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Abstract Constant composition codes (CCCs) are a new generalization of binary constant weight

codes and have attracted recent interest due to their numerous applications. In this paper, a new

combinatorial approach to the construction of CCCs is proposed, and used to establish new optimal

CCCs.
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1 Introduction

Let Q = {at : 0 � t � q − 1} be an alphabet of q elements. Most of the time Q are taken to
be the finite field GF(q) of order q or the ring of integers modulo q. By an (n, M, d; q)-code we
mean a q-ary code C ⊆ Qn with length n, size M and Hamming distance d. If C consists of the
codewords of a given constant weight w, it is termed an (n, M, d, w; q)-CWC. An (n, M, d; q)-
code is called a constant composition code (CCC), or an (n, M, d, [w0, w1, . . . , wq−1]; q)-CCC, if
for any i (0 � i � q − 1), the symbol ai appears exactly wi times in every codeword. CCCs are
a new generalization of binary constant weight codes, which include the important permutation
codes. Here, the constant composition [w0, . . . , wq−1] is essentially an unordered multiset. We
will write it in an “exponential” form for more convenience. The notation [1i2j3k · · · ] denotes
i occurrences of 1, j occurrences of 2, etc. in the constant composition.

The maximum size of an (n, M, d, [w0, w1, . . . , wq−1]; q)-CCC is denoted by A(n, d, [w0, w1, . . . ,

wq−1]; q). A CCC achieving this size is often called optimal. To measure the optimality, the
following two known bounds serve as our benchmarks.

Lemma 1[1]. If nd − n2 + (w2
0 + w2

1 + · · · + w2
q−1) > 0, then

A(n, d, [w0, . . . , wq−1]; q) � nd

nd − n2 + (w2
0 + · · · + w2

q−1)
. (1)

Lemma 2[2]. For any integer r satisfying 0 � r � q − 1,

A(n, d, [w0, . . . , wq−1]; q) � n

wr
A(n − 1, d, [ŵ0, . . . , ŵq−1]; q), (2)
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where

ŵi =

⎧

⎨

⎩

wi − 1, if i = r

wi, if i �= r.

CCCs have been used since the early 1980’s to bound error and erasure probabilities in de-
cision feedback channels[3], their systematic study only began in late 1990’s with Svanström[4].
Today, the constructions of optimal CCCs have attracted extensive attention due to their nu-
merous applications (see, for example [1, 2, 5–11]). In this paper, a new combinatorial approach
to the construction of CCCs is proposed and used to establish new optimal CCCs.

2 The combinatorial approach

We use [12] and [13] as our standard design-theoretic references.

Suppose that there is a set X of v points and that from these a collection A of subsets (called
blocks) is drawn. The ordered pair (X,A) is then referred to as a design of order v. In design
theory there are normally a number of additional rules imposed when the blocks are selected.

A design (X,A) is termed a packing, or a P(k, 1; v), if all of its blocks have size k and every
pair of distinct points occurs in at most one block of A. Furthermore, if v = gn and there exists
a partition H of X into n subsets (called holes) of cardinality g such that no block contains
two distinct points of any hole, that is, |H ∩B| � 1 for any block B ∈ A and any hole H ∈ H,
then the P(k, 1; v) is known as a holey packing (HP) or an HP(k, 1; gn)[14]. In this case, we
write (X,H,A) instead of (X,A). In literature, if every pair of distinct points from distinct
holes occurs in exactly one block, then (X,H,A) is called a group divisible design (GDD), or
a k-GDD of type gn in short. A k-GDD of type gn can exist only if n � k, (n − 1)g ≡ 0 (mod
(k−1)) and n(n−1)g2 ≡ 0 (mod k(k−1)). For the sake of uniformity, the term “holey packing”
is understood to include the GDD case.

There exists an ultimate relationship between combinatorial designs and codes. It is well
known (see, for example, [15]) that the row vectors of the “blocks-by-points” incidence matrix
of a P(k, 1; v) with b blocks form a binary CWC with the parameters (n = v, M = b, d =
2(k − 1), w = k). Conversely, the support design of an (n, M, d, w; 2)-CWC is a P(k, 1; v). It
was also shown that an HP(k, 1; gn) gives an (n, M = b, d, w = k; q = g + 1)-CWC over Zg+1

for a certain d with k − 1 � d � 2k, and vice versa (see [16] for GDD case and [17, 18] for
general holey packings). Recently, various constructions of CCCs were established by using
combinatorial designs such as generalized doubly resolvable designs, PBDs, difference families
and so on (see, for example, [5, 8–10, 19] and the references therein).

