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Abstract. Algebraic structure of codes over Fq , closed under arbitrary abelian group G of
permutations with exponent relatively prime to q, called G-invariant codes, is investigated using a
transform domain approach. In particular, this general approach unveils algebraic structure of quasi-
cyclic codes, abelian codes, cyclic codes, and quasi-abelian codes with restriction on G to appropriate
special cases. Dual codes of G-invariant codes and self-dual G-invariant codes are characterized. The
number of G-invariant self-dual codes for any abelian group G is found. In particular, this gives the
number of self-dual l-quasi-cyclic codes of length ml over Fq when (m, q) = 1. We extend Tanner’s
approach for getting a bound on the minimum distance from a set of parity check equations over an
extension field and outline how it can be used to get a minimum distance bound for a G-invariant
code. Karlin’s decoding algorithm for a systematic quasi-cyclic code with a single row of circulants
in the generator matrix is extended to the case of systematic quasi-abelian codes. In particular,
this can be used to decode systematic quasi-cyclic codes with columns of parity circulants in the
generator matrix.
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1. Introduction. Codes with rich algebraic structure are of strong interest to
coding theorists because such codes are easy to design and decode. Classical families of
cyclic codes, such as Bose–Chaudhuri–Hocquenghem (BCH) codes and Reed–Muller
codes, were the center of attention for a long time. For a cyclic code, the code’s
permutation group contains a cyclic subgroup generated by the cyclic permutation.
A cyclic code can also be viewed as an ideal of the group algebra on the cyclic group
of order n (length of the code). More generally, ideals of group algebras on abelian
groups are known as abelian codes.

A different direction of generalization gives another class of codes: quasi-cyclic
codes. A code of length n is said to be l-quasi-cyclic for some l|n if every l times cyclic
shift of a codeword is also a codeword. Thus an l-quasi-cyclic code can be viewed as
a submodule of the l-dimensional free module (FqCn

l
)l over the group algebra FqCn

l
,

where Cn
l

is a cyclic group of order n
l .

A more general, but less popular, class of codes is the class of quasi-abelian codes
[15]. For a finite abelian group G and its subgroup H, an FqH-submodule of FqG is
called a G−H quasi-abelian code. In fact, for an abelian group H and any positive
integer t, any submodule of (FqH)

t
can be considered a quasi-abelian code. In that

case, any abelian G ⊇ H with |G| = t|H| can be used to define quasi-abelian codes, as
in [15]. Thus, such codes will be called H-quasi-abelian codes. When t = 1, this class
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2 BIKASH KUMAR DEY AND B. SUNDAR RAJAN

specializes to abelian codes and, when H is a cyclic group, specializes to the class of
quasi-cyclic codes.

Transform techniques for cyclic codes and abelian codes are well known [1, 13].
Transform techniques for repeated root cyclic codes were discussed in [10]. Recently,
quasi-cyclic codes were studied in the transform domain [5, 9]. Tanner [14] introduced
ways to transform a group invariant parity check matrix into a parity check matrix
over an extension field, and he used this technique to get a lower bound on the
minimum distance of group invariant codes.

In this paper, the algebraic structure of codes closed under any arbitrary abelian
subgroup G of Sn (the group of permutations of n elements) is investigated. We call
this class G-invariant codes. When special types of G are taken, G-invariant codes
coincide with the class of quasi-abelian codes, and thus with the classes of quasi-
cyclic codes and abelian codes. Figure 1 shows the relation between different classes
of codes.

Quasi−cyclicAbelian

Codes

Codes
G : Arbitrary
G − Invariant Codes

Codes

G : Cyclic

Cyclic
Codes

t = 1
G : Cyclic

t = 1( ) ( )

CodesG − Invariant
G : Abelian

Quasi−abelianG −

Fig. 1. Different families of codes and their defining groups of permutations.

Following are a few examples of some types of permutation groups G shown in
Figure 1.

Example 1.1. For any a, b ∈ Fq, a �= 0, let σa,b denote the permutation σa,b : x �→
ax+ b. Then G = {σa,b|a ∈ F ∗

q , b ∈ Fq} is a subgroup of Sq and is called the group of
affine permutations. For q > 2, G is nonabelian and the G-invariant codes are known
as affine invariant codes.

Example 1.2. Figure 2 (ignore the solid, dashed, and dotted boxes for now) shows
the cycle structure of the generator σ of a permutation group G = 〈σ〉 ⊆ S16. Here
G is abelian, and G-invariant codes cannot be seen as G-quasi-abelian codes.

Example 1.3. Consider a permutation group G = 〈σ1, σ2〉 ⊆ S54. Figure 3 shows
the cycles of σ1 with solid lines with arrows and the cycles of σ2 with dashed lines
with arrows. Here G is abelian, and G-invariant codes are the same as G-quasi-abelian
codes of length 54.

All abelian codes on an abelian group G are decomposable as a direct sum of
minimal abelian codes if and only if the exponent of G is relatively prime to q. The
same is true for l-quasi-cyclic codes if and only if n

l is relatively prime to q [2]. It will
be shown that this is true for any G-invariant code (G abelian); i.e., for an abelian
subgroup G ⊆ Sn, any G-invariant code of length n can be decomposed as a direct
sum of minimal G-invariant codes if and only if the exponent of G is relatively prime
to q.
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Fig. 2. Cycle structure of the generator of G in Example 1.2.
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Fig. 3. Cycle structure of the generators of G in Example 1.3.

Karlin [7] showed a way to decode a class of one-generator quasi-cyclic codes.
Heijnen and van Tilborg [6] proposed another decoding technique for the class of one-
generator quasi-cyclic codes, which uses the same basic idea as Karlin’s technique but
achieves some computational advantages by better usage of the quasi-cyclic property
of the code. In this paper, Karlin’s approach is extended to a class of quasi-cyclic
codes, not necessarily one-generator. When restricted to one-generator quasi-cyclic
codes, this method reduces to Karlin’s method. Moreover, this method also applies
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4 BIKASH KUMAR DEY AND B. SUNDAR RAJAN

to a class of quasi-abelian codes specified in subsection 7.1.
In section 2, the DFT on abelian group is reviewed, and in section 3 is used to

define a DFT for G-invariant codes for any abelian group G of permutations with
exponent relatively prime to q. Such G-invariant codes are characterized in the trans-
form domain, and their structural properties are investigated in section 4. Dual codes
of G-invariant codes and self-dual G-invariant codes are characterized in section 5.
The number of G-invariant self-dual codes for any abelian group G is also found. In
section 6, we extend Tanner’s approach for getting a bound on the minimum distance
from a set of parity check equations over an extension field and outline how it can
be used to get a minimum distance bound for G-invariant codes. Quasi-abelian codes
are discussed in section 7, and Karlin’s approach [7] for decoding systematic quasi-
cyclic codes with parity circulants in a single row is extended to the case of systematic
quasi-abelian codes. In particular, this approach can be used to decode systematic
quasi-cyclic codes which are not necessarily one-generator, which was the case left
open by Karlin.

