
Des. Codes Cryptogr. (2012) 63:241–253
DOI 10.1007/s10623-011-9551-8

A new table of permutation codes

Derek H. Smith · Roberto Montemanni

Received: 24 March 2011 / Revised: 21 July 2011 / Accepted: 23 July 2011 /
Published online: 19 August 2011
© Springer Science+Business Media, LLC 2011

Abstract Permutation codes (or permutation arrays) have received considerable interest
in recent years, partly motivated by a potential application to powerline communication.
Powerline communication is the transmission of data over the electricity distribution sys-
tem. This environment is rather hostile to communication and the requirements are such that
permutation codes may be suitable. The problem addressed in this study is the construction
of permutation codes with a specified length and minimum Hamming distance, and with
as many codewords (permutations) as possible. A number of techniques are used including
construction by automorphism group and several variations of clique search based on vertex
degrees. Many significant improvements are obtained to the size of the best known codes.

Keywords Permutation codes · Permutation arrays · Automorphism groups · Clique search

Mathematics Subject Classification (2000) 05A05 · 05E20 · 94B60

1 Introduction

Permutation codes (sometimes called permutation arrays) have been proposed in [12] for
use with a specific modulation scheme. An account of the rationale for the choice of per-
mutation codes can be found in [7] (see also [13,21]). Permutations are used to ensure that
power output remains as constant as possible. As well as white Gaussian noise the codes

Communicated by C. J. Colbourn.

D. H. Smith
Division of Mathematics and Statistics, University of Glamorgan, Pontypridd, CF37 1DL, Wales, UK
e-mail: dhsmith@glam.ac.uk

R. Montemanni (B)
Istituto Dalle Molle di Studi sull’Intelligenza Artificiale (IDSIA), Galleria 2, 6928, Manno,
Switzerland
e-mail: roberto@idsia.ch

123

242 D. H. Smith, R. Montemanni

must combat permanent narrow band noise from electrical equipment or magnetic fields, and
impulsive noise.

A permutation code is simply a set of permutations in the symmetric group Sn of all per-
mutations on n elements. The codewords are the permutations and the code length is n. The
ability of a permutation code to correct errors is related to the minimum Hamming distance
of the code. The Hamming distance δ between two codewords is the number of elements that
differ in the two permutations. Alternatively, two permutations σ1 and σ2 are at distance δ if
σ1σ

−1
2 has exactly n − δ fixed points. The minimum distance d is then the minimum δ taken

over all pairs of distinct permutations. A code of length n with minimum distance d will be
denoted an (n, d) permutation code and the maximum number of codewords in such a code
is denoted by M(n, d).

A central question in the theory of permutation codes is the determination of M(n, d),
or of good lower bounds for M(n, d). The most complete contribution to this question
is in [7]. Other contributions are indicated in detail in the tables and in Sect. 6. Upper
bounds for M(n, d) are also known and the upper and lower bounds can coincide when d is
close to n.

The new table of values of lower bounds for M(n, d) with a significant number of improved
values is presented in Sect. 2. A variety of maximum clique algorithms used in this study
are described in Sect. 3. The automorphism groups used in many of the cases are detailed in
Sect. 4. Iterative clique building methods used in many of the other cases and based on either
codewords, cycles of length n or cycles of length n − 1 are described in Sect. 5. Methods
used in other cases are given in Sect. 6. The conclusion summarizes the success of the various
methods.

2 The new table

Cases with d = 2 and d = 3 correspond to the permutations of the symmetric group Sn

(giving M(n, 2) = n!) and the alternating group An (giving M(n, 3) = n!/2) respectively,
and so the table only need include values of d with 4 ≤ d ≤ n. The result M(n, n) = n
arises from a single orbit of a cyclic group Cn . If q is a prime power then Frankl and Deza
[11] show that M(q, q − 1) = q(q − 1), M(q + 1, q − 1) = (q + 1)q(q − 1). These
results arise from the fact that AGL(1, q) is sharply 2-transitive and PGL(2, q) is sharply
3-transitive (see also [2] and Proposition 1.2 of [7]). None of these standard results will be
specially marked in the table. As standard cases cover n = 5 completely, the table will
address the cases 6 ≤ n ≤ 18.

The key to the methods used and to the sources of upper bounds and previously known
lower bounds is given in Table 1. The table of permutation codes itself is given in Table 2 for
4 ≤ d ≤ 8 and in Table 3 for 9 ≤ d ≤ 18. An entry in bold is a new best lower bound, and an
entry in italics equals the previous best lower bound. Two other new results, for M(19, 17)

and M(20, 19), are outside the limits of the table and are given in Sect. 5.

