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Abstract: A permutation array (P.,4.) defined on an r-set of synrbols V is a u x r array of rows 
each of which is a permutation of the symbols o!’ V and such ttst any tw( distinct rows have 
at mcst (at least) I common column entries. We list all known bcunils for such arrays and 
make improvements in cert$n casr:s. We consider, at length, the case when every pair of distinct 
rows of the P.A. have precisely 1 common column entries. 

1. Introduction 

A permutation array (P.A.) defined on ar r-set of symbols I/ is a 1; x r array 
such that each row is a permutation of the symbols of t/ and any two distinct 
rows of the array have at most (at least) A common column entries. We denote 
such an array by A(r, SA; t)) (A@, &; 0 i). rf every pair of &stinct rows in a \?A. 
have precisely A common column entries then we call it an q.Gdistant permutation 
array (EPA) a.nd write its parameters as A@, Iz; v). The ?L A~ equidistant is applied 
since the Hamming distance between rows of an EPA \P d constant r - 1.. 

Xn Section 2 we consider EPA’s at some length. Section 3 devils with the general 
permutation array problem. 

2 s Equidistant permrrration arrays 

Bolton [ 11 defines R (r, 3, j to be the maximum value of v such that an ~4 (r, /2; u) 
exists. In this section we taburL?e the known values and bounds for R (r, A). 

2.1. Lower bounds 

Bolton [l] has shown that 

where Lx! is the greatest int 
greater than or e ! ts ,Y. 
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whemxe;r ilg &-,(r - A), (1) Frovides a general lower band for EPA%. This bound 
is not a good bound *vhen ,I is small with respect to r-A. En special cases, this 
bound has been improved. We now consider these special cases. 

Woodall [21:], using a complete set of pairwise orthogonal latin squares 
obtained the fallowing result. - .r 

t $‘#,, 2, -‘:~A. 3°C - r‘ i,“’ >,_ ~ ,:: , $;‘:; .S..,’ 3, c’f.y;,., i ~ +;r; 5 >I‘ ‘a_#-’ 

Theorem 2.1. For n a ,prime or a prime power, 
t .I * : .:,. i 

‘% ^ :, r 

R(4Pl,rt)~n(n-l). \‘d I *: (2) _/‘3 9,‘. f1, 1 

An immediate generalization of this result is n&v given. 
. . ._ .(,,’ 

*’ 

Theorem 2.2. !f there exist k pairwiie o&ogonal Latin squq~t$c$ &der ii“tht% 
e ._, *. ; 

R(4n, ~1) 2 kn. (3) 

Another generalization of Theorena 2.J. wae obtaJned in ClS]. ‘&I this paper, 
EPA’s are constructed .from finite projeotive, geometries.: Theorem 2:l isthe special 
case when we are looking at finite projective planes. The. paper also generalizes the 
notion of a complete set of pairwise orthogonal latrin squares. We state the bound 
obtained in this case as Theorem 2.3. 

;. I F ; 

Theorem 2.3. For y u prime and n a positive integer, 

R yq-l-1) 
i 

3q(q”-2 - 
---- +q, - q-l q-i 

+q’ Z(q-l)q”“.. 
1) 

) 
(4) 

When II = 2, it is clrx that Theorem 2.3 reduces to Theorem 2.1~~ 
Heinrich, van Rees and Walhs [9] have given a lower bo.und car ,certain, values 

of r and i,. , 

Theorem 2.4. there exists n set of A+1 mutually 
order P, with two disjoint common transversals, theH 

R(n+/1+2,4~(1+l)n+l. 

r 

orthogonal 

in the case where (3) and (5) can be compared, (5) is a much better bound. 
Fro,r;l the above theorem, it can be readily shown that if n is a prime or prime 
power then 

R(2n-1, n--3jG&-+. 

2.2. Gepitrral upper bounds 

uratiosas called br, A)- 

F 



and. was obtained by appealing, to results. on (r, @designs. As indicated earlier, 

whenever il> %r3 3 l 

The EPA’s which ‘obtain this bound have been ([NJ) completely characterized. . .c 

2.3, Th&iy il= i . . 

