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1. Introduction

In the classical sense, a code is a linear subspace of FN , where F is a finite field. Many codes which
are of interest in coding theory have the additional structure of a module over a ring R . The cyclic
codes, for instance, which are invariant under a cyclic shift of the coordinates, are the submodules of
the regular module over the group algebra FCN , where CN is the cyclic group of order N .

In this paper a code is a submodule of a right A-module V , where A is a finite dimensional
algebra over F. This includes the group codes considered by several authors – see for instance [1–3] –
which are ideals in a group algebra FG , where G is a finite group, and also the extended cyclic codes
considered in [4], which are FCN -submodules of FCN ⊕ F, where CN acts trivially on the additional
coordinate.

The module V will be assumed to carry a non-degenerate equivariant form ϕ (cf. Definition 2.2) –
in the case of group algebras A = FG these are non-degenerate G-invariant forms. For a code C � V
we define the orthogonal code

C⊥ = C⊥,ϕ := {
v ∈ V

∣∣ ϕ(v, c) = 0 for all c ∈ C
}
,

which is, again, a right A-module. If C = C⊥ then the code C is called self-dual.
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The situation in which a self-dual code C � V exists has been characterized in [5] in the case
where A = V = FG , using representation theoretic methods. In this paper the total number M(V ,ϕ) of
self-dual codes in a general A-module V over a semisimple algebra A is given, provided that there
exists at least one such code. It is shown that this number basically depends on the composition
factors of V , except if F has even characteristic and ϕ is symmetric. Still, the latter case remains
relatively transparent if A is a group algebra – then, M(V ,ϕ) additionally depends on the existence of
an isotropic vector v ∈ V , i.e. ϕ(v, v) = 0.

The number M(V ,ϕ) is determined via a Morita equivalence F given in Section 2, which maps
(V ,ϕ) onto a module (U ,ϕ′) over Z(A). In the case where A = FG is a group algebra and F is
a splitting field for G , this corresponds the Morita equivalence given in [6]. Note that [6] includes
the modular case, i.e. the case where A is not semisimple. We show that the equivalence F pre-
serves the number of self-dual codes. Since A is semisimple, Z(A) is a ringdirect sum of fields.
This reduces the determination of M(V ,ϕ) , in Section 3.3, basically to an enumeration of all self-dual
codes in a vector space endowed with a certain form. This situation is well understood; enumeration
formulae are given in [7] and [8], for instance, and are cited in Section 3.2 for reader’s conve-
nience.

In Section 4 we give a group Autweak(V ) which acts on the set C(V ) of self-dual codes in V , and
define some suitable subgroups Γ � Autweak(V ) which respect certain properties of codes, like the
isometry type, or, in the case where V is a permutation module, i.e. has a distinct basis, the weight
distribution.

The total number M(V ,ϕ) of self-dual codes in V is then the sum of the orbit lengths under Γ –

the mass formula (Theorem 4.2) is a reformulation of this fact, which relates the ratio
M(V ,ϕ)

|Γ | to the
stabilizer orders of Γ -orbits, hence is a useful tool to prove completeness of a classification of all self-
dual codes in V . As an example, we classify in Section 4.2 the self-dual binary [48,24]-codes with an
automorphism of order 23.

2. Morita theory for codes

Let A be an algebra and let be an involution of A, i.e. a bijective additive map satisfying
ab = ba and a = a for all a,b ∈ A. Morita theory for algebras with involution has been studied in [9]
and [10], in particular with regard to the connections between Hermitian modules (cf. Definition 2.1)
over two different algebras A, E over the same ring, where the Hermitian forms over A factorize
through ⊗E . This section studies Hermitian modules V over a semisimple algebra A over a finite
field F, with involution, and its center E = Z(A), which is fixed under , hence naturally carries an
involution.

This context naturally arises in the study of codes and their automorphisms, which is resumed
in Sections 3 and 4. There the algebra A = FG is a group algebra, for some subgroup G � Sk of the
symmetric group on k points such that the characteristic of F does not divide the order of G . The
module V = Fk is then the associated permutation module over FG . The group algebra FG carries a
natural F-linear involution given by g �→ g−1, for g ∈ G . We will investigate the number of self-dual
codes C � Fk which are G-submodules of V , i.e. Cπ = C for all π ∈ G . Orthogonality is in this context
defined with respect to the standard scalar product

( , ) : Fk × Fk → F, (v, v ′) �→
k∑

i=1

vi v ′
i,

which takes values in F and is G-invariant, i.e. (v, v ′) = (vg, v ′ g) for all v, v ′ ∈ V and g ∈ G . This
gives rise to the definition of the category Mod(F)

A of equivariant A-modules (cf. Definition 2.2), which

is Morita equivalent to the category Mod(A)
A (cf. Definition 2.1). In analogy with the construction

given in [9, Theorem 8.2] we are able to construct a Morita equivalence F : Mod(A)
A → Mod(E)

E in
Theorem 2.8.
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Definition 2.1.

(i) A Hermitian form on a right A-module V is a biadditive mapping φ : V × V → A such that

φ(v, wa) = φ(v, w)a and φ(v, w) = φ(w, v)

for all v, w ∈ V and a ∈ A. If φ is non-degenerate, i.e. if

rad(φ) := {
v ∈ V

∣∣ φ(v, w) = 0 for all w ∈ V
} = {0}

then (V , φ) is called a Hermitian right A-module. Analogously one defines Hermitian left A-
modules.

(ii) Let Mod(A)
A be the category of Hermitian right A-modules. The morphisms from the object (V , φ)

to the object (V ′, φ′) are the A-module homomorphisms ψ : V → V ′ satisfying φ′(ψ(v),ψ(w)) =
φ(v, w) for all v, w ∈ V . Since any such homomorphism is injective, the morphisms are also
called monometries.

Remark 1. Write A = ⊕t
i=1 Dni×ni

i , where the Di are field extensions of F. Then the involution
preserves the center Z(A) = ⊕t

i=1 Di , hence restricts to an automorphism of order 1 or 2 on Z(A).
So there are field automorphisms αi ∈ Aut(Di) and a permutation π ∈ St of order 1 or 2 such that

(z1, . . . , zt) = (
zα1
π(1), . . . , zαt

π(t)

)
for all (z1, . . . , zt) ∈ Z(A), where always Di ∼= Dπ(i) and αi and απ(i) are of the same order. We extend
the automorphism αi to an involution αi : Dni×ni

i → Dni×ni
i , Mi �→ (Mαi

i )tr, where Mtr
i is the transpose

of the matrix Mi and αi is applied componentwise. We obtain an involution

J : A → A, (M1, . . . , Mt) �→ ((
Mα1

π(1)

)tr
, . . . ,

(
Mαt

π(t)

)tr)
.