Since the codewords of the derived (g + 1)-ary code from an HP(k, 1; gn) are of constant
weight k, each of its codewords contains the symbol 0 ∈ Zg+1 exactly n−k times. This obvious
fact motivates us to propose a new combinatorial approach to constructing optimal CCCs by
employing grid holey packings (GHPs) defined below.

Let k, g, n and wi (1 � i � g) be positive integers such that k =
∑g

i=1 wi. Let X be a set of
ng points which admits two partitions R and H where

• R = {R1, R2, . . . , Rg} is a partition of X into g subsets (called restricted groups) of
cardinality n; and
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• H = {H1, H2, . . . , Hn} is a partition of X into n subsets (called holes) of cardinality g

such that

|Hi ∩ Rj | = 1, Hi ∈ H, Rj ∈ R.

A grid holey packing, or a GHP([w1, . . . , wg], 1; n×g) is defined to be a quadruple (X,H,R,A),
where A is a collection of k-subsets (called blocks) of X such that

• every pair of distinct points of X occurs in at most one block; and

• for any block B ∈ A, i (1 � i � n) and j (1 � j � g),

|Hi ∩ B| � 1 and |Rj ∩ B| = wj .

By definition, one can see that a GHP([w1, . . . , wg], 1; n × g) is an HP(k, 1; gn) with k =
∑g

i=1 wi which satisfies certain additional rules. The “grid” nomenclature arises from that one
can lay out the ng points in n × g grid, the points on the j-th vertical line being the points of
the j-th restricted group Rj , the points on the ith horizontal line being the points of the ith
hole Hi.

We are now ready to describe our approach to obtaining CCCs via GHPs.

Theorem 1. If a GHP([w1, . . . , wg], 1; n×g) with b blocks exists, then so does an (n, M, d, [w0,

w1, . . . , wg]; g + 1)-CCC for a certain d ∈ [k − 1, 2k] where M = b and w0 = n − ∑g
i=1 wi.

Proof. Let (X,H,R,A) be the given GHP([w1, . . . , wg], 1; n × g). Since X is a finite set,
we may assume that X = In × Ig (if necessary, we may relabel the ng points), where Im =
{1, 2, . . . , m}, H = {Hi = {i} × Ig : i ∈ In} and R = {Rj = In × {j} : j ∈ Ig}. By definition,
the size of the blocks in the GHP is equal to k =

∑g
i=1 wi. Write w0 = n − ∑g

i=1 wi = n − k.

Now for any block

B = {(i1, j1), (i2, j2), . . . , (ik, jk)},

we form a codeword c(B) having value jt in its it-th position (1 � t � k) and value zero in any
other position. Since the j-th restrict group intersects every block at exactly wj points for any
j ∈ Ig , the derived code C = {c(B) : B ∈ A} is an (n, M = b, d, [w0, w1, . . . , wg]; q = g + 1)-
CCC over the alphabet Zg+1. Obviously, the distance d of the derived CCC lies in the interval
[k − 1, 2k].

It is remarkable that the distance d of the derived CCC from a GHP cannot be determined
uniquely by the parameters of the GHP. It might be any value between k−1 and 2k, depending
on heavily how the blocks cut across the holes in the given GHP. We use the subscript d in
the notation to indicate this. So, the notation GHPd([w1, . . . , wg], 1; n × g) stands for a GHP
whose corresponding CCC has distance d ∈ [k − 1, 2k]. In this case, the GHP must satisfy one
more property than a normal GHP so that its derived CCC has distance d. We refer to this
extra property as “distance property” of the GHP.