Of special interest is the evaluation of R (r, 1). Until recently it was not known 
whether R(r, 1) 2 Zr for any r. Schellenberg and Taylor [ 151 have constructed an 
A (13,l; 27). Using a recursive construction in [ 15], it is possible to construct an 
infinite family of EPA’s which satisfy 

. . R(r, 1)22r. 

We conjecture that (10) is true for all r > rG, a constant. 
An obvious lower bound for R(r, 1) is 

(10) 

R(r,l)gr-L (11) 

Deza, Mullin and Vanstone [S] established 

R(2r- 1,@$2r for 1424. (12) 

This followed frcm the existence of a Room square (6 131) of side 2r - J1 for all r 
24. Vanstone and Schellenberg have shown that if yt is a prime power, then 

R(n2-tnf2, Q)z2d2+n. (13) 

All of these lower boun Y the rm.lJt Qf 
and van I&es [8]. , 



This was established, for II # 8, by ccsstructing an d(n, 1; 2n - 4) using a self- 
orthogonal Latin square of order n -2. An tf(8, I; 12) was constructed with the aid 
of a computer. 

In certain cases, (14) can be improved. In 1191, it is shown that if n - 3 is a prime 
number congruent to 1 or 3 modulo 8 and gxater than 6, then 

R(n, I)3=2n-3. (15) 

AS an upper bound, in the case cjf A= 1, we have the result of Mullin and 
lUemeth [ 147: s 

R(r, l)Q(r-4) for ~25. (16) 

For r= 5, (16) is sharp. Table 1 shows known values and lower bounds of R(r, A) 
for values of r and. 2. 

2.4. Special ty!pes of EPA’s 

We say that an EPA (PA) is irreducible if it contains no column all of whose 
entries are identical. Define RI (r, A) to be the largest value of v for which there 
exists am irreducible EPA (PA). Due to the constructions given, the bounds (3), (4), 
(Sj apply to R, (r, A) also. In [ 15J. it was shown that if 2n - 1 f 3 (mod 9) and if 2n 
-l#S, then 

R,(2n+ 1,2)23n--2. (16) 

An EPA (PA) is said to be k-ursijorm I;f every 
in ever:1 column of the array. Define R@)(r, A.) to 
there exists a k-uniform A(r, A; u). 

symbol occurs either 0 or k times 
be the largest value of v such that 

Talbk i. 

I---- 
. --. -- 

\ 

I 
r 1 2 3 4 5 e 7 8 9 10 

I 

2 
3 
4 
5 
6 
7 
8 
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10 
11 
12 
13 

X 

I x 
2 1 XJ 

3 21 
5 4 2 

10 5 5 
13 10 5 

215 IO 
215 z 16 

X 

1 Xl 

2 1 
6 2 P 
5 7 2 1”1 x 

5 8 2 1 3i 
5 9 2 1 

5 10 2 1” 
6 11 2 

2227 
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It can be shown ([S]) that a Room square is equivalent to a 2-uniform A(r, 1; r 
-i- I). HI:ence 

R2(r, l)= I r-t1 for r odd, r#3, 5, 
o 

otherwise. 

In general one can show that 

depending on whether or not there exists a certain type of resolvable balanced 
incomplete block design. 

A t-wise balanced permutation array t-PA is a v x r array defined on a r-set of 
symbols V such that every row of the array is a permutation of the symbols in V 
and such that any set of t rows have at most (at least) ;1 common column entries. 
Such an array is denoted by t-A@, s I; v) (t-A@, 2 1; v)). 

It should be noted that a t-A@, 52; v) need not be a (t - 1)-A@, Sk; v). 
Define t-R(r,R) to be the largest value o f t’ such that a t-A@, 1; v) exists. The 

only known bound for this function is 

t4t(n,(~~-~-~))~?l- 1. 

This result can be made more gt neral (I 18-J). 
One last special EPA which we consider is one in which the permutations form 

a group. We denote such an EP&, by A*(r, A; v) and let R* (~3, ,I) be the maximum 
value of v such that au A*@, I; v) exists. In this case, we consider only irreducibie 
EPA%. For il= 1, any .A*@, 1; v) is reductible. The results of this section are based 
on the work of Iwahori [ 111. 

