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A Note on Permutation Modulation 

w .  Wesley Peterson, Fellow, IEEE 

Abstract-Slepian observed that the code points in an n-dimensional 
variant-1 permutation modulation code actually lie in an n - 1- 
dimensional subspace. In this correspondence, a change of coordinates 
which gives the representation explicitly in n - 1 dimensions is derived. 
Slepian's optimum decoding algorithm can be adapted to the codes in 
this form using an idea of Biglieri. 

Zndex Terms-Permutation modulation, group code, decoding. 

I. INTRODUCTION 
An n-dimensional group code for the Gaussian channel [ 11 is a set 

of N points on an n-dimensional unit sphere defined as follows: There 
is a group of N orthogonal matrices P,. Then there is an initial point 
2 1  on the unit sphere. The N points of the code are the points that are 
obtained by multiplying 21 by each of the matrices P I ,  P2, . . . , P N ,  
and since orthogonal matrices preserve distance, these points will all 
lie on the unit sphere. Properties of the code depend both on the 
group of matnces and on the choice of the initial point 2 1  and in 
general are not easy to determine. 

A variant-1 permutation modulation code [2]  is a group code for 
which the group of matrices is the set of all permutation matrices, 
which we will denote P,. Slepian assumed that the initial point 
X I  = ( ~ I I , ~ I ~ , . . . , X I ~ ~ )  satisfies 2 1 %  2 XI] if i < j .  He considered 
both the simplest case, in which all the coordinates are distinct, and 
also the case in which they are not. 

It is not difficult to determine the choice of 21 that maximizes the 
minimum distance between code points [3],  [4]. In the simplest case, 
when the XI% are all distinct, then 

2 1 %  = e (2 n S 1  - i )  

where 

e = /  12 
( n  + l )n(n  - 1) 

For example, for n = 3, theh 

2 1  = ( l / f i , O , - l / d %  

and for n = 4 

21 = (3/m, 1/&, - l / d ,  -3/&). 

Note also that the sum of the zl2 is zero. 
With this initial vector, the minimum distance is e a .  Slepian [2] 

found that for the Gaussian channel, the minimum error probability 
did not occur with exactly the initial point 2 1  that maximizes 
minimum distance, although the z1 that minimizes error probability 
and the x1 that maximizes minimum distance are quite close for the 
cases that he calculated. 
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11. REDUCED PERMUTATION CODES 

Since all code points have coordinates that are permutations of 
the coordinates of the initial point, the sum of the coordinates for 
every point in the code is zero. This means that all the points lie 
on an n - 1-dimensional hyperplane that passes through the origin. 
Now we proposc to make a change of cqordinate axes so that the 
last coordinate is perpendicular to this plane. A change of coordinate 
axes can be accomplished by multiplying the vector by an orthogonal 
matrix. There are many possible choices for this matrix. The matrix 
A described next is one that seems especially convenient. 

Consider the n x n matrix A which has all elements in the nth 
row and all the elements in the nth column equal to 116, all other 
diagonal elements equal to 1 + b and all other nondiagonal elements 
equal to b,  where b = -1/(rt - &). It is not difficult to verify that 
A is an orthogonal matrix, Le., AAT = I where I is the identity 
matrix. Note that A is symmetric, so AT = A-' = A. Then A can 
be used to change the coordinate system. A point 2, considered to be 
an n-component column vector, becomes Az in the new coordinate 
system, and since A is an orthogonal matrix, Ax has the same length 
as x .  

For any code point zz, let us define z', = Az,. Since the elements 
of the last row of A are all equal to 116,  the last coordinate of x', 
is equal to the sum of the coordinates of x, divided by 2/5;. which is 
zero, assuming an optimum xt .  Since the coordinates of each of the 
code points in the original code are permutations of the coordinates of 
X I ,  the sum of the coordinates is zero for every code point. Thus the 
last coordinate for every z: will be zero. Let us define 2: to be the 
point in n - 1 dimensions obtained by omitting the last coordinate 

The points x', can be considered to be the same as the points 
2, viewed in a different coordinate system. Therefore, the distance 
between any two points x', and xi will be the same as the distance 
between 2% and xJ and the minimum distance will be the same. 
Since the configuration of points is the same, the error probability for 
optimum decoding must also be the same. The same statements must 
be true of the points xy in n - 1-dimensional space. We will refer to 
the code consisting of all of the zy as the reduced permutation code. 

