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An Improvement on the Gilbert–Varshamov Bound
for Permutation Codes

Fei Gao, Yiting Yang, and Gennian Ge

Abstract—Permutation codes have been shown to be useful in
power line communications, block ciphers, and multilevel flash
memory models. Construction of such codes is extremely difficult.
In fact, the only general lower bound known is the Gilbert–Var-
shamov type bound. In this paper, we establish a connection
between permutation codes and independent sets in certain
graphs. Using the connection, we improve the Gilbert–Varshamov
bound asymptotically by a factor , when the code length
goes to infinity.

Index Terms—Gilbert–Varshamov bound, permutation codes.

I. INTRODUCTION

T HE investigation of permutation codes (sometimes called
permutation arrays) began more than 30 years ago with

the articles [5], [9]. However, little attention was given to this
topic until the past decade. Permutation codes have recently en-
joyed a resurgence due to their applications in data transmis-
sion over power lines [8], [18], [21], as well as in the design of
block ciphers [4] and in multilevel flash memories [11], [12].
In the power line application, we consider a common electric
power line. While the primary function of the power line is to
deliver the electric power, the frequency of the current can be
modulated to produce a family of “close” frequencies. At the
receiver, as the power itself is received, these small variations
in frequency can be decoded as symbols (see [2] and [18]). In
order for this information transmission not to interfere with the
power transmission, it is important that the frequencies remain
as constant as possible. One way to achieve this is to use block
coding with length , and to insist that each codeword uses each
of the frequencies exactly once. In this transmission model,
there are three main forms of noise:
1) permanent narrow-band noise, which affects some fre-
quencies over a long period (e.g., noise from electrical
equipment);
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2) impulse noise of short duration, which affects many fre-
quencies; and

3) white Gaussian noise (background noise).
In many traditional data transmission media (e.g., telephone
lines and satellite communications), white Gaussian noise is the
dominant type of errors affecting the system. But in our model,
the other two types of errors are more important. In [8] and
[21], permutation codes are used to correct errors for this type
of transmission. The problem then reduces to finding the max-
imum number of codewords in a permutation code of a given
length subject to given distance requirements.
Let be the symmetric group of permutations on ele-

ments. A permutation code is just a subset of . The length
of is and each permutation in is called a codeword. The
error-correction capability of is related to its minimum Ham-
ming distance. For two distinct permutations , we
define the Hamming distance between them to be the
number of positions where they differ, i.e.,

where . Alternatively, and are at distance
if has exactly fixed points, in other words,

Therefore, we have , where is the
identity in . We can always assume that without loss
of generality. We say that a permutation code has minimum
Hamming distance if the distance between any two distinct
permutations in is at least . A permutation code of length
with minimum Hamming distance will be called an

permutation code (or a ), and the maximum number
of codewords in such a code is denoted by . To deal
with different error models, other types of distances have also
been studied. For instance, permutation codes under Chebyshev
distance constraint have been investigated in [14] and [15]. In
this paper, we consider only the Hamming distance.
We will use a well-known connection between codes and in-

dependent sets in certain graphs. The main idea is to identify
the code as an independent set in the corresponding graph and
then study the maximum size of an independent set (called the
independence number) using graph-theoretic tools and proper-
ties. Although this approach is universal, the difficulty is that for
certain codes, the corresponding graph may not have the desired
properties and/or some of the relevant parameters of this graph
may be hard to compute.
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For example, Jiang and Vardy [13] and later Vu and Wu
[22] used the previous connection to improve the Gilbert–Var-
shamov bound on binary and -ary (nonlinear) codes, respec-
tively. Jiang and Vardy [13] estimated the total number of edges
in the neighborhood of any vertex, and found that this number
of edges is relatively small. They used this “locally sparse”
property of the graph to obtain their results.
In this paper, we will use a different property. Specifically,

we consider the maximum degree in the neighborhood of
any vertex in the corresponding graph, in order to obtain an
improvement of the Gilbert–Varshamov-type lower bound for
permutation codes. We choose this approach mainly due to its
feasibility. While we can compute relatively good estimates of
the maximum degree , it seems infeasible to estimate the total
number of edges .
It should be noted that other properties of a graph could be

also employed to derive bounds on its independence number.
For a general discussion of bounds on the independence number
from a graph-theoretic perspective, see Alon and Spencer [1].
The rest of this paper is organized as follows. In Section II,

we review the known upper and lower bounds for permutation
codes. In Section III, we introduce the relevant terminology and
an important theorem from graph theory. Our improvements of
the lower bound on are presented in Section IV.

II. SOME KNOWN BOUNDS

A crucial problem in the theory of permutation codes is to de-
termine the value of . Unfortunately, this problem turns
out to be extremely difficult. In fact, not much progress has been
made for , except for the small lengths. Therefore,
most efforts are focused on seeking good upper or lower bounds
for (see [3], [6], [7], [10], and the references therein).
The following are some well-known elementary consequences
by basic combinatorial techniques.
Lemma 1:
1) ;
2) ;
3) ;
4) ;
5) .
Before proceeding, we need to introduce a useful notation

which will greatly simplify our discussions throughout this
paper. Let ( ) denote the set of all
permutations in which are exactly at distance from the
identity, i.e.,

The cardinality of is

where is the number of derangements of order .
Example 1: Since every nonidentity permutation moves at

least two elements, we have . The sets and
consist of cycles of length 2 (transpositions) and length

3, respectively. Elements in are of two types: cycles of
length 4 and the composition of two disjoint two cycles.