Let A* be an A*@,& v) which is irreducible. Let f be the number of orbits in 
A*. Then, it is shown in [1 I] that 

(a) a< f&L, 
(b) v=(r-l)/(.j’--1). (19) 

In the particular case when L=2, we have f = 2, I) = Y- 2 and it is al:,0 shown in 
[l l] that .JL as a group is isomorphic to one of 

(i) A4 (alternating group on 4 symbois), 
(ii) S4 (symmetric group), 

(iii) A5 (alternating gfou 
(iv) a generalized dihedral 



3. Pehnutatiou arrays 
- L’ I * .I ‘P. a. _ . . . 

3.1 Bkw2ds for R(r, zg), R(r, &) 

Bounds of Sections 3.1 and 3.2 are esseatially from [Z] .unless I otherwise 
specified. Using a partition of the set of rows of an ;.A@, S&D) or A(r, g&v) on 
5 r sets oif rows having in the first column the numbers 1,2,. . .,r one can see the 
following recursive bounds. ; ‘$4 c ,, “‘~ .’ 

R(r, g)~rR(r- 1, $b- l), R(r, zn),<rR(rL; z&l). (20) b . 

Let u!; denote by f(a), the number of fixed points of the permutation no S,. So 
any NO permutations ~1, b E S, have exactly f (n- lb) common positions. Applying 
the observation that a,b,=u~b,jtz~‘~~=b~B1~-‘f(~Z~,~~3S(b~~;!)..tc~: the 
set ’ 

C=‘,ab(aEA(r, &I;v,),bEA(r, $I-l;vz)}, 
‘. 

ogle can see that ICI = v 1 v2, C c S, and so 

R(r, zA)R(:*, sit--l)sr!, 

Now, we give the following evident bound 

(21) 

R(r, .&)z (r-d)! 

and its immediate corollary !‘rom (21) is 

R(r, Q)sr!/(r-,L- l)!. !W 

Let us denote by d(a, b) = I’ -- f (a- i b), the Ham.ming distance of the. permutations 
a, b E S,. Ir)i will be the numie:L of derangements of i letters (Q -i!/e). Pj will be the 
volume of the sphere of radius j in the metric space S,,; hence, 

‘.i =I+ 
1 

,,=-ly! i I-.-____, 
i=2 (r-i)! 

(I- i.- I)/2 
*- 

’ z ) 
lu, l!), c (8. - A t 1 )/2 1 if I” 4 is sdct. 

d :z i) 
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and 

.’ 

It is evident _ that the sphere S of radius : ~&-A) in S, ferms an A (r, 2 A; u) 

because d(a, b)s r 4 for any a, be !L From ISi --P~r-A)j2, it folldrws that 

R(r, >=A)zP,,_,,,,, if r-4 is even 

which was generalized for any r-2 to 

R(r, Ii)2 T&A). (25) 

As an analogue of the Gilbert bound for codes, we have 

(This bound is valid for any maximal A (r, 
any permutation to it.) 

Let us denote by E(c), the set of letters 
CE S,. 

s A; u), i.e., such that vie can not add 

eff iectively moved by the permutation 

From the left part of the following; inequality, 

and from the upper bound T,(r, A) 1 proved by Kleitman) for the maximal number 
of sets Ei with It;; d!jI ,I Y -- R (for calmdinality of the symnetric differen( it follows 
that 

Using (%l), we obtain from (22) and (25)’ 



(In the case r- A is even, (29) becomes 

R(r, Sn)gr!jp;,_,_ 1)/Z, (30) 

whiich is the permutatio:n analogue of the Rao-Hamming bound in coding theory 
and which can be obtained directly by the same method of packing S, by spheres 
of radius $( r - R - 1). ) 