2. Review of the DFT for abelian codes. Let G be an abelian group with
exponent ν such that (ν, q) = 1. Let r be the smallest positive integer such that
ν|(qr − 1). Then the group of all distinct Fqr -characters of G is isomorphic to G. In
fact, an isomorphism x �→ ψ(x) can be chosen (see, for example, [3] and the references
therein) such that ψ(x)(y) = ψ(y)(x). We denote ψ(x)(y) as ψ(x, y), considering it a
map ψ : G×G → Fqr . It satisfies the following properties:

ψ(x, yz) = ψ(x, y)ψ(x, z),(1a)

ψ(x, y) = ψ(y, x),(1b)

(ψ(x, y) = ψ(x′, y) ∀y ∈ G) ⇐⇒ x = x′,(1c) ∑
x∈G

ψ(x, y) =

{
|G| if y = 1,
0 if y �= 1,

(1d)

where |G| and 1 denote, respectively, the cardinality of G and the identity element in
G.

The DFT of any element a =
∑

x∈G axx ∈ FqG is defined as A =
∑

x∈G Axx ∈
FqrG such that Ax =

∑
y∈G ψ(x, y)ay. The inverse DFT is obtained as ax =

|G|−1
∑

y∈G ψ(x, y)−1Ay.

3. DFT for G-invariant codes. We consider codes of length n over Fq with
components indexed by a set I. Let G ⊆ Perm(I) be an abelian subgroup of the
group of permutations of I. Let the characteristic of Fq be p.

Suppose I1, . . . , It are the orbits of I under the action of G. Let us denote Gk =

{g(k)|g ∈ G} for k = 1, . . . , t, where g(k) �
= g|Ik ∈ Perm(Ik) is the permutation g

restricted to Ik. Since Gk is abelian and acts on Ik faithfully and transitively, the
stabilizer of any i ∈ Ik is {1k} (1k denotes the identity element of Gk). Thus, for
any i1 ∈ Ik, there is a unique g ∈ Gk, such that i1 = g(i). This defines a one-to-one
correspondence between Gk and Ik. Using this, the symbols can be indexed by the
elements of Gk instead of Ik by first associating a fixed element i ∈ Ik with the identity

element 1k. Hence, the code symbols are indexed by G �
= ∪t

i=1Gi instead of I. Then

the element g of G acts on G as x
g�→ g(k)x when x ∈ Gk. For any a = (ax)x∈G ∈ FG

q ,

g ∈ G acts on a as a
g�→ b = g(a) such that bx = ag(k)−1x when x ∈ Gk. Henceforth,

we’ll use the letters f, g, and h, possibly with subscripts, to denote elements of G,
and use the letters x, y, and z to denote elements of G.
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CODES CLOSED UNDER ABELIAN PERMUTATION GROUP 5

Let the exponent of G, exp(G) = lcm ({exp(Gk)|k = 1, . . . , t}) be relatively prime
to q, and let r be the smallest positive integer such that exp(G) divides (qr−1). Then
on each orbit, DFT is defined as discussed in the last section; i.e., the DFT of a ∈ FG

q

is defined as A = (Ax)x∈G ∈ FG
qr , where

Ax =
∑
y∈Gk

ψk(x, y)ay ∀x ∈ Gk, ∀k.

Here ψk is as defined in the last section for Gk. For any two x, y ∈ G, define

Ψ(x, y) =

{
ψk(x, y) when x, y ∈ Gk for some k,
0 when x ∈ Gk1 and y ∈ Gk2 , s.t. k1 �= k2.

With this notation, the DFT can be rewritten as Ax =
∑

y∈G Ψ(x, y)ay∀x ∈ G.
Clearly, A satisfies Axq = Aq

x ∀x ∈ G. For any h ∈ G and x ∈ G, we define the symbol

〈h, x〉 �
= ψk(h

(k), x) when x ∈ Gk.(2)

It follows from this definition that the DFT of b = h(a) is given by Bx = 〈h, x〉Ax.
Suppose h1, h2 ∈ Gk. Then using (1a) and (1c), we have 〈g, h1〉l = 〈g, h2〉 ∀g ∈ G if
and only if hl

1 = h2.
For any element x ∈ G, it is in Gk for some k, and thus a cyclotomic coset of x

is defined as [x]q
�
= {y ∈ Gk|y = xqt for some nonnegative t}. Cardinality of [x]q will

be denoted as rx. For any subset S ⊆ G, we define [S]q
�
= ∪s∈S [s]q.

Corollary 3.1. For any x ∈ G, rx is the smallest positive integer such that
〈g, x〉qrx = 〈g, x〉 ∀g ∈ G. Thus, rx is the least common multiple (lcm) of the lengths
of the conjugacy classes of 〈g, x〉 ∀g ∈ G.

The residue class of x ∈ G is defined as x̃
�
= {x1 ∈ G|〈g, x1〉 = 〈g, x〉 for each g ∈

G}. Cardinality of x̃ will be denoted by ex. For any subset X = {x1, x2, . . . , xk} ⊆ G,
AX denotes the ordered tuple (Ax1 , Ax2 , . . . , Axk

) with an arbitrary fixed order in
X. In particular, for any residue class ỹ1 = {y1, y2, . . . , yl}, we denote by A

ỹ
the

ordered l-tuple (Ay1
, Ay2

, . . . , Ayl
) with an arbitrarily chosen fixed order on ỹ. For

some ordered tuples T1 = (t1,1, . . . , t1,j1), . . . , Tl = (tl,1, . . . , tl,jl) the concatenated
tuple (t1,1, . . . , t1,j1 , . . . , tl,1, . . . , tl,jl) is denoted (T1, . . . , Tl).

The cyclotomic residue class of x ∈ G is defined as (x)
q �

= {x1 ∈ G| for some non-

negative t, 〈g, x1〉q
t

= 〈g, x〉 ∀g ∈ G} = [x̃]q. Figure 4 shows the relation between a
cyclotomic residue class and the cyclotomic cosets and residue classes in it. By the
conjugacy constraint, the values of the DFT components in one residue class determine
the values of the other transform components in the same cyclotomic residue class.

To be specific, A
x̃qi

= Aqi

x̃
for any a ∈ FG

q , where the power of the vector A
x̃

is taken

componentwise. Thus, the values of the transform components in one representative
residue class from each cyclotomic residue class specify a vector completely.

