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SUMMARY A novel multilevel construction for permutation
codes is presented. A permutation code of length n is a subset
of all the vectors obtained from coordinate permutations on the
vector (0; 1; : : : ; n�1). We would like to construct a permutation
code with cardinality as large as possible for a given code length n

and a minimum distance. The proposed construction is available
when n = 2m (m is a positive integer). We exploit m-constant
weight binary codes as component codes and combine them in a
multilevel way. We can construct permutation codes with various
parameters by selecting appropriate combination of component
codes. Moreover, the multilevel structure enable us to use a
multi-stage decoding algorithm.
key words: permutation code, multilevel code, multi-stage de-

coding

1. Introduction

A permutation code of length n is originally de�ned
by the action of a permutation group G on the initial

vector a
4
= (0; 1; 2; : : : ; n � 1)[1]. In other words, a

permutation code P is given by P
4
= f�(a) : � 2 Gg:

We here use the term \permutation code" in wider
sense than one de�ned above. Let S be the set of all
the vectors obtained from a coordinate permutation on

a: S
4
= f�(a) : � 2 GSg; where GS is the symmetric

group on n-elements. The cardinality of the set S is
equal to n!. Consider a subset P � S which has the
cardinality M and the minimum Hamming distance d.
We call P a permutation code and it is also denoted
by (n;M; d)-permutation code. This change gives us
more freedom on code construction without sacri�cing
the advantages of the permutation codes[4].

The most principal problem on permutation codes
is the code construction problem: we would like to con-
struct a permutation code with cardinality M as large
as possible for a given code length n and a minimum
distance d. Several works have been made to construct
good permutation codes.

Blake[1] presented a construction of the permuta-
tion codes based on the k-transitive groups. He showed
the construction of an (n; n!; 3)-code based on the alter-
nating group. He also constructed (n; n(n� 1); n� 1),
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(n; n(n�1)(n�2); n�2)-codes from sharply doubly and
triply transitive permutation group, and (11,7920,8),
(12,371392,8), (12,95040,8)-codes from the Mathieu
group.

It is known that the cardinality M is upper
bounded in such a way[2]:

M �
n!

(d� 1)!
: (1)

For n � 5, the codes with the cardinality satisfying (1)
with equality have been found by computer search[4].
When n = 6 and d = 5, the equality in (1) cannot be
satis�ed (The pair n = 6 and d = 5 is the smallest
pairs which do not satisfy the equality). In [5], Kl�ve
classi�ed the permutation codes with n = 6 and d = 5
and proved that M = 18 is maximal.

In spite of the above works, the code parameters
which is available are still limited. There is plenty of
room for further research on this topic. In this paper,
we present a novel construction for permutation codes.
The construction presented here is based on the idea
of the multilevel coded-modulation proposed by Imai
and Hirakawa[6]. In the proposed construction, several
binary constant weight binary codes are exploited as
multilevel component codes. The multilevel structure
gives 
exibility on parameter selection. We can con-
struct permutation codes with various parameters by
selecting appropriate combination of component codes.

Due to the multilevel structure of the proposed
codes, we can also use the multi-stage decoding al-
gorithm which signi�cantly reduces the decoding com-
plexity. The lack of eÆcient decoding algorithm for a
long permutation code is a serious problem for practical
applications of permutation codes. The combination of
M -FSK modulation and permutation codes has been
considered as candidate codes for power line communi-
cations[3][4]. Moreover, permutation codes can be used
as hopping patterns for frequency hop spread spectrum
communications.

2. Constructions

2.1 Basic construction

Let C be a binary constant weight code with the length
n, the cardinality M 0, the minimum distance d0 and
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weight w. We denote the code C as an [n;M 0; d0; w]-
constant weight code. Let �p be the binary to integer
conversion mapping de�ned by

�p(xp�1; : : : ; x1; x0)
4
=

p�1X
i=0

2ixi; (2)

where p is a positive integer and xi 2 f0; 1g for 0 � i �
p� 1.