We now introduce the idea ‘of a generalized Howell design. This is an r x r array 
Wined on a set of u symbols V such that every cell of the array contains the 
empty set or a k-subset of llf and such that every element of V is contained 
precisely once in every column of the array and every pair of distinct elements is 
contained in at most A cells of the array. Such an array is denoted S(k)(r, SA; u). 
This is equivalent to a k-uniform PA, Alk)(r, ;sA; 0). It 
pairwise orthogonal Latin squares of order r, then 

If (31) holds, this does not imply the existence of k 
squares of side r. As an example, corsider R(2)(6, 5 1). 
design of side 6 

R’2’(6, 2 l)Z 12 

is clear that if there exist k 

pairwise orthogonal Latin 
Since there exists a Howell 

but there do not exist two pairwise orthogGna1 Latin sql:ares of side 6. This is the 
only example known to the authors. 

3.3. Cuses gl’equhllity for bounds if Set’tim 3.1 

From (23, (JO), it follows that 

R(r, <~)~r!lftlilx~(r-n)!, T,(r.,il)}. 

Let us cil\L the permutation array A@, <A; u) shnr,!~, if u = r!/(r- A)! and pe&ct 

if 1’~: r!/?;(f-, A). 
Any share and any perfect PA A (r, <h; v) realizes the number R(r, cd). The 

group S, itself is a sharp :rnd perfect n(~,- < V; u), A@, < r- 1; u). 

(i) Comparison of 7’* (.r? A) md (r--/1)!. One can easfly check that for d < r- 2, 

(for example, ra(r - iz = 4) := 8, JP&I - R = 6) = !4), and 
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so, a perfect PA A(r, < ;1; v) does not exi!;t for Y 2 Q (A); it is an analogy: of the 
corresponding situation for perfect binary codes (i.e., cases of equality in the r<,ao- 
Hamming upper bound). 

We do not know any example of a perfect PA. 
(ii) Shp PAk B is a sharp A(r, <R;r)+B is an A@, <~.;r!/(r-1)!)3th,ere 

exists C=- A@- 1, <il- 1; (r- l)!/(r-A)!)-+C is a sharp A@-- 1, <.3,-l; ti), SQ a 
sharp PA corre;sponds to the case of equaQ,r in (20). 

In particular, the existence of a sharp A(r; u; a l v)-+*rhe eixistence of a sharp ~1 (r 
-2 +2, CC 1; v)-,there exists a PG(2, r--d + 2.). (So for- ex,ample, a sharp ~(r, +c r 
-4; r) does not exist because there does not exist a PG (2!, 6)). 

Inequality 7’i (r, A) < (r -A)! is a necessary condition for the existence of a sharp 
A(r, <A; v). From (42), a sharp ,4(r, < ;2; v) does not exist for r 2 rO(r - 1) (Jar 
example, a sharp A (r, r - 4; v) does not exist for r 2 7 and a sharp A (Y, < r - 6: V) 

does not exist for r 2 14). 
In [2], it was shown that a PA is a sharp A(r, c 1,; v) iff its rows form a sharply 

i-transitive set of permutations of degree r. A shaj:p A \,r, (: 1) is equivalent to a 
Latin square, a sharp A(r, ~2; v) is equivalent to 21 PG(2, r). A sharp A (r, < 1; P) 

exists for any r and a sharp A(r; < 2; v) exists for any r = p”. 
In the case when a Latin square A(r, c 1; v) is a group, it is not necessarily a 

cyzlIc regular (i.e., sharply l-transitive group. For f tie special case when f(r - k - 1) 

=2, or r=J+S we have for a perfect array R(r, sJ+= T”(r, A-/- l)=r!/P,. 
If we have a perfect array, then the following hclld: 
(i) r!/P, > (Y- R- l)! =4!, 
(ii) r!/& is an integer. 

For rz5 20, (ii) is true only for I’= 6,11 and 18. On tile other harid (i) is true only 
for rz 8. Hence, candidates for a perfect array ;>.re .4( 11, 5 6; 11 !/P,) and A (It;, 
5 1.3; 18!/&). (Note that 11 ‘!/I+ = lA4, 1 190.) 