The Gilbert–Varshamov and sphere-packing bounds for per-
mutation codes are well known, and generally outperform other
bounds for small values of .
Theorem 2:

Using linear programming and representation theory of the
characters of , Dukes and Sawchuck [7] improve the upper
bound on the special case as follows.
Theorem 3: If for some integer ,

then

For the small values of and , researchers have developed
many computer searching strategies to directly look for per-
mutation codes with some prescribed automorphisms. These
methods usually provide the best known lower bounds on

. The exact value of could be determined
whenever an exhaustive searching algorithm with only trivial
automorphism finished running. Interested readers may refer to
the tables in [19] and the references therein.

III. GRAPH THEORY

A. Cayley Graph

Suppose that is a group and is a subset of called the
generating set. The Cayley graph is a colored
directed graph constructed as follows.
1) Each element of is assigned a vertex: the vertex set

of is identified with .
2) Each generator of is assigned a color .
3) For any and , the vertices corresponding
to the elements and are joined by a directed edge of
color . Thus, the edge set consists of pairs of the
form , with providing the color.

In geometric group theory, the set is usually assumed to be
finite, symmetric (i.e., ) and not containing the identity
element of the group. In this case, the uncolored Cayley graph
is an ordinary graph: its edges are not oriented and it does not
contain loops (single-element cycles).

B. Independence Number

An independent set of a graph is a subset of vertices such
that no two vertices in the subset represent an edge of . The
independence number of the graph is the cardinality of
the largest independent set. Formally,

where is the vertex set of and denotes the cardi-
nality of the set .
The independence number is an important parameter in graph

theory and has been studied for a long time. It is also related
to some other parameters such as chromatic number, clique
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number, and so on. Here, we quote a result on the independence
number from [16] and [17].
For and , we define the function by

This function has the following property. We use to de-
note the natural logarithmic function hereafter.
Proposition 4: For , ; and for

, .
Theorem 5 [16], [17]: Let be an integer, and let

be a graph of order with average degree . If any subgraph
induced by a neighborhood has maximum degree less than ,
then

IV. NEW LOWER BOUND

In this section, we will improve the Gilbert–Varshamov lower
bound of by reformulating the problem to a problem of
finding an independent set in the Cayley graph on group
with some proper generating set .
Let . Then, the Cayley graph we are

interested in is

By the definition of , we see that any two distinct per-
mutations and have distance if and only if

. Therefore, there is an edge between and
in if and only if their distance is less than . Hence, we
can identify an permutation code with an independent set
in as follows.
Lemma 6: The codewords of an permutation code are

vertices of an independent set in . Conversely, any inde-
pendent set in is an permutation code.
To apply Theorem 5 to get a lower bound for , we

need a detailed calculation of the parameters of the Cayley graph
. The number of vertices of is . By the

definition, is a regular graph of degree which
equals the size of the generating set, i.e.,

We use to denote the subgraph induced by the neigh-
borhood of identity in . Then, has vertex set

There is an edge between two distinct vertices and in
if and only if they are with distance less than ,

i.e., . We denote the maximum degree in
by .

Lemma 7: For any positive integer , we have
, , , and

.

Proof: Since , we have .
The equality comes from the fact

if
if
if

where and .
By the definition, the vertices of are

, i.e., the 2-cycles and the 3-cycles.
Without loss of generality, we only need to consider two special
cases and .
For the case of , we partition all the other vertices in

into four subsets.

Then, for each vertex is

if
if
if
if .

Hence, the neighbors of in are .
For the case of , we partition all the other vertices into

five subsets.

Then, for each vertex is

if
if
if
if
if .

Hence, the neighbors of are .
Therefore, we have

With a similar analysis to that of , we can obtain that
has the largest neighborhood and

. Here, we need to consider the neighbors of every type of
vertices in , namely , ,
and .
Applying the previous analysis to Theorem 5, we have the

following lower bound on .
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TABLE I
LOWER BOUNDS FOR WITH AND

Theorem 8: Let , and

Then, .
For and , we list the evaluations of

integrals in Table I. These values are computed by
the open source mathematics software Sage [20]. In the special
case , our evaluated value 2 147 724 greatly im-
proves the result in [2] and [19] which is .
In the rest of this paper, we consider the asymptotic behavior

of our lower bounds when is fixed and goes to
infinity.
Lemma 9: .
Proof: Let ( ) be a fixed

neighbor of identity. We shall estimate the degree of in
, i.e., the number of ’s in which is also a

neighbor of .
First, we partition into (at most) five disjoint subsets due

to their images under , , and , respectively. Let

Let , , , , and be the cardinalities of , , , ,
and respectively. Then, the distance constraints give us the
following inequalities:

(1)

(2)

(3)

In particular, gives

The number of ’s in the neighborhood of is determined by
the images of , , and under . Since is bounded by

, the dominating term in the estimation would be the number
of choices of . Before we do a case-by-case analysis on , we
give the following claim:
Claim: If , then and .
Proof of Claim: Assume that and , then

; this contradicts to the fact that
followed by the definition of . A similar discussion shows that

and cannot hold simultaneously.
In the case , the claim implies that either or
, and we have from (2) or (3). Since
and , the choice of is bounded

by the possible images of and , i.e.,

Let . If , the claim implies either and ,
or and . Both cases give . If , we
obtain . Hence, .
When , we have
. So, .

Therefore

Using our notations, the Gilbert–Varshamov bound is

Theorem 10: When is fixed and goes to infinity, we have

Proof:

Since , we have

Then

where is some positive constant.
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