
A Branch and Bound Approach to
Permutation Codes

János Barta Roberto Montemanni Derek H. Smith
Dalle Molle Institute for Artificial Intelligence Division of Mathematics and Statistics

University of Applied Sciences of Southern Switzerland University of South Wales
Galleria 2, 6928 Manno, Switzerland Pontypridd, CF37 1DL, Wales, UK

{janos.barta, roberto.montemanni}@supsi.ch derek.smith@southwales.ac.uk

Abstract—The Maximum Permutation Code Problem (MPCP)
is a well-known combinatorial optimization problem in coding
theory. The aim is to generate the largest possible permutation
codes, having a given length n and a minimum Hamming distance
d between the codewords. In this paper we present a new branch
and bound algorithm, which combines combinatorial techniques
with an approach based on group orbits. Computational exper-
iments lead to interesting considerations about the use of group
orbits for code generation.

Index Terms—Coding theory; permutation codes; combinato-
rial optimization.

I. INTRODUCTION

Permutation codes have received considerable attention in
recent years, both for their intrinsic interest and because
of potential applications to power line communications [1],
[2], [3], [4], [5], [6], where permutations are used to ensure
that power output remains as constant as possible. As well
as white Gaussian noise the codes must combat permanent
narrow band noise from electrical equipment or magnetic
fields, and impulse noise. Most of the approaches presented
in the literature are based on linear programming [7], [8] or
on group theory ideas [7], [9], [10], [11], which have more
recently been amalgamated with optimization, mainly based
on search techniques [12], [13], [14].

Starting from a classical branch and bound approach, in
this paper we develop a new exact algorithm for solving the
MPCP problem. In addition, we present some techniques for
computing upper bounds, which exploit the strong symmetries
of permutation groups.

II. THE MAXIMUM PERMUTATION CODE PROBLEM

We call any permutation of the n-tuple x0 = [0, 1, ..., n −
1] ∈ Nn a codeword of length n and we denote the set of all
codewords of length n by Ωn. From an algebraic point of view
the set Ωn is the orbit of the symmetric group of permutations
Sn, i.e.

Ωn = {x ∈ Nn|x = gx0, g ∈ Sn} (1)

We call any subset Γ of Ωn a permutation code. The ability of
a permutation code to correct errors depends on the minimum
Hamming distance between the elements of the code. The
Hamming distance d(x, y) between codewords x and y is the
number of components that differ in the two codewords. For

any code Γ ⊆ Ωn, containing at least two distinct codewords,
we define the code distance as

δ(Γ) = min
x,y∈Γ,x6=y

d(x, y). (2)

After these preliminary definitions we are ready to formulate
the MPCP problem.

Definition 1. Given a codeword length n and a Hamming
distance d, the maximum permutation code problem MPCP
consists in determining a largest code Γ ⊆ Ωn with δ(Γ) ≥ d.

For simplicity in the remainder of the paper we refer
to a specific MPCP problem as an (n, d)-problem and we
denote the corresponding maximum number of codewords by
M(n, d).

As an example, in the (6, 5)-problem we are looking for
a maximum code Γ of length n = 6 with a code distance
δ(Γ) ≥ 5. As reported in [12] the optimal solution of this
problem is M(6, 5) = 18 and one of the many possible optimal
codes is

Γ = {[012345], [021453], [034512], [045231], [102534],

[130425], [153240], [205143], [243015], [251304],

[310254], [324105], [341520], [425310], [432051],

[450132], [504321], [513402]}.

III. CODE GENERATION WITH PERMUTATION GROUPS

A. Code generator subgroups

As explained in [3] and [12] an MPCP problem can be
transformed into an equivalent maximum clique problem.
In fact, with any (n, d)-problem we can associate a graph
G(n, d), where the set of nodes is Ωn and codewords x and
y are connected by an arc, iff d(x, y) ≥ d. It is easy to see
that any clique of the graph G(n, d) provides a feasible code
and maximum cliques correspond to maximum permutation
codes. However, state of the art maximum clique algorithms
(see for instance [15] and [16]) are typically able to handle
problems of this type with up to 1000 nodes in a reasonable
computational time. These problem correspond to (n, d)-
problems with n ≤ 6.