Example 3.1 (continuation of Example 1.2). The index set has four orbits under
the action of G and G1 
 G2 
 Z3, and G3 
 G4 
 Z5. Let a set of generators of the
groups G1, G2, G3, and G4 be g1, g2, g3, and g4, respectively. If α ∈ Fqr is an element
of order 15, then we define DFT in F 16

q 
 FG
q with respect to the maps ψk defined

by ψ1(g1, g1) = ψ2(g2, g2) = α5, ψ3(g3, g3) = ψ4(g4, g4) = α3. The residue classes in
G are shown in Figure 2 with dashed boxes. The figure shows the cyclotomic cosets
with solid boxes and the cyclotomic residue classes with dotted boxes for q ≡ 2 mod
3, q ≡ 4 mod 5 (e.g., q = 29, 59).
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6 BIKASH KUMAR DEY AND B. SUNDAR RAJAN
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Fig. 4. A generic cyclotomic residue class (x)q.

4. Transform domain characterization of G-invariant codes. A linear
code C ⊆ FG

q is G invariant if for every codeword a ∈ C and h ∈ G, h(a) ∈ C. The
equivalent condition in the transform domain is that for any h ∈ G, A = DFT (a)
for some a ∈ C and B ∈ FG

qr with Bx = 〈h, x〉Ax ∀x ∈ G ⇒ B = DFT (b) for some
b ∈ C.

For any ordered tuple (x1, x2, . . . , xl) on G, we say (Ax1
, Ax2

, . . . , Axl
) takes values

from {(Ax1
, Ax2

, . . . , Axl
) |a ∈ C} for C. If for C, (Ax1

, Ax2
, . . . , Axl

) takes values from
V ⊆ F l

qr and U ⊆ V , then the subcode {a ∈ C| (Ax1
, Ax2

, . . . , Axl
) ∈ U} will be

referred to as the subcode obtained from C by restricting (Ax1 , Ax2 , . . . , Axl
) to U .

Lemma 4.1. For any G-invariant code C and x ∈ G, A
x̃

takes values from a
subspace of F ex

qrx .
Proof. Suppose A

x̃
takes values from an Fq-subspace (since the code is linear)

V ⊆ F ex
qrx for C. When any element g ∈ G acts on a codeword a, A

x̃
is multiplied

by 〈g, x〉. Since the code is G-invariant, 〈g, x〉v ∈ V for each g ∈ G and v ∈ V .
Thus, V is closed under multiplication by elements of SpanFq (〈{〈g, x〉|g ∈ G}〉) =
Fq [{〈g, x〉|g ∈ G}] = Fqrx .

For any G-invariant code C and x ∈ G, suppose A
x̃

takes values from a subspace
V ⊆ F ex

qrx . Then for any subspace U ⊆ V , the subcode obtained by restricting A
x̃

to
U is also G-invariant. For a linear code C, suppose, A

x̃
takes values from a subspace

V ⊆ F ex
qrx , and V = V1 + V2. If the subcodes obtained by restricting A

x̃
to V1 and V2

are, respectively, C1 and C2, then C = C1 + C2.
Definition 4.2. Let X1, X2, . . . , Xl be some disjoint subsets of G and suppose

RXj
= {AXj

|a ∈ C} for j = 1, 2, . . . , l. The sets of transform components {Ax|x ∈
Xj}, 1 ≤ j ≤ l, are said to be unrelated in C if {(AX1

, AX2
, . . . , AXl

) |a ∈ C} =
RX1 ×RX2 × · · · ×RXl

. They are said to be related if they are not unrelated.
Let x̃1, x̃2, . . . , x̃l be a set of representative residue classes of all the distinct

cyclotomic residue classes. Suppose we fix arbitrary subspaces Vi , i = 1, 2, . . . , l,
of F

exi

qrxi
, i = 1, 2, . . . , l, respectively, and consider the code C =

{
a ∈ FG

q |Ax̃i
∈

Vi for i = 1, 2, . . . , l
}
. Clearly, the code is G-invariant. But it is not clear whether

any G-invariant code can be obtained this way by choosing suitable Vi , i = 1, 2, . . . , l.
That is, are A

x̃i
, i = 1, . . . , l, unrelated for any G-invariant code? Theorem 4.6 will
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CODES CLOSED UNDER ABELIAN PERMUTATION GROUP 7

answer this question in the affirmative.
If, in a G-invariant code, two transform components Ax and Ay are unrelated,

then consider the subcodes C1 and C2 obtained by restricting, respectively, Ax and
Ay to {0}. Clearly, the original code is the sum of the codes C1 and C2. Suppose
S1, . . . , Sl are some disjoint subsets of the index set such that x, y ∈ ∪l

i=1Si. Then
the transform components in S1, . . . , Sl are unrelated in C if and only if they are
unrelated in C1 and C2. This process can be continued on C1 and C2 and repeated
on the resulting subcodes to get a set of subcodes whose sum is C and in each of
which either there is only one nonzero transform component or any pair of nonzero
transform components is related. So, if the transform components in S1, . . . , Sl are
related in C, then there is a G-invariant subcode of C, where two transform components
Ax, Ay, x ∈ Si, y ∈ Sj , i �= j, are related.

Suppose, in a G-invariant code, two transform components Ax and Ay are related.
Then they must take values from Fqrx and Fqry , respectively. The relation must be
by a bijection (so rx = ry) σ : Fqrx → Fqrx since the subcode obtained by restricting
Ax or Ay to {0} is G-invariant. Since the code is linear G-invariant, σ must be an
Fq-linear isomorphism satisfying

σ(〈g, x〉v) = 〈g, y〉σ(v) ∀g ∈ G, ∀v ∈ Fqrx .(3)

For a map σ of a finite field, we denote by fσ(X) a polynomial which induces σ,
that is, σ(a) = fσ(a).

Lemma 4.3. Let α, β ∈ Fql be such that the length of the Fq-conjugacy class of
α is l1. Suppose a ∈ F ∗

ql and σ : aFql1 −→ Fql is an Fq-linear nonzero map. Then σ

satisfies σ(αb) = βσ(b) ∀b ∈ aFql1 if and only if β = αqj and fσ(X) = cXqj for some
unique c ∈ Fql and j < l1.

Proof. The reverse implication is obvious. For the forward implication, let us

consider the Fq-linear map σ′ : Fql1 → Fql ; σ
′ : x �→ σ(ax)

σ(a) . Clearly, σ′(αi) = βi for

i ≥ 0. Thus, σ′ is a field isomorphism of Fq[α] onto Fq[β]. So for some j, σ′(x) = xqj

∀x ∈ Fq[α] = Fql1 . Therefore,

σ(x) = σ(a)σ′
(x
a

)
= σ(a)a−qjxqj for any x ∈ aFql1 .