The composition ◦ J : A → A is an automorphism of A restricting to the identity on the center of A.
So by the theorem of Skolem and Noether (see for instance [11, Theorem 1.4]), the composition ◦ J

is given by conjugation with a unit u = (u1, . . . , ut) ∈ A∗ . Hence

(M1, . . . , Mt) = u(M1, . . . , Mt)
J u−1 = (

u1
(
Mα1

π(1)

)tr
u−1

1 , . . . , ut
(
Mαt

π(t)

)tr
u−1

t

)
for all (M1, . . . , Mt) ∈ A. Note that by the above equation, the unit u must satisfy u−1u ∈ Z(A) and
u−1u J ∈ Z(A), since and J both have order 1 or 2.

Definition 2.2.

(i) An equivariant form on V (with respect to ) is a biadditive mapping ϕ : V × V → F such that

ϕ(va, w) = ϕ(v, wa), ϕ(v, w) = ϕ(w, v) and ϕ(v, wλ) = ϕ(v, w)λ

for all v, w ∈ V , a ∈ A and λ ∈ F. The form ϕ is called non-degenerate if rad(ϕ) = {0}, cf. Defini-
tion 2.1. If ϕ is non-degenerate then (V ,ϕ) is called an equivariant A-module. Analogously one
defines equivariant left A-modules.

(ii) Let Mod(F)
A be the category of equivariant A-modules, with the monometries as morphisms

(cf. Definition 2.1).
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The categories Mod(A)
A and Mod(F )

A are equivalent, which has been shown in [12], for instance.

The proof is as follows. Let Tracereg : A → F be the reduced trace, i.e. if A = ⊕t
i=1 Dni×ni

i and M =
(M1, . . . , Mt) ∈ A then Tracereg(M) = ∑t

i=1 TrDi/F(Trace(Mi)). The functor

T : Mod(A)
A → Mod(F)

A , (V , φ) �→ (
V ,Tracereg(φ)

)
establishes an equivalence. Note that Tracereg(φ) is non-degenerate whenever φ has this prop-
erty, since rad(Tracereg(φ)) = rad(φ), due to the non-degeneracy of Tracereg : A × A → F, (a,b) �→
Tracereg(ab), cf. [13, Proposition 7.41].

In addition, the functor T preserves orthogonality (cf. Definition 2.3). This property ensures that
any (V , φ) ∈ Mod(A)

A contains as many self-dual codes as T ((V , φ)).

Definition 2.3. Let M, M′ be categories of Hermitian or equivariant modules over the algebras AM
and AM′ , respectively. A functor F : M → M′ , (V , β) �→ (F0(V ), F1(β)) is said to preserve orthogo-
nality if

F0
(
C⊥,β

) = F0(C)⊥,F1(β)

for every submodule C � V .

The main result of this section is the following.

Theorem 2.4. There is an orthogonality-preserving equivalence between the categories Mod(F)
A and Mod(E)

E ,
where E = Z(A) is the center of A, with the restriction of to E as involution.

The equivalence stated in Theorem 2.4 will be constructed as a composition

Mod(F)
A

T −1−−−→ Mod(A)
A

F−−→ Mod(E)
E ,

where T is as above. The functor F is defined in Theorems 2.7 and 2.8, respectively. The latter theo-
rem also states that F is an equivalence.

Remark 2. Let (W ,ψ) be a Hermitian (resp. equivariant) left A-module. Consider W as a right module
W E over E = Z(A) via we := ew for w ∈ W and e ∈ E . Then (W E ,ψ) is also a Hermitian (resp.
equivariant) right E-module, where the involution of E is the restriction of .

The functor F transforms A-valued forms into E-valued forms. For its construction we need the
following definition.

Definition 2.5. Let A ∼= ⊕t
i=1 Dni×ni

i , where the Di are field extensions of F. Define

TraceA/E : A → E, (M1, . . . , Mt) �→ (
Trace(M1)In1 , . . . ,Trace(Mt)Int

)
.

Finally, we need the notion of self-dual modules – note that this paper uses two different notions
of duality. An A-module S is called self-dual if S ∼= S∗ ∼= HomF(S,F) (cf. Definition 2.6), whereas a
submodule C � (V , φ) is called self-dual if C = C⊥ , where

C⊥ = {
v ∈ V

∣∣ φ(v, c) = 0 for all c ∈ C
}
.

To distinguish these two notions, and also since we are mainly interested in the coding-theoretic
applications (i.e. where V has a distinguished F-basis), we talk about self-dual codes in the latter
situation.
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Definition 2.6. Let S be a right A-module and consider F as a right module over itself via m ·λ := mλ,
for m, λ ∈ F. Then the dual module S∗ is

S∗ = HomF(S,F) = {
f : S → F

∣∣ f is additive and f (sλ) = f (s) · λ = f (s)λ for all s ∈ S, λ ∈ F
}
,

which is a right A-module via f a(s) := f (sa), for f ∈ S∗, a ∈ A and s ∈ S . The module S is called
self-dual if and only if S ∼= S∗ .

The following theorem introduces a functor Mod(A)
A → Mod(E)

E , via a Hermitian left A-module
(W ,ψ). A similar construction has been made in [9].

Theorem 2.7. Let (W ,ψ) be a Hermitian left A-module such that

ψ(w1, w2)w3 = TraceA/E
(
ψ(w3, w2)

)
w1 (

)

for all w1, w2, w3 ∈ W . Consider W as a right module over E = Z(A) as in Remark 2. Define a functor

F W := F(W ,ψ) : Mod(A)
A → Mod(E)

E , (V , φ) �→ (V ⊗A ⊗A W E , φ ⊗ ψ),

where φ ⊗ ψ := ((v ⊗ w, v ′ ⊗ w ′) �→ TraceA/E(φ(v ′, v)ψ(w, w ′))). Then F W preserves orthogonality.

Proof. To show that φ ⊗ ψ is well defined one has to check that it is A-balanced, i.e. that

TraceA/E
(
φ(v ′a′, va)ψ(w, w ′)

) = TraceA/E
(
φ(v ′, v)ψ(aw,a′ w ′)

)
for all v, v ′ ∈ V , w, w ′ ∈ W and a ∈ A. Since φ and ψ are Hermitian, the left-hand side of the above
equation equals

TraceA/E
(
φ(v ′a′, v)aψ(w, w ′)

) = TraceA/E
(
φ(v, v ′a′)ψ(aw, w ′)

) = TraceA/E
(
a′φ(v, v ′)ψ(aw, w ′)

)
.