Therefore, we have to face the issue of generating solutions
of larger (n, d)-problems. A possible approach is to reduce
the problem size by combining adequately defined subsets of

2014 2nd International Conference on Information and Communication Technology (ICoICT)

978-1-4799-3580-2/14/$31.00 ©2014 IEEE 187

Ωn, instead of single codewords. In this manner the number of
elements to be combined can be reduced, as well as the size
of the corresponding clique problem. On the other hand, since
not all possible combinations of codewords are considered,
in general optimality can not be guaranteed. Suitable subsets
aggregating single codewords can be defined as follows.

Definition 2. Given an (n, d)-problem P , we call a set T ⊆
Ωn with |T | = k a k−code of problem P , if there is no pair
of distinct elements x, y ∈ T with d(x, y) < d.

In other words a k-code is a feasible, but not necessarily
optimal code of an (n, d)-problem, including also the trivial
case of 1−codes, composed of single codewords. In order to
combine k-codes to form larger codes the following compati-
bility constraint must hold.

Definition 3. A k1-code T1 and a k2-code T2 of an (n, d)-
problem are compatible, if

d(T1, T2) := min
x1∈T1,x2∈T2

d(x1, x2) ≥ d. (3)

It is easy to see that the union (T1 ∪ T2) of a k1-code T1

and a compatible k2-code T2 provides a (k1 + k2)-code.
An intensively investigated approach for generating collec-

tions of k-codes for (n, d)-problems is the computation of
suitable group orbits (see for instance [3] and [12]). For this
purpose it is necessary to identify the subgroups of Sn whose
orbits are k-codes of the (n, d)-problem P .

Definition 4. Given an (n, d)-problem P , we refer to a
subgroup H of Sn as a code generator group for problem
P , if the orbits of H are k-codes of problem P .

Basically, the use of groups for generating k-codes is
suggested by several well-known properties of group orbits.
In particular, the orbits of any permutation group H have
cardinality |H|, are disjoint and form a partition of Ωn. Fur-
thermore, the orbits of a given permutation group are always
isomorphic, in the sense that they have the same Hamming
distance matrix, if the right ordering of codewords in the
orbits is chosen. Due to these properties, the sets of k-codes
obtained via permutation groups have remarkable symmetries
and, as shown in [3] and [12], in many cases the combination
of compatible orbits of a fixed code generator group leads to
best or even optimal solutions.

However, it is interesting to remark that in [12] only the 2-
3 largest available code generator subgroups are taken into
account and solutions are always obtained by combining
compatible orbits of one single subgroup. In the next sections
we will investigate alternative strategies, such as combining
shorter group orbits or even single codewords.

B. The case of MPCP problems (5,5) and (6,5)

In order to obtain a complete list of all code generators of
(n, d)-problems, we implemented a procedure in the GAP1-
language, that identifies all subgroups whose orbits are k-
codes.

1http://www.gap-system.org

Table I shows a list of (n, d)-problems with the correspond-
ing total number of subgroups of Sn (column 2), the number
of subgroup conjugacy classes (column 3), the total number
of code generator subgroups (column 4) and the number of
code generator conjugacy classes (column 5).

Essentially, Table I suggests that although the total number
of subgroups of Sn increases rapidly, subgroups can be clas-
sified in a relatively small number of conjugacy classes. The
fact that conjugate groups are isomorphic has the important
consequence that the sets of orbits of groups belonging to
the same conjugacy class are isomorphic too. In other terms,
conjugate groups preserve not only the distance structure of
single orbits, but also the distance structure between orbits.
This fact relies on the fundamental property of the Hamming
distance d(gx, gy) = d(x, y), ∀g ∈ Sn, x, y ∈ Ωn. If the
groups H and L are conjugate, it holds L = gHg−1 for some
g ∈ Sn. Furthermore, it can be proved that if OH

x is the H-
orbit of x ∈ Ωn, its g-permutation corresponds to the L-orbit
of gx, that is g(OH

x) = OL
gx. In other terms we obtain the L-

orbits simply by applying the permutation g on the H-orbits.
Therefore, if an exact algorithm computes a largest code

by combining the orbits of a code generator subgroup H1,
it will necessarily obtain a largest code of the same length
by combining the orbits of a conjugate subgroup H2. In
other words, if we look for best codes by combining orbits
of single code generator subgroups, it suffices to check one
representative for each conjugacy class.