From Theorem 1, we see that a maximum GHPd([w1, . . . , wg], 1; n × g) gives us an optimal
(n, M, d, [w0, w1, . . . , wg]; g + 1)-CCC with M = b and w0 = n − ∑g

i=1 wi. The process in the
proof of Theorem 1 can be reversed. For convenience, we call a maximum GHPd([w1, . . . , wg], 1;
n × g) optimal for any fixed d ∈ [k − 1, 2k] and use prefix “O” to denote it. It follows that we
may restate Theorem 1 as follows.
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Theorem 2. For any d ∈ [k − 1, 2k], the existence of an OGHPd([w1, . . . , wg], 1; n × g) is
equivalent to that of an optimal (n, M, d, [w0, w1, . . . , wg]; g + 1)-CCC with M = b and w0 =
n − ∑g

i=1 wi.

To illustrate the idea in Theorem 2, we give a simple example.

Example 1. Take V = I5×I2, H = {Hi = {i}×I2 : i ∈ I5} and R = {Rj = I5×{j} : j ∈ I2}.
Let A consist of the following 5 blocks over V :

{(1, 1), (2, 1), (4, 2)},
{(2, 1), (3, 1), (5, 2)},
{(3, 1), (4, 1), (1, 2)},
{(4, 1), (5, 1), (2, 2)},
{(5, 1), (1, 1), (3, 2)}.

Then (V,H,R,A) is an OGHP4([2, 1], 1; 5 × 2). Applying Theorem 2, this OGHP gives an
optimal (5, 5, 4, [2, 2, 1]; 3)-CCC over alphabet Z3 shown in Table 1.

Table 1

Blocks Corresponding Codewords

{(1, 1), (2, 1), (4, 2)} 1 1 0 2 0

{(2, 1), (3, 1), (5, 2)} 0 1 1 0 2

{(3, 1), (4, 1), (1, 2)} 2 0 1 1 0

{(4, 1), (5, 1), (2, 2)} 0 2 0 1 1

{(5, 1), (1, 1), (3, 2)} 1 0 2 0 1

3 The application

The equivalence in Theorem 2 translates the construction of optimal CCCs into a combinatorial
problem. As a consequence, design-theoretic techniques can be utilized. Combinatorial design
theory is mature and widely applied today. It is beyond doubt that new classes of optimal
CCCs can be produced through the use of Theorem 2. This section serves to provide new
optimal CCCs by applying Theorem 2.

3.1 New optimal ternary CCCs
Svanström[11] made an investigation into optimal ternary CCCs with weight 3. He proved that

A(n, 4, [n − 3, 2, 1]; 3) �

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

n(n − 2)
4

, if n is even;

n(n − 1)
4

, if n ≡ 1 (mod 4);

(n − 1)2

4
+

⌊

n − 3
12

⌋

, if n ≡ 3 (mod 4);

(3)

and

A(n, 4, [n − 3, 2, 1]; 3) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

n(n − 2)
4

, if n is even;

(n − 1)2

4
, if n = 7 or 11.
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The determination of A(n, 4, [n− 3, 2, 1]; 3) remains unsettled for all odd n �∈ {7, 11}. Recently,
Chee et al.[19] gave a nice PBD-closure result for the set of lengths of certain types of CCCs
and proved that the above upper bound (3) is attainable for all n ≡ 1 (mod 4). Applying
Theorem 2, we may state their result in the following

Lemma 3. For all positive integers t, there exists an OGHP4([2, 1], 1; (4t+1)×2) of (4t+1)t
blocks.

As noted in [19], the case n ≡ 3 (mod 4) seems considerably more difficult. Based on a PBD
result, Chee et al.[19] showed that the upper bound (3) is also attainable for sufficiently large
n ≡ 3 (mod 4). The term “sufficiently large” remains to be specified. We will address the case
n ≡ 3 (mod 12). Employing Theorem 2, our task is to construct an OGHP4([2, 1], 1; n × 2)
with b = (n−1)2

4 +
⌊

n−3
12

⌋

blocks. It is not difficult to see that the distance property of an
OGHP4([2, 1], 1; n× 2) reads as: “any two of its blocks cut across at most one common hole if
they share a point in common, and at most two common holes if they are disjoint”.

Our construction uses the notion of a transversal design (TD). A TD(k, m) is a k-GDD of
type mk. From the pointview of existence, a TD(k, m) is equivalent to k−2 mutually orthogonal
Latin squares of side m. Here, we only need a TD(3, m) from a Latin square of side m, which
exists for any positive integers m (see, for example, [13]). We describe a TD(3, 3) in the
following example for convenience of later use.