Assume that n = 2m, where m is a positive inte-
ger. Let Ci(i 2 [0;m� 1]) be an [n=2i;Mi; di; n=2

i+1]-
constant weight code. The set of nonnegative inte-
gers from a to b is denoted by [a; b]. For example,
[0; 4] = f0; 1; 2; 3; 4g. We denote the set of codes as
C = (C0; C1; : : : ; Cm�1). For any set of codewords

c0 = (c
(0)
0 ; c

(0)
1 ; : : : ; c

(0)
n�1) 2 C0; (3)

c1 = (c
(1)
0 ; c

(1)
1 ; : : : ; c

(1)
n=2�1) 2 C1; (4)

� � �

cm�1 = (c
(m�1)
0 ; c

(m�1)
1 ) 2 Cm�1; (5)

we here de�ne an m�n-matrix A. The (i; j)-element of
A is denoted by a(i; j) for i 2 [0;m�1] and j 2 [0; n�1].
The �rst row of A, (a(0; 0); a(0; 1); : : : ; a(0; n � 1)), is
determined in such a way:

a(0; t) = c
(0)
t ; t 2 [0; n� 1]: (6)

The i-th row(i 2 [1;m� 1]) of A is given by

a(i; g
(s)
t ) = c

(i)
t ; t 2 [0; 2m�i�1]; s 2 [0; 2i�1]:(7)

The g
(s)
t 's in the above equation are de�ned by

fg
(s)
0 ; g

(s)
1 ; : : : ; g

(s)
2m�i�1g (8)

= fj : �i(a(0; j); a(1; j); : : : ; a(i� 1; j)) = sg;

where g
(s)
0 < g

(s)
1 < : : : < g

(s)
2m�i�1. Let �j be the j-

th column vectors(j 2 [0; n � 1]) of A. The mapping
�m(A) is de�ned by

�m(A)
4
= (�m(�0); : : : ; �m(�n�1)): (9)

The above construction of an n-tuple over [0; 2m� 1] is
refereed to as the basic construction.

00001111

0110

10

1 3 2 0 5 7 6 4

Matrix A

Φ(A)

Fig. 1 Example of basic construction

Example 1: Consider the case where m = 3; n =
23 = 8. We take [8; 2; 8; 4]-constant weight code
f00001111; 11110000g as C0, [4; 2; 4; 2]-constant weight
code f0110; 1001g as C1 and [2; 2; 2; 1]-constant weight
code f01; 10g as C2. Suppose that c0 = 00001111; c1 =
0110, and c2 = 10. We then have

A =

0
@ 00001111

01100110
11001100

1
A : (10)

and �3(A) = (1; 3; 2; 0; 5; 7; 6; 4)(See.Fig.1).
If c0 = 00001111; c1 = 0110; c2 = 01, then we have

A =

0
@ 00001111

01100110
00110011

1
A : (11)

In this case, we obtain �3(A) = (0; 2; 3; 1; 4; 6; 7; 5).

As we have observed in the example, �m(A) be-
comes a permuted vector of (0; 1; 2; : : : ; n�1). In order
to prove �m(A) 2 S for any A, we need the following
lemma.

Lemma 1: Every binary m-tuple appears only once
as a column vector in A.

(Proof) Consider a binary r-tuple obtained from A:

z
(r)
j

4
= (a(0; j); a(1; j); : : : ; a(r � 1; j))t: (12)

In order to prove the claim of the lemma, we shall prove
the following more general claim: every binary r-tuple

appears exactly 2m�r-times in fz
(r)
j : j 2 [0; n � 1]g.

For r = 1, the claim holds because a codeword of the
�rst level code C0 has 2

m�1-zeros and 2m�1-ones. Next,
we assume that the claim holds for r = r0. Consider
an arbitrary column index set fh0; h1; : : : ; h2m�r0�1g
which satis�es

z
4
= z

(r0)
h0

= z
(r0)
h1

= � � � = z
(r0)
h
2m�r0

�1

(13)

and h0 < h1 < � � � < h2m�r0�1. From the basic con-
struction described above, we have

a(r0; ht) = c
(r0)
t ; t 2 [0; 2m�r0 � 1]: (14)

Since c(r
0) has the same number of zeros and ones, the

half of fz
(r0+1)
ht

: t = 0; 1; : : :2m�r0 � 1g takes the value

(z; 0)t and the remaining takes the value (z; 1)t. It
means that every binary (r0 + 1)-tuple appears exactly

2m�r0�1-times in fz
(r0+1)
j : j = 0; 1; : : : ; n� 1g.