The second line of Table I shows that S5 has 156 subgroups,
divided in 19 conjugacy classes. However, problem (5, 5) has
only 7 code generator subgroups, belonging to 2 conjugacy
classes. A more detailed analysis of the 7 code generators,
reported in Table II, reveals that 6 of them are isomorphic to
the cyclic group C5 and belong to the same conjugacy class.
Each of them generates 24 orbits of length 5 in Ω5. Since
the optimum of problem (5, 5) is M(5, 5) = 5, the 6 C5-
subgroups provide a set of 144 maximum permutation codes
for problem (5, 5). It is worth remarking that in the list of code
generators we always include the trivial case of the 1-element
identity group I , whose orbits are single codewords. At this
point the question arises, whether the 144 orbits obtained via
C5-subgroups are all maximum codes of problem (5, 5) or
not. In Section V we will show that there are many other 5-
codes for problem (5, 5), which can only be obtained as a
combination of the 1-element orbits of the identity group I .

Another extremely interesting case is problem (6, 5). As
reported in Table I, among the 56 subgroup conjugacy classes
there are only 6 classes of code generators for problem
(6, 5). Table II shows for each class of code generators the
corresponding orbit length (column 3), the number of orbits
per group (column 4), the number of groups in the class
(column 5) and the group structure (column 6). Since the
maximum code length for problem (6, 5) is M(6, 5) = 18
(see for instance [12]), looking at Table II we can draw the
conclusion that the maximum codes of problem (6, 5) can
not be single group orbits. In fact, the largest code generator
subgroups belong to class 1 and 2 with an orbit length 6.

2014 2nd International Conference on Information and Communication Technology (ICoICT)

978-1-4799-3580-2/14/$31.00 ©2014 IEEE 188

TABLE I
NUMBER OF CODE GENERATOR SUBGROUPS OF (n, d)-PROBLEMS

n d Subgroups Conj. Code Code gen.
classes gen. classes

5 4 156 19 54 7
5 5 156 19 7 2
6 4 1455 56 701 23
6 5 1455 56 152 6
7 4 11300 96 5075 32
7 5 11300 96 1538 11
8 4 151221 296 78809 128
8 5 151221 296 29350 37

TABLE II
(n, d)-PROBLEMS AND THEIR CODE GENERATOR CLASSES

n d Class Orb.length # Orbits # Groups Structure
5 5 1 5 24 6 C5

2 1 120 1 I
6 5 1 6 120 60 C6

2 6 120 20 S3

3 5 144 36 C5

4 3 240 20 C3

5 2 360 15 C2

6 1 720 1 I

However, it is interesting that no maximum code can be
constructed by unifying 3 orbits of any of these 6-element
subgroups. Obviously class 3 subgroups are not suitable for
generating maximum codes, because the orbits have length 5
and 5 does not divide M(6, 5). This example suggests that
in general large subgroups are not the best choice for code
generation. The main advantage of large subgroups is the small
number of orbits, which reduces the size of the combinatorial
problem. On the other side, short orbits offer more chances of
suitable combinations.

IV. A BRANCH AND BOUND ALGORITHM FOR
PERMUTATION CODES

A. Detailed description

In this section we present a new branch and bound algorithm
(BBcodes) for computing a best code of an (n, d)-problem by
combining compatible elements of a given pool C of k-codes,
where k has a fixed value. The algorithm is conceived in such
a way that it can handle any pool of k-codes, as for instance
collections of group orbits, of single codewords or arbitrary
lists of k-codes. Algorithm BBcodes builds and visits a binary
search tree, and each search tree node q can be identified by
the following elements:
• In(q): set of compatible k-codes of the pool C, that any

solution associated with the search subtree rooted at q
must contain. We denote by Γ(q) the code made up of
the k-codes in set In(q) and by |In(q)| the number of
k-codes in set In(q).

• Rem(q): remainder set of k-codes, which are compatible
with Γ(q), but not yet processed. These elements can be
chosen for the next branching step.

The algorithm starts by generating the root r of the search
tree, with set Rem(r) containing all k-codes of the pool C

and In(r) = ∅. We denote by Q the set of the open search
tree nodes. The algorithm terminates as soon as Q = ∅.