3 Maximum clique algorithms

The use of clique search to find (n, d) permutation codes is described in [7]. In the simplest
application of clique search a graph G(n, d) is built with vertices corresponding to permu-
tations in Sn , and two vertices are adjacent if the two permutations have Hamming distance

123

Permutation codes 243

Table 1 Key to the superscripts
used in Tables 2 and 3

Unmarked entries LB Obtained using an automorphism
group with clique search

Superscript A “Iterative clique
building”—codewords only
(Sect. 5)

Superscript C “Iterative clique building”—cycles of
length n (Sect. 5)

Superscript E “Iterative clique building”—cycles of
length n − 1 (Sect. 5)

Superscript X Other method (Sect. 6)

Unmarked entries UB Taken from [11]

or old LB

Superscript a Taken from [7]

Superscript b Taken from [8]

Superscript c Taken from [9]

Superscript d Taken from [16]

Superscript e Upper bound taken from [22]

Superscript f Taken from [10]

Superscript g Upper bound taken from Theorem 3
of [11]

Superscript h Upper bound taken from [3]

at least d . The size of the largest clique (complete subgraph) in G(n, d) gives the value of
M(n, d). When an automorphism group is used, clique search can be applied to a graph with
vertices representing the orbits of the automorphism group. Two vertices are adjacent if the
distance between the orbits is at least d . The maximum clique then gives a union of orbits
forming a code. The size of this code is a lower bound for M(n, d).

In either case any efficient algorithm can be used if the clique search terminates so that
the largest clique is obtained. However, the maximum clique problem is NP-complete. If the
problem is too large for the algorithm to terminate a variety of heuristic approaches are avail-
able, and these are further developed in this work. It can be helpful to try several approaches.
Algorithms that allow vertex orderings based on vertex degrees have some advantages for
these problems and will be described first.

The software system FASoft used for radio frequency assignment [15] contains a maxi-
mum clique algorithm based on that described in [6]. The effectiveness of this algorithm can
depend strongly on the order in which the vertices of the graph are presented. This is true
both for the speed of termination of the algorithm, and the quality of the solution available
if the algorithm does not terminate. The system allows thirteen different vertex orderings,
based on vertex degrees and edge weights. As the graph has unweighted edges, only seven
of the thirteen orderings are distinct here. These are listed in [15] and the associated software
documentation as:

Initial ordering: The algorithm in [6] is applied with the order of vertices as presented by
the problem.
Largest degree first (LF1): The vertices are sorted in decreasing order of their degrees
before the algorithm is applied.

123

244 D. H. Smith, R. Montemanni

LF1 reversed: The reverse of the above ordering.
Largest degree first (LF2): The vertices of largest degree are successively removed from
the graph and added to a list. This time the degree calculation excludes vertices that have
already been ordered and removed from the graph.
LF2 reversed: The reverse of the above ordering.
Smallest degree last (SL): The vertices of smallest degree are successively removed from
the graph and added to a list. Again the degree calculation excludes vertices that have
already been ordered and removed from the graph. When all vertices have been removed
the list is reversed.
SL reversed: The reverse of the above ordering.

These seven orderings were applied to graphs with vertices corresponding to orbits of auto-
morphism groups. When the algorithm did not terminate it was found that very different
results could be obtained from the different orderings in any reasonable run time. It was
found best to run all seven orderings quickly and then select the ordering that gave the largest
clique. The algorithm was then run with that ordering for as long as was practical.

Some variations on the orderings were also considered within a multi-start framework
in which the algorithm described in [6] was repeatedly run for a short period (600 s), each
time with perturbations of an original ordering. This ordering was selected after tests with
the orderings in FASoft. This use of perturbed vertex orderings led to improved results for
some of the best automorphism groups, and also for some sub-optimal automorphism groups.
Specifically, once the most promising ordering has been selected, at each iteration the order-
ing is perturbed by introducing some noise in the calculation of the degree of each node.
Given degi the actual degree of node i , it is changed into a random value in the interval
[(1 − Per)degi , (1 + Per)degi], where Per is a user-defined parameter. For these exper-
iments values of Per in the interval [0.05, 0.15] were used to regulate the magnitude of
the perturbation. Ideally, the perturbed ordering should not be very different from the most
promising ordering, but sufficiently different to produce different solutions.

Some other algorithms, both heuristic and (truncated) exact, were also considered for
solving the maximum clique problem. In particular, some experiments used the methods
discussed in [4,19,20]. Sometimes using these methods led to better results than the use of
the various degree orderings available with FASoft, or the use of perturbed orderings. The
algorithm described in [17] was also tested, but did not give the best results for any of the
problems that arose in this study.

