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Abstract: In this study, a new method for constructing low-density parity-check (LDPC) codes is presented. This construction is
based on permutation matrices which come from a finite abstract group and hence the codes constructed in this manner are called
group permutation low-density parity-check (GP-LDPC) codes. A necessary and sufficient condition under which a GP-LDPC
code has a cycle is given and some properties of these codes are investigated. A class of flexible-rate GP-LDPC codes without
cycles of length four is also introduced. Simulation results show that GP-LDPC codes perform very well with the iterative
decoding and can outperform their random-like counterparts.

1 Introduction

Recently, there is much interest in the class of low-density
parity-check (LDPC) codes, since for sufficiently large
lengths, they can achieve near Shannon limit performance
with the iterative message-passing decoding [1, 2]. Although
the constructed codes in [1, 2] have performance very close
to the Shannon limit, their length is too large (106 and 107)
and they have been constructed with random techniques. On
the other hand, for many practical applications we need to
design well-structured LDPC codes with shorter lengths. In
this direction, several algebraic constructions for LDPC codes
can be found in the literature. From among these
constructions we refer to those given in [3–10, 13–24].
These constructions can be divided into two types. One type
is based on finite geometries ([3, 5, 13–19]) and another
type, which initially proposed by Gallager [6], is based on
circulant matrices [4, 6–10, 20–24].

The LDPC codes obtained from circulant matrices, are ( J,
L)-regular quasi-cyclic (QC) LDPC codes. Note that a
( J, L)-regular LDPC code is one with a parity-check matrix
of column weight J and row weight L. It can be deduced
from Theorem 2 of [7] that, the minimum distance of these
LDPC codes is bounded from above by ( J + 1)!.
Consequently, when the column weight is small and the rate
is low, any long-length LDPC code obtained from circulant
matrices has poor minimum distance. This may cause the
occurrence of error floors in the performance curve of these
codes. On the other hand, evidences obtained from
simulating such codes (when the column weight is three)
confirm the existence of long error floors in the performance
curve of them (see Fig. 3). Therefore the main disadvantage
of LDPC codes obtained from circulant matrices is that, in
this class of LDPC codes we cannot design a good long-
length low-rate LDPC code of small column weight.

In this paper we introduce a new method based on
permutation matrices which come from a finite abstract

group, to construct ( J, L)-regular LDPC codes. The codes
constructed in this manner are called group permutation
low-density parity-check (GP-LDPC) codes. When the
underlying group is cyclic, the group permutation matrices
coincide with circulant matrices and hence this method
generalises many of the previous constructions for QC
LDPC codes, for example those given [8–10]. More
precisely, QC LDPC codes based on circulant matrices are
indeed GP-LDPC codes based on cyclic groups.

The main significance of this method is that, based on non-
abelian groups, we can design good long-length low-rate
GP-LDPC codes of column weight three. Recall that we are
not able to construct such codes when we deal with cyclic
groups. Also, based on non-abelian groups, we can design
GP-LDPC codes of column weight three and various rates,
that can outperform their random-like counterparts and QC
LDPC codes obtained from circulant matrices (see Section
4). Another advantage of this method is that we can
construct GP-LDPC codes with girths greater than 12. Note
that, from Theorem 2.5 of [9], the girth of an LDPC code
constructed from circulant matrices is bounded from above
by 12. Finally, the method enables us to introduce a class
of flexible-rate GP-LDPC codes which are free of cycles of
length four.

The paper is organised as follows. In Section 2 we introduce
our construction method and define a GP-LDPC code. We
present a necessary and sufficient condition under which a
GP-LDPC code has a cycle and show that when the
underlying group is abelian, the girth of a GP-LDPC code is
bounded from above by 12 and its minimum distance is
bounded from above by ( J + 1)!. Section 3 is devoted to a
special case of flexible-rate GP-LDPC codes which are free
of four cycles. The performance of some classes of GP-
LDPC codes of column weight three on an AWGN channel
with iterative message-passing decoding is examined in
Section 4. Finally we close the paper with Section 5 which
summarises the results and concludes the paper.
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2 Construction