Slepian found an optimum decoding algorithm for the permutation 
codes. He found that if P,' is the permutation that rearranges 
the received point y 's components into decreasing sequence, then 
decoding y into z2 is optimum. Biglieri [5] recently found that this 
decoding algorithm can be used for the reduced code by simply 
changing coordinates back to the original coordinate system and then 
applying the original decoding algorithm. Specifically in this case that 
means 1) add a zero to the end of the n - 1-dimensional received 
vector y" to obtain an n-dimensional vector y'; 2) calculate y = Ay', 
the received vector viewed in the original coordinate system; and 
3) find the permutation P,'" that rearranges the components of y in 
decreasing sequence. Then decoding y to z2 is optimum. 

of x',. 

111. REDUCED CODES AS GROUP CODES 
In the new coordinate system defined by A, the orthogonal matrix 

P, transforms into AP,AT = AP,A. Let us look at AP,A. P,A is 
simply A with its rows permuted by the permutation P,. Since all 
the elements in the last column of A are the same (116) the last 
column of P,A is the same as the last column of A, and therefore 
the last column of A(P,A) is the same as the last column of AA, 
which is n - 1 zeros followed by a 1 in the last position. Since a11 the 
elements in the last row of A are the same' (l/&), in calculating 
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the last row of A(P,A) the result is the same as the last row of AA, 
because the permutation of the rows in (P,A) makes no difference 
in the result. Again this is n - 1 zeros followed by a 1 in the last 
position. Thus AP,A has the following form: 

(3) 

Here Qz in an (n-  1) x (n- 1) matrix, the 0 in the first row represents 
a column of n - 1 zeros, and the 0 in the second row represents a 
row of n - 1 zeros. 

Since A and P, are orthogonal matrices, AP,A is also. From that, 
it follows that Qz is an orthogonal matrix also. Since all the matrices 
P, are distinct, then all the matrices AP,A must be distinct also, 
because A is nonsingular. But since all the matrices AP,A have the 
same last row and column, then all the matrices Qz must be distinct. 
Since (AP,A)(AP,A) = AP,P,A, the product QzQ7 is amatrix Q k  

for some k ,  so this set of Q z  is closed under multiplication, and being 
a finite subset of a group (the group of all orthogonal matrices), it is a 
group. With this group of orthogonal matrices, we can make a group 
code. Since xi = Ax1 by definition, and since A is its own inverse, 
then Ax; = X I .  Also, Pzxl = xz by definition, and Ax ,  = x: by 
definition. Thus AP,Ax: = x: and it follows from this by deleting 
the last component of zi and the last row and column of AP,A that 
QZxY = xr. Thus the code consisting of the points x:‘ is exactly the 
n - 1-dimensional group code generated by the group of matrices 
Qt and the initial vector x:‘. 

IV. OTHER DETAILS 
It is possible to get expressions for all the matrices Q z  and for all 

of the code vectors zy. The complete derivations are straightforward 
but somewhat lengthy. and uninteresting. Therefore, the results will 
be stated with a few hints on how they can be derived. 

First, let us consider two sets of permutation matrices. Let SI con- 
sist of all permutation matrices that leave the nth element unchanged, 
permuting only the first n - 1 elements. These form a subgroup of all 
the permutations on n elements. Let SZ consist of the identity matnx 
and all of the permutations that simply exchange the nth element and 
the kth element, k = 1,. . I , n - 1. Every permutation can be found 
as the product of one from SI and from SZ. Thus we can find all of 
the matnces Q% as products of matrices derived from permutations 
in SI and SZ. 

