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Abstract: A permutation array (P.A.) defined on an r-set of symbols V is a v x r array of rows
cach of which is a permutation of the symbols of ¥ and suck that any twc. distinct rows have
at most (at least) A common column entries. We list all known bcunds for such arrays and
make improvements in certain cascs. We consider, at length, the case whun every pair of distinct
rows of the P.A. have precisely A common colunn entries.

1. Introduction

A permutation array (P.A.) dcfined on ar r-set of symbols V is a v xr array
stch that each row is a permutation of the symbols of ¥V anc any two distinct
rows of the array have at most (at least) A common column entries. We denote
such an array by A(r, £4;v) (A(r, 24; v)). If every pair of Jistinct rows in a P.A.
have precisely A common column entries then we call it an -quidistant permutation
array (EPA) and write its parameters as A(r,4;v). The t< i equidistant is applied
since the Hamming distance between rows of an EPA s 4 constant r— A

In Section 2 we consider EPA’s at some length. Section 3 deals with the general
permutation array problem.

2. Equidistant permuintion arrays

Bolton [1] defines R(r,.) to be the maximum value of v such that an A(r,4;v)
exists. In this section we tabuiate the known values and bounds for R(r, 4}.

N

2.1. Lower bounds

Bolton [1] has shown that

R(r,&)g2+l.2/[g“ (n=r—21), R(r,r-3)=r~1 (")

where | x! is the greatest integer less than or equal to x and [x] is the least integer
greater than or equal to x. Vunstote [18] has shown that (1) holds wita cquatity
197



198 M:Deza, S:A:: Imrstone g e

whenever A= 4gr—4). (1) provxdes a general lower baund for EPA’s This bound'

is not a good bound when A is small with respect to r—A. In special cases, this
bound has been improved. We now comsicer these special cases.
Woodall [21], using a complete set of palrw1 € orthogonai latin squares

ST

obtained the following result. « 7% 7 ¢ R AL BTLEET HUL GO EOE
Theorem 2.1. For n a prime or a prime power,
R@n,n)zn(n—-1). e (2)
An immediate generalization of this result is now given.
Theorem 2.2. If there exist k pairwise orthogonal Lb{in squaresofordernthen
R(4n,n)gkn, ) o o )
Another generalization of Theorein 2.1 was ob&amed in [19] 'In thls paper,
EPA’s are constructed from finite projective geometries.: Theorem 2.1 is-the special
case when we are looking at finite projective planes. The paper also generalizes the
notion of a complete set of pairwise orthogonal latin squares. We state the bound

obtained in this case as Theorem 2.3.

Theorem 2.3. For q.a prime and n a positive: integer,

3 ul' A 3 n2" \ o ' SRR

When n=2, it is clcar that Tneorem 2 3 reduces to- Theorem 2 1.

Heinrich, van Rees and Wallis [9] have given a lower bound lor certam \alues
of rand /. . R :

Theorem 2.4. If there exists a set of A+1 mutually orthogonal Latin squares of
order », with two disjoint common transversals, then

Rn+A+2,A)2(A+1)n+1. . _ o . (5)
In the case where (3) and (5) can be compared, (5) is a mur‘ﬁ better bouhd'

From the above theorem, it can be readily shown that if n is a prime or prlme
power then

R(2n—-1, n-—'%)/\u-— )2. | | (6)

2.2. General upper bounds

EPA’s are closely related to a class of combinatorial configurations called {r,)-
designs. For an account of this relationship, the reader is referred to [5]. Using

-
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Bourids for permutation arrays 1

these ‘results and-thie fact’ that there isa g(md bound on the size of (; A)—desngn, u
has beer' shown [4] that ©~+ -1 .

| where n r——}. This has recent!y [20] been improved to give
R(r,1)§'max{2+[1 / [g“ W =2n+43 (0427, R(n+1, i)}, S ®

and was obtained by appealing to resuits on (r,A)-designs. As indicated earlier,

R(r,A)=2 +['A/[§—IJ whenever A>3n’. ©)