In this section, we introduce our construction method and
derive some properties of the codes obtained from the
method. Assume that G = {g1, g2, . . . , gn} is a finite
abstract group of size n. For 1 ≤ t ≤ n, let us define the
permutation matrix I (gt) to be the n × n matrix whose (i,
j)th element is equal to 1 if gj ¼ gigt and 0 otherwise.
When the group G is known and gj ¼ gigt we write
j ¼ p( gigt) or equivalently i = p(gjg

−1
t ). Hence for all

1 ≤ i ≤ n entries (i, p( gigt)) of I (gt) are 1 and others are
0. Equivalently, for all 1 ≤ j ≤ n the entries (p(gjg

−1
t ), j) of

I (gt) are 1 and others are 0. Now, let H be the following
nJ × nL matrix

H :=

I (g1,1) I (g1,2) · · · I (g1,L)
I (g2,1) I (g2,2) · · · I (g2,L)

..

. . .
. ..

.

I (gJ ,1) I (gJ ,2) · · · I (gJ ,L)

⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠ (1)

where gi,j [ G for 1 ≤ i ≤ J and 1 ≤ j ≤ L. The code C
associated with the parity-check matrix H is called group-
permutation LDPC code and is denoted by GP-LDPC code.
Also the J × L matrix

g1,1 g1,2 · · · g1,L

g2,1 g2,2 · · · g2,L

..

. . .
. ..

.

gJ ,1 gJ ,2 · · · gJ ,L

⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠ (2)

is called the base group matrix of H and is denoted by
BGM(H ).

Example 1: Let G = k1, r|12 = r3 = 1, 1r = r2
1l be the

dihedral group of size 6 which is the only non-abelian
group of this size and is isomorphic to the symmetric group
S3 consisting of all permutations on three symbols. Assume
that, elements of G are ordered as follows

g1 := 1 g2 := r g3 := r2

g4 := 1 g5 := 1r g6 := 1r2

Clearly I (g1) = I (1) = I6 is the identity matrix of order
6. To compute the permutation matrix I (g2) = I (r) we
need to calculate p( gig2), for 1 ≤ i ≤ 6. On the other hand,
we have

p(g1 g2) = p(r) = 2 p(g2 g2) = p(r2) = 3
p(g3 g2) = p(r3) = p(1) = 1 p(g4 g2) = p(1r) = 5
p(g5 g2) = p(1r2) = 6 p(g6 g2) = p(1r3) = p(1) = 4

Now, for 1 ≤ i ≤ 6, entries (i, p( gig2)) of the permutation
matrix I (r) are 1 and the others are 0. Therefore we have

I (r) =

0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0

⎛
⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎠

Recall that another way for determining I (r) is to calculate
p(gjg

−1
2 ) = p(gjr

2), for 1 ≤ i ≤ 6. In this case, the entries
(p(gjr

2), j) of the permutation matrix I (r) are 1 and the
others are 0. Anyway, the result would be the same as
that obtained previously. Other permutation matrices
corresponding to the elements of G are as follows

I (r2) =

001 000

100 000

010 000

000 001

000 100

000 010

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, I (1) =

000 100

000 001

000 010

100 000

001 000

010 000

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

I (1r) =

000 010

000 100

000 001

010 000

100 000

001 000

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, I (1r2) =

000 001

000 010

000 100

001 000

010 000

100 000

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

It can be easily seen that when G = kgl is a cyclic group of
order n and gi ¼ gi, then the permutation matrix I (gt) is the
n × n circulant permutation matrix I (t) and the code
associated with H will be a QC code. QC LDPC codes of
this type have been extensively studied in [8, 9].

