidues in Fy, then (1) Ng, (¢,1) = Ng(q,l) and
(2) Nu, (¢*,1) = Nu(q*,1).
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Proof. If all the components of v are quadratic nonresidues in F,, then this
vector can be divided by one of its components to get a scalar multiple of the vector,
in which each component is a quadratic residue. So, it is sufficient to assume that the
components of v are quadratic residues. Suppose v = (vy,...,v) = (s3,...,s?).

We shall give a one-to-one correspondence between the FEy-self-dual codes and
the Euclidean self-dual codes to prove the first part of the result. Let U C Fé be
an Ey-self-dual code of length [ over F,. Then it will be shown that the subspace

W e {(s1a1,...,s5101)|]a = (a1,...,a;) € V} is a Euclidean self-dual code. Suppose
(s1a1,...,81a1),(s1b1,...,8b;) € W. Then, 22:1 via;b; = 0 = Zizl(siai)(sibi) = 0.
Thus, any two vectors in W are orthogonal w.r.t. the Euclidean inner product, and
since the dimension of W is the same as the dimension of V', which is %, W is a
Euclidean self-dual code. The second part follows similarly. 0

COROLLARY 5.6. If G is such that |G| = --- = |G| mod p and there is a self-
inverse cyclotomic coset [x]? C G with e, odd, then there is no self-dual G-invariant
code over Fy.

Proof. Both Ng,(¢"™",e;) and Np, (¢",e,) are 0 when e, is odd, and thus the
result follows. O

COROLLARY 5.7. If G is such that |G1| = --- = |G| mod p and the number t of
orbits is odd, then there is no self-dual G-invariant code.

Proof. The result follows by applying Corollary 5.6 to the cyclotomic residue class

{0j=1,....t}. 0O

6. Minimum distance of G-invariant codes. Tanner used a BCH-like ar-
gument [14] to estimate minimum distance bounds from the parity check equations
over an extension field. The same concept was used to get minimum distance bounds
for quasi-cyclic codes from the transform domain description of F-linear cyclic codes
over Fym [4]. A natural generalization of the results is given here. This can be used
to guarantee some minimum distance by viewing the code as a shortened code of
an abelian code. For s vectors vi,Vva,..., v, over Fyr of lengths nqy,ng,...,ng, re-
spectively, let vi Kvy X ... K vy denote the n; X no X --+ X ng array, known as the
Kronecker product of vi,va,...,vs, with (i1,42,...,4%s)th element v ;,v2, ... Vs .-
The following theorem is available in [4] for the special case of s = 1. Here, power of a
vector will mean the componentwise power, and I; will denote the set {0,1,...,1—1}.

THEOREM 6.1. Let r be an arbitrary positive integer and the components of
each of the vectors vi,vs,...,vs of lengths ni,no, ..., ng, respectively, be nonzero
and distinct. If the components of a code C can be arranged in an ny X ng X - -+ X ng
array, and if S is a subset of I5._, such that for each k = (ki,...,ks) € S, the array

v’fl X v’2€2 X...X vk is in the span of a set of parity check equations over Fyr, then
the minimum distance of the code is at least that of the s-dimensional cyclic code

FylXi,..., X4

T v kla"'? he =0
X7y T

cc:{f(Xl,...,XJe

V(kl,...,ks)eS},

where 3 is a primitive element of Fyr.
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Proof. Suppose v; =

. )\ .
(V1,0, V115 -+, Ulmy—1) With vy ; = 870i, where A\;; # A ; for

i1 # 7, Vl. For any a € C with weight wy(a) = d, we construct

l
a

as

/ _
a>\1,i17--~7)\s,7?s -
/
J1se030s

a; . =0 when (j1,...

Yoo a4y X XD ed

(jla"'vjs)GI;T71

s

i for (1, ... ,0) € Iny X Iy, x -+ X Iy

ajS) # (>\1,h7"'7>\87i5) v(i17...,i5) € I’I’Ll X ITL27 X X Ins'

Clearly, wy(a’) = d. Now,

ni—1 ns—1
k ks
acC= Y > a0k v =0V (k... k) €S

11=0 1s=0
q -1 q -1

= Z...Zah’ ﬂ]lkl.,.ﬁlskszo »
j1=0 js=0

=a €. |

If (x1)9,...,(zx)? denote the distinct cyclotomic residue classes, then we know

that any G-invariant code C is specified by the subspaces Vg,,..., Vs, of

€g €z,
Eorayo, qu,f‘k ,
respectively, from which A~ o ,A; take values. Now, each V,,, z = 21, ..., 2k, can
be considered a linear code over Fyr. of length e,. Thus, V, is determined by a set of
parity check equations. Suppose T = {y1,..., ¥y}, where = y; for some i and | = e,.