The EPA’s whach ebtam thls bound have been ([18]) completel v/ charactenzed

23 The casel 1

01 special mterest is the evaluanon of R(r, l) Untll recently it was not known
whether R(r,1)=Zr for any r. Schellenberg and Taylor [15] have consiructed an
A(13,1;27). Using a recursive construction in [15], it is possible to construct an
infinite family of EPA’s which satisfy

R(r,l);zr.' - ' | (10)

We conjecture that (10) is true for all r>rg, a constant.
An obvious lower bound for R(r, 1) is

R(r,1)2r-1. ” (11)
Deza, Mullin and Vanstone [5] established

R(@2r—1,1)=2r for rz4. (12)

This followed from the existence of a Room square ([13]) of side 2r—1 for all r
4. Vanstone and Schellenberg have shown that if » is a prime power, then

R(M*+n+2,1)224%+n. (13)

All of these lower bounds for R(r,1) have been surpassed by the result of Heinrich
and van Rees [8].

R(m1)=2n—4 for n>5. (14)
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This was established, for n#8, by ccustructing an A(n,1;2n—4) using a self-
orthogonal Latin square of crder n—2. An A(8,1;12) was constructed with the aid
of a computer.

In certain cases, (14) can be improved. In [9], it is shown that if n—3 is a prime
number congruent to 1 or 3 modulo 8 and greater than 6, then

R(n,1)=2n-3. | (15)

As an upper bound, in the case of A=1, we have the result of Mullin and
Nemeth [14]:

R(r,1)Sr(r—4) forr=5. (16)

For r=5, (16) is sharp. Table 1 shows known values and lower bounds of R(r,)
for values of r and A.

2.4. Special types of EPA’s

We say that an EPA (PA) is irreducible if it contains no column all of whose
entries are identical. Define R,(r,4) to be the largest value of v for which there
exists an irreducible EPA (PA). Due to the constructions given, the bounds (3), (4),
(5) apply to R,(r,4) also. In [15], it was shown that if 2n—1%3 (mod 9) and if 2n
—1#5, then

R,(2n+1,2)=3n-2. (16)

An EPA (PA) is said to be k-uniform if every svmbol occurs either 0 or k times
in every column of the array. Define R®(r, 1) to be the largest value of v such that
there exists a k-uniform A(r, 4;v).

Table i.
A

R 1 2 3 4 5 € 7 8 9 19
1 X

2 1 b

3 2 | ]

4 3 2 1 x

5 5 4 2 1 X

6 10 5 35 2 1 ')

7 13 10 5 6 2 1 X

8 =15 10 S 7 2 1 x

9 =215 =16 5 8 2 1 e
10 5 9 2 1 0
1t 5 10 2 1
12 6 11 2

—
(™
i\

[¥]
~J
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It can be shown ([5]) that a Room square is equivalent to a 2-uniform A(r,1;r
+1). Hence

5 _fr+1 for r odd, r#3, 5,
R (r’l)—{Q ~ otherwise.

In general one can show that

r(k—1)
RO(r, )= { — *!
0 (17)

depending on whether or not there exists a certain type of resolvable balanced
incomplete block design.

A t-wise balanced permutation array ¢-PA is a v x r array defined on a r-sct of
symbols V such that every row of the array is a permutation of the symbols in V
and such that any set of ¢ rows have at most (at least) A common column entries.
Such an array is denoted by t-A(r, £4:v) (t-A(r, 2 4;0)).

It should be noted that a t-A(r, <A;v) need not be a (t —1)-A(r, £4;v).

Define -R(r, 1) to be the largest vaiue of v such that a t-A(r,A;v) exists. The
only known bound for this functioa is

t-R(n,("'"l"t»;n—l. (18)
n—2—t

This result can be made more general ([18]).