Essentially, algorithm BBcodes processes an open search
tree node q ∈ Q by computing a lower bound LB(q) and
an upper bound UB(q) of the maximum code length on the
subtree rooted at q. The next search tree node can be selected
by means of different strategies. We implemented both, a
breadth-first and a depth-first strategy.

The bounds are calculated as follows. If node q is a leaf
of the search tree, that is Rem(q) = ∅, the lower and the
upper bound coincide with |In(q)|. Otherwise, we determine
a lower bound for node q by running a maximum clique
algorithm (MC) on set Rem(q). In other terms, algorithm MC
unifies as many compatible k-codes of Rem(q) as possible
in a given maximum CPU time Tmax. For this purpose any
maximum clique algorithm can be used. In our implementation
we apply the algorithm proposed in [17]. Let M be the
maximum number of k-codes provided by MC. We obtain
a lower bound LB(q) := |In(q)| + M , because we can
unify the k-codes belonging to In(q) with the best solution
found by MC in set Rem(q). In the case that MC terminates
within the maximum time Tmax, we get a tight upper bound
UB(q) = LB(q). Otherwise we set as a default upper bound
UB(q) := |In(q)|+ |Rem(q)|.

At this point algorithm BBcodes checks, whether the lower
bound LB(q) improves the current best value LBbest and in
this case updates it. Furthermore, if node q is dominated, that
is UB(q) ≤ LBbest, it is pruned from set Q.

If node q is not dominated, a branching step is carried
out. Basically, an element T ∈ Rem(q) is chosen (in our
implementation in a lexicographic order) and two new search
tree nodes q′ and q′′ are generated: the first one includes T in
the solution, the second one excludes it.

It is clear that if an element T is included in In(q′), all k-
codes T ′ ∈ Rem(q) with d(T, T ′) < d can be eliminated, be-
cause they are not compatible with T . Therefore it is useful to
compute the neighbourhood N(T) = {T ′ ∈ C|d(T, T ′) < d}
of a k-code T . Formally, the new search tree nodes are char-
acterized by In(q′) := In(q) ∪ {T}, Rem(q′) := Rem(q) \
N(T), In(q′′) := In(q) and Rem(q′′) := Rem(q) \ {T}.
Finally, the new nodes q′ and q′′ are added to Q and the
processed node q is deleted.

B. Pseudocode of algorithm BBcodes

The algorithm BBcodes can be formalized in the following
pseudocode:
Step 0. Root generation
Generate the root r of the search tree and insert it in the set
of search tree nodes to be visited. Set Q := {r}, In(r) := ∅,
Rem(r) := C, LBbest := 0. Go to Step 1.
Step 1. Bounding
If Q = ∅, the search is terminated. The optimal code length
is LBbest. Otherwise choose the next search tree node q ∈ Q
to be processed (according to Section IV-A).
If Rem(q) = ∅, a leaf has been reached. Set LB(q) :=
UB(q) := |In(q)| and go to Step 2.

2014 2nd International Conference on Information and Communication Technology (ICoICT)

978-1-4799-3580-2/14/$31.00 ©2014 IEEE 189

Otherwise run a maxclique algorithm (MC) on set Rem(q)
for a fixed maximum time Tmax (see Section IV-A). Let M
be the maximum obtained via algorithm MC.
Lower bound: LB(q) := |In(q)|+M .
Upper bound: if MC terminates within Tmax: UB(q) :=
LB(q). Otherwise UB(q) := |In(q)|+ |Rem(q)|. Go to Step
2.
Step 2. Update and pruning
Update: if LB(q) > LBbest, update LBbest := LB(q).
Pruning: if UB(q) ≤ LBbest, prune dominated node q, set
Q := Q \ {q} and go to Step 1. Otherwise go to Step 3.
Step 3. Branching
According to Section IV-A select a k-code T ∈ Rem(q)
for the branching step and compute its neighbourhood N(T).
Generate two new search tree nodes q′ and q′′ with In(q′) :=
In(q)∪{T}, Rem(q′) := Rem(q)\N(T), whereas In(q′′) :=
In(q) and Rem(q′′) := Rem(q) \ {T}. Update search tree
nodes set Q := Q ∪ {q′, q′′} \ {q}. Go to Step 1.