Let Zi:l ¢; Ay, = 0 be a parity check equation of V. Then,

l
> (Z cﬂ’(y,yz‘)> ay = 0.

yeg

Clearly, this gives a parity check equation of C over Fyr,. The componentwise con-
jugate vectors of the parity check vectors obtained this way and the vectors in their
span are also parity check vectors of the code.

Although Theorem 6.1 gives a way to get a minimum distance bound of any linear
code, for which a set of parity check equations over an extension field is known, it
is very difficult to know which arrangement of the code components, in how many
dimensions, and what choice of v; will give the maximum bound on the minimum
distance. Even for the one-dimensional (s = 1) case it is very difficult to choose the
best v; and arrangement of code components because of the huge number of choices.

7. Quasi-abelian codes. For any abelian group G, the G-quasi-abelian codes
of length |G| (which are submodules of (F,G)") are closed under the action of G
on the coordinates. So such codes are invariant under the coordinate permutations
induced by the elements of G. However, this case has a more organized structure
in that all the orbits of the coordinates under the action of G are of the same size
|G|, and there are t such orbits. This raises the following natural reverse question:
For a given abelian group G of permutations on code coordinates, when can we view
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the G-invariant codes as G-quasi-abelian codes? The following theorem answers this
question.

THEOREM 7.1. The G-invariant codes are G-quasi-abelian codes, i.e., they can
be viewed as submodules of (F,G)! for some t if and only if |G| = |Gk|VEk.

Proof. The forward implication is obvious. If |G| = |G|, then g — ¢®) is an
isomorphism of G onto G. Thus, any G-invariant code can be viewed as a submodule
of (F,G)". O

Note that to see the G-invariant codes as G-quasi-abelian codes, G, ~ Gy, Vk1,
ko € I, is not sufficient.

Ezample 7.1. Consider the group of permutations G = ({o1,02}) of {1,2,...,54},
where o1 and o3 are as shown in Figure 5. The solid lines with arrows represent the
cycles of o1 and the dashed lines with arrows represent the cycles of o5. The order
of the group G is 81, whereas the two groups G; and Gy of restricted permutations
are isomorphic to each other and of order 27. So, G-invariant codes cannot be seen
as G-quasi-abelian codes in this case.

F1c. 5. Cycle structures of o1 and o2 of Example 7.1.

For G-quasi-abelian codes, we can index the coordinates in different orbits by
copies G1, - ., G4 of the same group G. Thus, for any element g € G, we have an
element ¢ € G; for each i. So every residue class is of the form {g(*,... g®}.

We'll denote it by g instead of g(®).

If, for a G-quasi-abelian code, symbols in some orbits form a set of information
symbols and the symbols in the other orbits are the parity check symbols, then the
code is called a systematic G-quasi-abelian code. For a systematic G-quasi-abelian
code C C (F,G)" of dimension k|G| (k < t), without loss of generality we can assume
that the first & orbits are information symbols and the rest are parity check symbols.
Then there exist some ¢;; € F;G,l = 1,...,t —k,,j = 1,...,k, such that each
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codeword is of the form

k k k

t

ai,az,...,a, E a;Cy,j, E a;C2 5, -, E a;Ci—k,j | € (FqG) .
Jj=1 Jj=1 Jj=1

If the DFTs of a; and c; ; are denoted by A; and C; j, respectively, then each code-
word in the transform domain is of the form

k k k
1&1,1&27 - ’Ak’ZA-j ® CLJ',ZAJ' ® CQJ, ey ZA7 ® Ct—l@j € (FqG)t,

Jj=1 Jj=1 J=1

where ® represents the componentwise product.

7.1. Decoding of systematic quasi-abelian codes. For a systematic G-
quasi-abelian code with one information orbit, there are c; € F,G, j =1,...,t -1,
such that every codeword is of the form (a,cja,cqa,...,c;—1a). For quasi-cyclic
codes, i.e., for cyclic G and when c; is a unit in F,G for j = 1,...,¢t — 1, Karlin [7]
used alternate syndromes based on c;, 57 = 1,...,t — 1, and their inverses to gain
considerable reduction in decoding operations. In the following, Karlin’s approach is
extended for systematic G-quasi-abelian codes with multiple information orbits. This
is a two-step generalization of Karlin’s algorithm: from quasi-cyclic codes to quasi-
abelian codes and from one information orbit, i.e., one-generator codes to multiple
generator codes.