For a given set of codes C = (C0; C1; : : : ; Cm�1),
the set of all the possible matrices obtained by the
basic construction is denoted by A(C). The cardi-
nality jA(C)j is equal to M0 � M1 � � � � � Mm�1.
Consider A 2 A(C) and let �j be the j-th column
vectors(j 2 [0; n� 1]) of A. The set P(C) is de�ned by

P(C)
4
= f�m(A) : A 2 A(C)g: (15)
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From Lemma 1, we know that every binary m-
tuple appears only once as a column vector in A. Since
�m is one-to-one mapping from f0; 1gm to [0; 2m � 1],
every number in [0; 2m�1] appears only once in �m(A).
It implies that P(C) is a permutation code of length n
and the number of codewords of P(C) coincides with
the cardinality of A(C).

We next discuss the minimum distance property
of the permutation codes. Consider arbitrary two ma-

trices A1; A2 2 A(C). Let �
(1)
j and �

(2)
j be the j-th

column vectors(j 2 [0; n � 1]) of A1 and A2, respec-
tively. The distance between A1 and A2 is de�ned by

d�(A1; A2)
4
= jfj : �

(1)
j 6= �

(2)
j ; j 2 [0; n� 1]gj:(16)

The minimum distance of A(C), dmin, is de�ned by

dmin
4
= minfd�(A1; A2) : A1; A2 2 A(C); A1 6= A2g:

Lemma 2: The minimum distance of A(C) is lower
bounded by

dmin � minfd0; 2d1; 4d2; : : : ; 2
m�1dm�1g: (17)

(Proof) Consider arbitrary two matrices A1; A2(A1 6=

A2) 2 A(C). Let �
(1)
i and �

(2)
i be the i-th row

vectors(i 2 [0;m � 1]) of A1 and A2, respectively. If

the �rst rows �
(1)
0 6= �

(2)
0 , then d�(A1; A2) � d0 holds.

The reason is the following. The both �
(1)
0 and �

(2)
0

belong to C0. Thus, dh(�
(1)
0 ;�

(2)
0 ) � d0, where dh(�; �)

is the Hamming distance function. Namely, the �rst
rows di�ers at least d0-coordinate positions. Next, we
consider the case where

�
(1)
i = �

(2)
i for i 2 [0; i� � 1]; (18)

�
(1)
i� 6= �

(2)
i� ; (19)

for i� 2 [1;m� 1]. In this case, the Hamming distance

between �
(1)
i� and �

(2)
i� satis�es dh(�

(1)
i� ;�

(2)
i� ) � 2i

�

di�

because �
(1)
i� ;�

(2)
i� are codewords of the 2i

�

-times rep-
etition code of Ci� . This implies that the i�-th rows
di�ers at least 2i

�

di� -coordinate positions. From the
assumption A1 6= A2 and the above argument, we have
the claim of the lemma.

The above discussion leads to the following theo-
rem on the parameters of the permutation codes con-
structed by the basic construction.

Theorem 1: The code P(C) constructed by the basic
construction is an (n;M; d)-permutation code with the
following parameters:

n = 2m;

M = M0 �M1 � � � � �Mm�1;

d � minfd0; 2d1; 4d2; : : : ; 2
m�1dm�1g:

Example 2: Consider the case where m = 2; n =
22 = 4. We take [4; 2; 4; 2]-constant weight code
f1001; 1001g as C0 and [2; 2; 2; 1]-constant weight code
f01; 10g as C1. In this case, we have

A(C) =

��
1001
0011

��
1001
1100

��
0110
0011

��
0110
1100

��

and

P(C) = f(2013)(3102)(0231)(1320)g:

It is easy to con�rm that the code P(C) is a (4; 4; 4)-
permutation code. In this case, the minimum distance
bound by Theorem 1 (d � minf4; 2 � 2g) holds with
equality.

The following corollary is a simple application of The-
orem 1.