Lemma 4.4. Let α, β, and l1 be as in Lemma 4.3 and V be an h-dimensional
Fql1 -subspace of Fql . Suppose σ : V −→ Fql is a nonzero Fq-linear map. If σ satisfies

σ(αb) = βσ(b) ∀b ∈ V , then β = αqj and fσ(X) =
∑h−1

i=0 ciX
qil1+j

for some unique
ci ∈ Fql for 0 ≤ i ≤ h− 1.

Proof. Suppose V = ⊕h−1
i=0 Vi, where Vi = siFql1 . Since σ is nonzero, its restriction

on at least one of Vi, 0 ≤ i ≤ h − 1, is nonzero, and thus by Lemma 4.3, the first
statement follows. Suppose σi = σ|Vi

. Then, fσi
(X) = c′iX

qj for some unique c′i.
Thus,

fσ(X) =

h−1∑
w=0

cwX
qwl1+j

⇔ c′i(sia)
qj =

h−1∑
w=0

cw(sia)
qwl1+j ∀a ∈ Fql1 , ∀i ∈ [0, h− 1]

⇔ c′is
′
i =

h−1∑
w=0

cw (s′i)
qwl1 ∀i ∈ [0, h− 1], where s′i = (si)

qj
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8 BIKASH KUMAR DEY AND B. SUNDAR RAJAN

⇔

⎛⎜⎜⎜⎜⎝
s′0 s′q

l1

0 s′q
2l1

0 · · · s′q
(h−1)l1

0

s′1 s′q
l1

1 s′q
2l1

1 · · · s′q
(h−1)l1

1
...

...
...

. . .
...

s′h−1 s′q
l1

h−1 s′q
2l1

h−1 · · · s′q
(h−1)l1

h−1

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝

c0
c1
...

ch−1

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
c′0s

′
0

c′1s
′
0

...
c′h−1s

′
h−1

⎞⎟⎟⎟⎠ .(4)

Now, {s0, s1, s2, . . . , sh−1} are linearly independent over Fql1 since Vj = ⊕h−1
i=0 siFql1 .

Thus, {s′0, s′1, s′2, . . . , s′h−1} are also linearly independent over Fql1 ⇒ the h×h matrix
in (4) is nonsingular, and thus there exists a unique solution of (4) for
c0, c1, . . . , ch−1.

Lemma 4.5. Let αi , 1 ≤ i ≤ k, be some elements of Fql with length of conjugacy
classes li , i = 1, . . . , k, respectively. Suppose l′ = lcm(l1, . . . , lk) and σ : Fql′ −→ Fql

is a nonzero Fq-linear map. If σ satisfies σ(αib) = βiσ(b) ∀b ∈ Fql′ for some βi ∈
Fql , i = 1, . . . , k, then there exists an integer j ≥ 0 such that βi = αqj

i for i = 1, . . . k,

and fσ(X) = cXqj for some unique c ∈ Fql .

Proof. Suppose l′i = l′

li
, i = 1, . . . , k. By Lemma 4.4, βi = αqji

i for some nonneg-

ative ji , i = 1, . . . , k. Now, ∃ a unique polynomial fσ(X) of degree < ql
′
. Applying

Lemma 4.4 for each i, we see that σ is induced by fi(X) =
∑l′i−1

hi=0 ci,hi
Xqhili+ji

, where
chi , 0 ≤ hi ≤ l′i − 1, are some unique constants. Since all the polynomials fi(X) are

of degree < ql
′
, they have to be the same. In particular, their smallest degree terms

are the same, and that means, say, j = h1l1 + j1 = · · · = hklk + jk. Now, if there
is any nonzero monomial other than Xqj , then such a monomial is of degree, say,
j′ = h′

1l1 + j1 = · · · = h′
klk + jk. Thus,

(h′
1 − h1)l1 = · · · = (h′

k − hk)lk

⇒ l′ = lcm(l1, . . . , lk)|(h′
1 − h1)l1.

This contradicts the fact that (h′
1 − h1) < l′1 = l′

l1
. Thus, fσ(X) = cXqj for some

unique constant c and αi = βqj

i , i = 1, . . . , k.
By (3) and Lemma 4.5, for a linear G-invariant code, two transform components

cannot be related unless they are in the same cyclotomic residue class. Thus, we have
the following theorem.

Theorem 4.6. Let (xi)
q , i = 1, 2, . . . , k, be the distinct cyclotomic residue

classes. Then for any linear G-invariant code, {Ax|x ∈ (xi)
q} , i = 1, 2, . . . , k, are

unrelated.
Corollary 4.7. Let (xi)

q , i = 1, 2, . . . , k, be the distinct cyclotomic residue
classes. Then, any linear G-invariant code C is

C =

k⊕
i=1

C(xi)q ,(5)

where C(xi)q denotes the subcode of C obtained by restricting all the transform compo-
nents outside (xi)

q to zero.
For quasi-cyclic codes, this gives the primary components of a code [8], and for

cyclic and abelian codes, these subcodes, when nonzero, are minimal cyclic and abelian
codes, respectively.

A nonzero linear G-invariant code is called minimal if it does not have any non-
trivial linear G-invariant subcode. For a minimal G-invariant code, transform com-
ponents in only one cyclotomic residue class (x)q are nonzero and A

x̃
takes values
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CODES CLOSED UNDER ABELIAN PERMUTATION GROUP 9

from a one-dimensional subspace of F ex
qrx . Since any vector space is a direct sum of

one-dimensional vector spaces, we have the following theorem.
Theorem 4.8. Any G-invariant code is a direct sum of minimal G-invariant

codes.
However, the decomposition of a G-invariant code in terms of some minimal G-

invariant codes is not unique, though for the special case of abelian codes, such a
decomposition (as a direct sum of minimal abelian codes) is unique.

It is known that if (exp(G), q) �= 1, then there are abelian codes on that group,
which cannot be decomposed as a direct sum of minimal abelian codes. If (exp(G), q)
�= 1, then for some k, (exp(Gk), q) �= 1. Then we can take an abelian code on Gk,
which cannot be decomposed as a direct sum of minimal abelian codes. That code
can be padded with zeros in all other orbits to get a G-invariant code, which is not
decomposable as a direct sum of minimal G-invariant codes.

Theorem 4.9 (transform domain characterization). Let G be an abelian group
of permutations with order relatively prime to q. Then a code is G-invariant if and
only if the following hold:

(i) For any x ∈ G, A
x̃

takes values from a subspace of F ex
qrx .

(ii) If x1, . . . , xk are representatives of the distinct cyclotomic residue classes of
G, then A

x̃1
, . . . , A

x̃k
are unrelated.