Example 2. Take X = Z3 × {x, y, z} to be point set, and {Z3 × {x}, Z3 × {y}, Z3 × {z}} as
hole set. Then the following 9 blocks give a TD(3,3):

{(0, x), (0, y), (0, z)} mod (3,−);

{(0, x), (1, y), (2, z)} mod (3,−);

{(0, x), (2, y), (1, z)} mod (3,−).

Here, {x, y, z} is an arbitrary triple.

Theorem 3. Let t be a positive integer and n = 12t+3. Then there exists an OGHP4([2, 1], 1;
n × 2) with (n−1)2

4 + �n−3
12 � blocks, or equivalently, an optimal (n, M, 4, [n − 3, 2, 1]; 3)-CCC

meeting the Svanström’s bound (3).

Proof. We give the proof by constructing an OGHP4([2, 1], 1; n × 2) for any given positive
integer n = 12t + 3.

Let (G × I2,H,R,A) be an OGHP4([2, 1], 1; (4t + 1) × 2) with (4t + 1)t blocks of the form
{(x, 1), (y, 1), (z, 2)} (x, y, z ∈ G), which exists by Lemma 3. Here, the hole set H consists of
4t+1 holes Hg = {g}×I2 (g ∈ G) and R consists of the two restricted groups Rj = G×{j} (j ∈
I2). For the ease of notation, we write gj for the point (g, j) ∈ G × I2.

Now weight 3 to every point (g, j) ∈ G × I2 of the given OGHP, that is, replace every point
(g, j) with a set (Z3 × {g})j of 3 points. This forms a new point set X = (Z3 ×G) × I2, where
its point (i, g, j) is written as ({i} × {g})j. Let

⎧

⎪

⎪

⎨

⎪

⎪

⎩

X = (Z3 × G) × I2,

̂H = {{α} × I2 : α ∈ Z3 × G} ,

̂R = {(Z3 × G) × {j} : j ∈ I2} .
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Next, suppose that A = {x1, y1, z2} ∈ A is a block of the given OGHP. We employ the TD(3,
3) shown in Example 2 to construct 9 blocks over X from A as follows:

{(i, x)1, (i, y)1, (i, z)2};
{(i, x)1, (1 + i, y)1, (2 + i, z)2};
{(i, x)1, (2 + i, y)1, (1 + i, z)2},

where i runs over all residues in Z3 and the addition is reduced by mod 3. Denote by B(A)
these 9 blocks. Doing this for each of (4t + 1)t blocks in A produces 9t(4t + 1) blocks over X .
Let

D = {{(0, g)1, (1, g)1, (2, g)2} : g ∈ G}.
Write

̂A = D
⋃

(
⋃

A∈A
B(A)

)

.

Then ̂A contains exactly (4t+1)(9t+1) = (n−1)2

4 +�n−3
12 � blocks over X . It can be easily proved

that (X, ̂H, ̂R, ̂A) is a GHP([2, 1], 1; n× 2) of (n−1)2

4 + �n−3
12 � blocks, matching the Svanström’s

bound (3).
To see that the resultant GHP is an OGHP4([2, 1], 1; n×2), as desired, we need to show that

it satisfies the distance property mentioned above. For this, suppose that B1 and B2 are the
two distinct blocks of ̂A. Note that the holes of the resultant GHP is labelled by the elements
of Z3 × G while any block A of the given OGHP meets every hole {g} × I2 ∈ H at most one
point. It turns out that if B1 ∈ D and B2 ∈ B(A) for some A ∈ A, then B1 and B2 cut across
at most one hole of ̂H in common. When B1 and B2 both lie in B(A) for some A ∈ A, the case
is the same as above, which is guaranteed by the property of a TD.

What remains is to treat the cases B1 ∈ B(A1) and B2 ∈ B(A2) where A1 and A2 are two
distinct blocks of the given OGHP. Let A1 = {a1, c1, g2} and A2 = {b1, d1, h2}. Since any two
distinct blocks of A intersect in at most one point, we have {a, c} �= {b, d}. If {a, c}∩{b, d} = ∅,
then B1 and B2 clearly cut across at most one hole of ̂H in common from our construction. When
|{a, c}∩{b, d}| = 1, we may assume that a = b without loss of generality. Then {c, g}∩{d, h} = ∅,
as A1 and A2 satisfy the distance property in the given OGHP. Hence, the distance property
is also true for B1 and B2 in this case.