Like the QC LDPC codes constructed from circulant
permutation matrices, a cycle of length 2v in H ¼ [hx,y] is
defined by 2v + 1 positions hx,y ¼ 1 such that two
consecutive positions are obtained by changing alternatively
of row or column only and all positions are distinct, except
the first and last ones which are equal. It follows that two
consecutive positions in any cycle belong to distinct group
permutation matrices which are either in the same row, or
in the same column. Hence, a cycle of length 2v can be
associated with an ordered series of group permutation
matrices

I (gj0,l0
), I (gj1,l0

), I (gj1,l1
), . . . , I (gjv−1,lv−1

), I (gj0,lv−1
), I (gj0,l0

)

in which for 1 ≤ k ≤ v 2 1, jk = jk21 and lk = lk21. Hence,
any cycle C of length 2v in the Tanner graph of H can be
represented by the ordered series

(j0, l0); (j1, l0); (j1, l1); (j1, l2); · · · ; (jv−1, lv−1); (j0, lv−1); (j0, l0)

where for 1 ≤ k ≤ v 2 1, jk = jk21 and lk = lk21. This is
called the block sequence of C. Now, we have the
following theorem.

Theorem 1: H has a cycle of length 2v with block sequence

(j0, l0); (j1, l0); (j1, l1); (j1, l2); · · · ; (jv−1, lv−1); (j0, lv−1); (j0, l0)

if and only if in the group G we have

∏v−1

e=0

gje ,le
g−1

je+1,le
= 1

where 1 is the identity of G and jv ¼ j0.
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Proof: Assume that H has a cycle C of length 2v with block
sequence

(j0, l0); (j1, l0); (j1, l1); (j1, l2); · · · ; (jv−1, lv−1); (j0, lv−1); (j0, l0)

Let C be started with a 1 at (i, p(gigj0,l0
))th entry of the block

I (gj0,l0
). The next position of C must be a 1 at

(p(gp(gigj0,l0
)g

−1
j1,l0

), p(gigj0,lc))th entry of the block I (gj1,l0
).

On the other hand

p(gp(gigj0,l0
)g

−1
j1,l0

) = p(gigj0,l0
g−1

j1,l0
)

Continuing this procedure, the 2vth position of C must be a 1
at the

(p(gigj0,l0
g−1

j1,l0
. . . gjv−1,lv−1

g−1
j0,lv−1

), p(gigj0,l0
g−1

j1,lc . . . gjv−1,lv−1
))

entry of the block I (gj0,lv−1
). Now the last position of C

must be the first one and hence we must have
i = p(gigj0,l0

g−1
j1,l0

. . . gjv−1,lv−1
g−1

j0,lv−1
) or equivalently we must

have

∏v−1

e=0

gje ,le
g−1

je+1,le
= 1

where 1 is the identity of G and jv ¼ j0. Proceeding similar
steps, one can prove the converse of the theorem and the
proof is completed. A

The following lemma, which can be easily proved, may
reduce the complexity involved in the calculation of the
girth of H.

Lemma 1: H has a cycle of type ( j0, j1, . . . , jv21) if and only
if it has a cycle of the following types:

† ( jl, jl+1, . . . , jv21, j0, j1, . . . , jl21), for 1 ≤ l ≤ v 2 1,
where subscribes are calculated modulo v.
† ( jl, jl21, . . . , j1, j0, jv21, . . . , jl+1), for 0 ≤ l ≤ v 2 1,
where subscribes are calculated modulo v. A

In the case where G is abelian, the following two corollaries
describes some bounds on the girth of H and the minimum
distance of the code corresponding to H.

Corollary 1: If G is abelian then the girth of H is upper
bounded by 12, regardless of the matrix BGM(H ).

Proof: The result follows from Theorem 2.5 of [9] and the
fact that any abelian group G is a direct product of cyclic
groups. A

Corollary 2: If G is abelian and C is the code corresponding to
H then d(C ) is upper bounded by ( J + 1)!, where J is the
column weight of H.

Proof: The result follows from Theorem 2 of [7] and the fact
that, as two finite groups, we have G � I (G), where
I (G) = {I (g) | g [ G}. A

Note that Corollaries 1 and 2 urge us to consider
non-abelian groups for constructing GP-LDPC codes.

3 Special case for the base group matrix

In this section we consider a special case for the base group
matrix and design a class of flexible-rate GP-LDPC codes
without cycles of length four. Let G = ka, bl be a finite
group with two generators a and b of orders Oa and Ob,
respectively. Assume that L ≤ Oa, J ≤ Ob and H(a, b) is
the parity-check matrix for a GP-LDPC code whose base
group matrix is

BGM(H(a, b)) =

1 a · · · aL−1

b ab · · · aL−1b

..