For a systematic G-quasi-abelian code C C (F,G)" of dimension k|G| (k < t),
there exist some ¢;; € F,G,l =1,...,t —k,j =1,...,k, such that each codeword

. t k
is of the form a = (a1, as,..., a5, ak41, ..., &) € (FyG)", where ag; = Y, a;ci ;.
We restrict our attention to the case where c; ;,i=1,...,t—k,j=1,...,k, are such

that any k x k submatrix of the transposed generator matrix

1 0 e 0
0 1 .. 0
M 0 0 cee 1
- C1,1 Ci2 +  Cig
C2.1 C2.2 s Cok
Ct—k1 Ct—k2 ' Ci—kk

is invertible over F,;G. That is, any k orbits form a set of information symbols. For
any subset X C [1,¢], the | X| x k submatrix comprising the corresponding rows of M
is denoted by M. Similarly, ay will denote the vector of length | X| comprising the
components a; € F,G, ¢t € X. We denote the complement [1,¢] \ X by X. Thus, if
we know k components of a codeword a, i.e., ax for some X of size k, then we can
solve uniquely for the others as agy = Mg My 'ax.

Suppose a = (aj, as, ..., a;) is the transmitted codeword and the received vector
is a’ = (a},a),...,a}). Let e = (ej,eq,...,e;) = a’ — a denote the error vector.
Suppose the code’s known minimum distance is 2] + 1 and a vector is received with
at most [ errors, that is, the Hamming weight of the error, 22:1 wty(e;) <Il. Then
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the transmitted vector is the only vector of the form

k k k
aj,ag,...,ag, E a;Cy 4, E a;Co 4, ..., E a;Ct_f j
j=1 j=1 j=1

having distance from the received vector < [.

Given a received vector a’, for each X C [1,t] of size k a syndrome Sy =
Mg Mytaly + aly = MyMy'(ax +ex) +ag +egx = MgMy'ex +ex can be
computed. Thus, given ex, ex can be calculated as ex = Sx — M)-(M;(leX. Now,
if the error is of weight less than [, then there is at least one subset X of size k such
that the weight of ex is at most [ % |. Thus, if we presume an ex of weight at most
L%J, and wtgy (eX,SX - MXM);leX) <, then ex and eg = Sx —MXM);leX give
the actual error.

Now, any ey € (F,G)X! can be considered as a vector of length |X||G| over
F,. 1t e, e e (F,)X! are such that e’ = g for some g € G, then we call
them equivalent. Let us call the equivalence classes the G-quasi-abelian equivalence
classes. All the elements of an equivalence class have the same Hamming weight.
If we compute Mg M )}lex for one representative of an equivalence class, then for
any ey = exg in the same equivalence class, M;(M)}le’x = gM;(MgleX can be
computed from MM §1e x just by permuting its components.

Using these concepts, the decoding algorithm can be performed as follows.

1. For each subset X C [1,t] of size k calculate Sx.

2. For i =0to | 2]

3. For each subset X C [1,¢] of size k

4. For each G-quasi-abelian equivalence class of Hamming weight i, take a rep-

resentative ex. Compute MXM);leX.

5. For each g € G
Compute ey = Sx — gMXM);leX

7. Check if Hamming weight of ex is less than or equal to ¢ — 4. If so, take

(ex,ex) as the error and quit. Otherwise, continue with the loops.
The number of syndromes (in (F,G)!~*) calculated by this algorithm is (}). If k =1
and G is cyclic, then it specializes to the algorithm proposed by Karlin [7] and Heijnen
and van Tilborg [6] for decoding systematic quasi-cyclic codes with a single row of
circulants in the generator matrix, i.e., one-generator systematic quasi-cyclic codes.
For ¢t = 2, it further specializes to the single parity circulant case.

>

8. Discussion. The class of codes considered in this paper is a generalization
of cyclic codes, quasi-cyclic codes, abelian codes, and quasi-abelian codes. All these
special families of codes are defined as codes closed under one or more permutations
of the code components. The algebraic structures of these special families of codes
were investigated by different authors and, in all the cases, there seemed to exist some
common structure. It is shown in this paper that such structures are not specific to
those codes, but these structures are present in the family of G-invariant codes for
any abelian group G of permutations with order of G relatively prime to gq.

Also, a twofold extension of Karlin’s decoding algorithm for quasi-cyclic codes is
given. It is an extension from the case of one-generator systematic quasi-cyclic codes
to arbitrary systematic quasi-cyclic codes and also from the case of quasi-cyclic codes
to quasi-abelian codes. However, since the algebraic structure of G-invariant codes for
any arbitrary abelian G (with order relatively prime to ¢) is only as complex as that
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of quasi-cyclic codes and quasi-abelian codes, it would be interesting to see whether
this decoding algorithm can be extended to cover this general class of codes.

The results of section 5 give as special cases all the results of [9] regarding existence
and enumeration of self-dual quasi-cyclic codes. Theorem 5.4 gives the number of self-
dual G-invariant codes in terms of the number of weighted self-dual codes and weighted
Hermitian self-dual codes. Theorem 5.5 enables computation of these numbers in
terms of the known numbers for some special cases of weight vectors. It remains an
open problem to compute the values of Ng,(q,!) and Ny, (q,l) for arbitrary weight
vector v, and thus enable computation of the number of self-dual G-invariant codes
for arbitrary abelian group G of permutations.
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