5. Duals of G-invariant codes. To characterize duals of G-invariant codes,
some generalizations of Euclidean and Hermitian dual codes are needed. Let v =
(v1, . . . , vl) ⊆ F l

q be a vector with each component nonzero. For any two vectors

a,b ∈ F l
q, the v-weighted Euclidean inner product (or Ev-inner product) of a and b

is defined as

Ev(a,b) =

l∑
x=1

vxaxbx.(6)

Similarly, for any v ∈ F l
q, the v-weighted Hermitian inner product, or Hv-inner

product, of a ∈ F l
q2 and b ∈ F l

q2 is defined as

Hv(a,b) =

l∑
x=1

vxaxb
q
x.(7)

When v is an “all-ones” vector, the v-weighted Euclidean inner product and v-
weighted Hermitian inner product reduce to the usual Euclidean and Hermitian inner
products, respectively.

Two vectors are called orthogonal w.r.t. an inner product if the inner product of
the vectors is zero. Two linear codes C1 and C2 are called the dual of each other with
respect to an inner product if C2 is the set of all the vectors which are orthogonal to
every vector in C1. When no inner product is specified, it is assumed to be a Euclidean
inner product. A code is called self-dual when it is the dual of itself.

For any x ∈ G, τx will denote the cardinality of the orbit containing x. For any
residue class x̃, τ

x̃
will denote the ex-tuple with components τy , y ∈ x̃, in the same

order as Ay in A
x̃
. With abuse of notation, τ−1

x̃
will denote the componentwise inverse

(in Fp ⊆ Fq) of τ
x̃
.

Theorem 5.1. For a G-invariant code C, a vector b ∈ FG
q is orthogonal to C if
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10 BIKASH KUMAR DEY AND B. SUNDAR RAJAN

and only if ∀a ∈ C,∑
y∈x̃

τ−1
y AyBy−1 = 0 ∀ cyclotomic residue classes (x)q.(8)

Proof. Clearly, b is orthogonal to C if and only if

a ⊥ b∀a ∈ C ⇐⇒
∑
y∈G

ayby = 0 ∀a ∈ C

⇐⇒
∑
y∈G

τ−1
y AyBy−1 = 0 ∀a ∈ C

⇐⇒
rx−1∑
i=0

∑
y∈x̃

τ−1
y AyqiB(yqi)

−1 = 0 for each (x)q, ∀a ∈ C(9)

⇐⇒
rx−1∑
i=0

⎛⎝∑
y∈x̃

τ−1
y AyBy−1

⎞⎠qi

= 0 ”

⇐⇒ TrFqrx /Fq

⎛⎝∑
y∈x̃

τ−1
y AyBy−1

⎞⎠ = 0 ”

⇐⇒
∑
y∈x̃

τ−1
y AyBy−1 = 0 ” .(10)

To get (9), we use the fact that the transform components in different cyclotomic
residue classes are unrelated for a G-invariant code, and to obtain (10) we use the
fact that A

x̃
takes values from a subspace of F ex

qrx .
Note that if (8) is satisfied for a residue class x̃, then it is also satisfied for any

other residue class in the same cyclotomic residue class. Thus, it is sufficient to
consider only one representative residue class in each cyclotomic residue class. When

two residue classes x̃ and x̃−1 are considered, compatible orders are taken in them;
i.e., if we take

A
x̃

=
(
Ax, Ax1

, . . . , Axex−1

)
,

then we also take

A
x̃−1

= (Ax−1 , Ax−1
1
, . . . , Ax−1

ex−1
).

Let {x1, x2, . . . , xl} be a set of representatives of the distinct cyclotomic residue
classes of G. Suppose, for the codes C1 and C2, A

x̃
takes values from Vx and Ux,

respectively. Then Vx and Ux can also be considered linear codes of length ex over
Fqrx . Using Theorem 5.1, the dual code of a G-invariant code can be characterized
as follows.

Theorem 5.2. Two G-invariant codes C1 and C2 are the dual of each other if
and only if for each xi , i = 1, 2, . . . , l, Vxi and Ux−1

i
are the Eτ−1

x̃i

-dual of each other.

5.1. Self-dual G-invariant codes. Let us classify the cyclotomic residue classes
into the following three types:
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CODES CLOSED UNDER ABELIAN PERMUTATION GROUP 11

1. Type A: Self-inverse cyclotomic residue classes (x)q with x = x−1. In this
case, suppose x = x−1 ∈ Gk, i.e., x2 = 1k. Then either x = 1k or order of Gk is even
⇒ q is odd (since (q, |Gk|) = 1) ⇒ xq = x ⇒ rx = 1.

2. Type B: Self-inverse cyclotomic residue classes (x)q with x �= x−1. In this
case,

x−1 = xqi for some i < rx, i �= 0.

Thus,

x =
(
x−1

)−1
=
(
xqi
)−1

=
(
x−1

)qi
= xq2i ⇒ rx|2i ⇒ 2|rx and i =

rx
2
.

3. Type C: Cyclotomic residue classes (x)q which are not self-inverse, i.e., x−1 �∈
(x)q.

The cyclotomic cosets are also assigned a “type” based on the type of cyclotomic
residue classes they are in. Let us denote the distinct cyclotomic residue classes as

Type A: (x1)
q, . . . , (xi1)

q,

Type B: (y1)
q, . . . , (yi2)

q,

Type C: (z1)
q, (z−1

1 )q . . . , (zi3)
q, (z−1

i3
)q.

Theorem 5.3. Let C be a G-invariant code, where A
x̃i

, A
ỹj

, A
z̃k

, and A
z̃−1
k

take

values from the subspaces Vxi , Vyj , Vzk , and Vz−1
k

, respectively, for i = 1, . . . , i1 , j =

1, . . . , i2 , k = 1, . . . , i3. The code is self-dual if and only if
(i) Vxi

is an Eτ−1

x̃i

-self-dual code for i = 1, . . . , i1.

(ii) Vyj is an Hτ−1

ỹj

-self-dual code for j = 1, . . . , i2.

(iii) Vzk is the Eτ−1

z̃k

-dual code of Vz−1
k

for k = 1, . . . , i3.

Proof. If the code is self-dual, then by Theorem 5.2, Vyj
is the Eτ−1

x̃i

-dual of Vy−1
j

.

Now,

Vyj
is Eτ−1

x̃i

-dual of Vy−1
j

⇐⇒ Vyj
=

{
v ∈ F

eyj

q
ryj

|Eτ−1

x̃i

(v,u) = 0 ∀u ∈ Vy−1
j

}
.

But,

Vy−1
j

=

{(
uq

ryj
2

1 , . . . , uq

ryj
2

eyj

) ∣∣∣∣u ∈ Vyj

}
.

Thus,

Vyj is Eτ−1

x̃i

-dual of Vy−1
j

⇐⇒ Vyj =

{
v ∈ F

eyj

q
ryj

|Hτ−1

x̃i

(v,u) = 0 ∀u ∈ Vyj

}
⇐⇒ Vyj is Hτ−1

ỹj

self-dual.