4 Automorphism groups

An (n, d) permutation code � has an automorphism group H if h� = � for all h ∈ H . If
H is applied to the identity permutation a single orbit is obtained. In general a code � with
this automorphism group will consist of a union of |�|/|H | orbits. Clearly it is necessary
to choose the automorphism group so that the minimum distance between any pair of code-
words in a single orbit (referred to here as the internal minimum distance) is at least d . It
is sometimes convenient to choose a single permutation as a representative of each orbit. In
this work the lexicographically minimal permutation has been chosen. The graph G(n, d)

has one vertex for each orbit of H . Given two orbits Oi and O j corresponding to vertices
vi and v j of G(n, d), define the distance between the orbits as δ(Oi , O j) = min δ(gi , g j)

where the minimum is taken over all gi ∈ Oi and all g j ∈ O j . Then two vertices vi and v j

of G(n, d) are adjacent if δ(Oi , O j) ≥ d . A maximum clique in G(n, d) then corresponds to

123

Permutation codes 245

the largest (n, d) code with the given automorphism group H . Of course there may be larger
codes with a different automorphism group.

In [7] the automorphism groups used were the cyclic group Cn , the dihedral group D2n ,
the groups AGL(1, q), PGL(2, q) and the Mathieu groups M11 and M12. In the present work
this selection was extended to include Cn−1, A�L(1, q), A�L(1, q), P�L(2, q), P�

L(2, q), and some of the largest groups from a database of transitive groups. All computations
using automorphism groups were carried out using Magma1. Magma contains a database of
all transitive groups with degree at most 30. This is based on one constructed by Hulpke [14]
making use of a classification by Butler and McKay for degree at most 15. Usually the largest
two or three groups with internal minimum distance at least d were considered. Outlines of
the constructions of all these groups, details of the relevant Magma functions and information
on the database can be found in [5]. It was not always the largest group that gave the largest
permutation code, but large groups are certainly good candidates. A more efficient use of Cn

and Cn−1 will be considered in Sect. 5.
Automorphism groups used in individual cases in the tables will now be listed. Here all

permutations act on the set {0, 1, 2, . . . , n − 1}. Standard cases mentioned in Sect. 2 are
omitted unless an alternative construction is used. Cases with a single orbit (which include
these standard cases) are group codes [1] and the decoding algorithm given in [1] could be
used for these codes. Permutation generators for the automorphism groups are given. Files
of codewords and files of orbit representatives which also list these permutation generators
can be found on the authors’ web pages2.

1. (n,d) = (8, 4): Use P SL(2, 7) with |P SL(2, 7)| = 168 and internal orbit minimum
distance 8. A clique search algorithm terminated with 16 orbits, so M(8, 4) ≥ 2688.
Permutation generators used were: (2 5 6)(3 4 7); (0 5 1)(2 7 6).

2. (n,d) = (8,5): Use AGL(1, 8) with |AGL(1, 8)| = 56 and internal orbit minimum
distance 7. A clique search algorithm terminated with 11 orbits, so M(8, 5) ≥ 616.
Permutation generators used were: (0 1 2 3 4 5 6); (0 7)(1 3)(2 6)(4 5).

3. (n,d) = (8,7): Use C7, with |C7| = 7 and internal orbit minimum distance 7. A clique
search algorithm terminated with 8 orbits, so referring to the upper bound M(8, 7) =
56.

4. (n,d) = (9,4): Use P�L(2, 8) with |P�L(2, 8)| = 1512 and internal orbit minimum
distance 6. A clique search algorithm terminated with 12 orbits, so M(9, 4) ≥ 18144.
Permutation generators used were:
(2 8 4 7 5 3 6); (0 2 1)(3 6 7)(4 5 8); (3 7 6)(4 5 8).

5. (n,d) = (9,5): Use A�L(1, 9) with |A�L(1, 9)| = 144 and internal orbit minimum
distance 6. A clique search algorithm terminated with 21 orbits, so M(9, 5) ≥ 3024.
In fact the FASoft algorithm did not terminate in 1–2 days whereas the algorithm
described in [19,20] terminated in 9200 s on a 2.4GHz machine. Permutation genera-
tors used were:
(0 1 2 3 4 5 6 7); (0 4 8)(1 2 7)(3 6 5); (1 3)(2 6)(5 7).

6. (n,d)=(9,6): Use PGL(2, 8) with |PGL(2, 8)| = 504 and internal orbit minimum
distance 7. A clique search algorithm terminated with 3 orbits, so M(9, 6) ≥ 1512.
Permutation generators used were: (2 8 4 7 5 3 6); (0 2 1)(3 6 7)(4 5 8).

7. (n,d): Use P�L(2, 9) with |P�L(2, 9)| = 720 and internal orbit minimum dis-
tance 6. The clique search algorithm in [4] found 209 orbits without terminating, so

1 http://magma.maths.usyd.edu.au/magma/.
2 http://data.research.glam.ac.uk/projects/; http://www.idsia.ch/~roberto/permutationcodes11.zip.