. . .
. ..

.

bJ−1 abJ−1 · · · aL−1bJ−1

⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠ (3)

Assume that ( j0, l0); ( j1, l0); ( j1, l1); ( j1, l2); . . .; ( jv21, lv21);
( j0, lv21); ( j0, l0) is the block sequence of a length-2v cycle C
in H(a, b). In this case, we say that C has type ( j0, j1, . . . ,
jv21, j0). The following lemma helps us to determine the
girth of H(a, b).

Lemma 2: If Ob = J then H(a, b) has a cycle of type
(j0, j1, . . . , jv−1) if and only if it has a cycle of type

† (j0 + k, j1 + k, . . . , jv−1 + k), for 1 ≤ k ≤ J 2 1, where
l = l mod J ,

Proof: Assume that ( j0, l0); ( j1, l0); ( j1, l1); ( j1, l2); . . .;
( jv21, lv21); ( j0, lv21); ( j0, l0) is the block sequence of a
length-2v cycle C in H(a, b). Then according to Theorem 1,
we must have

∏v−1

e=0

(ale b je )(ale b je+1 )−1 = 1 (4)

Recall that in a group G we have g1g2 ¼ 1 if and only if
g2g1 ¼ 1. Hence (4) is true if and only if

al0
∏v−2

e=0

b je−je+1 ale+1−le

( )
b jv−1−j0 a−lv−1 = 1

which is true if and only if

∏v−1

e=0

b je−je+1 ale+1−le = 1

Now the assertion can be easily deduced. A

Proposition 1: Assume that Oa and Ob are two prime
numbers. Then H(a, b) is 4-cycle free if and only if
ab = ba or equivalently G is non-abelian.

Proof: Assume that H(a, b) has a cycle C of length 4. Using
Lemma 2, we may assume that C is of type (0, r) for some
1 ≤ r ≤ J − 1. Hence we must have

al0 (al0 br)−1(al1 br)(al1 )−1 = 1

for some 0 ≤ l0 and l1 ≤ L 2 1 with l0 = l1. On the other
hand, setting t: ¼ l0 2 l1, s to be the inverse of t modulo Oa
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and u to be the inverse of r modulo Ob, then we have

al0 (al0 br)−1(al1 br)(al1 )−1 = 1 ⇒ b−ratbr = at

⇒ (b−ratbr)s = ast

⇒ b−rabr = a

⇒ abra−1 = br

⇒ (abra−1)u = bur

⇒ aba−1 = b

⇒ ab = ba

The converse of the claim is clear and the proof is now
completed. A

Proposition 1 provides a large class of flexible-rate
GP-LDPC codes which are free of cycles of length four. To
construct a ( J, L)-regular GP-LDPC code without cycles of
length four, it suffices to choose a non-abelian group G
generated by elements a and b of prime orders Oa ≥ L and
Ob ≥ J. This is almost always possible. For example, if p
and q are two primes such that q|p 2 1, one may choose
the metacyclic group G of order pq where

G = ka, b|ap = bq = 1, bab−1 = arl

and 1 ≤ r ≤ p 2 1 has order q in the multiplicative group of
the field Zp.

Example 2: Again, let G be the dihedral group of size 6
described in the previous example. Note that G is a
metacyclic group with p ¼ 3 and q ¼ r ¼ 2. Assume that
a ¼ r and b ¼ 1. The order of a is 3 and the order of b is
2. The matrix H(a, b) is the following 12 × 18 binary
parity check matrix

H(a, b) = I (1) I (r) I (r2)
I (1) I (1r2) I (1r)

( )

According to Proposition 1, the girth of H(a, b) is at least
6. Note that, the exact girth of H(a, b) is equal to 8.

Remark 1: One may consider the random method for
constructing the matrix BGM(H ). Indeed, one may choose
a random element of the group G for the (i, j)th entry of
BGM(H ). For some small groups, random method results
in better GP-LDPC codes from the girth and performance
perspective. However, in many cases I have checked, the
codes constructed from the method described above are
superior to the random ones from the girth and performance
viewpoint.