C. Calculation of upper bounds for the case k = 1

Choosing the 1-element identity group I as a code generator
subgroup, means that algorithm BBcodes is run with the pool
of single codewords C = Ωn. This is an important special case,
because if the algorithm terminates, it necessarily provides
the optimal solution of the (n, d)-problem considered. On the
other hand, as it will appear in the next section, due to the
size of the pool C the execution of the algorithm becomes
time consuming even for small values of n.

The algorithm BBcodes described in Section IV-A provides
only the naive upper bound UB(q) := |In(q)| + |Rem(q)|,
when the maximum clique procedure MC does not terminate.
In the final version of the algorithm we integrated the calcu-
lation of a tighter upper bound.

The upper bound that we implemented is based on the
idea that Ωn can be partitioned in n subsets S0, ..., Sn−1,
in such a way that for a fixed t ∈ {0, ..., n − 1} we define
Si = {x ∈ Ωn|x(t) = i}. In other terms, Si contains all
codewords with the t-th component having the value i. Since
the partition is obtained by fixing the value of one component
of the codewords, it is clear that the sets Si are isomorphic to
Ωn−1. Furthermore, as the sets Si form a partition of Ωn it is
well-known that an upper bound of M(n, d) can be obtained
by summing up the upper bounds on the subset Si (see for
instance [8]), i.e.

M(n, d) ≤ n ·M(n− 1, d). (4)

It is interesting to remark that by means of equation (4) the
best upper bound of problem (7, 5) (M(7, 5) ≤ 140, reported
in [12]) can be improved to M(7, 5) ≤ 7 · 18 = 126.

Essentially, we added to the algorithm BBcodes a function
that computes an upper bound on the set of codewords
Rem(q), whenever the maximum clique algorithm MC does
not terminate. In this case a partition S0, ..., Sn−1 of the set
Rem(q) is generated, such that Si = {x ∈ Rem(q)|x(t) =
i}. For each subset Si an upper bound UB(Si) is calculated
by applying algorithm MC or by means of the known upper

bound of M(n − 1, d). The upper bound for the search tree
node q becomes

UB(q) = |In(q)|+
n−1∑
i=0

UB(Si). (5)

As the index t of the fixed component in the codewords
can be varied, there are n different partitions that can be
generated. Algorithm BBcodes computes for each partition an
upper bound and finally chooses the lowest one.

V. COMPUTATIONAL EXPERIMENTS

We present some preliminary results obtained with the
branch and bound method BBcodes. The algorithm has been
encoded in ANSI C and all the tests reported in this section
have been carried out on a computer equipped with an Intel
Core i5 2.3 GHz processor and 8 GB of memory.

The first issue addressed with algorithm BBcodes is the gen-
eration of permutation codes for (n, d)-problems by combining
the orbits of a given code generator subgroup. In particular,
our aim is to compare the performance of the largest code
generator subgroups with smaller subgroups. As a first step
we computed in GAP the complete list of the conjugacy
classes of code generator subgroups for the (n, d)-problems
considered. For each conjugacy class the set of the orbits
of a given representative has been generated. Then algorithm
BBcodes has been run, choosing different sets of orbits as
pools of k-codes. Table III reports the results obtained on
(n, d)-problems (6, 5) and (7, 5) using a depth-first version
of algorithm BBcodes. Each row of the table corresponds to a
run of the algorithm BBcodes on a pool C of k-codes obtained
from a given code generator subgroup of the (n, d)-problem
considered.

Column 3 and 4 report the length of the k-codes, that is the
orbit length and the number of k-codes in the pool C, i.e. the
number of orbits of the code generator. Column 5 shows the
length of the best code obtained during the execution of the
algorithm. For instance, problem (6, 5) has a lower bound of
6 in the first conjugacy class, which means that the best code
contains only one orbit of the pool. Similarly, the lower bound
10 in the third row indicates that the solution is formed by 2
compatible 5-codes. Columns 6-8 are performance indicators
of the branch and bound algorithm: the percentage of domi-
nated or solved search tree nodes, the CPU time required to
obtain the best lower bound and, finally, the CPU time needed
to terminate the branch and bound procedure. If algorithm
BBcodes terminates, the best lower bound corresponds to an
optimum. Whereas the entry ’-’ in the last column indicates
that the algorithm did not terminate in the maximum allowed
computation time of 300 seconds.