123

http://magma.maths.usyd.edu.au/magma/
http://data.research.glam.ac.uk/projects/
http://www.idsia.ch/~roberto/permutationcodes11.zip

246 D. H. Smith, R. Montemanni

M(10, 4) ≥ 150480. Permutation generators used were:
(2 8 6 7)(3 9 4 5); (0 8 1)(2 9 5)(3 6 4); (2 6)(3 5)(4 9).

8. (n,d) = (10,5): Use P�L(2, 9) as for (n, d) = (10, 4). The use of perturbed vertex
orderings in a multi-start clique search algorithm found 26 orbits without terminating,
so M(10, 5) ≥ 18720.

9. (n,d) = (10,6): Use P SL(2, 9) with |P SL(2, 9)| = 360 and internal orbit minimum
distance 8. A clique search algorithm terminated with 24 orbits, so M(10, 6) ≥ 8640.
Permutation generators used were: (2 8 6 7)(3 9 4 5); (0 8 1)(2 9 5)(3 6 4).

10. (n,d) = (10,7): Use PGL(2, 9) with |PGL(2, 9)| = 720 and internal orbit minimum
distance 8. Only a single orbit is possible, so M(10, 7) ≥ 720. Permutation generators
used were: (2 4 8 5 6 3 7 9); (0 8 1)(2 9 5)(3 6 4).

11. (n,d): Use the Mathieu group M11 with |M11| = 7920 and internal orbit minimum
distance 8. The clique search algorithm in [4] found 220 orbits without terminating,
so M(11, 4) ≥ 1742400. Permutation generators used were:
(0 1 2 3 4 5 6 7 8 9 10); (0 2 8 4 3)(1 5 6 9 7); (1 5 9 6)(2 8 3 4).

12. (n,d): Use the Mathieu group M11 as for (n, d) = (11, 4). The use of perturbed vertex
orderings in a multi-start clique search algorithm found 26 orbits without terminating,
so M(11, 5) ≥ 205920.

13. (n,d) = (11,6): Use the Mathieu group M11 as for (n, d) = (11, 4). A clique search
algorithm terminated with 12 orbits, so M(11, 6) ≥ 95040.

14. (n,d): Use the Mathieu group M11 as for (n, d) = (11, 4). Only a single orbit is
possible, so M(11, 7) ≥ 7920.

15. (n,d) = (11,8): Use the Mathieu group M11 as for (n, d) = (11, 4). Only a single orbit
is possible, so referring to the upper bound M(11, 8) = 7920.

16. (n,d) = (11,10): Use C11, with |C11| = 11 and internal orbit minimum distance 11.
A clique search algorithm terminated with 10 orbits, so referring to the upper bound
M(11, 10) = 110.

17. (n,d) = (12,4): Use the Mathieu group M12 with |M12| = 95040 and internal orbit
minimum distance 8. The clique search algorithm in [4] found 220 orbits without ter-
minating, so M(12, 4) ≥ 20908800. Permutation generators used were:
(0 10 1 2 3)(4 7 11 5 6); (0 8 4 11 10 7 1 3)(5 9).

18. (n,d) = (12,5): Use the Mathieu group M12 as for (n, d) = (12, 4). The use of per-
turbed vertex orderings in a multi-start clique search algorithm found 25 orbits without
terminating, so M(12, 4) ≥ 2376000.

19. (n,d) = (12,6): Use the Mathieu group M12 as for (n, d) = (12, 4). A clique search
algorithm terminated with 2 orbits, so M(12, 6) ≥ 190080.

20. (n,d): Use the Mathieu group M12 as for (n, d) = (12, 4). Only a single orbit is
possible, so M(12, 7) ≥ 95040.

21. (n,d) = (12,8): Use the Mathieu group M12 as for (n, d) = (12, 4). Only a single orbit
is possible, so referring to the upper bound M(12, 8) = 95040.

22. (n,d) = (12,9): Use PGL(2, 11) with |PGL(2, 11)| = 1320 and internal orbit mini-
mum distance 10. Only a single orbit is possible, so M(12, 9) ≥ 1320. Permutation
generators used were:
(0 1 2 3 4 5 6 7 8 9 10); (0 9)(1 4)(2 6)(3 7)(5 8)(10 11); (0 1 3 7 4 9 8 6 2 5).

23. (n,d) = (12,11): Use C2 ×C6 with |C2 ×C6| = 12 and internal orbit minimum distance
12. A clique search algorithm terminated with 5 orbits, so M(12, 11) ≥ 60. In fact
this code comes from 5 mutually orthogonal latin squares [8]. Permutation generators
used were:
(0 7 2 9 4 11)(1 8 3 10 5 6); (0 6)(1 7)(2 8)(3 9)(4 10)(5 11).