One last special EPA which we consider is ore in which the permutations form
a group. We denote such an EPA by A*(r,A;v) and let R*{r, 1) be the maximum
value of v such that an 4*(r,4;v) exists. In this case, we consider only irreducibie
EPA’s. For A=1, any 4*(r, 4;v) is reductible. The results of this section are based
on the work of Iwahori [11].

Let A* be an A*(r,A;v) which is irreducible. Let f be the number of orbits in
A*. Then, it is shown in [11] that

(@) A< f <24,
(®) v=(r-1)/(f =2) (19)

In the particular case when 1=2, we have f =2 v=r—2 and it is also shown in
[i1] that A* as a group is isomorphic to one of
(i) A, (alternating group on 4 syrabois),
(ii) S, (symmetric group),
(ili) A5 (alternating group on 5 symbols),
(iv) a generalized dihedral group.
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3. Permutation itrays |
3.1 Bounds for R(r, £4), R(r, 24)

Bounds of Sections 3.1 and 3.2 are essentially from [2] -unless otherwise
specified. Using a pariitxon of the set of rows of an A{r, £4;v) or A(r, Z4;v)on
<r sets of rows having in the first column the numbers 1, 2 .., one can see the
following recursive bounds. R P A S

R(, S)SHRE—1,£A-1),  R(,ZDSRE=, Z3-D).  (20)

Let us denote by f(a), the number of fixed points of the pérmutation aes,. So
any (wo permutations a,be S, have e:xactly f (a“b) commcn positions. Applying
the observation that a,b,=a,b,—a;'a;=b,b;'— f(a; a,)=f(b2 ‘) to - the
set

={ablae A(r, 24;v,),be A(r glfl;vz)},

one can see that |C|=v,v,, C<S, and so | |

R(r, ZA)R(, SA-1)ErY, . - . | : "(21)
Now, we give the following evident bound | | |

R(r,zA)2(r—-4)! \ - (22)
and its immediate corollary from (21) is

Rir,2A)=r '/(r——l—l)‘ SR : ‘23)
Let us denote by d(a,b)=r- f(a” 'b), the Hammmg dlstance of the- permut#tmns

a,beS,. D; will be the numbe. of derangements of i letters (D, ~t'/e) P ‘will be the
volume of the sphere of radius j in lhe metric space S,; hence, -

P . Jj ’i |
e ()“' A G

For r=4+2, we denot:

(r—2a)2 r‘ )
Ti(r,i)= Z (i)D‘ if r— A4 is even,

i=0

_-(r “S"Wz ’r) . r—1 \D f . l dl
- duer &(V"A"l)/Z) r—a+1)/2 i ?"-\ 1§ oddl.

iz}
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and

Sl G RS e Lt b ifr= lls odu
' i=0 (1) ((?‘—-l 1)/2)

S50

n(r,z) =P,_ -z 1fr—}. is even, - .

L 'r—-l.':; o .
. ‘—P(r ).+1)[2 ((r A+1)/2) (, 1+1)/2 if r<7is Oad

It is ,e.vident ithat~.Athe éphere S of radius ,--%(f-—l) in» 'S, fofms an. A(r, gi;v)
because d(a,b)<r—A for any a,be 5. From |S|=P,, -, it follows that

R(r,22)2P ;)2 ifr--Aiseven : (24)
which was generalized for any r—4 to-
R(r ZDZTi(rA). | (25)
As an analogue of the Gilbert bound for codes, we have
R(?“ él)gr!/fi’r—l--l’ ‘ (26)
(This bound is valid for any maximal A(r, £4;v), e, such that we can not add
any permutation to it.)
Let us denote by E(c), the set of letters effectively moved by the permutation
ceSs,.
From the left part of the following inequaiity,
|E(a) 4E(b)| < d(a, b) 2|E(a v E(b)|
and from the upper bound T;(r,4) (proved by Kleitman) for the maximal number
of sets E; with |L AE |< r—-2 (for cardinality of the symmetric difference), it follow‘
that -
R(r,2A)ED,. ., T:(r,2). ' (27)
Using (21), we obtain from (22) and (25)

R(r, SH)SrY(r—A—1)), (28)
R(r, SA)rYT (r.A+1). (29)
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(In the case r—4 is even, (29) becomes
R(r, SA)SrYP_i-1y2s (30)

which is the permutation analogue of the Rao-Hamming bound in coding theory
and which can be obtained directly by the same method of packing S, by spheres
of radius {(r—4-1).)