4 Simulation results

In this section, the performance obtained with some of the
GP-LDPC codes of column weight three is presented. The
followings can be verified from the results of this section:

† GP-LDPC codes can outperform their random-like
counterparts at different lengths and rates.
† GP-LDPC codes based on non-abelian groups can
outperform QC LDPC codes based on circulant matrices
(corresponding to GP-LDPC codes based on cyclic groups).

† At large lengths and low rates, QC LDPC codes based on
circulant matrices have long error floors while GP-LDPC
codes based on non-abelian groups perform very well.

For our computations, we use GAP (Groups, Algorithms,
Programming) program available online at [11] which is a
system for computational discrete algebra, with particular
emphasis on computational group theory.

We consider simple groups including alternating groups of
order n consisting of even permutations on n symbols,
denoted by An, and projective special linear groups of those
d × d matrices over the field with q elements whose
determinant is the identity of the field, modulo the centre,
denoted by PSL(d, q), as the underlying groups of our
GP-LDPC codes. Note that the GAP program uses some
permutation representations of the group PSL(d, q).

Our simulation results are over BPSK-modulated AWGN
channel and have been obtained using the software
available online at [12]. The BP decoder was allowed a
maximum of 50 decoding iterations. The BP decoder stops
when either a valid codeword is found or the maximum
number of decoding iterations is reached. In each
simulation, at least 500 blocks have been transmitted. The
results are compared with regular randomly constructed
LDPC codes and QC LDPC codes based on circulant
matrices, of similar rates and block lengths.

Example 3: Assume that p is a prime such that p–1 is
divisible by both J and L. Let a and b be positive integers
less than or equal to p–1 such that the orders of a and b in
the multiplicative group of the field Fp are L and J,
respectively. Assume that G = kgl is a cyclic group of size
p. Consider the pJ × pL parity-check matrix H for which
the (i, j)th entry of the matrix BGM(H ) is gaibj

. The
( J, L)-regular GP-LDPC codes obtained from this method
are indeed QC LDPC codes introduced in [8, 10]. In the
rest of the paper, a QC LDPC code of length n and rate r,
obtained from this construction method, has been denoted
by Tan(n, r, J, L, p).

Example 4: Let G = A5. We have |G| = 60 and G = ka, bl,
where a ¼ (1, 2, 3, 4, 5) and b ¼ (3, 4, 5). The orders of a
and b are 5 and 3, respectively. The (3,5)-regular GP-LDPC
code corresponding to the parity-check matrix H(a, b)
(recall that BGM(H(a, b)) has the form given in (3)) has
girth 8. The matrix H(a, b) has 10 redundant checks and
therefore the rate of the code is approximately 0.433. The
performance of this code (with the label GP(300, 0.433,
A5)) has been shown in Fig. 1. The code has also been
compared with Tan(305, 0.4, 3, 5, 61) and a random-like
(3, 5)-regular LDPC code of length 300 (with the label
R(300, 0.4)). The figure shows that, while we have a rate
gain at �0.033, the GP-LDPC code obtained from A5
outperforms the random-like and QC LDPC code.

Example 5: Consider the finite group

G = k(1, 5, 2, 4, 3)(6, 8, 7), (1, 4, 2, 5, 3)(6, 7, 8)l

of size 180. This group is isomorphic to GL(2, 4) consisting
of all invertible 4 × 4 matrices over the field F2. All of the
(3, 5)-regular GP-LDPC codes with parity-check matrices
of the form H(a, b), have girth at most 8. However, the (3,
5)-regular GP-LDPC code corresponding to the parity-
check matrix H such that BGM(H ) is the randomly chosen
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matrix

g1,1 g1,2 g1,3 g1,4 g1,5

g2,1 g2,2 g2,3 g2,4 g2,5

g1,5 g2,5 g3,5 g4,5 g5,5

⎛
⎝

⎞
⎠

where

g1,1 = (1, 2)(4, 5)(6, 8, 7)

g1,2 = (1, 2)(4, 5)

g1,3 = (2, 5, 4)(6, 7, 8)

g1,4 = (1, 3, 5, 4, 2)

g1,5 = (1, 5, 4, 2, 3)(6, 8, 7)