The rest of the proof follows directly from Theorem 5.2.
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12 BIKASH KUMAR DEY AND B. SUNDAR RAJAN

Let NEv(q, l) and NHv(q, l) denote the number of, respectively, Ev-self-dual codes
and Hv-self-dual codes of length l over Fq. Also, let N(q, l) denote the number of
subspaces of F l

q. All these numbers are known [11, 12] when v is all-ones and the
values are as given below.

N(q, l) =

l∑
i=0

i−1∏
j=0

ql − qj

qi − qj
,(11)

NE1(q, l) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∏ l
2−1
i=1 (qi + 1) for q and l even,

2
∏ l

2−1
i=1 (qi + 1) for q ≡ 1 mod 4, l even,

2
∏ l

2−1
i=1 (qi + 1) for q ≡ 3 mod 4, l is divisible by 4,

0 otherwise,

(12)

NH1(q, l) =

{∏ l
2−1
i=0 (qi+

1
2 + 1), when l is even,

0, otherwise.
(13)

Theorem 5.3 directly gives Theorem 5.4.
Theorem 5.4. The number of self-dual G-invariant codes over Fq is

i1∏
i=1

NE
τ
−1

x̃i

(qrxi , exi)

i2∏
j=1

NH
τ
−1

ỹj

(qryj , eyj )

i3∏
k=1

N(qrzk , ezk),

where the empty product is 1 by convention.
When |G1| ≡ |G2| ≡ · · · ≡ |Gt| mod p, the Eτ−1

x̃i

-duality and Hτ−1

ỹj

-duality are the

same as the Euclidean and Hermitian dualities, respectively. So in that case,

NE
τ
−1

x̃i

(qrxi , exi) = NE1(q
ryj , exi),

NH
τ
−1

x̃i

(qryj , eyj ) = NH1(q
ryj , eyj ).

Example 5.1 (continuation of Example 3.1). In the following, the number of
self-dual G-invariant codes is found for different q s.t. |G1| ≡ |G2| ≡ · · · ≡ |Gt| mod
p.

q ≡ 1 mod 3, q ≡ 4 mod 5, and 3 ≡ 5 mod p (e.g., q = 4): Different types of
cyclotomic residue classes are Type A {11, 12, 13, 14}; Type B {g2

3 , g
2
4 , g

3
3 , g

3
4}, {g3, g4,

g4
3 , g

4
4}; and Type C {g1, g2}, {g2

1 , g
2
2}. So the number of self-dual G-invariant codes

over Fq is NE(q, 4)N(q, 2)(NH(q2, 2))2.
The number of self-dual G-invariant codes over Fq for other values of q can be

calculated similarly as follows.
q ≡ 1 mod 3, q ≡ 1 mod 5, and 3 ≡ 5 mod p (e.g., q = 16): NE(q, 4) (N(q, 2))

3
.

q ≡ 2 mod 3, q ≡ 2 or 3 mod 5, and 3 ≡ 5 mod p (e.g., q = 2, 8): NE(q, 4)NH(q2, 2)
NH(q4, 2).

The values of NEv(q, l) and NHv(q2, l) are not known for arbitrary v. The fol-
lowing theorem allows computation of these quantities for certain cases.

Theorem 5.5. If either all components of v ∈ F l
q are quadratic residues in Fq

or all components are quadratic nonresidues in Fq, then (1) NEv(q, l) = NE(q, l) and
(2) NHv(q2, l) = NH(q2, l).
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CODES CLOSED UNDER ABELIAN PERMUTATION GROUP 13

Proof. If all the components of v are quadratic nonresidues in Fq, then this
vector can be divided by one of its components to get a scalar multiple of the vector,
in which each component is a quadratic residue. So, it is sufficient to assume that the
components of v are quadratic residues. Suppose v = (v1, . . . , vl) = (s2

1, . . . , s
2
l ).

We shall give a one-to-one correspondence between the Ev-self-dual codes and
the Euclidean self-dual codes to prove the first part of the result. Let U ⊆ F l

q be
an Ev-self-dual code of length l over Fq. Then it will be shown that the subspace

W
�
= {(s1a1, . . . , slal)|a = (a1, . . . , al) ∈ V } is a Euclidean self-dual code. Suppose

(s1a1, . . . , slal), (s1b1, . . . , slbl) ∈ W . Then,
∑l

i=1 viaibi = 0 ⇒
∑l

i=1(siai)(sibi) = 0.
Thus, any two vectors in W are orthogonal w.r.t. the Euclidean inner product, and
since the dimension of W is the same as the dimension of V , which is l

2 , W is a
Euclidean self-dual code. The second part follows similarly.

Corollary 5.6. If G is such that |G1| ≡ · · · ≡ |Gt| mod p and there is a self-
inverse cyclotomic coset [x]q ⊆ G with ex odd, then there is no self-dual G-invariant
code over Fq.

Proof. Both NE1(q
rx , ex) and NH1(q

rx , ex) are 0 when ex is odd, and thus the
result follows.

Corollary 5.7. If G is such that |G1| ≡ · · · ≡ |Gt| mod p and the number t of
orbits is odd, then there is no self-dual G-invariant code.

Proof. The result follows by applying Corollary 5.6 to the cyclotomic residue class
{0j |j = 1, . . . , t}.

6. Minimum distance of G-invariant codes. Tanner used a BCH-like ar-
gument [14] to estimate minimum distance bounds from the parity check equations
over an extension field. The same concept was used to get minimum distance bounds
for quasi-cyclic codes from the transform domain description of Fq-linear cyclic codes
over Fqm [4]. A natural generalization of the results is given here. This can be used
to guarantee some minimum distance by viewing the code as a shortened code of
an abelian code. For s vectors v1,v2, . . . ,vs over Fqr of lengths n1, n2, . . . , ns, re-
spectively, let v1 � v2 � . . . � vs denote the n1 × n2 × · · · × ns array, known as the
Kronecker product of v1,v2, . . . ,vs, with (i1, i2, . . . , is)th element v1,i1v2,i2 . . . vs,is .
The following theorem is available in [4] for the special case of s = 1. Here, power of a
vector will mean the componentwise power, and Il will denote the set {0, 1, . . . , l−1}.

