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end-to-end average distortion with the SNR, which was referred to
as the distortion SNR exponent a?(�), for given spectral efficiency
�. We first derived an upper bound on a?(�) based on an informed
transmitter that has instantaneous knowledge of the channel capacity.
Then the exponent achievable with a separation based scheme was
computed. Finally, we proposed HDA source–channel coding schemes
that outperform the separated exponent for all �. Remarkably, the
HDA scheme for � > 2min(M;N) was shown to achieve the optimal
distortion exponent for general M and N . We also showed how to
construct practical space–time coding schemes using diversity–multi-
plexing tradeoff optimal space–time codes and scalar quantization.
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A Note on the Optimality of Variant-I Permutation
Modulation Codes

Marc P. C. Fossorier, Fellow, IEEE, J. B. Nation, and
W. Wesley Peterson, Fellow, IEEE

Abstract—In this correspondence, the optimality of variant-I permuta-
tion codes initially proposed by Slepian is shown in a simple way.

Index Terms—Group codes, permutation codes, permutation modula-
tion.

I. INTRODUCTION

In [1], two variants of permutation modulation (PM) codes are intro-
duced. A variant-I code C is defined by l integers m1 � m2 � � � � �
ml satisfying l

i=1
mi = n and the n-dimensional vector

xxx = (x1; . . . ; x1; x2; . . . ; x2; . . . ; xl; . . . ; xl) (1)

where for i = 1; . . . ; l; xi appears mi times. The codebook is formed
of all

M =
n!

m1! m2! . . .ml!
(2)

possible distinct permutations of xxx. The rate of the code is
R = log

2
M=n and its minimum squared Euclidean distance

(MSED) is defined as

d2min = min
xxx 6=xxx 2C

kxxx� xxx0k2: (3)
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Based on the results of [2], the design of an optimum PM variant-I
code can be formulated as follows: “Given the set fm1;m2; . . . ;mlg,
find the corresponding set of points fx1; x2; . . . ; xlg such that d2min =
2 and kxxxk2 is minimized.”1 In fact, [2] provides the solution to this
problem but for the last step of the proof, it refers to [3]. In the fol-
lowing, we provide an alternative answer to this part.

In can be noted that the optimum solution derived in [4] is more
restrictive as the valuesmi’s need to satisfymi = ml�i�1. As a result,
many optimum codes found by our approach are not considered by
that of [4]. On the other hand, it is straightforward to show that the
solution to our optimization design problem for variant-II PM codes is
equivalent to that of [4].

II. OPTIMUM VARIANT-I CODES

In this section, the optimality of variant-I PM codes is derived based
on the following.

Lemma 2.1: Consider l integers m1 � m2 � � � � � ml satisfying
l
i=1mi = n. Then

1

n

bl=2c

j=1

j(ml�2j+1 �ml�2j) � 1=2 (4)

with m0 = 0
Proof: For simplicity of the notations, we assume l is odd, so that

l = 2a � 1. The case l even follows in a similar way. Proving (4) by
contradiction, we assume that

a�1

j=1

j(ml�2j+1 �ml�2j) > n=2: (5)

Since

ml +

a�1

j=1

(ml�2j+1 +ml�2j) = n; (6)

multiplying (5) by 2 and subtracting (6) from both sides yields, after
shifting the pair grouping of consecutive values of mi’s by one

a�1

j=1

(2j � 1)(�ml�2j+2 +ml�2j+1)� (2a� 1)m1 > 0 (7)

which is a contradiction as all the terms are nonpositive.
A variant-I PM code with d2min = 2 is optimum if and only if the

three following conditions are satisfied (see, e.g., [2] for an equivalent
formulation).

• Condition 1: As a set, fx1; . . . ; xlg = fb; b+ 1; . . . ; b+ l � 1g
for some real value b.

• Condition 2: l
i=1mixi = 0.

• Condition 3: If mi � mj , then jxij � jxj j.
Condition 1 ensures d2min = 2 while Condition 2 implies that al-

though xxx has dimension n, the effective dimension of the code is n�1,
so that the effective code rate becomes R = log2M=(n� 1).

In the following, we present a simple way to achieve these three
conditions and for simplicity of the notations, we again assume l is

1d = 2 allows us to choose integer values for x � x ’s [2].

odd; the results are extended in a straightforward way to the case when
l is even. For l = 2a � 1 and i = 1; . . . ; l, we assign to each mi the
value a+ki, with ki = (�1)l�id(l� i)=2e. In other words, we assign
a to ml; a�1 to ml�1; a+1 to ml�2; . . . ; 1 to m2; l to m1. It follows
that

1

n

l

i=1

mi(a+ ki) = a� 1

n

a�1

j=1

j(ml�2j+1 �ml�2j) (8)

with ml�2j+1 �ml�2j � 0.
Defining xi = a + ki � (1=n) l

i=1mi(a+ ki), we have

xi = ki +
1

n

a�1

j=1

j(ml�2j+1 �ml�2j): (9)

As a result, Conditions 1 and 2 are straightforwardly satisfied. Condi-
tion 3 follows from Lemma 2.1, which ensures that the monotonicity
of the values jkij is preserved.

Note that this result also validates the optimum construction pre-
sented in [5] which implicitly assumes that the value am has the same
number of terms to its left and its right.

Finally, as indicated in Section I, optimum variant II-a and
variant II-b codes are obtained in a straighforward way with for
i = 1; . . . ; l; xi = l � i and xi = l � i+ 1=

p
2, respectively.
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