In the case r odd a sharp Jr, ~3; u) is equivalent to the sharply 3-transitive 
group LF (r, 2”) (surveyed in [3]j. There is a known sharply ;l-trarL:,itive set for 
223 which is not a sharply A-transjtive group (Jordan proved that a sharply A- 
trarsitive group, except S, (;I = r, r - lj, .4, (n=r--2j, MIz (n=S), MI1 (A=:4), do 
not exist for d > 3). For any II 2 1, there exist a sharply .&transitivz set (which is 
not a group) of pemutations for r= m. The concept of a sharply a-transitive set is 
equivalent to the concept of :a finite Minkowski-restructure of order M (r = IZ + m, A 
= m + 1). A Minkowski-O-structure is equivalent to an affine plane AG(2, r j, which 
is equivalent to a PG(2,r). A Minkowski-l-structure is calls-:d a Minkowski plane. 
They are equivalent to a sharp A(r, c 3; u); they (and the case ;1> 3) were deeply 
studied in a series of papers by W. Heise, M. Karzel e! al. [lo], in the language of 
Minkow&i structures. 

(iii) Group A( r, CA; u), Let us denote by A* (r, < 1; U) any d (I’, =: /1; U) which is a 
subgroup of S,. For example, the Frobenius group is exactjv 2 transitive A”(r, 
~2; t)), any Zassenhaus g~*oup is exactly a Z&transitive .I*@, < 3; v), any 
Gorenstein-Hughes group is exactly a 3-transitive A” Id*, < ; vb AH these 
were characterized. In fact, from t u&es th:o,rem, it foi!ows that 
any A-transitive k18(r, c 2 $ 1 : v), w y A-tranGtive is 

(a) for I=3, Ati, S5, 



(b) for ,I.=4,. A,, S6,, A&. ‘- -: . A: . .‘.!: 

(c) for rl25, A1+3, Si+l. c : . * ,-’ 

Let us ‘denote R*(JP, &I- 1 )=mxx u, such that there exists an @(r, C&O). 
From (23), we have 

R’(r, d)gr(r, -<A)Q?/(r-A)! \ . .” . .;~ I>., 

. . 

* _- ! .’ a . 
2 

with equality iff there exists a sharp@ L-transitive sulq~~u~ ii _&. &I! .@&&v x- 

transitive groups are known. They are: r (and r -I )-transitive. & (r -2)-transitive 
A,, the Striansitive Mathieu group ,M: r2, the 4-transitive .Mathieu group M l l. Any 
finite sharply 2-transitive group is known to be isomorphic toa -.the ,greup of 
transformations X-+CI + m,x on a finite near-field.. Any : finite shaply 3&nsitive 
group is known to be isomorphir: to the .group of transformations q-+ (a + RI $I/# 
+ n z) where ( -t ) and division are those of a Galois field. and _ (,- ), is either . thq 
field multiphcation or al proper near-field multiplication. Zassenhaus determjged 
all finite near-fields (and so all sharply 2-transitive groups) and. all finite near-fields 
which give sharply 3-transitive groups. Zn the infinite case, there exist only sharply 
2- or 3-transitive groups. 

Hence, we have 

R*(r, SO)= r, 

R*(r, 5 l)=+-- a) for r=jP, 

R*(lr. ~2)=+--2) (P-i) for r=pm+l, 

R*(ll, 553)=11*10~9*8, (34) 

R*(12, S4)=12.11 l lo~!w, 

R*(r, 5+3)=jr!, 

R*(r, SF-- l)=P(r, _r;r--2)=r!. 

These afre all known examp~les of sharp PA’s which are, groups. 
Table 2 gives known values of R(r, 5 A) for ;1=< 4, r 5 12 The exact values 

co respond to sharply transitive groups (except R(6,l) which was &termined by 
coPnputer). A lower bould for .R(r, si 1) is (31). IJpper bounds (i.e., strict 
int qualities) correspon.d to known cases of rnonlexistencc of sharply ‘iransitive sets 
(fo + r - A = 5, it is so, because of the nonexisr:ence of E?G(Z 6), for iv == ;1 i- 4 2 7, and 
for r = i, + 6 f 14, it follows from (33); for r==I, -t_ 6, 9 s r c i4 rt follcws from 
t hc;orem 14 OF [ 10) ; for I - l - 10, A = 3 hit follows from the nonexistence of a 
Minkowski 2-structure of order 8 (W. Heise [:lOJ)). For R(8, $3) and R(9, $4) VN 
give both upper bounds r!/‘F, (r, ,I + 1) and r!/(r --I - b)! We recall r.hat R(10, g 1) 
= 90 -+ PG( 2, 10). % 