Due to the elementary properties of the Trace function, the arguments of the latter term may be
permuted by a cyclic shift, i.e. the latter equals

TraceA/E
(
φ(v, v ′)ψ(aw, w ′)a′ ) = TraceA/E

(
φ(v ′, v)a′ψ(w ′,aw)

) = TraceA/E
(
φ(v ′, v)ψ(aw,aw ′)

)
,

as claimed. It remains to show that F W preserves orthogonality, i.e. that

F W (C)⊥,φ⊗ψ = F W
(
C⊥,φ

)
for all submodules C � V , where (V , φ) ∈ Mod(A)

A .
The inclusion F W (C⊥,φ) ⊆ F W (C)⊥,φ⊗ψ follows immediately from the definition of the form φ⊗ψ .
For the inclusion F W (C)⊥,φ⊗ψ ⊆ F W (C⊥,φ), let

∑k
i=1 vi ⊗ wi ∈ F W (C)⊥,φ⊗ψ . Then

TraceA/E

(
k∑

i=1

φ(c, vi)ψ(wi, w ′)
)

= TraceA/E

(
φ

(
c,

k∑
i=1

viψ(wi, w ′)
))

= 0

for all c ∈ C and w ′ ∈ W . Now C is a right A-module and φ is Hermitian, hence the latter equation
implies that

TraceA/E

(
φ

(
c,

k∑
viψ(wi, w ′)

)
a

)
= 0
i=1
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for all c ∈ C, w ′ ∈ W and a ∈ A. This implies that always φ(c,
∑k

i=1 viψ(wi, w ′)) = 0, due to the
non-degeneracy of TraceA/E : A × A → E, (x, y) �→ TraceA/E(xy).

Hence always
∑k

i=1 viψ(wi, w ′) ∈ C⊥,φ and hence
∑k

i=1 viψ(wi, w ′) ⊗ w ′′ ∈ F W (C⊥,φ) for all
w ′′ ∈ W . Choosing w ′, w ′′ ∈ W with TraceA/E (ψ(w ′, w ′′)) = 1, this yields

k∑
i=1

viψ(wi, w ′) ⊗ w ′′ =
k∑

i=1

vi ⊗ ψ(wi, w ′)w ′′ =
k∑

i=1

vi ⊗ TraceA/E
(
ψ(w ′′, w ′)

)
wi

=
k∑

i=1

vi ⊗ wi ∈ F W
(
C⊥,φ

)
.

The fact that F W preserves orthogonality implies that φ ⊗ ψ is non-degenerate since

rad(φ ⊗ ψ) = F W (V )⊥,φ⊗ψ = F W
(

V ⊥,φ
) = F W

(
rad(φ)

) = {0}. �
The functor F is now obtained by a particular choice of W in Theorem 2.7.

Theorem 2.8. Let S be a system of representatives for the isomorphism classes of simple left A-modules, and
let W := ⊕

S∈S S. Fix a non-degenerate Hermitian form ψ on W such that (W ,ψ) satisfies condition (

)

from Theorem 2.7. Then F := F(W ,ψ) : Mod(A)
A → Mod(E)

E is an equivalence of categories which preserves
orthogonality.

Note that condition (

) in Theorem 2.7 is natural and that, in the situation of Theorem 2.8, there
always exists a form ψ satisfying this condition: Write A = ⊕t

i=1 Dni×ni
i and let π be a permuta-

tion on t points, αi ∈ Aut(Di) and u = (u1, . . . , ut) ∈ A∗ with Mi = ui(Mαi
π(i))

tru−1
i , for Mi ∈ Dni×ni

i

(cf. Remark 1). We may assume that uu−1 = 1, cf. [14].
On W ∼= ⊕t

i=1 Dni×1
i there exists a non-degenerate Hermitian form

ψ : W × W → A,

(
t⊕

i=1

di,

t⊕
i=1

f i

)
�→

t⊕
i=1

di
(

f αi
π(i)

)tr
u−1

i .

We show that ψ satisfies condition (

), i.e. that ψ(di, fπ(i))gi = TraceA/E (ψ(gi, fπ(i)))di for all

di, gi ∈ Dni×1
i � W and fπ(i) ∈ D

nπ(i)×1
π(i) � W (note that nπ(i) = ni and Dπ(i) = Di ). The element

( f αi
π(i))

tr ∈ D1×ni
i and u−1

i gi ∈ Dni×1
i , hence

(
f αi
π(i)

)tr
u−1

i gi = Trace
(
u−1

i gi
(

f αi
π(i)

)tr) = Trace
(

gi
(

f αi
π(i)

)tr
u−1

i

)
,

where Trace : Dni×ni
i → Di denotes the usual trace of a matrix. Hence

ψ(di, fπ(i))gi = di
(

f αi
π(i)

)tr
u−1

i gi = di Trace
(

gi
(

f αi
π(i)

)tr
u−1

i

) = TraceA/E
(

gi
(

f αi
π(i)

)tr
u−1

i

)
di

= TraceA/E
(
ψ(gi, fπ(i))

)
di,

which shows that ψ satisfies condition (

).
We now prove Theorem 2.8.

Proof. Let W op be the set W with a right A-module structure given by w ∗ a := aw for a ∈ A and
w ∈ W .
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The form ψ̂ : W op × W op → A, (w, w ′) �→ ψ(w, w ′) is then non-degenerate and Hermitian.
Note that W op is also a left E-module (since W is a left A-module). Hence we can define a functor

H : Mod(E)
E → Mod(A)

A , (U ,ϕ) �→ (
U ⊗E W op,ϕ ⊗ ψ̂

)
,

where

ϕ ⊗ ψ̂(u ⊗ w, u′ ⊗ w ′) := ϕ(u′, u)ψ̂(w, w ′).

To prove that ϕ ⊗ ψ̂ is well defined, one has to check that it is E-balanced, i.e. that

ϕ(u′e′, ue)ψ̂(w, w ′) = ϕ(u′, u)ψ̂(ew, e′w ′)

for all u, u′ ∈ U , w, w ′ ∈ W op and e, e′ ∈ E . This can be proven by calculations analogous to those in
the proof of Theorem 2.7, exploiting the fact that E = Z(A).

In the following we show that H and F are inverse functors.