123

Permutation codes 247

24. (n,d)=(14,10): Use PGL(2, 13) with |PGL(2, 13)| = 2184 and internal orbit mini-
mum distance 12. A clique search algorithm terminated with 3 orbits, so
M(14, 10) ≥ 6552. Permutation generators used were:
(2 8 9 11 5 12 3 10 4 6 7 13); (0 12 1)(2 4 8)(3 5 13)(6 9 7).

25. (n,d) = (14,11): Use PGL(2, 13) as for (n, d) = (14, 10). Only a single orbit is pos-
sible, so M(14, 11) ≥ 2184.

26. (n,d) = (15,12): Use the transitive permutation group (15,47) in the Magma
database with order 2520 and internal orbit minimum distance 12. Only a single orbit
is possible, so M(15, 12) ≥ 2520. Permutation generators used were:
(0 8 9 2 13)(1 14 6 11 5)(3 4 10 12 7); (0 1 2)(4 5 6)(7 9 8)(11 13 12).

27. (n,d) = (16,12): Use the transitive permutation group (16,1840) in the Magma database
with order 40320 and internal orbit minimum distance 12. Only a single orbit is pos-
sible, so M(16, 12) ≥ 40320. Permutation generators used were:
(0 5 4 6 1 3 15)(7 8 13 12 14 9 11); (0 8 2 13 11 10 3)(1 12 7 15 9 6 4).

Given the nature of the maximum clique algorithms, it is unlikely that a further orbit could be
added to any of these codes. For codes with n ≤ 10 attempts were made to add just a single
codeword (trying all possible permutations). These experiments were unsuccessful. Thus it
seems that the codes obtained are maximal with respect to inclusion.

5 Iterative clique building

For some of the permutation code instances, the underlying graph obtained as described
in Sect. 3 is too large to handle directly by a maximum clique algorithm. This sometimes
happens even when automorphisms are used to create the graph, as described in Sect. 4. For
such problems a different algorithm, originally described in [18] for a different coding theory
problem, is used. It is again based on maximum clique calculations, but in a way that leads to
smaller maximum clique problems. The method is iterative, and starts from a given solution,
that can be either provided by the user or generated by a lexicographic search method (see
[18]), which is a fast greedy method.

Starting from a given initial solution, a random subset of the permutations of the code is
removed, leaving a partial code. A parameter C S Rem defines the percentage of permutations
removed. All codewords compatible with those left in the code can be identified via a lexi-
cographic search, and a graph can be built among these feasible permutations, as described
in Sect. 3. Notice that this graph is much smaller than the complete one. A maximum clique
problem is then solved to complete the partial code. If the code obtained is larger than the
starting one, it becomes the new reference solution, otherwise the starting one is kept. The
procedure is iteratively repeated, always starting from the best solution available. The method
stops when a given maximum computation time (a few days in our experiments) has elapsed.
To solve the maximum clique problem the algorithm described in [6] was used, or alter-
natively its multi-start iterative modification described in Sect. 3. These internal maximum
clique algorithms are run for a maximum time of 3600 s at each iteration. The parameter
C S Rem took values between 8 and 16 in these experiments.

This iterative clique building approach has been applied as described above to graphs
obtained directly from permutations (superscript A in Tables 2, 3). It has also been applied
to graphs obtained using cyclic automorphisms Cn (superscript C) and Cn−1 (superscript
E). As the method is feasible for larger values of n, it has been further applied to give two
new best results M(19, 17) ≥ 343 (upper bound 5814) and M(20, 19) ≥ 78 (upper bound

123

248 D. H. Smith, R. Montemanni

380) that are not recorded in the table. These were both obtained by direct application of the
method to permutations.

It is possible to use codes generated with automorphism groups as initial solutions for
iterative clique building. Although some success with this approach was obtained in one or
two cases, these cases were not ones that appear in the final table. It seems unlikely that
improvements could be obtained in this way for codes with a large automorphism group.

6 Other methods

There were just two cases in the range of parameters covered by Tables 2 and 3 where the
methods described in Sects. 4 and 5 were unable to match the best known result:

For the case (n,d) = (7,4) iterative clique building was only able to find a code with 348
codewords, where the best known code has 349 codewords. The use of an automorphism
group only gave 336 codewords. A code with 349 codewords was obtained as follows. A
random clique of G(7, 4) was generated greedily using a first random ordering of the per-
mutations of S7. At iteration i , 10–12% of the vertices were deleted from the current clique
and vertices representing permutations of S7 were added (together with with the edges of
G(7, 4) induced by the vertex) according a new i th random ordering of S7. Vertices were
only added provided the subgraph of G(7, 4) obtained was itself a clique. The method only
seems suitable for small n.