3.2. Uniform arrays

V/e now introduce the idea of a generalized Howell design. This is an r x r array
d+fined on a set of v symbols V such that every cell of the array contains the
empty set or a k-subset of ¥ and such that every element of V is contained
precisely once in every column of the array and every pair of distinct elements is
contained in at most A cells of the array. Such an array is denoted S®(r, £4;v).
This is equivalent to a k-uniform PA, A®(r, £1;v). It is clear that if there exist k
pairwise orthogonal Latin squares of order r, then

R*%(r, £1)=kr. 3
If (31) holds, this does not imply the existence of k pairwise orthogonal Latin

squares of side r. As an example, corsider R?(6, <1). Since there exists a Howell
design of side 6

R(6,=1)212
but there do not exist two pairwise orthogonal Latin sqrares of side 6. This is the

only example known to the authors.

3.3. Cases of equality for bounds of Section 3.1
From (23), (30), it follows that
R(r, <A)SrYmax{(r— i), T,(r.2)}.
Let us call the permutation array A(r, <A;v) sharp, if v=r/(r—A4)! and perfect
if e=rl/Ti(r, )
Any sharp and any perfect PA A(r, <Ai;v) realizes the number R(r, <4). The
group S, itself is a sharp and perfect A(r; <riv), A(r, <r—1;v).
(1) Comparison of T,(*,A) and (r—A)!. One can easily check that for A <r—2,
T, (r,A)>(r=A)! for rzrg(r--4), (32)
(for example, ro(r—A=4)=8, ro(r—1=6)=14), and

Ty (rA)<(r=A)! for rzr, () (33)
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s0, 4 perfect PA A(r, <4; v) does not exist for r=i(4); it is an analogue of the
corresponding situation for perfect binary codes (i.e., cases of equality in the Rao-
Hamming upper bound).

We do not know any example of a perfect PA.

(ii) Skarp PA’s. B is a sharp A(r, <A;r)—=B is an A(r, <A;r!/(r—A)!)—there
exists C==A(r—1, <id-—1; (r—=1)Y/(r—A)!)-C is a sharp A(r—1, <i—1;0v). So a
sharp PA corresponds to the case of equaii.v in (20).

In particular, the existence of a sharp A(r, <1* v)-»the existence of a sharp A(r
—A+2, <4; v)—there exists a PG(2, r—A+2). (So for example, a sharp A(r, <r
—4;r) does not exist because there does not exist a PG (2, 6)).

inequality T;(r,A)<(r—A4)! is a necessary condition for the existence of a sharp
A(r, <A;v). From (32), a sharp A(r, <A;v) does rot exist for r=ry(r—4) (for
example, a sharp A(r,r—4;v) does not exist for r=7 and a sharp A(r, <r—6.v)
does not exist for r=14).

In [2], it was shown that a PA is a sharp A(r, </.;v) iff its rows form a sharply
A-transitive set of permutations of degree r. A sharp A.r, <1) is equivalent to a
Latin square, a sharp A(r, <2;v) is equivalent to a PG(2,r). A sharp A(r, <1;v)
exists for any r and a sharp 4(r, <2;v) exists for any r=p°.

In the case when a Latin square A(r, <1;v) is a group, it is not necessarily a
cyclic regular (i.c., sharply 1-transitive group. For ihe special case when {(r—1—1)
=2, or r=A4+5 we have for a perfect array R(r, SA)=T,(r, A+1)=r!/P,.