(i) First, let (V , φ) ∈ Mod(A)
A and show that H(F ((V , φ))) and (V , φ) are isometric. Clearly,

V ⊗A W ⊗E W op ∼= A as right A-modules via α : (v ⊗ w ⊗ ŵ) �→ vψ̂(w, ŵ).
To see that α is an isometry, we calculate that

(φ ⊗ ψ) ⊗ ψ̂(v ⊗ w ⊗ ŵ, v ′ ⊗ w ′ ⊗ ŵ ′)

= φ ⊗ ψ(v ′ ⊗ w ′, v ⊗ w)ψ̂(ŵ, ŵ ′)

= TraceA/E
(
φ(v, v ′)ψ(w ′, w)

)
ψ̂(ŵ, ŵ ′) = TraceA/E

(
ψ

(
φ(v, v ′)w ′, w

))
ψ̂(ŵ, ŵ ′)

= ψ̂
(

ŵ, ŵ ′ ∗ TraceA/E
(
ψ

(
φ(v, v ′)w ′, w

))) = ψ̂
(

ŵ,TraceA/E
(
ψ

(
w, φ(v, v ′)w ′))ŵ ′)

(

)= ψ̂
(

ŵ,ψ
(

ŵ ′, φ(v, v ′)w ′)w
) = ψ̂

(
ŵ, w ∗ ψ

(
φ(v, v ′)w ′, ŵ ′))

= ψ̂(ŵ, w)ψ
(
φ(v, v ′)w ′, ŵ ′) = ψ̂(ŵ, w)φ(v, v ′)ψ̂(w ′, ŵ ′)

= ψ̂(ŵ, w)φ
(
v, v ′ψ̂(w ′, ŵ ′)

) = φ
(
v ′ψ̂(w ′, ŵ ′), v

)
ψ̂(w, ŵ)

= φ
(
v ′ψ̂(w ′, ŵ ′), vψ̂(w, ŵ)

) = φ
(
vψ̂(w, ŵ), v ′ψ̂(w ′, ŵ ′)

)
= φ

(
α(v ⊗ w ⊗ ŵ),α(v ′ ⊗ w ′ ⊗ ŵ ′)

)
for all (v ⊗ w ⊗ ŵ), (v ′ ⊗ w ′ ⊗ ŵ ′) ∈ U ⊗ W ⊗ W op .

(ii) Now let (U ,ϕ) ∈ Mod(E)
E and show that F (H((U ,ϕ))) and (U ,ϕ) are isometric. The natural iso-

morphism γ : U ⊗E W op ⊗A W → U , (u ⊗ ŵ ⊗ w) �→ u TraceA/E (ψ̂(ŵ, w)) is an isometry since

(ϕ ⊗ ψ̂) ⊗ ψ(u ⊗ ŵ ⊗ w, u′ ⊗ ŵ ′ ⊗ w ′)

= TraceA/E
(
ϕ ⊗ ψ̂(u′ ⊗ ŵ ′, u ⊗ ŵ)ψ(w, w ′)

)
= TraceA/E

(
ϕ(u, u′)ψ̂(ŵ ′ ŵ)ψ(w, w ′)

) = ϕ(u, u′)TraceA/E
(
ψ̂

(
ŵ ′, ŵ ∗ ψ(w, w ′)

))
= ϕ(u, u′)TraceA/E

(
ψ̂

(
ŵ ′,ψ(w ′, w)ŵ

)) = ϕ(u, u′)TraceA/E
(
ψ̂(ŵ ′)

)
(

)= ϕ(u, u′)TraceA/E

(
ψ̂(ŵ ′,TraceA/E

(
ψ(ŵ, w)

)
w ′)

)
= ϕ(u, u′)TraceA/E

(
ψ̂

(
ŵ ′, w ′ TraceA/E

(
ψ(w, ŵ)

)))
= ϕ(u, u′)TraceA/E

(
ψ̂(ŵ ′, w ′)

)
TraceA/E

(
ψ(w, ŵ)

)
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= ϕ
(
u, u′ TraceA/E

(
ψ̂(ŵ ′, w ′)

))
TraceA/E

(
ψ̂(w, ŵ)

)
= ϕ

(
u TraceA/E

(
ψ̂(ŵ, w)

)
, u′ TraceA/E

(
ψ̂(ŵ ′, w ′)

))
= ϕ

(
γ (u ⊗ ŵ ⊗ w), γ (u′ ⊗ ŵ ′ ⊗ w ′)

)
for all (u ⊗ ŵ ⊗ w), (u′ ⊗ ŵ ′ ⊗ w ′) ∈ U ⊗ W op ⊗ W . �

3. Enumeration of self-dual codes

The Morita equivalence F defined in Theorem 2.8 establishes a bijection between the self-dual
codes in (V , φ) and the self-dual codes in its Morita equivalent module F ((V , φ)) ∈ Mod(E)

E , where
E = Z(A) is a direct sum of finite fields.

Except when q is even and is the identity, F ((V , φ)) will be determined up to isometry by the
composition factors of V in Section 3.1. For every self-dual code C � V , the image F (C) � F (V ) is a
direct sum of self-dual codes over finite fields, or over a ring L ⊕ L, where L is a finite field. Enumer-
ation formulae for codes of this kind have been given in [7], e.g. and are reproduced in Section 3.2.
As a corollary, the number of self-dual codes in (V , φ) is given in Section 3.3.

To fix some notation, let S denote a system of representatives for the isomorphism classes of
simple right A-modules. For S ∈ S, let D S := EndA(S) and let nS denote the multiplicity of the simple
module S in V .

3.1. Determination of the Morita equivalent module F ((V , φ))

The module V decomposes into an orthogonal sum, which is respected by the functor F .

Remark 3. For S ∈ S, denote by V S the S-homogeneous component of V . Then there is an orthogonal
decomposition

V = ⊥S∈S, S∼=S∗ V S ⊥{T ,T ∗}⊆S, T �T ∗ (V T ⊕ V T ∗). (
)

In particular, the restriction φU of φ to a summand U in (
) is non-degenerate and equivariant, and
if C � V is a self-dual code then C ∩ U is a self-dual code in U with respect to φU .

Lemma 3.2 gives the images under F of the orthogonal summands of V . To this aim the following
result proven in [15] is useful.

Lemma 3.1. Let eS ∈ Z(A) be the central primitive idempotent belonging to the simple module S ∈ S. Then
eS = eS∗ . In particular S is self-dual if and only if eS = eS .

Lemma 3.2. Let S ∈ S, and let eS be the central primitive idempotent belonging to S. Let n be an integer, and
by F denote the Morita equivalence from Theorem 2.8.