From Theorem 2, the resultant OGHP gives an optimal (n, M, 4, [n−3, 2, 1]; 3)-CCC meeting
the Svanström’s bound (3).

Example 3. Take t = 1 in Theorem 3. Start with the OGHP4([2, 1], 1; 5 × 2) (V,H,R,A)
given in Example 1. Applying Theorem 3, we get an OGHP4([2, 1], 1; 15×2) (X, ̂H, ̂R, ̂A). Here

⎧

⎪

⎪

⎨

⎪

⎪

⎩

X = (Z3 × I5) × I2,

̂H = {{α} × I2 : α ∈ Z3 × I5} ,

̂R = {(Z3 × I5) × {j} : j ∈ I2} .

Label the five blocks of A in the following way:
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A1 = {11, 21, 42}, A2 = {21, 31, 52}, A3 = {31, 41, 12},
A4 = {41, 51, 22}, A5 = {51, 11, 32}.

Then, according to the construction in the proof of Theorem 3, the block set

̂A = D
⋃

(
5

⋃

r=1

B(Ar)
)

containing exactly (15−1)2

4 + � 15−3
12 � = 50 blocks over X . We indicate the blocks of B(Ar) (1 �

r � 5) and D in Table 2.

Table 2

B(A1)

{(0, 1)1, (0, 2)1, (0, 4)2} {(1, 1)1, (1, 2)1, (1, 4)2} {(2, 1)1, (2, 2)1, (2, 4)2}
{(0, 1)1, (1, 2)1, (2, 4)2} {(1, 1)1, (2, 2)1, (0, 4)2} {(2, 1)1, (0, 2)1, (1, 4)2}
{(0, 1)1, (2, 2)1, (1, 4)2} {(1, 1)1, (0, 2)1, (2, 4)2} {(2, 1)1, (1, 2)1, (0, 4)2}
{(0, 2)1, (0, 3)1, (0, 5)2} {(1, 2)1, (1, 3)1, (1, 5)2} {(2, 2)1, (2, 3)1, (2, 5)2}

B(A2) {(0, 2)1, (1, 3)1, (2, 5)2} {(1, 2)1, (2, 3)1, (0, 5)2} {(2, 2)1, (0, 3)1, (1, 5)2}
{(0, 2)1, (2, 3)1, (1, 5)2} {(1, 2)1, (0, 3)1, (2, 5)2} {(2, 2)1, (1, 3)1, (0, 5)2}
{(0, 3)1, (0, 4)1, (0, 1)2} {(1, 3)1, (1, 4)1, (1, 1)2} {(2, 3)1, (2, 4)1, (2, 1)2}

B(A3) {(0, 3)1, (1, 4)1, (2, 1)2} {(1, 3)1, (2, 4)1, (0, 1)2} {(2, 3)1, (0, 4)1, (1, 1)2}
{(0, 3)1, (2, 4)1, (1, 1)2} {(1, 3)1, (0, 4)1, (2, 1)2} {(2, 3)1, (1, 4)1, (0, 1)2}
{(0, 4)1, (0, 5)1, (0, 2)2} {(1, 4)1, (1, 5)1, (1, 2)2} {(2, 4)1, (2, 5)1, (2, 2)2}

B(A4) {(0, 4)1, (1, 5)1, (2, 2)2} {(1, 4)1, (2, 5)1, (0, 2)2} {(2, 4)1, (0, 5)1, (1, 2)2}
{(0, 4)1, (2, 5)1, (1, 2)2} {(1, 4)1, (0, 5)1, (2, 2)2} {(2, 4)1, (1, 5)1, (0, 2)2}
{(0, 5)1, (0, 1)1, (0, 3)2} {(1, 5)1, (1, 1)1, (1, 3)2} {(2, 5)1, (2, 1)1, (2, 3)2}