g2,1 = (1, 2)(3, 5)

g2,2 = (1, 3, 5, 4, 2)(6, 8, 7)

g2,3 = (1, 3, 4)(6, 8, 7)

g2,4 = (1, 2)(3, 5)(6, 7, 8)

g2,5 = (1, 4)(3, 5)(6, 8, 7)

g3,1 = (1, 2, 3, 4, 5)(6, 7, 8)

g3,2 = (1, 3, 2, 5, 4)

g3,3 = (1, 2, 3)(6, 8, 7)

g3,4 = (2, 5)(3, 4)

g3,5 = (1, 4, 5, 3, 2)(6, 7, 8)

has girth 10. The performance of this code (with the label
GP(900, 0.4, GL(2, 4))) is shown in Fig. 2. The code has
also been compared with Tan(905, 0.4, 3, 5, 181) and a
random-like (3, 5)-regular LDPC code of length 900 (with
the label R(900, 0.4)).

Example 6: Let G = PSL(2, 8). We have |G| = 504 and
G = ka, bl, where

a = (3, 4, 5, 6, 7, 8, 9)

b = (1, 2, 3)(4, 7, 5)(6, 9, 8)

The orders of a and b are 7 and 3, respectively. The (3, 5)-
regular GP-LDPC code corresponding to the parity-check
matrix H(a, b) has girth 12. The performance of this code
(with the label GP(2520, 0.4, PSL(2, 8))) has been shown
in Fig. 2. The code also has been compared with Tan(2105,
0.4, 3, 5, 421) and a random-like (3,5)-regular LDPC code
of length 2520 (with the label R(2520, 0.4)).

Example 7: Let G = A7. We have |G| = 2520 and G = ka, bl,
where

a = (1, 2, 3, 4, 5, 6, 7)

b = (2, 3)(4, 5, 6, 7)

The orders of a and b are 7 and 4, respectively. The (3, 5)-
regular GP-LDPC code corresponding to the parity-check
matrix H(a, b) has girth 10. The performance of this code
(with the label GP(12600, 0.4, A7)) has been shown in
Fig. 3. The code also has been compared with Tan(12605,
0.4, 3, 5, 2521) and a random-like (3,5)-regular LDPC code
of length 12600 (with the label R(12600, 0.4)). The figure
shows that the performance curve of Tan(12605, 0.4, 3, 5,
2521) has long error floors. This does not depend on the
choice of p. For some primes p . 2521 of the form
15k + 1, I have simulated the codes Tan(5p, 0.4, 3, 5, p). In
all of them, long error floors have been observed. This
confirms that, long-length low-rate QC LDPC codes of
column weight three, based on circulant matrices, are not
good.

Note that there are other representations for A7 with
different generators for which the girth of the corresponding
(3, 5)-regular GP-LDPC code is greater than 10. For
example we have A7 ¼ kc, dl, where c ¼ (3, 4, 5, 6, 7) and
d ¼ (1, 2, 3)(5, 6, 7). The orders of c and d are 5 and 3,
respectively. The (3, 5)-regular GP-LDPC code
corresponding to the the parity-check matrix H(c, d ) has
girth 14. However, from the performance perspective, the

Fig. 1 Performance of the short-length (3, 5)-regular GP-LDPC
code obtained from non-abelian group A5, against QC and
random-like LDPC codes

Fig. 2 Performance of two moderate-length (3, 5)-regular
GP-LDPC codes, against QC and random-like LDPC codes
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(3, 5)-regular GP-LDPC code corresponding to the the parity-
check matrix H(a, b) is slightly better than that of H(c, d ).