For the case (n,d) = (10,9) the methods described in Sects. 4 and 5 did not give a code
with more than 36 codewords. A code with 49 codewords can be obtained by follow-
ing precisely the method of Janiszczak and Staszewski [16]. Let U be the subgroup of
S10 generated by the element (0 1 2 3 4 5 6 7)(8 9). Let B be the set of permutations
{(0 1 9 3 6 4 2 5 7 8); (0 1 2 6 8 9 7 3 5); (0 3 6 2 9 7 4)(1 8); (0 2 7 6 9 1 8)(4 5); (0 1 4 8 3 9 6)

(2 7); (0 3 8 9)(2 7 5)(4 6); id} ⊂ S10. Then ∪b∈BbU gives a code with 49 codewords.

7 Conclusion

Careful attention to the selection of automorphism groups in conjunction with a combination
of maximum clique algorithms, together with the use of iterated clique building, has led to
many new codes. Twenty four of these codes have more codewords than the best code pre-
viously known. The increase in the number of codewords is very substantial in most cases.
The combination of methods has also matched the number of codewords of the best code
previously known in the range of the tables, with special attention necessary in only three
cases.

Files of codewords for all the codes presented (including those in Sect. 6) have been made
available on the authors’ web pages. These files have been fully checked except for the one
case (n,d) = (12,4) which is too large to check fully, but has been extensively checked.

The difficulty of some of the maximum clique problems generated is notable. Significantly
different results can be obtained from different algorithms, or from runs of a single algorithm
with different vertex orderings. Sometimes the size of maximum clique given by long but
non-terminated runs of different algorithms can differ by a factor of two or more. Thus the
problems may prove useful challenges for future research on maximum clique algorithms.

The methods become much harder to apply if n is increased further. Often it is not even
possible to build the clique problem in reasonable time or to store it, and finding a good
initial solution for iterated clique building becomes very time consuming. It is possible to