(i) Assume that S ∼= S∗ . There is a natural isomorphism D S ∼= eS Z(A), of which the image is invariant under
according to Lemma 3.1. Thus induces an involution (S) on D S , which will be further investigated

in Lemma 3.3.
Assume that Sn carries a non-degenerate equivariant form ϕ . Then F ((Sn,ϕ)) ∼= ((D S )

n,ϕ′), where ϕ′
is equivariant with respect to (S) .
If (Sn,ϕ) contains a self-dual code then so does F ((Sn,ϕ)), since F preserves orthogonality. Hence if F

has odd characteristic then F ((Sn,ϕ)) ∼= ⊥
n
2
i=1 H(D S ) is an orthogonal sum of hyperbolic planes H(F)

over D S (cf. [16, Chapter 1, Corollary 3.10, Theorem 6.4 and Chapter 7, Theorem 6.3]). The same holds
in even characteristic, if (S) is not the identity.
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If the characteristic of F is even and (S) is the identity then either F ((Sn, φ)) is an orthogonal sum of

hyperbolic planes as above, or F ((Sn, φ)) ∼= ⊥
n
2 −1
i=1 H(D S ) ⊥ W , where W ∼= (

F2,
( 1 0

0 1

))
.

(ii) Assume that S � S∗ , and consider again the natural isomorphism D S ∼= eS Z(A). Then D S = D S∗ ac-
cording to Lemma 3.1 and hence the sum D S ⊕ D S∗ is invariant under . Let ϕ be a non-degenerate
equivariant form on (S ⊕ S∗)n. Then (S ⊕ S∗)n contains a self-dual code. Hence F ((S ⊕ S∗)n,ϕ) ∼=
((D S )

n ⊕ (D S )
n,ϕ′) ∼= ⊥n

i=1 H(F) is an orthogonal sum of hyperbolic planes, where ϕ′ is equivariant
with respect to the restriction of to D S ⊕ D S∗ . Here (D S )

n ⊕ (D S∗ )n is a (D S ⊕ D S∗ )-module in the
natural way. Hence the self-dual codes in this module correspond to the subspaces of (D S )

n.

Lemma 3.3. For a simple self-dual A-module S ∼= S∗ consider the natural embeddings F ↪→ D S ↪→ Z(A).
According to Lemma 3.2(i) the involution on A restricts to an involution on D S . This restriction is either the
identity on D S or a field automorphism of order 2. Clearly the latter holds if is non-trivial on F.

Assume that f = f for all f ∈ F. Then the following are equivalent:

(i) d = d for all d ∈ D S ,
(ii) if L ⊇ F is a field extension with L ∼= D S then every composition factor of the right A ⊗F L-module S ⊗F L

is self-dual.

Proof. Let AL := A ⊗F L and let (L) be the L-linear extension of to AL defined by a ⊗ l := a ⊗ l for
all a ∈ A and l ∈ L, which is well-defined since F is fixed by . In particular is trivial on D S ⊆ A if
and only if (L) is trivial on D S ⊗F L. Let e ∈ D S be the central primitive idempotent belonging to S ,
and let e = e1 + · · · + en be a decomposition into central primitive idempotents ei of AL , according to
a decomposition of S ⊗F L into simple modules over D S ⊗F L. The ei generate D S ⊗F L as a vector
space over L and hence (L) is trivial on D S ⊗F L if and only if it fixes all of the ei , i.e. if and only if
every composition factor ei AL of S ⊗F L satisfies ei AL = ei AL ∼= (ei AL)

∗ (see Lemma 3.1). �
3.2. Enumeration of self-dual codes over finite fields

The formulae in this section are given in [7].

Lemma 3.4. (See Ex. 10.4 of [7].) Let F = Fq be a finite field, where q = r2 , and let r : x �→ xr ∈ Gal(Fq/Fr)

be the field automorphism of order 2. Let ϕ be a non-degenerate form on Fn which is equivariant with respect
to r . If (Fn,ϕ) contains a self-dual code then the number of self-dual codes in U equals

Υu(n,q) :=
n∏

i=1

(
q

i
2 − (−1)i)( n

2∏
j=1

(
q j − 1

))−1

. (3)

Lemma 3.5. (See Ex. 11.3 of [7].) Let F = Fq be a finite field, where q is odd, and let ϕ be a non-degenerate
symmetric bilinear form on Fn. If (Fn,ϕ) contains a self-dual code then the number of self-dual codes in U
equals

Υ +
o (n,q) :=

n
2 −1∏
i=0

(
qi + 1

)
. (4)

Lemma 3.6. (See Ex. 11.3 of [7].) Let F = Fq be a finite field, where q is even, and let ϕ be a non-degenerate

symmetric bilinear form on Fn such that (Fn,ϕ) ∼= ⊥
n
2
i=1 H(F) is an orthogonal sum of hyperbolic planes, i.e.

totally isotropic. Then the number of self-dual codes in U equals

Υ +
o (n,q) :=

n
2∏(

qi + 1
)
. (5)
i=1
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The following lemma is an immediate corollary of Lemma 3.6.

Lemma 3.7. Let F = Fq be a finite field, where q is even. Let ϕ be a non-degenerate symmetric bilinear form

on Fn such that (Fn,ϕ) ∼= ⊥
n
2 −1
i=1 H(F) ⊥ W , where W ∼= (

F2,
( 1 0

0 1

))
. Then the number of self-dual codes in

(Fn,ϕ) equals

Υ −
o (n,q) := Υ +

o (n − 2,q).

Moreover, we need an enumeration formula for vector spaces, cf. Lemma 3.2(ii).

Lemma 3.8. Let U be a vector space over the finite field F = Fq, n := dim(U ). Then the number of subspaces
of U equals

Ξ(n,q) :=
n∑

k=0

n−k−1∏
i=0

qn−i − 1

qn−k−i − 1
.

3.3. Enumeration of self-dual codes in (V ,ϕ)

As before, let F = Fq be a finite field with q elements and let A be a finite semisimple algebra
over F.

Let S be a system of representatives for the isomorphism classes of simple right A-modules, and
for S ∈ S let dS := dimF(EndA(S)). By nS denote the multiplicity of S in V . The involution restricts
to an involution of the Morita equivalent algebra E = Z(A) = ⊕

S∈S EndA(S) (cf. Lemma 3.3), and also
to a field automorphism of F (cf. Remark 1), where F is naturally embedded into Z(A) by f �→ f · 1.
The restriction to F is either the identity or a field automorphism of order 2 – we distinguish these
two cases to enumerate the self-dual codes in (V ,ϕ) ∈ Mod(F)

A , which in what follows is assumed to
contain at least one such code.

As corollaries from the previous subsections we obtain the following enumeration formulae.

Corollary 3.9. If q = r2 and f = f r for all f ∈ Fq then the number of self-dual codes in (V ,ϕ) equals

M(V ,ϕ) =
∏

S∈S, S∼=S∗
Υu

(
nS ,qdS

) ∏
{T ,T ∗}⊆S, T �T ∗

Ξ
(
nT ,qdT

)
.

Corollary 3.10. Assume that q is odd and f = f for all f ∈ F. Let

S′ := {
S ∈ S

∣∣ S ∼= S∗ and e = e for all e ∈ EndA(S)
}
.