Corollary 1: There exists an (n;M; d)-permutation
code with the following parameters:

n = 2m;

M = (2m+1 � 2)� (2m � 2)� � � � � (22 � 2);

d � 2m�1;

where m is an arbitrary positive integer.

(Proof) Getting rid of (0; 0; : : : ; 0) and (1; 1; : : : ; 1) from
the �rst order Reed-Muller code of degree m, we can
obtain a [2m; 2m+1 � 2; 2m�1; 2m�1]-constant weight
code. By using the [2m�i; 2m+1�i�2; 2m�1�i; 2m�1�i]-
constant weight code as Ci(i 2 [0; : : : ;m� 1]), we have
the permutation codes with the above parameters.

Example 3: For m = 3; 4; 5, we can obtain (8; 168;�
4), (16; 5040;� 8), (32,312480,�16)-permutation codes,
respectively.

2.2 Extended construction

The basic construction described in the previous sub-
section is most eÆcient when the component codes
have the minimum distances satisfying the equality
d0 = 2d1 = 4d2 = � � � = 2m�1dm�1. When the above
equality does not hold, we can improve the basic con-
struction. We here present the extended construction

for such a case.
Let Bi be a subset of Ci(i 2 [0;m� 1]). The car-

dinality of Bi is denoted by qi(qi � jCij). Let Qi be
an alphabet with the cardinality qi. Suppose that the
functions fi(i 2 [0;m�1]) is a one-to-one mapping such
that fi : Qi ! Bi:

Consider the set of codes L = (L0; L1; : : : ; Lm�1)
where Li is a block code over the alphabet Qi and the
code Li has the length 2i, �i-codewords, the minimum
distance Æi (i 2 [0;m � 1]). The code is denoted by a
(2i; �i; Æi)qi -code. For a given vector

(w0; w1; : : : ; w2i�1) 2 Li; (20)
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the value c
(i;s)
t is given by

(c
(i;s)
0 ; c

(i;s)
1 ; : : : ; c

(i;s)
2m�i�1) = fi(ws) 2 Ci; (21)

where i 2 [0;m � 1], s 2 [0; 2i � 1], t 2 [0; 2m�i � 1].
An m�n-matrix A can be de�ned as follows. The �rst
row of A is determined in such a way:

a(0; t) = c
(0;0)
t ; t 2 [0; n� 1]; (22)

The i-th row(i 2 [1;m� 1]) of A is given by

a(i; g
(s)
t ) = c

(i;s)
t ; t 2 [0; 2m�i � 1] (23)

for s 2 [0; 2i�1]. The value g
(s)
t is given by (8). Namely,

the code Li is used for selecting 2i-codewords of Ci and
each codeword is assigned to the positions correspond-
ing to the same value in terms of s. This construction
is called the extended construction.

The set A(C ;L) is the set of all the possible ma-
trices obtained by the extended construction. The set
P(C;L) is de�ned by

P(C;L)
4
= f�m(A) : A 2 A(C;L)g: (24)

Theorem 2: The code P(C;L) is an (n;M; d)-
permutation code whose parameters are given by

n = 2m; (25)

M = �0 � �1 � � � � � �m�1; (26)

d � minfÆ0d0; Æ1d1; : : : ; Æm�1dm�1g: (27)

(Proof) Lemma 1 holds for A(C;L) as well. For
A(C;L), the minimum distance bound (corresponding
to Lemma 2) is given by

dmin � minfÆ0d0; Æ1d1; : : : ; Æm�1dm�1g: (28)

The proof of the bound is almost the same as the proof
of Lemma 2. The only di�erence is that the Hamming

distance between �
(1)
i� and �

(2)
i� satis�es dh(�

(1)
i� ;�

(2)
i� ) �

Æi�di� .

Example 4: Assume the following set of constant
weight codes: C0 : [16; 1170; 4; 8], C1 : [8; 70; 2; 4], C2 :
[4; 6; 2; 2], C3 : [2; 2; 2; 1]. By using the basic construc-
tion, we have a (16; 1170� 70� 6 � 2 = 982800;� 4)-
permutation code. Consider the following block codes
L0 : (1; 1170; 1)1170, L1 : (2; 70; 2)70, L2 : (4; 63; 2)6,
L3 : (8; 2

7; 2)2. By using the extended construction, we
can obtain a (16; 1170� 70� 63 � 27 = 2264371200 '
231;� 4)-permutation code. The cardinality of the code
obtained from the extended construction is much larger
than the one obtained from the basic construction in
this case.