Theorem 6.1. Let r be an arbitrary positive integer and the components of
each of the vectors v1,v2, . . . ,vs of lengths n1, n2, . . . , ns, respectively, be nonzero
and distinct. If the components of a code C can be arranged in an n1 × n2 × · · · × ns

array, and if S is a subset of Isqr−1 such that for each k = (k1, . . . , ks) ∈ S, the array

vk1
1 � vk2

2 � . . . � vks
s is in the span of a set of parity check equations over Fqr , then

the minimum distance of the code is at least that of the s-dimensional cyclic code

Cc =

{
f(X1, . . . , Xs) ∈

Fqr [X1, . . . , Xs]

((Xqr−1
1 − 1), . . . , (Xqr−1

s − 1))
|f(βk1 , . . . , βks) = 0

∀(k1, . . . , ks) ∈ S

}
,

where β is a primitive element of Fqr .
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14 BIKASH KUMAR DEY AND B. SUNDAR RAJAN

Proof. Suppose vl = (vl,0, vl,1, . . . , vl,nl−1) with vl,i = βλl,i , where λl,i �= λl,j for
i �= j , ∀l. For any a ∈ C with weight ωH(a) = d, we construct

a′ =
∑

(j1,...,js)∈Is
qr−1

aj1,...,jsX
j1
1 . . . Xjs

s ∈ Cc

as

a′λ1,i1
,...,λs,is

= ai1,...,is for (i1, . . . , is) ∈ In1
× In2 ,× · · · × Ins ,

a′j1,...,js = 0 when (j1, . . . , js) �= (λ1,i1 , . . . , λs,is) ∀(i1, . . . , is) ∈ In1
× In2

,× · · · × Ins
.

Clearly, ωH(a′) = d. Now,

a ∈ C ⇒
n1−1∑
i1=0

· · ·
ns−1∑
is=0

ai1,...,isv
k1
1,i1

. . . vks
s,is

= 0 ∀ (k1, . . . , ks) ∈ S

⇒
qr−1∑
j1=0

· · ·
qr−1∑
js=0

a′j1,...,jsβ
j1k1 · · ·βisks = 0 ”

⇒ a′ ∈ Cc.

If (x1)
q, . . . , (xk)

q denote the distinct cyclotomic residue classes, then we know
that any G-invariant code C is specified by the subspaces Vx1

, . . . , Vxk
of

F
ex1

qrx1
, . . . , F

exk

q
rxk

,

respectively, from which A
x̃1
, . . . , A

x̃k
take values. Now, each Vx , x = x1, . . . , xk, can

be considered a linear code over Fqrx of length ex. Thus, Vx is determined by a set of
parity check equations. Suppose x̃ = {y1, . . . , yl}, where x = yi for some i and l = ex.

Let
∑l

i=1 ciAyi
= 0 be a parity check equation of Vx. Then,

∑
y∈G

(
l∑

i=1

ciΨ(y, yi)

)
ay = 0.

Clearly, this gives a parity check equation of C over Fqrx . The componentwise con-
jugate vectors of the parity check vectors obtained this way and the vectors in their
span are also parity check vectors of the code.

Although Theorem 6.1 gives a way to get a minimum distance bound of any linear
code, for which a set of parity check equations over an extension field is known, it
is very difficult to know which arrangement of the code components, in how many
dimensions, and what choice of vl will give the maximum bound on the minimum
distance. Even for the one-dimensional (s = 1) case it is very difficult to choose the
best v1 and arrangement of code components because of the huge number of choices.

7. Quasi-abelian codes. For any abelian group G, the G-quasi-abelian codes
of length t|G| (which are submodules of (FqG)

t
) are closed under the action of G

on the coordinates. So such codes are invariant under the coordinate permutations
induced by the elements of G. However, this case has a more organized structure
in that all the orbits of the coordinates under the action of G are of the same size
|G|, and there are t such orbits. This raises the following natural reverse question:
For a given abelian group G of permutations on code coordinates, when can we view
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CODES CLOSED UNDER ABELIAN PERMUTATION GROUP 15

the G-invariant codes as G-quasi-abelian codes? The following theorem answers this
question.

Theorem 7.1. The G-invariant codes are G-quasi-abelian codes, i.e., they can
be viewed as submodules of (FqG)t for some t if and only if |G| = |Gk|∀k.

Proof. The forward implication is obvious. If |G| = |Gk|, then g �→ g(k) is an
isomorphism of G onto Gk. Thus, any G-invariant code can be viewed as a submodule
of (FqG)

t
.

Note that to see the G-invariant codes as G-quasi-abelian codes, Gk1

 Gk2

∀k1,
k2 ∈ It, is not sufficient.

Example 7.1. Consider the group of permutations G = 〈{σ1, σ2}〉 of {1, 2, . . . , 54},
where σ1 and σ2 are as shown in Figure 5. The solid lines with arrows represent the
cycles of σ1 and the dashed lines with arrows represent the cycles of σ2. The order
of the group G is 81, whereas the two groups G1 and G2 of restricted permutations
are isomorphic to each other and of order 27. So, G-invariant codes cannot be seen
as G-quasi-abelian codes in this case.

2

28 31 34

29

30

32

33

35

36

37 40 43 46 49 52

38 41 44 47 50

39 42 45 48 51

25

26

27

1

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

22

53

54

Fig. 5. Cycle structures of σ1 and σ2 of Example 7.1.

For G-quasi-abelian codes, we can index the coordinates in different orbits by
copies G1, . . . , Gt of the same group G. Thus, for any element g ∈ G, we have an
element g(i) ∈ Gi for each i. So every residue class is of the form {g(1), . . . , g(t)}.
We’ll denote it by g̃ instead of g̃(i).

If, for a G-quasi-abelian code, symbols in some orbits form a set of information
symbols and the symbols in the other orbits are the parity check symbols, then the
code is called a systematic G-quasi-abelian code. For a systematic G-quasi-abelian
code C ⊆ (FqG)

t
of dimension k|G| (k ≤ t), without loss of generality we can assume

that the first k orbits are information symbols and the rest are parity check symbols.
Then there exist some cl,j ∈ FqG , l = 1, . . . , t − k, , j = 1, . . . , k, such that each

D
ow

nl
oa

de
d 

01
/0

1/
13

 to
 1

52
.3

.1
02

.2
42

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



16 BIKASH KUMAR DEY AND B. SUNDAR RAJAN

codeword is of the form⎛⎝a1,a2, . . . ,ak,

k∑
j=1

ajc1,j ,

k∑
j=1

ajc2,j , . . . ,

k∑
j=1

ajct−k,j

⎞⎠ ∈ (FqG)
t
.

If the DFTs of aj and ci,j are denoted by Aj and Ci,j , respectively, then each code-
word in the transform domain is of the form⎛⎝A1,A2, . . . ,Ak,

k∑
j=1

Aj � C1,j ,

k∑
j=1

Aj � C2,j , . . . ,

k∑
j=1

Aj � Ct−k,j

⎞⎠ ∈ (FqG)
t
,

where � represents the componentwise product.