B(A5) {(0, 5)1, (1, 1)1, (2, 3)2} {(1, 5)1, (2, 1)1, (0, 3)2} {(2, 5)1, (0, 1)1, (1, 3)2}
{(0, 5)1, (2, 1)1, (1, 3)2} {(1, 5)1, (0, 1)1, (2, 3)2} {(2, 5)1, (1, 1)1, (0, 3)2}

D
{(0, 1)1, (1, 1)1, (2, 1)2} {(0, 2)1, (1, 2)1, (2, 2)2} {(0, 3)1, (1, 3)1, (2, 3)2}
{(0, 4)1, (1, 4)1, (2, 4)2} {(0, 5)1, (1, 5)1, (2, 5)2}

From Theorem 2, this OGHP gives an optimal (15, 50, 4, [12, 2, 1]; 3)-CCC over alphabet Z3,
meeting the Svanström’s bound (3).

The construction of an OGHP4([2, 1], 1; (12t + 3) × 2) in Theorem 3 relies on a known
OGHP4([2, 1], 1; (4t + 1) × 2). However, when t = 2m + 1 and 4t + 1 = 8m + 5 > 5 is a prime
power, we can explicitly construct an OGHP4([2, 1], 1; n × 2) with n = 12t + 3 = 24m + 15 in
the following manner.

Let C
(4)
j (0 � j � 3) be the cyclotomic classes of order 4 in the Galois field GF(8m+5). The

linear relations of cyclotomic numbers of order 4 listed in [20, p. 28] show that the equations
1 + Y = X with {X, Y } ⊆ C

(4)
3 and 1 + Y = X with Y ∈ C

(4)
2 and X ∈ C

(4)
1 are both solvable

in GF(8m + 5). Hence, we can take x, y and u in GF(8m + 5) in such a way that

x ∈ C
(4)
1 , y ∈ C

(4)
2 , {u, u − 1} ⊆ C

(4)
3 and x − y = 1 ∈ C

(4)
0 .

Now we take
⎧

⎪

⎪

⎨

⎪

⎪

⎩

X = (GF(8m + 5) × Z3) × I2,

H = {{α} × I2 : α ∈ GF(8m + 5) × Z3} ,

R = {(GF(8m + 5) × Z3) × {j} : j ∈ I2} ,
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and simply write (a, b)j for the point (a, b, j) ∈ X as before. Consider the following blocks
over X :

A1s = {(2s, 0)1, (−2s, 0)1, (0, 1)2};
A2s = {(s, 0)1, (us, 0)1, (0, 2)2};
A3s = {(xs, 0)1, (ys, 1)1, (0, 2)2},

where s runs over all quartic residues of C
(4)
0 . For any s ∈ C

(4)
0 and any r (1 � r � 3), denote

by Ars the block-orbit spanned by the block Ars under the action of the additive group of
GF(8m + 5) × Z3, that is,

Ars = {Ars + (g, i) : (g, i) ∈ GF(8m + 5) × Z3}.

Here, (a, b)j + (g, i) = (a + g, b + i)j for any (a, b)j ∈ X and (g, i) ∈ GF(8m + 5) × Z3. Let

B = {{(g, 0)1, (g, 1)1, (g, 2)2} : g ∈ GF(8m + 5)}

be the block-orbit of length 8m + 5. Let

A = B
⋃

(
⋃

1�r�3

(
⋃

s∈C
(4)
0

Ars

))

.

It can be proved that (X,H,R,A) is an OGHP4([2, 1], 1; n× 2).

3.2 Optimal quaternary CCCs of constant composition [(n − 3)113] and d = 4
From Lemma 2, it is easy to show (see [19]) that

A(n, 4, [(n − 3)113]; 4) � n

⌊

n − 1
2

⌋

. (4)

An optimal (n, M, 4, [(n − 3)113]; 4)-CCC with M = n
⌊

n−1
2

⌋

was shown in [19] to exist for all
sufficiently large integers n. As before, the term “sufficiently large” remains to be specified.
Applying Theorem 2, such a CCC can be obtained from an OGHP4([13], 1; n × 3) of n