Then the number of self-dual codes in (V ,ϕ) equals

M(V ,ϕ) =
∏

S ′∈S′
Υo

(
nS ′ ,qdS′ ) ∏

S∈S−S′, S∼=S∗
Υu

(
nS ,qdS

) ∏
{T ,T ∗}⊆S, T �T ∗

Ξ
(
nT ,qdT

)
.

In the remaining case where q is even and φ is symmetric, it is in general not possible to de-
termine F ((V ,ϕ)) only from the composition factors of V , cf. Lemma 3.2(i). Yet this is possible if
A = FG is a group algebra over the finite group G .

It is well known that if the field L, of even characteristic, is a splitting field for the finite group
G of odd order then the trivial module is the only self-dual irreducible LG-module. An application of
Lemma 3.3 then yields that the restriction of to Z(A) = E = ⊕

S∈S EndA(S) is non-trivial on every
of these summands, except for the summand belonging to the trivial module.
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To investigate the number of self-dual codes in this summand under F one has to distinguish
whether (V ,ϕ) is symplectic, i.e. whether ϕ(v, v) = 0 for all v ∈ V . As an application of Lemma 3.2
one obtains

Corollary 3.11. Assume that A = FqG is a group algebra over the finite group G, where q is even and G has
odd order, and that f = f for all f ∈ F. By 1 denote the trivial FG-module.

The number of self-dual codes in (V , φ) equals

M(V ,ϕ) = Υ σ
o (n1,q)

∏
S∈S, 1�S∼=S∗

Υu
(
nS ,qdS

) ∏
{T ,T ∗}⊆S, T �T ∗

Ξ
(
nT ,qdT

)
,

where σ = + if (V ,ϕ) is totally isotropic and, otherwise, σ = −.

3.4. Example: Binary extended cyclic codes

Let F = F2 and A = FCn , where Cn is the cyclic group with n elements for some odd integer n.
A binary extended cyclic code, as defined in [4], is an A-submodule of

V = A ⊕ 1 = Fn+1,

where 1 is the trivial A-module, i.e. Cn acts on V by cyclic shifts of the first n coordinates and fixes
the (n + 1)st coordinate. The standard scalar product ϕ on V satisfies ϕ(v, v ′) = ϕ(vg, v ′ g) for all
v, v ′ ∈ V and g ∈ Cn , hence is equivariant with respect to the F-linear involution on FCn given by
g �→ g−1 for g ∈ Cn .

The situation where a self-dual binary extended cyclic code exists has been characterized in [4] as
follows.

Theorem 3.12. There exists a self-dual binary extended cyclic code C � V = FCn ⊕ 1 if and only if −1 /∈ 〈2〉 �
(Z/pZ)∗ for all prime divisors p of n, i.e. the order of 2 mod p is odd.

Remark 4. If the order of 2 mod p is odd then 2 is a square mod p and hence p ≡8 ±1 by quadratic
reciprocity. If p ≡8 −1 then −1 is not a square and hence −1 /∈ 〈2〉 � (Z/pZ)∗ . However, if p ≡8 1
then the order of 2 may be even or odd mod p. For p = 41 the order of 2 is 20, for p = 73 the order
is 9.

The structure of the module V = FCn is easy to describe and the number of self-dual codes in V
is particularly easy to determine, cf. Example 3.13. The criterion for the existence of a self-dual binary
extended cyclic code in Example 3.13 has been given in [17, Theorem 3.3] in a more general context.

Example 3.13. There exists a self-dual binary extended cyclic code C � V = FCn ⊕ 1 if and only if the
trivial module is the only self-dual irreducible FCn-module. In this case there are

M(V ,ϕ) = 2
|S|−1

2

such codes, where S is a system of representatives for the isomorphism classes of simple right FCn-
modules.

Proof. Assume that there exists a self-dual code C � V . Then according to [5], Corollary 2.4, every
self-dual simple FCn-module occurs in a composition series of V with even multiplicity. On the other
hand, every simple FCn-module occurs in V with multiplicity 1, except for the trivial module, which
occurs in V with multiplicity 2. Hence

V ∼= ⊥{T ,T ∗}⊆S, T �1 (T ⊕ T ∗) ⊥ 1 ⊥ 1. (�)
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Conversely, if the trivial module is the only self-dual irreducible FCn-module then clearly V decom-
poses as in (�). Let T ⊕ T ∗ be a summand in (�) and let e be the central primitive idempotent
belonging to T . Then e is the central primitive idempotent belonging to T ∗ according to Remark 3.1,
hence annihilates T . Thus

ϕ(t, t′) = ϕ(te, t′) = ϕ(t, t′e) = ϕ(t,0) = 0

for all t, t′ ∈ T , i.e. T ⊆ T ⊥ . Choose a subset T ⊆ S − {1} such that for every non-trivial irreducible
A-module T , either T or T ∗ is contained in T . Then

C := 〈T | T ∈ T 〉 + 〈
(1, . . . ,1)

〉
is a self-dual code in V .

An application of Corollary 3.11 then yields

M(V ,ϕ) = Υ −
o (2,2)

∏
{T ,T ∗}⊆S, T �1

Ξ
(
1,2dT

) = 2
|S|−1

2 ,

where the value of dT = dim(EndA(T )) is irrelevant since Ξ(1,2dT ) counts the number of subspaces
of a one-dimensional vector space over a field of size 2dT . �
Example 3.14.

(i) Binary extended cyclic codes of length 8. The order of 2 in the unit group F∗
7 of F7 equals 3.

More precisely, the subgroup of F∗
7 generated by 2 has index 2 and the cosets are F∗

7 =
{1,2,4} ∪̇ {3,5,6}. This yields central primitive idempotents e, f ∈ F2C7,

e = 1 + a + a2 + a4 and f = 1 + a3 + a5 + a6,

where a is a generator of C7. These satisfy ef = 0 and e = f . Hence V = F2C7 ⊕F2 = F8
2 contains

exactly the two self-dual codes

C = 〈
V e, (1, . . . ,1)

〉
and D = 〈

V f , (1, . . . ,1)
〉

with generator matrices

MC :=
⎛⎜⎝

1 1 1 1 1 1 1 1
1 1 0 1 0 0 1 0
1 1 1 0 1 0 0 0
0 1 1 1 0 1 0 0

⎞⎟⎠ and MD :=
⎛⎜⎝

1 1 1 1 1 1 1 1
0 0 1 0 1 1 1 0
1 0 0 1 0 1 1 0
1 1 0 0 1 0 1 0

⎞⎟⎠ .