If ve have a perfect array, then the following hcid:

(i) rl/P,>(r- A—1)!'=4),

(ii) r!/P, is an integer. »

For r<20, (ii) is true only for r=6,11 and 18. On the other hard (i) is true only
for r=8. Hence, candidates for a perfect array are 4(11, £6; 11!/P,) and A(18,
<13; 18!/P,). (Note that 11/p,=|M,,|90.)

In the case r odd a sharp A(r, <3;v) is equivalent to the sharply 3-transitive
group LF (r, 2™) (surveyed in [3]). There is a known sharply A-tran.itive set for
223 which is not a sharply A-transitive group (Jordan proved that a sharply A-
trarsitive group, except S, (A=r, r—1), 4, A=r-2), M, (A=5), M, (A=4), do
not exist for A>3). For any A=1, there exist a sharply A-transitive set (which is
not a group) of permmutations for r=oo. The concept of a sharply A-transitive set is
equivalent to the concept of a finite Minkowski-m structure of order n (r=n+m, 4
=m+1). A Minkowski-0-structure is equivalent to an affine plane AG(2,r), which
is equivalent to a PG(2,r). A Minkowski-1-structure is callcd a Minkowski piane.
They are equivalent to a sharp A(r, <3;v); they (and the case 4>3) wure deeply
studied in a series of papers by W. Heise, M. Karzel et al. [10], in tke language of
Minkowski structures.

(iii) Group A(r, <4; v). Let us denote by A*(r, <A;v)any A(r, <4:v)whichisa
subgroup of S,. For example, the Frobenius group is exactlv a transitive A*(r,
<2;v), any Zassenhaus group is exactly a 2-transitive A*(r, <3; v), any
Gorenstein-Hughes group is exactly a 3-transitive 4™ {7, <4; v). All these groups
were characterized. In fact, from the Gorenstein-Hughes thcorem, it follows that
any A-transitive A*(r, <A+ 1; v), which is not sharply i-trarsitive is

(a) for A=3, A, S5, M,,, PL(2, 2°) {p is a prime).
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(b) for i=4; Ay, Se, My,

(c) for 225, Aj43, Ss42- s I

Let us denote R*(r, <4A—1)=max v such tha* Ihere exists an A"(r <A v)
From (23), we have }

R¥(r, <A)ER(r, <A)Eri(r-A)!

with equality iff there exists a chal p}y A—transmve sungoup of S Al‘. shdrply Am
transitive groups are known. They are: r (and r~1)-transitive S,, (r—2)-transitive
A,, the 5-transitive Mathieu group .M, ,, the 4-transitive Mathieu group M,,. Any
finite sharply 2-transitive group is known to be isomorphic to -the group of
transformations x—a+mx on a finite near-field. Any finite sharply 3-transitive
group is known to be isomorphic to the group of transformations x—(a+m-x)/(b
+n x) where (+) and division are those of a Galois field: and () is either the
field multiplication or. a proper near-field multiplication, Zassenhaus determined
all finite near-fields (and so all sharply 2-transitive groups) and all finite near-fields
which give sharply 3-transitive groups. In the infinite case, there exist only sharply
2- or 3-transitive groups. . -
Hence, we have

R*(r, £0)=r,

R*(r, £1)=r(r—-1) for r=p",

R*(r, £2)=r(r-2) (r-1) for r=pm*!,

R*{11, £3)=11-10-9"8, ‘(34)
R*(12, £4)=12-11-10-9 -8,

R*(r, sr-3)=ir!,

R*(r, £r—1)=R*(r, Sr-—-2)=rl.

These are all known examples of sharp PA’s which are groups. :

Table 2 gives known values of R(r, £1) for A<4, r<12 The exact values
corespond to sharply trarsitive groups (except R(6,1) which was du.termlned by
conputer). A lower bound for R(r, £1) is (31). Upper bounds (i.c., strict
in¢ qualities) correspond to known cases of nonexistence of sharply iransitive sets
(fo- r—A=S5, it is so, because of the nonexistence of FG(2, 6), for r==4+42>7 and
for r=4+6214, it follows from (32); for r=4+6, 9sr<i4 it follows from
theorem 14 of [10]; for r=10, A=3 it follows from the nonexistence of a
Minkowski 2-structure of order 8 (W. Heise [10])). For R(8, £3) and R(9, £4) wc
give voth upper bounds r!/T,(r,A+1) and r!/(r—A—1)! We recall that R(10, <1)

=90-PG(2, 10). o

Known values for R(r, £4) are given in Tablc 2.