⌊

n−1
2

⌋

blocks.
The distance property of an OGHP4([13], 1; n×3) is the same as that of an OGHP4([2, 1], 1;

n×2) mentioned above. A simple counting argument shows that every point of an OGHP4([13],1;
n × 3) occurs in exactly r = �(n − 1)/2� blocks. So, if we delete the three points in a certain
hole and the 3((n+1)−1)/2 truncated blocks from an OGHP4([13], 1; (n+1)×3) with n even,
then the derived design is an OGHP4([13], 1; n× 3) of

(n + 1)n/2 − 3n/2 = n(n − 2)/2

blocks, matching the bound (4). We state this fact in the following lemma, which was first
presented in [19].
Lemma 4. Let n be an even positive integer. If an OGHP4([13], 1; (n + 1) × 3) exists, then

so does an OGHP4([13], 1; n × 3).

In view of Lemma 4, to construct an OGHP4([13], 1; n× 3) for arbitrary length n, it suffices
for us to treat the case where n is odd. We first develop a composite construction below.
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Lemma 5. Let m and n be odd positive integers. If an OGHP4([13], 1; n × 3) and an

OGHP4([13], 1; m× 3) both exist, then so does an OGHP4([13], 1; mn× 3).

Proof. This proof is analogous to that of Theorem 3. Let (G×I3,H,R,A) be an OGHP4([13],
1; n × 3) given in the hypothesis. Then it contains n(n − 1)/2 blocks of the form

{(x, 1), (y, 2), (z, 3)} (x, y, z ∈ G).

As in the proof of Theorem 3, we replace every point (g, j) ∈ G × I3 of this OGHP with a set
(Zm×{g})j of m points. This forms a new point set X = (Zm×G)×I3, where its point (i, g, j)
is written as ({i} × {g})j. Let

⎧

⎪

⎪

⎨

⎪

⎪

⎩

X = (Zm × G) × I3,

̂H = {{α} × I3 : α ∈ Zm × G} ,

̂R = {(Zm × G) × {j} : j ∈ I3} .

Now employing the same technique as in the proof of Theorem 3, for any block A = {x1, y2, z3} ∈
A we use a TD(3, m) over Zm×{x, y, z} to construct m2 blocks over X , denoted by B(A). Doing
this for each of n(n − 1)/2 blocks of A produces m2n(n − 1)/2 blocks over X . Next, let

((Zm × {g})× I3,H(g),R(g),A(g))

be an OGHP4([13], 1; m× 3) of m(m− 1)/2 blocks given in the hypothesis, where g ∈ G. Write

̂A =
(

⋃

A∈A
B(A)

)
⋃

(
⋃

g∈G

A(g)
)

.

Then ̂A contains exactly

m2n(n − 1)/2 + nm(m − 1)/2 = mn(mn − 1)/2

blocks, matching the bound (4) for length mn. We claim that (X, ̂H, ̂R, ̂A) is an OGHP4([13], 1;
mn × 3), as desired. Its proof is identical to that of Theorem 3 and omitted here.

The next lemma provides a direct construction of an OGHP4([13], 1; n × 3).

Lemma 6. Let (G, +) be an Abelian group of order n. Suppose that n is odd and 3� |n. Then
there exists an OGHP4([13], 1; n × 3) over X = G × I3 of n�n−1

2 � blocks provided that there
exists a partition of G \ {0} into two subsets S and T of cardinality t = (n − 1)/2 such that
T = −S = 2S, where −S = {−x : x ∈ S} and 2S = {2x = x + x : x ∈ S}.
Proof. Take Hg = {g} × I3, g ∈ G, as the holes and Rj = G × {j}, j ∈ I3, as the restricted
groups. Write R = {R1, R2, R3} and H = {Hg : g ∈ G}. Let A consist of the following
nt = n(n − 1)/2 blocks:

Bxd = {(d, 1), (d + x, 2), (d − x, 3)},
where x runs over all t elements of S and d ∈ G. By the mixed difference method introduced by
Bose[21], we see that (X,H,R,A) is a GHP([13], 1; n× 3) of nt = n�n−1

2 � blocks. To prove that
this design is an OGHP4([13], 1; n × 3), we have to show that any two of the above nt blocks
cut across at most one common hole if they share a common point, and at most two common



A new combinatorial approach to the construction of constant composition codes 425

holes if they are disjoint. Suppose that Bxg and Byh are the two distinct blocks for arbitrary
elements x, y ∈ S and d ∈ G.