123

Permutation codes 249

Ta
bl

e
2

T
he

ne
w

ta
bl

e
of

pe
rm

ut
at

io
n

co
de

s
4

≤
d

≤
8

n\
d

4
5

6
7

8

6
U

B
12

0
18

c
6

–
–

L
B

12
0C

18
A

6
–

–

ol
d

L
B

12
0

18
c

6
–

–

7
U

B
54

3e
14

0e
42

7
–

L
B

34
9

X
77

C
42

C
7

–

ol
d

L
B

34
9a

77
a

42
7

–

8
U

B
41

35
e

92
6e

33
6

56
8

L
B

26
88

61
6

33
6C

56
8

ol
d

L
B

26
88

a
56

0a
33

6
56

8

9
U

B
32

98
9e

71
28

e
19

62
e

50
4

72

L
B

18
14

4
30

24
15

12
50

4C
72

E

ol
d

L
B

18
14

4a
19

44
a

15
12

a
50

4
72

10
U

B
30

24
00

e
64

80
0e

16
94

1e
46

99
e

72
0

L
B

15
04

80
18

72
0

86
40

72
0

72
0

ol
d

L
B

86
40

0a
13

68
0a

43
20

a
72

0
72

0

11
U

B
33

26
40

0e
36

28
80

h
13

86
00

h
32

87
4h

79
20

L
B

17
42

40
0

20
59

20
95

04
0

79
20

79
20

ol
d

L
B

95
04

00
a

60
94

0a
97

90
a

79
20

a
79

20
a

12
U

B
39

91
68

00
e

43
54

56
0h

16
63

20
0h

36
13

96
h

95
04

0

L
B

20
90

88
00

23
76

00
0

19
00

80
95

04
0

95
04

0

ol
d

L
B

11
40

48
00

a
73

12
80

a
11

74
80

a
–

95
04

0a

123

250 D. H. Smith, R. Montemanni

Ta
bl

e
2

co
nt

in
ue

d

n\
d

4
5

6
7

8

13
U

B
36

72
70

67
4h

56
60

92
80

h
21

62
16

00
h

41
63

39
0h

87
94

93
h

L
B

–
–

–
–

27
13

2E

ol
d

L
B

41
71

24
80

a
87

87
78

a
27

19
08

a
–

–

14
U

B
62

27
02

08
00

g
79

25
29

92
0h

30
27

02
40

0h
58

28
74

60
h

12
31

29
02

h

L
B

–
–

–
–

–

ol
d

L
B

55
03

68
00

0a
–

–
–

–

15
U

B
87

17
82

91
20

0g
12

33
65

50
64

1g
45

40
53

60
00

g
12

87
08

10
70

g
25

94
59

20
0

L
B

–
–

–
–

–

ol
d

L
B

79
25

29
92

00
a

–
–

–
–

16
U

B
11

62
37

72
16

00
0

f
17

29
15

61
89

09
g

63
21

08
45

58
3g

16
85

96
21

18
2g

39
21

06
25

72
g

L
B

–
–

–
–

–

ol
d

L
B

12
68

04
78

72
00

a
–

–
–

–

17
U

B
18

19
79

61
43

74
69

f
25

96
25

85
99

24
0g

94
34

67
97

90
34

g
23

76
00

15
23

68
g

54
41

14
16

26
0g

L
B

–
–

–
–

–

ol
d

L
B

–
–

–
–

–

18
U

B
32

01
18

68
52

86
40

0
f

41
57

38
55

23
20

00
g

15
02

90
46

25
75

77
g

35
84

75
57

14
29

3g
80

98
12

00
42

66
g

L
B

–
–

–
–

–

ol
d

L
B

–
–

–
–

–

U
B

up
pe

r
bo

un
d,

L
B

lo
w

er
bo

un
d

gi
ve

n
by

a
co

de
co

ns
tr

uc
te

d
in

th
is

st
ud

y.
ol

d
L

B
be

st
lo

w
er

bo
un

d
av

ai
la

bl
e

fr
om

a
co

ns
tr

uc
tio

n
in

th
e

lit
er

at
ur

e.
A

n
en

tr
y

in
bo

ld
is

a
ne

w
be

st
lo

w
er

bo
un

d,
an

d
an

en
tr

y
in

it
al

ic
s

eq
ua

ls
th

e
pr

ev
io

us
be

st
lo

w
er

bo
un

d

123

Permutation codes 251

Ta
bl

e
3

T
he

ne
w

ta
bl

e
of

pe
rm

ut
at

io
n

co
de

s
9

≤
d

≤
18

n\
d

9
10

11
12

13
14

15
16

17
18

9
U

B
9

–
–

–
–

–
–

–
–

–

L
B

9
–

–
–

–
–

–
–

–
–

ol
d

L
B

9
–

–
–

–
–

–
–

–
–

10
U

B
90

10
–

–
–

–
–

–
–

–

L
B

49
X

10
–

–
–

–
–

–
–

–

ol
d

L
B

49
d

10
–

–
–

–
–

–
–

–

11
U

B
99

0
11

0
11

–
–

–
–

–
–

–

L
B

15
4C

11
0

11
–

–
–

–
–

–
–

ol
d

L
B

15
4a

11
0

11
–

–
–

–
–

–
–

12
U

B
11

88
0

13
20

13
2

12
–

–
–

–
–

–

L
B

13
20

13
20

60
12

–
–

–
–

–
–

ol
d

L
B

–
13

20
60

b
12

–
–

–
–

–
–

13
U

B
15

44
40

17
16

0
17

16
15

6
13

–
–

–
–

–

L
B

48
10

A
90

6
A

19
5C

15
6

13
–

–
–

–
–

ol
d

L
B

35
88

a
–

–
15

6
13

–
–

–
–

–

14
U

B
21

62
16

0
24

02
40

24
02

4
21

84
18

2
14

–
–

–
–

L
B

–
65

52
21

84
21

84
52

A
14

–
–

–
–

ol
d

L
B

–
65

52
–

21
84

42
b

14
–

–
–

–

15
U

B
32

43
24

00
36

03
60

0
36

03
60

32
76

0
27

30
21

0
15

–
–

–

L
B

–
–

60
76

E
25

20
24

3
A

56
A

15
–

–
–

ol
d

L
B

–
–

–
–

84
a

–
15

–
–

–

123

252 D. H. Smith, R. Montemanni

Ta
bl

e
3

co
nt

in
ue

d

n\
d

9
10

11
12

13
14

15
16

17
18

16
U

B
51

89
18

40
0

57
65

76
00

57
65

76
0

52
41

60
43

68
0

33
60

24
0

16
–

–

L
B

–
–

–
40

32
0

12
66

A
26

9
A

24
0

16
–

–

ol
d

L
B

–
–

–
21

12
0a

–
–

24
0

16
–

–

17
U

B
88

21
61

28
00

98
01

79
20

0
98

01
79

20
89

10
72

0
74

25
60

57
12

0
40

80
27

2
17

–

L
B

–
–

–
–

–
–

40
80

27
2

17
–

ol
d

L
B

–
–

–
83

50
4a

–
–

40
80

27
2

17
–

18
U

B
15

87
89

03
04

00
17

64
32

25