We note that R(6, 1) can be shown to he greater than or equal to 18 by the
computer results of [7]. McCarthy [12] established R(6, <1) 18 by an exhaus-

tive computer search. He also showed R(6, 22)= 24 Van Rees [21} showed that
R(i0,£1)232.
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Table 2.

\

r\ 0 1 2 3 4

2 2 2-1

3 3 3:2 3-2 o

4 4 4-3 4:3:2 4-3:2 , .

5 5 5-4 5-4-3 5.4:-3:2 C 5.4 3 ‘z

6 6 18 6-5-4 6-54-3 6:5-4-3-2

7 7 7-6 27<7-65 2<7:6+5-4 7:6:5-4-3

8 8 87 8-7-6 7<1390<8-7:6-5 7<8:7-6-5-4

9 9 9-8 9-8-7 2<9-87-6 759808
<9:8-7-6-5

10 10 32575109 10-9-8 2<10-9-8-7 2<10-9-3-7-6 .

1 11 11-10 7511109 11-10-9-8°  ° ?<11-10-9-8°6

12 12 60<7<12-11 iz+1:-10 2<12-11-10°9  12-11-10-9-8

—— — e . i st e . e o Y it o i e . e g Y - e, e el oy it < %o o an werrm e o <o

- (iv) Equalities for R{r, 2 4). From (22), (2!) it follows that we have R(r. 241—1)
=(r—A+1)! for every pair (r,4), such that R(r. £4)=rl/(r— l)' so we have R(r,
2A—1)y=(r—2A—1)! for pairs (r,4) 2s given in (2 ). .

It is evident that R(r, 2r—1)=1,R(r, 2r—2}=2 For A>r —2 it is shown in 2]
that

R(r, 24)="Ty(r,4) for rolr —1). (35
Also, there are the following two conjectures

{A) CR(r, 2A)={r=A)! for r=ry(A), ‘ (36)
(B)  R(r, z4)=max B, - (37)

where s is a family of subsets {F;} of {1,2,...,r] such that |F,UF;| <r—4 and
By~{aeS|(L2..or} - fa)e o).

Let us remark that the lower bounds (22), (25) and the ‘upper bound (26) for
R(r, 2 ") are in general not the best possible. For example R(r,2A)>(r—4i)!
\T,(r ‘Vin the case r2ry(g), r—4As f(l<q<2) In [2] it was proved also that

r 1A% )—1 for r-» 0o, where A* is any value of 4 such that [R(r, =>A)—R(r, < /1)[ is
mmlma_l.

3.4. Bounds for R pmars S 1)

Let us denote by R,..(f <4) the minimal v, such that there exists (2 A(r,
< A;v) which is maximal, (i.e. by adding to this A(r, £4;v) any other permutaticn
we cannot obtai:. A(r, A;v+1)). We have from (26),

Rmmmax(;') =A)>r,lp —-iA- b
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and so
lenmax(r §1)24 bel‘ rg4’
R pinmad? £2)213 forrz7,
R pinma(?s £3)253 for r28,
Ropinmally $4)2271, 273 for r= 9 11.
Also

R paxmin(?s £1)=r! for r=2,3.
McCarthy remarked that
R, axmin(?, £1)Sr if ris even (38)

(because a cyclic Latin square of even order has no transversals [6]). S0, Rpinmal(4
Si)=4,45 Rminmax(ér sh=e.

Roomad?, £0)==r, because any Latin rectangle cin be embedded in Latin square
(Ryser).
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