We first consider the case where Bxg and Byh intersect at a certain point.

Case 1. g = h

In this case, the two blocks Bxg and Byh intersect at the point (g, 1) = (h, 1). As any pair of
distinct points occurs in at most one block by our construction, we have g + x �= h + y and
g − x �= h − y. By assumption, {x, y} ⊆ S and {−x,−y} ⊆ T . Hence, g + x �= h − y and
g − x �= h + y. So, these two blocks cut across exactly one common hole Hg.

Case 2. g + x = h + y

In this case, the two blocks share a point (g + x, 2) = (h + y, 2) in common. This implies g �= h

and g − x �= h − y. As in Case 1, we need only to show that g �= h − y and h �= g − x. But
the condition g + x = h + y means that x − y = h − g. So, if g = h − y, then we would have
2y = x ∈ S ∩ T = ∅, a contradiction. Similarly, we can derive a contradiction if h = g − x.

Case 3. g − x = h − y

In this case, Bxg and Byh intersect at the point (g − x, 3) = (h − y, 3). The proof is identical
to the proof of Case 2.

Now we consider the case where the two blocks Bxg and Byh are disjoint. In this case, it is
sufficient to show that the two sets S1 = {g, g + x, g − x} and S2 = {h, h + y, h − y} are not
identical. Since Bxg ∩Byh = ∅, g �= h, g + x �= h + y and g − x �= h− y. Thus, if S1 = S2, then
the system of equations

⎧

⎪

⎪

⎨

⎪

⎪

⎩

g = h + y,

g + x = h − y,

g − x = h,

or

⎧

⎪

⎪

⎨

⎪

⎪

⎩

g = h − y,

g + x = h,

g − x = h + y

must be solvable with x, y ∈ S and g, h ∈ G. This leads to

y = −x − y = x or − y = x + y = −x.

We would have 3x = 3y = 0, which is impossible as 3 �n by assumption. Therefore, S1 �= S2.
Applying Lemma 6 we obtain the following lemma.

Lemma 7. Suppose that n ≡ 3 (mod 8) is a prime power and 3 � n. Then there exists an
OGHP4([13], 1; n × 3), or equivalently, an optimal (n, M, 4, [(n − 3)113]; 4)-CCC meeting the
bound (4).

Proof. Take G to be the additive group of GF(n). Take S = C
(2)
0 and T = C

(2)
1 to be the

sets of all quadratic nonzero residues and quadratic non-residues in GF(n), respectively. Then
S and T form a partition of GF(n)∗. Since n ≡ 3 (mod 8), both 2 and −1 are quadratic non-
residues in GF(n). So T = −S = 2S. The conclusion then follows from applying Theorem 2
and Lemma 6.

As an immediate consequence of Lemma 5 and Lemma 7, we have the following series of
optimal CCCs.

Theorem 4. Suppose that n = pr1
1 pr2

2 · · · prt
t where pi ≡ 3 (mod 8) is a prime greater

than 3 for 1 � i � t. Then there exists an OGHP4([13], 1; n × 3), or equivalently, an opti-
mal (n, M, 4, [(n − 3)113]; 4)-CCC meeting the bound (4).



426 YIN JianXing & TANG Yu

Applying Lemma 4 and Theorem 4, we have also the following series of optimal CCCs.

Theorem 5. Suppose that n = pr1
1 pr2

2 · · · prt
t where pi ≡ 3 (mod 8) is a prime greater than

3 for 1 � i � t. Then there exists an OGHP4([13], 1; (n − 1) × 3), or equivalently, an optimal
(n, M, 4, [(n − 3)113]; 4)-CCC meeting the bound (4).

We point out at this stage that the main purpose of this paper is to introduce a feasible
combinatorial approach to obtaining optimal CCCs. To our best knowledge, this approach is
different from the known ones used in constructions of CCCs. We have illustrated the applica-
tion of this approach to two types of optimal CCCs in this section. Though the construction of
an OGHPd([w1, . . . , wg], 1; n×g) is apparently often highly technical and requires deep methods
in combinatorial theory, we believe that the approach taken in this paper will result in some
more types of optimal CCCs.
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