These codes are permutation equivalent to the extended Hamming code e8 of length 8.
(ii) Let p be a prime with p ≡8 −1. Then there exist exactly 2

t
2 self-dual binary extended cyclic

codes of length p + 1, where t := [F∗
p : 〈2〉] is the index of the subgroup generated by 2 in the

unit group F∗
p of Fp .

(iii) Self-dual binary codes over F2(C3 � C3). The wreath product

G := C3 � C3 = 〈
(1,2,3), (4,5,6), (7,8,9), (1,4,7)(2,5,8)(3,6,9)

〉
acts on 9 points, hence yields a permutation module Ṽ of dimension 9 over A = F2G . Let V :=
Ṽ ⊕ Ṽ ⊕ 1 ⊕ 1, then V decomposes as

V = T 2
6 ⊥ T 2

2 ⊥ 14,
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where T2 and T6 are irreducible modules of dimension 2 and 6 over F2, both self-dual with an
endomorphism ring isomorphic to F4. Hence the total number of self-dual codes in V equals

MV = Υ −
o (4,2) · Υu(2,4)2 = 33 = 27.

3.5. Example: Doubly-even binary codes

A doubly-even binary code of length n is a subspace C � Fn
2 such that the weight wt(c) of every

codeword c ∈ C , i.e. the number of its nonzero entries, is a multiple of 4. Self-dual doubly-even codes
with respect to the standard scalar product ϕ : Fn

2 × Fn
2 → F2 exist if and only if n is a multiple of 8

(see for instance [18]).
The permutation group of a code is P (C) := {π ∈ Sn | Cπ = C}, where Sn is the symmetric

group on n points. In this subsection we view codes as modules over the group algebra F2G , where
G � P (C) acts naturally by permuting the coordinates, and ask for the number of self-dual doubly-
even codes with a certain subgroup G � Sn contained in their automorphism group, i.e. for the
self-dual codes in the F2G-module V := Fn

2.
We confine ourselves to the case where the order of G is odd, i.e. the group algebra F2G is

semisimple, in order to apply the results of Section 2. Hence in what follows assume that the or-
der of G is odd. Theorem 3.17 gives the number of G-invariant doubly-even self-dual codes, provided
that there exists at least one such code. (By a result proven in [19], such a code exists if and only if n
is a multiple of 8 and there exists any self-dual code in Fn

2.)
The group algebra F2G carries an F2-linear involution given by g �→ g−1, for g ∈ G , and the stan-

dard scalar product ϕ is equivariant with respect to this involution.
Clearly every self-dual code in V contains the all-ones vector one := (1, . . . ,1) ∈ V .The subspace

〈one〉⊥ � V consists exactly of the even-weight vectors in V . Moreover, every vector v ∈ 〈one〉⊥ sat-
isfies

wt(v + one) = n − wt(v) ≡4 wt(v).

Hence the quotient Ṽ := 〈one〉⊥/〈one〉 carries a well-defined quadratic form

q : Ṽ → F2, v + one �→ wt(v)

2
mod 2,

with polar form

( ṽ, ṽ ′) �→ q( ṽ + ṽ ′) − q( ṽ) − q( ṽ ′) = ϕ̃( ṽ, ṽ ′),

where ϕ̃ is the non-degenerate equivariant bilinear form on Ṽ naturally induced by ϕ via

ϕ̃ : Ṽ × Ṽ → F2,
(

v + 〈one〉, v ′ + 〈one〉) �→ ϕ(v, v ′)

(cf. [20]). This yields a correspondence between the doubly-even self-dual codes in V and the max-
imal totally isotropic submodules of Ṽ – a self-dual code C � V is doubly-even if and only if q
vanishes on C/〈one〉 � Ṽ , i.e. C/〈one〉 is maximal totally isotropic. This correspondence was already
established in [21] in the case where G acts trivially on V .

Again, let S be a system of representatives for the isomorphism classes of simple right F2G-
modules. Consider the decomposition

Ṽ = ⊥S∈S, S∼=S∗ Ṽ S ⊥{T ,T ∗}⊆S, T �T ∗ Ṽ T ⊕T ∗ ,
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where Ṽ X is the X-homogeneous component of Ṽ , for X ∈ S, and Ṽ T ⊕T ∗ = Ṽ T ⊕ Ṽ T ∗ . Then every
maximal totally isotropic submodule C̃ � Ṽ is of the form

C̃ = ⊥S∈S, S∼=S∗ (C ∩ Ṽ S) ⊥{T ,T ∗}⊆S, T �T ∗ (C ∩ Ṽ T ⊕T ∗), (�)

and every summand C ∩ Ṽ S or C ∩ Ṽ T ⊕T ∗ is a maximal totally isotropic submodule of Ṽ S or Ṽ T ⊕T ∗ ,
respectively, since q is linear on C̃ .

Hence the total number of maximal totally isotropic submodules of Ṽ is the product of the number
of maximal totally isotropic submodules in the summands of (�).

Theorem 3.15. Let U � Ṽ be a submodule such that the trivial module 1 does not occur in U . Then every
self-dual code in U is doubly-even.

Proof. Let C̃ = C̃⊥ � U be a self-dual code. Then q is linear on C̃ , i.e. q ∈ HomF2G(C̃,1) with kernel

ker(q) = {
c ∈ C̃

∣∣ wt(c) ≡4 0
} =: C̃0,

the doubly-even subcode of C̃ . The image of q is isomorphic to a factor module of C̃ . Since 1 does not
occur in C̃ , this enforces that q vanishes on C̃ , i.e. C̃ = C̃0 is doubly-even. �

Now consider the quadratic space (Ṽ 1,q1) ∼= (Fn
2,q1), with non-degenerate polar form ϕ̃1 , the

restriction of ϕ̃ to Ṽ 1 . Clearly V contains a doubly-even self-dual code if and only if (Ṽ 1,q1) has Witt
index n

2 . The total number of maximal totally isotropic subspaces is then well-known and given in [7],
for instance.

Theorem 3.16. (See Ex. 11.3 of [7].) Let n := dim(Ṽ 1). If V contains a doubly-even self-dual code then the
number of maximal totally isotropic subspaces of (Ṽ 1,q1) equals

�(n) :=
n
2 −1∏
i=0

(
2i + 1

)
.

Theorems 3.15 and 3.16 now enable us to determine the number of doubly-even self-dual codes
in V from the composition factors of V . Again, for a simple module X ∈ S, denote by nX the multi-
plicity of X in V .

Theorem 3.17. If (V ,ϕ) contains a doubly-even self-dual code then the total number of doubly-even self-dual
codes in V equals

M II
(V ,ϕ) = �(n1 − 2)

∏
S∈S, 1�S∼=S∗

Υu
(
nS ,qdS

) ∏
{T ,T ∗}⊆S, T �T ∗

Ξ
(
nT ,qdT

)
.