The results on problem (6, 5) show that the best lower
bounds are provided by small subgroups and that optimal
solution can be obtained only by combining 1-codes, i.e.
single codewords. However, it is clear that the execution
of the algorithm BBcodes with short orbits is more time
consuming, as the size of the pool C increases. All lower
bounds of problem (6, 5) are optimal values, because the

2014 2nd International Conference on Information and Communication Technology (ICoICT)

978-1-4799-3580-2/14/$31.00 ©2014 IEEE 190

TABLE III
ALGORITHM BBCODES, LOWER BOUNDS USING ORBIT SETS

n d Class k |C| Best Pruned Sec Sec
LB (%) (LB) (End)

6 5 1 6 120 6 100 0.00 0.00
2 6 120 6 100 0.00 0.00
3 5 144 10 100 0.01 0.01
4 3 240 12 100 0.02 0.02
5 2 360 16 100 1.21 1.21
6 1 720 18 49 2.92 -

7 5 1 42 120 42 100 0.00 0.00
2 21 240 42 100 0.00 0.01
3 14 360 42 100 0.01 0.01
4 10 504 40 50 0.01 0.89
5 7 720 77 50 0.22 30.85
6 6 840 42 49 1.06 -
7 6 840 42 49 0.85 -
8 5 1008 65 49 2.34 -
9 3 1680 66 47 2.32 -

10 2 2520 64 45 104.36 -
11 1 5040 59 39 46.25 -

TABLE IV
ALGORITHM BBCODES, CASE k = 1

n d Gap Solved Pruned Sec Sec
(%) (%) (%) (LB) (End)

5 3 0 4 47 0.02 0.03
5 4 0 28 28 0.01 0.01
6 3 0 0 49 0.39 0.79
6 4 37 0 49 53.50 -
6 5 0 22 27 0.45 -
6 6 0 1 49 0.00 0.22
7 3 0 0 49 2.97 6.00
7 4 22 14 3 95.56 -
7 5 23 10 39 49.45 -
7 6 0 34 15 0.86 0.92
7 7 0 4 45 0.02 -

algorithm terminated for all subgroups except for k = 1, but
in this last case the optimal value 18 was reached.

Problem (7, 5) is solved for the largest subgroups (con-
jugacy classes 1-5) and it is interesting to remark that the
best lower bound 77 is provided by the pool of 7-codes of
class 5. However, it can be expected that the lower bounds
of the smallest code generators (classes 6-11) underestimate
the optimum, because the algorithm did not terminate in the
allowed computation time.

Looking at columns 7 and 8 it is interesting to remark that
usually the algorithm finds quickly the best solution, but it
requires a high computational effort for terminating the binary
search, due to a tailing effect on the branches q′′ of the
search tree, that is the nodes which exclude given k-codes.
The smallest instances, having 100% of pruned nodes, are
solved directly by the maximum clique algorithm integrated
in BBcodes within the allowed time Tmax = 2 seconds.

As already mentioned in Section IV, in the case of 1-
codes the execution of the algorithm BBcodes becomes time
consuming and often does not terminate. Table IV shows the
performance of the depth-first version of algorithm BBcodes
on several (n, d)-problems. In this test we set a threshold of
50 codewords for the maximum size of the problems solved

by the maximum clique algorithm MC. The table reports
the percentage gap between the lower bound of BBcodes
and the best known lower bound (column 2), the percentage
of the search tree nodes solved by MC (column 3), the
percentage of the nodes pruned by means of the upper bound
based on partitioning (column 4) and finally the computation
times (columns 5 and 6). Again, the entry ’-’ means that the
maximum allowed time of 300 seconds was reached.

The percentage of pruned nodes reported in Table IV shows
that the upper bounds provided by the partitioning method
are useful for identifying dominated nodes. Moreover, it can
be observed that usually a best lower bound with a low
gap is obtained in a short time, but there are some cases
(like problems (6, 4), (7, 4) and (7, 5)), whose lower bounds
improve slowly and therefore they require long computation
times. An important characteristic of an (n, d)-problem seems
to be its total number of maximum codes. There are problems
having only few optimal solutions. In these cases the choice
of the starting configuration of codewords becomes crucial.
In other cases, like for instance problem (6, 5), there are
thousands of maximum codes and the algorithm BBcodes has
no difficulty to identify one of them.