The basic construction can be regarded as a special
case of the extended construction. Namely, let Li =
(2i;Mi; 2

i)Mi
. This code is the repetition code over

Mi-ary alphabet. It is easy to see that the extended
construction yields the same results obtained from the
basic construction.

3. Multi-stage decoding algorithm for permu-

tation codes

The multilevel structure of the permutation codes in-
troduced in the previous section naturally leads to a
multi-stage decoding algorithm for this class of codes.
Although the proposed decoding algorithm is subopti-
mal, it gives signi�cant reduction on decoding complex-
ity of the permutation codes. The algorithm is based
on the idea of the multi-stage decoding algorithm pro-
posed by Imai and Hirakawa[6].

Throughout the section, we assume that the vector
x 2 P(C) (a code obtained from the basic construc-
tion) is the transmitted vector and y is the received
vector. The distance between x and y is denoted by
d(x;y): We here do not assume a speci�c channel. The
distance measure d(�; �) should be chosen appropriately
depending on the channel statistics. For example, we
should use the squared Euclidean distance as the dis-
tance measure for an additive white Gaussian channel.

3.1 Decoding algorithm

The outline of the multi-stage decoding algorithm is the
following. Firstly, the �rst(0-th) row r0 in A is decoded
with a decoder for C0 based on the assumption that
the other rows r1; : : : ; rm�1 take values from f0; 1gn.
In this decoding process, we have r̂0 as the estimate
of the �rst row of the transmitted word. Next, the
repetition code of C1 is decoded as well based on the
assumption r0 = r̂0; r2 2 f0; 1g

n; : : : ; rm�1 2 f0; 1g
n.

In a similar way, at the i-th row, the repetition code of
Ci is decoded based on the decoding result of r0 to ri�1
and the assumption ri+1 2 f0; 1g

n; : : : ; rm�1 2 f0; 1g
n.

The procedure is repeated until all the rows has been
decoded.

3  7  0  4  1  5  6 6

1  1  0  0  1  1  0  0
1  1  0  0  0  0  1  1
0  1  0  1  0  1  1  1

C0 dec.

C1 dec.

C2 dec.

1  1  0  0  1  1  0  0
1  1  0  0  0  0  1  1
0  1  0  1  0  1  0  1

3  7  0  4  1  5  2  6

Fig. 2 Procedure of multi-stage decoding

The detail of the multi-stage decoding algorithm
is described as follows:

[Multi-stage decoding algorithm for P(C) ]

Step 1 Compute the estimate of the �rst row code-
word.

r̂0 = argmin
r0
fd(y;�m(R)) : r0 2 C0;

r1 2 f0; 1g
n; : : : ; rm�1 2 f0; 1g

ng; (29)
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where the matrix R is the matrix with the rows
(r0; r1; : : : ; rm�1).

Step 2 Set i = 1.
Step 3 Compute the estimate of the i-th row code-

word.

r̂i = argmin
ri
fd(y;�m(R)) : r0 = r̂0; : : : ;

ri�1 = r̂i�1; ri 2 C
�
i ; ri+1 2 f0; 1g

n;

: : : ; rm�1 2 f0; 1g
ng; (30)

where C�
i denotes the 2i-times repetition code of

Ci.
Step 4 If i < m� 1, then set i i+1 and go to Step

3.
Step 5 Output the decoding result (r̂0; r̂1; : : : ; r̂m�1)

and quit the algorithm.

Example 5: From Corollary 1, we can obtain a
(256; 5100311059200 ' 242;� 128)-permutation code.
Consider the decoding algorithm based on exhaustive
codeword generation. In this case, we have to generate
approximately 242-codewords. On the other hand, if we
exploit the multi-stage decoding algorithm presented
here, we need to evaluate only (29�2)+(28�2)+ � � �+
(22 � 2) = 1004 -codewords of C0; C1; : : : ; Cm�1.
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