If P, is a matrix in SI, then deleting the last row and column of 
P, gives an (n  - 1) x (n  - 1) permutation matrix R,. It turns out 
that this is equal to the matnx Qz derived from AP,A by dropping 
the last row and column. Note that if the last row and column are 
dropped from A, the resulting matrix equals I + B where I is an 
(n  - 1) x (n  - 1) identity matrix and B is an (n - 1) x (n  - 1) 
matrix all of whose elements are equal to b .  Then R,I = R, = IR ,  
and R,B = B = BR,, and therefore R,(I + B )  = ( I  -t B)R,. It 
follows from this that P,A = AP, and therefore also AP,A = P,. 
Then, dropping the last row and column from both sides here shows 
that Q. equals R,. 

Now let us look at permutations from the set 5 ’2 .  If we denote by 
Pi, the permutation that permutes elements n and k ,  and by Q k  the 
(n  - 1) x (n  - 1) matrix denved from APkA, then the elements 
qk2,  of Q k  are as follows: 

q k k k  = -e2 + 2c 
Q k l Z  = -2 + 1 if i # k 
Q k z j  = --e2 + c if r = k and 3 + li 

or a f k  and j = k  

q k t J  = -2‘ otherwise (4) 
where c = l/& - b = l/(& - 1). In deriving this, it helps to 

define W = PkA - A. W has only two nonzero rows, row k and 
row n, and they are equal but opposite in sign. Then PkA = A + W 
and APkA = AA + AW = I + AW. 

The complete group of matrices Qz consists of all the ( n  - 1) x 
(n  - 1) permutation matrices, including the identity matrix, and 
the matrices Q k  for k = 1 . * n - 1, and finally all products of a 
permutation matrix with one of these n - 1 matrices. In other words, 
the complete group consists of all the (n  - 1) x ( n  - 1) permutation 
matrices, the n - 1 matrices Q k ,  and all matrices that can be obtained 
from the Q k  by permuting rows. In fact, since you can multiply any 
element of the group either on the right or on the left by any other 
element of the group and obtain another element of this group, any 
matrix derived from a matrix in this group by a permutation of rows 
and/or columns results in a matrix in the group. 

Finally, consider the code vectors. The initial vector is obtained 
by omitting the last component from z; = Azl ,  where X I  is given 
in (1). A direct calculation gives 

zyz = e ( i  - ( n  - &)/2). (5 )  
Then from the matrices Qk derived from the set 5’2 of permutations, 
n - 1 more code vectors xi = QkxY can be derived, and again by 
direct calculation, here are their values. 

x i z  = -ei - cek + ___ cefi(n+ 1) if i # k 
2 

z i k  = -cek - - - 2 4 i  - 1). (6) 2 
These with the initial vector total n vectors. The rest can be found by 
taking all permutations of each of these vectors-there are (n  - l)! 
permutations of each of n vectors, to give a total of n(n - l)! = n! 
vectors, which is the number of matrices Qz in the group and hence 
the number of code points. 

Mathematically, the group of all permutation matrices is a repre- 
sentation of the abstract group of all permutations. It is the direct 
sum of the identity representation, which maps every permutation 
into 1, and the representation made up of the Qz . It is known that the 
representation by the Q2 is irreducible. More generally, the matrix 
A can be used with any group of n x n permutation matrices to 
display it as the direct product of the identity representation and a 
( k  - 1) x ( k  - 1) representation, which will be irreducible if the 
subgroup is doubly transitive [4], [6, example 2.6, p. 171. 

V. CONCLUSION 
Slepian observed that the code points for the variant-1 permutation 

modulation codes of dimension n actually lie in a subspace of 
dimension n- 1. This correspondence carries out explicitly the change 
of coordinates required to represent these codes in n - 1 dimensions. 
Biglieri [3] discovered how to adapt Slepian’s optimum decoding 
algorithm to the codes represented in n - 1 dimensions. Biglieri’s 
paper gave me important new insights into these codes beyond just 

to decode them. 
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