Since the branch and bound algorithm BBcodes carries out
an exhaustive search, it can be easily modified in order to
collect all optimal solutions of a given (n, d)-problem, whose
optimal value M(n, d) is known. An interesting experiment on
problem (5, 5) revealed that it has 1344 different maximum
codes of length 5. As already mentioned in Section III-B
only 144 of them are C5-orbits. This result suggests that in
some cases there may exist optimal solutions that can not be
obtained as a combination of large subgroup orbits.

VI. CONCLUSION

An exact algorithm for the solution of the maximum per-
mutation code problem has been presented in this paper. The
algorithm proposed is a branch and bound method applied
on suitable sets of group orbits. Computational experiments
show that the orbits of large subgroups of Sn are not always
the best choice for generating maximum permutation codes.
Furthermore, for the special case of single codewords (k = 1)
a useful technique for computing upper bounds has been
presented.

REFERENCES

[1] R.F. Bailey. “Error-correcting codes from permutation groups,” Discrete
Mathematics, vol. 309, pp. 4253–4265, 2009.

[2] I.F. Blake. “Permutation codes for discrete channels,” IEEE Transactions
on Information Theory, vol. 20, no. 1, pp. 138–140, 1974.

[3] W. Chu, C.J. Colbourn and P. Dukes. “Constructions for permutation
codes in powerline communications,” Designs, Codes and Cryptography,
vol. 32, pp. 51–64, 2004.

[4] C.J. Colbourn, T. Kløve and A.C.H. Ling. “Permutation arrays for
powerline communication and mutually orthogonal latin squares,” IEEE
Transactions on Information Theory, vol. 50, pp. 1289–1291, 2004.

[5] N. Pavlidou, A.J. Han Vinck, J. Yazdani and B. Honary. “Power line
communications: state of the art and future trends,” IEEE Communica-
tions Magazine, vol. 41, no. 4, pp. 34–40, 2003.

[6] J. Quistorff. “A survey on packing and covering problems in the
Hamming permutation space,” Electronic Journal of Combinatorics, vol.
13, #A1, 2006.

2014 2nd International Conference on Information and Communication Technology (ICoICT)

978-1-4799-3580-2/14/$31.00 ©2014 IEEE 191

[7] Bogaerts M.: New upper bounds for the size of permutation codes
via linear programming. The Electronic Journal of Combinatorics
17(#R135) (2010).

[8] H. Tarnanen. “Upper bounds on permutation codes via linear program-
ming,” European Journal of Combinatorics, vol. 20, pp. 101–114, 1999.

[9] M. Deza and S.A. Vanstone. “Bounds for permutation arrays,” Journal
of Statistical Planning and Inference, vol. 2, pp. 197–209, 1978.

[10] P. Dukes and N. Sawchuck. “Bounds on permutation codes of distance
four,” Jourbal of Algebriac Combinatorics, vol. 31, pp. 143–158, 2010.

[11] P. Frankl and M. Deza. “On maximal numbers of permutations with
given maximal or minimal distance,” Journal of Combinatorial Theory
Series A, vol. 22, pp. 352–260, 1977.

[12] D.H. Smith and R. Montemanni. “A new table of permutation codes,”
Designs, Codes and Cryptography, vol. 63, no. 2, pp. 241–253, 2011.

[13] D.H. Smith and R. Montemanni. “Permutation codes with specified
packing radius,” Designs, Codes and Cryptography, vol. 69, no. 1, pp.
95–106, 2013.

[14] I. Janiszczak, W. Lempken, P.R.J. Östergård and R. Staszewski. “Per-
mutation codes invariant under isometries,” Designs, Codes and Cryp-
tography, to appear.

[15] P.R.J. Östergård. “A new algorithm for the maximum-weight clique
problem,” Nordic Journal of Computing, vol. 8, no. 4, pp. 424–436,
2001.

[16] P.R.J. Östergård. “A fast algorithm for the maximum clique problem,”
Discrete Applied Math, vol. 120, pp. 197–207, 2002.

[17] R. Carraghan and P.M. Pardalos. “An exact algorithm for the maximum
clique problem,” Operations Research Letters, vol. 9, pp. 375–382, 1990.

2014 2nd International Conference on Information and Communication Technology (ICoICT)

978-1-4799-3580-2/14/$31.00 ©2014 IEEE 192