7.1. Decoding of systematic quasi-abelian codes. For a systematic G-
quasi-abelian code with one information orbit, there are cj ∈ FqG , j = 1, . . . , t − 1,
such that every codeword is of the form (a, c1a, c2a, . . . , ct−1a). For quasi-cyclic
codes, i.e., for cyclic G and when cj is a unit in FqG for j = 1, . . . , t − 1, Karlin [7]
used alternate syndromes based on cj , j = 1, . . . , t − 1, and their inverses to gain
considerable reduction in decoding operations. In the following, Karlin’s approach is
extended for systematic G-quasi-abelian codes with multiple information orbits. This
is a two-step generalization of Karlin’s algorithm: from quasi-cyclic codes to quasi-
abelian codes and from one information orbit, i.e., one-generator codes to multiple
generator codes.

For a systematic G-quasi-abelian code C ⊆ (FqG)
t

of dimension k|G| (k ≤ t),
there exist some cl,j ∈ FqG , l = 1, . . . , t − k, j = 1, . . . , k, such that each codeword

is of the form a = (a1,a2, . . . ,ak,ak+1, . . . ,at) ∈ (FqG)
t
, where ak+i =

∑k
j=1 ajci,j .

We restrict our attention to the case where ci,j , i = 1, . . . , t− k, j = 1, . . . , k, are such
that any k × k submatrix of the transposed generator matrix

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

c1,1 c1,2 · · · c1,k

c2,1 c2,2 · · · c2,k

...
...

. . .
...

ct−k,1 ct−k,2 · · · ct−k,k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
is invertible over FqG. That is, any k orbits form a set of information symbols. For
any subset X ⊆ [1, t], the |X| × k submatrix comprising the corresponding rows of M
is denoted by MX . Similarly, aX will denote the vector of length |X| comprising the
components ai ∈ FqG , i ∈ X. We denote the complement [1, t] \X by X̄. Thus, if
we know k components of a codeword a, i.e., aX for some X of size k, then we can
solve uniquely for the others as aX̄ = MX̄M−1

X aX .
Suppose a = (a1,a2, . . . ,at) is the transmitted codeword and the received vector

is a′ = (a′
1,a

′
2, . . . ,a

′
t). Let e = (e1, e2, . . . , et) = a′ − a denote the error vector.

Suppose the code’s known minimum distance is 2l + 1 and a vector is received with
at most l errors, that is, the Hamming weight of the error,

∑t
i=1 wtH(ei) ≤ l. Then
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CODES CLOSED UNDER ABELIAN PERMUTATION GROUP 17

the transmitted vector is the only vector of the form⎛⎝a1,a2, . . . ,ak,

k∑
j=1

ajc1,j ,

k∑
j=1

ajc2,j , . . . ,

k∑
j=1

ajct−k,j

⎞⎠
having distance from the received vector ≤ l.

Given a received vector a′, for each X ⊆ [1, t] of size k a syndrome SX =
MX̄M−1

X a′
X + a′

X̄
= MX̄M−1

X (aX + eX) + aX̄ + eX̄ = MX̄M−1
X eX + eX̄ can be

computed. Thus, given eX , eX̄ can be calculated as eX̄ = SX −MX̄M−1
X eX . Now,

if the error is of weight less than l, then there is at least one subset X of size k such
that the weight of eX is at most �kl

t �. Thus, if we presume an eX of weight at most

�kl
t �, and wtH

(
eX , SX −MX̄M−1

X eX
)
≤ l, then eX and eX̄ = SX −MX̄M−1

X eX give
the actual error.

Now, any eX ∈ (FqG)|X| can be considered as a vector of length |X||G| over

Fq. If e
(1)
X , e

(2)
X ∈ (FqG)|X| are such that e

(1)
X = e

(2)
X g for some g ∈ G, then we call

them equivalent. Let us call the equivalence classes the G-quasi-abelian equivalence
classes. All the elements of an equivalence class have the same Hamming weight.
If we compute MX̄M−1

X eX for one representative of an equivalence class, then for
any e′X = eXg in the same equivalence class, MX̄M−1

X e′X = gMX̄M−1
X eX can be

computed from MX̄M−1
X eX just by permuting its components.

Using these concepts, the decoding algorithm can be performed as follows.
1. For each subset X ⊆ [1, t] of size k calculate SX .
2. For i = 0 to �kl

t �
3. For each subset X ⊆ [1, t] of size k
4. For each G-quasi-abelian equivalence class of Hamming weight i, take a rep-

resentative eX . Compute MX̄M−1
X eX .

5. For each g ∈ G
6. Compute eX̄ = SX − gMX̄M−1

X eX
7. Check if Hamming weight of eX̄ is less than or equal to t − i. If so, take

(eX , eX̄) as the error and quit. Otherwise, continue with the loops.
The number of syndromes (in (FqG)t−k) calculated by this algorithm is

(
t
k

)
. If k = 1

and G is cyclic, then it specializes to the algorithm proposed by Karlin [7] and Heijnen
and van Tilborg [6] for decoding systematic quasi-cyclic codes with a single row of
circulants in the generator matrix, i.e., one-generator systematic quasi-cyclic codes.
For t = 2, it further specializes to the single parity circulant case.

8. Discussion. The class of codes considered in this paper is a generalization
of cyclic codes, quasi-cyclic codes, abelian codes, and quasi-abelian codes. All these
special families of codes are defined as codes closed under one or more permutations
of the code components. The algebraic structures of these special families of codes
were investigated by different authors and, in all the cases, there seemed to exist some
common structure. It is shown in this paper that such structures are not specific to
those codes, but these structures are present in the family of G-invariant codes for
any abelian group G of permutations with order of G relatively prime to q.

Also, a twofold extension of Karlin’s decoding algorithm for quasi-cyclic codes is
given. It is an extension from the case of one-generator systematic quasi-cyclic codes
to arbitrary systematic quasi-cyclic codes and also from the case of quasi-cyclic codes
to quasi-abelian codes. However, since the algebraic structure of G-invariant codes for
any arbitrary abelian G (with order relatively prime to q) is only as complex as that
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18 BIKASH KUMAR DEY AND B. SUNDAR RAJAN

of quasi-cyclic codes and quasi-abelian codes, it would be interesting to see whether
this decoding algorithm can be extended to cover this general class of codes.

The results of section 5 give as special cases all the results of [9] regarding existence
and enumeration of self-dual quasi-cyclic codes. Theorem 5.4 gives the number of self-
dual G-invariant codes in terms of the number of weighted self-dual codes and weighted
Hermitian self-dual codes. Theorem 5.5 enables computation of these numbers in
terms of the known numbers for some special cases of weight vectors. It remains an
open problem to compute the values of NEv(q, l) and NHv(q, l) for arbitrary weight
vector v, and thus enable computation of the number of self-dual G-invariant codes
for arbitrary abelian group G of permutations.
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