howmn value:s for R(r, s ;1.) are gilden in Table 2. 
We note that R(6, s 1) can be shown to be greater than or equal to i8 by the 

polluter results of [7]. McCarthy [i2] ~establisheci R(6,’ s I ) = 18 by an exhaus- 
tive computer search. 11: also showed R & :z 2) - 24. Van R&X C2.1 



Table 2. 
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\ * 

1 r 4. 0 1 2 3 4 
-- 

10 
1” 
12 
_-.,. - - 

2 2-1 *2 
3 3-2 3.2 

. 

4 4.3 483.2 4.3~2 
5 S-4 5493 5.4.3*2 5-4.3-2 
6 18 6.5.4 6.5.4.3 6.5.4.3-2 
7 7-6 ?<7*6.5 ?<7*e*5*4 7.6.5.4.3 a 
8 8.7 8.7.6 ?~1390<8.7+5 ?<8*7.6*5.4 
9 9.8 9.8.7 ,?<9*8.7.6 ? s y?sos 

<9.8.7.6.5 
10 326?S 109 10-9.8 ?<10*9-8.7 ?<10.9.;$.7.6 
11 11.10 ?6 1’ * !O-9 11.10.9.8 ’ ‘<11.10~9.8.6 .= 
12 60~?~12.11 ii-11 -10 ?512*11~10~9 l2*11*10*9*8 
-------_- ----- -- _--c-- .-- __c I ___ - -.- --_- --- 

(iv) Equalities for R(r, >= A). ‘From (22), (2 ! ) it follows that we have R(r, 2 L - 1) 
=(r-l+i)! for every pair @,A), such that R(r. Sd)=r!/(r--ii)! so we halve R(r. _ .- 
ah--l)~=f.~-rZ~l)! for pairs (r,Iz) zs given in (-? .)< = 

It is evident that R(r, 2 r- l)=l, R(r, zr-2)=2. For 2~4-2, it is shown in[2] 
that 

W, bO=Tl(r,A) for QJ~ --A). (35) 

Also, there are the following two conjectures 

(A) . R(r, ;;A)= fr-A)! for t*&(3.), (36) 

(B) R(r, i:A)=max$?,, (37) 

where La4 is a family of subsets. {Fi) of { 1,2,. . ., r] such that lFiUFj[ s ir- A and 

Let us remark that the lower bound; (22), (25) and the, upper bound (26) for 
R(r, Z “) are in general not the best oossible. For example, R(r, 23,)>(r-L)! 

> T,(r. ” j in the case r&,(q), r -&/&q<2). In [2] it was proved also that 
r-‘J*(r >-of for P-+cqwhere A* is any value of II such that jR(r, &)-R(r, sn)l is 
minimal. 

,eet US denote by Rminmix, , I’P z&i) the minimal u, such that there exists ; ‘E ,4 (I*, 
<a; U) which is maximal, (i.e. by adding to this A@, 5 I; u) any other permutaticn = 
we cannot obtair . ‘4 (v, L f A; u c 1)) ‘We have from (26), 

Rmannlaxk 5/2)&+Pr_,- 1, 



ml M. Dem. S.A. Vanstom? 

and so 

R minmm{rp s4)2271, 273 for 1~9, 11. 

Also 

R :nnx&(r, Sl)=r! for r=2,3. 

McCarthy remarked that 

(because a c:yclic Latin square of even order has no transversals [6]). So, Rminmm($, 
g) ~4, 4~ R minrnax(6, S 1) s 6. 

R nrtnmartl: I 0) == r F, bxause any Latin rectangle c;an be embedded in Latin square 
(Ryser). 
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