60

0
17

64
32

25
60

16
03

92
96

0
13

36
60

80
10

28
16

0
73

44
0

48
96

30
6

18

L
B

–
–

–
–

–
–

–
48

96
70

A
18

ol
d

L
B

–
–

–
–

–
–

–
48

96
54

b
18

U
B

up
pe

r
bo

un
d,

L
B

lo
w

er
bo

un
d

gi
ve

n
by

a
co

de
co

ns
tr

uc
te

d
in

th
is

st
ud

y.
ol

d
L

B
be

st
lo

w
er

bo
un

d
av

ai
la

bl
e

fr
om

a
co

ns
tr

uc
tio

n
in

th
e

lit
er

at
ur

e.
A

n
en

tr
y

in
bo

ld
is

a
ne

w
be

st
lo

w
er

bo
un

d,
an

d
an

en
tr

y
in

it
al

ic
s

eq
ua

ls
th

e
pr

ev
io

us
be

st
lo

w
er

bo
un

d

123

Permutation codes 253

use various forms of incomplete greedy search, but there is no reason to think that the codes
obtained will be particularly good in terms of the number of codewords. Inspection of the
tables and the two results for n = 19 and n = 20 indicate that iterated clique building is
particularly useful for larger n.

Acknowledgments The authors would like to thank Peter Dukes for suggesting parameter sets on which to
concentrate their efforts.

References

1. Bailey R.F.: Error-correcting codes from permutation groups. Discrete Math. 309, 4253–4265 (2009).
2. Blake I.F.: Permutation codes for discrete channels. IEEE Trans. Inform. Theory 20(1), 138–140 (1974).
3. Bogaerts M.: New upper bounds for the size of permutation codes via linear programming. Electron. J.

Combi. 17(#R135) (2010).
4. Burer S., Monteiro R.D.C., Zhang Y.: Maximum stable set formulations and heuristics based on contin-

uous optimization. Math. Progr. Ser A. 94, 137–166 (2002).
5. Cannon J.J., Bosma W. (eds.): Handbook of magma functions, version 2.13. The University of Sydney,

Sydney (2006).
6. Carraghan R., Pardalos P.M.: An exact algorithm for the maximum clique problem. Oper. Res. Lett. 9,

375–382 (1990).
7. Chu W., Colbourn C.J., Dukes P.: Constructions for permutation codes in powerline communications.

Des., Codes Cryptogr. 32, 51–64 (2004).
8. Colbourn C.J., Kløve T., Ling A.C.H.: Permutation arrays for powerline communication and mutually

orthogonal latin squares. IEEE Trans. Inform. Theory 50, 1289–1291 (2004).
9. Deza M., Vanstone S.A.: Bounds for permutation arrays. J. Statist. Plann. Inference 2, 197–209 (1978).

10. Dukes P., Sawchuck N.: Bounds on permutation codes of distance four. J. Algebr. Comb. 31, 143–158
(2010).

11. Frankl P., Deza M.: On maximal numbers of permutations with given maximal or minimal distance. J.
Combin. Theory Ser. A 22, 352–360 (1977).

12. Han Vinck A.J.: Coded modulation for power line communications. A.E.Ü. Int. J. Electron. Commun.
54(1), 45–49 (2000).

13. Huczynska S.: Powerline communications and the 36 officers problem. Phil. Trans. R. Soc. A. 364,
3199–3214 (2006).

14. Hulpke A.: Constructing transitive permutation groups. J. Symbolic Comput. 39(1), 1–30 (2005).
15. Hurley S., Smith D.H., Thiel S.U.: FASoft: A system for discrete channel frequency assignment. Radio

Sci. 32(5), 1921–1939 (1997).
16. Janiszczak I., Staszewski R.: An improved bound for permutation arrays of length 10. http://www.iem.

uni-due.de/preprints/IJRS.pdf (downloaded 1st March 2011).
17. Konc J., Janežič D.: An improved branch and bound algorithm for the maximum clique problem. MATCH

communications in mathematical and in computer chemistry 58, 569–590 (2007).
18. Montemanni R., Smith D.H.: Heuristic algorithms for constructing binary constant weight codes. IEEE

Trans. Inform. Theory 55(10), 4651–4656 (2009).
19. Östergård P.R.J.: A new algorithm for the maximum-weight clique problem. Nordic J. Comput. 8(4),

424–436 (2001).
20. Östergård P.R.J.: A fast algorithm for the maximum clique problem. Dis. Appl. Math. 120, 197–207

(2002).
21. Pavlidou N., Han Vinck A.J., Yazdani J., Honary B.: Power line communications: state of the art and

future trends. IEEE Commun. Mag. 41(4), 34–40 (2003).
22. Tarnanen H.: Upper bounds on permutation codes via linear programming. Eur. J. Combin. 20, 101–114

(1999).

123

http://www.iem.uni-due.de/preprints/IJRS.pdf
http://www.iem.uni-due.de/preprints/IJRS.pdf

	A new table of permutation codes
	Abstract
	1 Introduction
	2 The new table
	3 Maximum clique algorithms
	4 Automorphism groups
	5 Iterative clique building
	6 Other methods
	7 Conclusion
	Acknowledgments
	References