Example 8: Let G = PSL(2, 31). We have |G| = 14880 and
G = ka, bl, where

a = (2, 3, 27,
4, 21, 23, 28, 31,
15, 5, 17, 26, 22,
14, 25, 24, 9, 10,
29, 7, 11, 32, 20,
30, 16, 13, 8, 6,

19, 12, 18)

Also b =
∏6

i=1 ai where

a1 = (1, 2, 3, 7, 11)
a2 = (5, 18, 12, 24, 21)
a3 = (6, 28, 19, 14, 13)
a4 = (8, 31, 30, 25, 16)
a5 = (9, 23, 20, 32, 26)
a6 = (15, 22, 29, 17, 27)

The orders of a and b are 31 and 5, respectively. The (3, 5)-
regular GP-LDPC code corresponding to the parity-check
matrix H(a, b) has girth 12. The performance of this code
(with the label GP(74400, 0.4, PSL(2, 31))) together the
performance of its random-like counterpart (with the label
R(74400, 0.4)) are shown in Fig. 4. Again we should
mention that there are other representations for PSL(2, 31)
with different generators for which the girth of the
corresponding (3, 5)-regular GP-LDPC code is greater than
12. For example, if c =

∏6
i=1 ai where

a1 = (3, 9, 15, 21, 27)
a2 = (4, 10, 16, 22, 28)
a3 = (5, 11, 17, 23, 29)
a4 = (6, 12, 18, 24, 30)
a5 = (7, 13, 19, 25, 31)
a6 = (8, 14, 20, 26, 32)

and d =
∏10

i=1 bi where

b1 = (1, 3, 10), b2 = (2, 6, 13)
b3 = (4, 28, 14), b4 = (5, 27, 9)
b5 = (7, 19, 11), b6 = (8, 31, 15)
b7 = (12, 32, 18), b8 = (16, 20, 29)
b9 = (17, 26, 30), b10 = (22, 24, 23)

Then the (3, 5)-regular GP-LDPC code corresponding to the
parity-check matrix H(c, d ) has girth 16. However, from the
performance perspective, the (3, 5)-regular GP-LDPC code
corresponding to the the parity-check matrix H(a, b) is a bit
better than that of H(c, d ).

Example 9: Again, let G = A7 and assume that a, b are
the same as those given in Example 7. The (3, 7)-regular
GP-LDPC code corresponding to the parity-check matrix
H(a, b) has girth 10. The performance of this code (with
the label GP(17640, 0.57143, A7)) has been shown in
Fig. 5. The code also has been compared with Tan(17647,
0.57143, 3, 7, 2521) and a (3, 7)-regular random-like LDPC
code of length 17640 (with the label R(17640, 0.57143)).

Fig. 3 Performance of the long-length (3, 5)-regular GP-LDPC
code obtained from non-abelian group A7, against QC and
random-like LDPC codes

Fig. 4 Performance of a long-length (3, 5)-regular GP-LDPC
code, against its random-like counterpart

Fig. 5 Performance of two GP-LDPC codes with different rates,
against QC and random-like LDPC codes
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Example 10: Let G = PSL(2, 17). We have |G| = 2448 and
G = ka, bl, where

a = (2, 3, 17, 4, 15,
8, 18, 14, 13, 5,
6, 10, 16, 7, 12,

9, 11, )

Also b ¼ a1a2 where

a1 = (1, 2, 3, 10, 9, 17, 16, 7)

a2 = (5, 11, 14, 8, 13, 18, 12, 15)

The orders of a and b are 17 and 8, respectively. The (3, 17)-
regular GP-LDPC code corresponding to the parity-check
matrix H(a, b) has girth 8. The performance of this code
(with the label GP(41616, 0.82353, PSL(2, 17))) has been
shown in Fig. 5. The code has also been compared with
Tan(43367, 0.82353, 3, 17, 2551) and a (3, 17)-regular
random-like LDPC code of length 41616 (with the label
R(41616, 0.82353)).

5 Conclusion

Based on a class of permutation matrices which come from a
finite abstract group, a new class of algebraically structured
( J, L)-regular LDPC codes, called GP-LDPC codes, has
been introduced. This new method generalises many of the
previous constructions for QC LDPC codes based on
circulant matrices. Although long-length low-rate QC
LDPC codes (based on circulant matrices) of column
weight three are not good, we have designed good long-
length low-rate GP-LDPC codes of column weight three.
Based on non-abelian groups, we also have designed GP-
LDPC codes of column weight three and various rates, that
outperform their random-like counterparts and QC LDPC
codes obtained from circulant matrices. Finally, based on
metacyclic groups, we have introduced a class of flexible-
rate GP-LDPC codes which are free of cycles of length four.
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