4. The mass formula

For a right A-module V carrying an equivariant form ϕ (cf. Definition 2.2), let

C(V ) := {
C � V

∣∣ C = C⊥ = {
v ∈ V

∣∣ ϕ(v, c) = 0 for all c ∈ C
}}

.

One may be interested in an overview of the isometry types or weight distributions which occur
here, rather than in the set C(V ) itself. Hence in what follows, we define a finite group Aut(V ) acting
on C(V ) such that properties like the isometry type of C ∈ C(V ) or the weight distribution are left
invariant under the operation of suitable subgroups of Aut(V ).
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4.1. Weak isometries of V and the mass formula

Definition 4.1. A bijective additive map ψ : V → V is called a weak isometry of V if ϕ(v, v ′) =
ϕ(ψ(v),ψ(v ′)) and ψ(va) = ψ(v)aα for some automorphism α of A and all v, v ′ ∈ V . The weak
isometries form a group Autweak(V ), with the composition as multiplication, which contains as a
subgroup Aut(V ) := EndA(V ) ∩ Autweak(V ), the isometries of V .

Clearly Autweak(V ) acts on C(V ). Now consider the action of some subgroup Γ � Autweak(V ).
By [C] denote the orbit containing C . If

Γ (C) = {
ψ ∈ Γ

∣∣ ψ(C) = C
}

is the stabilizer of C in Γ then [C] has length [Γ : Γ (C)] and we obtain

Theorem 4.2 (Mass formula).

MV

|Γ | =
∑

[C]⊆C(V )

1

|Γ (C)| .

The mass formula gives a method of classifying the self-dual codes in V with respect to a property
which is an invariant of the action of Γ on C(V ) – one may restrict to orbit representatives and
weight them by the reciprocal order of their automorphism group, until the value of the left-hand side
of Theorem 4.2 has been reached. For instance, the group Aut(V ) has the isometry type of C ∈ C(V )

as an invariant and hence Eq. (4.2) can be used to classify the self-dual codes in V up to isometry.

4.2. Example: Permutation modules

Let A = FG be a semisimple group algebra over the finite group G and let V be a permutation
module for G , i.e. V = Fk has a distinguished basis, with respect to which G acts as permutations
and which we assume to be an orthonormal basis. The existence of a distinguished basis enables us
to define the complete weight enumerator of a code C � V ,

cwe(C) =
∑

(c1,...,ck)∈C

k∏
i=1

xci ∈ C[x f : f ∈ F].

The weight enumerator contains information on C which is of interest in coding theory, like the
minimum weight of C . It is invariant under permutations of the coordinates of C , that is, cwe(Cπ) =
cwe(C) for all C ∈ C(V ) and π ∈ Sk , where Sk is the symmetric group on k points. In general, the
permutation equivalent code Cπ is not contained in C(V ), i.e. Sk does not act on C(V ).

If V is faithful then the action of G on V induces an embedding j : G ↪→ Sk . Let

N := N Sk (G) � Autweak(V )

be the normalizer of j(G) in Sk . Every η ∈ N naturally induces a bijection v �→ vη of V , which is
a weak automorphism of V – if αη is the F-linear automorphism of A = FG given by g �→ αη(g) =
η−1 gη then vgη = vηη−1 gη = vηαη(g) for all v ∈ V and g ∈ G .

Hence N acts on C(V ), yielding a mass formula

MV

|N | =
∑

[C]N ⊆C(V )

1

|N (C)| , (�)

where [C]N is the orbit of N containing C and N (C) is the stabilizer of C under N .
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Table 1

i |N (Ci)| d(C) Number of words of weight 24

1 92 2 3754060
2 92 2 3765560
3 92 2 3749000
4 92 2 3759120
5 2024 2 2704156
6 23276 2 3829960
7 23276 2 3829960
8 1012 4 11092764
9 46 8 7691340

10 46 8 7691340
11 46 8 7701000
12 11638 8 7787940
13 11638 8 7787940
14 46 12 7681680

Clearly the complete weight enumerator is an invariant of this operation. Another invariant is
the conjugacy class of P (C) in Sk , where P (C) = {σ ∈ Sk | Cσ = C} � Sk is the permutation group
of C ∈ C(V ), since P (Cη) = η−1 P (C)η for every η ∈ N .

In general there is no larger subgroup U with N � U ⊆ Sk such that U acts on C(V ), since N
normalizes the Bravais group B(V ) := ⋂

C∈C(V ) P (C), cf. Theorem 4.3.

Theorem 4.3. If B(V ) = G then N is the largest subgroup of Sk which acts on C(V ).

Proof. Let π ∈ Sk such that π acts on C(V ). Then π ∈ N since

G = B(V ) =
⋂

C∈C(V )

P (Cπ) = π−1
( ⋂

C∈C(V )

P (C)

)
π = π−1 B(V )π = π−1Gπ. �

Example 4.4. Self-dual binary codes of length 48 with an automorphism of order 23. The extended quadratic
residue code q48 � F48

2 is, up to permutation equivalence, the only self-dual [48,24,12]-code, i.e. the
only extremal binary self-dual code of length 48, cf. for instance [22]. The code q48 has an automor-
phism σ ∈ S48 of order 23 which acts on the coordinates of q48 with four orbits. Hence q48 is a
submodule of

V = F2C23 ⊕ F2C23 ⊕ 1 ⊕ 1

over the semisimple algebra A = F2C23. The algebra A has three irreducible modules, which are the
trivial module 1, a module T of dimension 11 and its dual T ∗ � T with an endomorphism ring of
dimension dT = 11. Hence V has a decomposition V = 14 ⊥ (T ⊕ T ∗)2 and the total number of self-
dual codes in V equals

MV = Υ −
o (4,2)Ξ

(
2,211) = 3 · (211 + 3

) = 6153.

Considering normalizer equivalence, i.e. the orbits of N S48 (σ ) on the set C(V ) of all self-dual codes
in V , there are only 14 equivalence classes of codes. Representatives C1, . . . , C14 for these classes can
easily be computed in MAGMA [23] using the mass formula (�), which then is

6153

46552
= 4 · 1

92
+ 1

2024
+ 2 · 1

23276
+ 1

1012
+ 4 · 1

46
+ 2 · 1

11638
.

Table 1 lists the stabilizer orders N (Ci) of the codes C1, . . . , C14 and gives the number of words of
weight 24 in each code, which is helpful to distinguish codes which are not permutation equivalent.
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Explicit calculation in MAGMA shows that the codes C6 and C7 are permutation equivalent, and
the codes C12 and C13 are permutation equivalent but C9 and C10 are not. Hence there are, up to
permutation equivalence, 12 self-dual codes in V .
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