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Bee Identification Problem for DNA Strands
Johan Chrisnata, Han Mao Kiah , Senior Member, IEEE, Alexander Vardy ,

and Eitan Yaakobi , Senior Member, IEEE

Abstract—Motivated by DNA-based applications, we generalize
the bee identification problem proposed by Tandon et al. (2019). In
this setup, we transmit all M codewords from a codebook over
some channel and each codeword results in N noisy outputs.
Then our task is to identify each codeword from this unordered
set of MN noisy outputs. First, via a reduction to a minimum-
cost flow problem on a related bipartite flow network called
the input-output flow network, we show that the problem can
be solved in O(M3) time in the worst case. Next, we consider
the deletion and the insertion channels individually, and in both
cases, we study the expected number of edges in their respective
input-output networks. Specifically, we obtain closed expressions
for this quantity for certain codebooks and when the codebook
comprises all binary words, we show that this quantity is sub-
quadratic when the deletion or insertion probability is less than
1/2. This then implies that the expected running time to perform
joint decoding for this codebook is o(M3). For other codebooks,
we develop methods to compute the expected number of edges
efficiently. Finally, we adapt classical peeling-decoding techniques
to reduce the number of nodes and edges in the input-output flow
network.

Index Terms—Bee identification problem, DNA-based data
storage, multidraw channels, deletion channels.

I. INTRODUCTION

IN 1953, when Watson and Crick proposed the double helix
model of the DNA molecule [2], they wrote: “It has not

escaped our notice that the specific pairing that we have
postulated immediately suggests a possible copying mecha-
nism for the genetic material.” In the same year, the authors
described the details of this replication mechanism [3] and
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more than seven decades later, the polymerase chain reac-
tion (PCR) and other amplification techniques that exploit this
copying mechanism have become an essential component in
many bioengineering applications. Of interest to this paper are
the following applications.

1) DNA based data storage: Here, digital information is
written onto synthetic DNA strands, that are in turn
stored in a container in an unordered manner. Since the
first experiments conducted by Church et al. in 2012 [4]
and Goldman et al. in 2013 [5], there have been a
flurry of experimental demonstrations (see [6], [7], [8]
for a survey). To date, the “largest” experiment is due
to Organick et al. where the amount of data stored is
200MB [9].

2) Pooled Testing of Viral RNA: Recently, to increase the
testing throughput for COVID-19 infections, Schmid-
Burgk et al. developed a procedure where multiple
DNA samples are pooled, sequenced and analyzed en
masse [10]. Unlike classical group testing, Schmid-
Burgk et al. inserted barcodes / codewords in each
sample to facilitate identification. As before, during
this testing procedure, multiple copies of each DNA
strand are created and the authors were able to reli-
ably identify the viral samples. Later, similar experi-
ments were replicated with different codebook / barcode
spaces demonstrating the feasibility of the pooled testing
approach [11], [12], [13], [14].

In both applications, to read the information on either a
synthetic DNA data block or a viral RNA sample, the user
typically employs a sequencing platform that creates multiple
copies of the same strand. The sequencer then reads all these
copies and provides multiple (possibly) errononeous reads to
the user. Even though multiple reads allow the user to store
more information or augment the testing capacity [15], [16],
the unsorted nature of DNA strands poses certain computation
problems. More concretely, in DNA based storage system,1

a file is typically broken into many information blocks and
stored onto different DNA strands, where their relative order is
not preserved. Hence, when the user retrieves the information,
in addition to decoding the data, the user has to determine
the identity of the data that each strand stored. Now, a typical
solution is to simply have a set of addresses and have each
DNA strand to store this address information in its prefix. As
the addresses are also known to the user, the user is able to
identify the information after the decoding process.

1There are numerous works that address the unsorted nature of DNA-
based data storage system and we provide a short survey at the end of this
introduction.

2641-8770 c© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSIDAD DE VIGO. Downloaded on October 11,2024 at 06:56:10 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-5611-0848
https://orcid.org/0000-0003-3303-9078
https://orcid.org/0000-0002-9851-5234


CHRISNATA et al.: BEE IDENTIFICATION PROBLEM FOR DNA STRANDS 191

However, as these addresses may also be corrupted, this
solution requires further refinements and we discuss one exper-
imental approach adopted by Organick et al. [9]. Here, the
reads are first clustered with respect to the edit distance. Then
the authors determine a consensus output amongst the reads in
each cluster and finally, decode these consensus outputs using
a classic concatenation scheme. For this approach, the clus-
tering step is computationally expensive and in [17], a subset
of the authors developed a distributed approximate cluster-
ing algorithm and clustered 5 billion reads in 46 minutes on
24 processors.

In this work, we study a method that avoids clustering. Here,
we use the fact that the addresses codebook C is available to
the user. Instead of clustering the entire reads, we look at the
collection2 of prefixes Y of the reads and assign each prefix
y ∈ Y to a certain address π(y) � x ∈ C. If we assume cer-
tain channel characteristics, that is, the probability of prefix y
given an address x is P(y|x), then the likelihood of an assign-
ment can be computed to be

∏
y∈Y P(y|π(y)). Therefore, our

optimization objective is to find an assignment that maximizes
this probability. We formally define this problem in Section II.

We remark that our approach generalizes the bee identi-
fication problem originally proposed by Tandon et al. [18].
Informally, the bee identification problem requires the receiver
to identify M “bees” using a set of M unordered noisy mea-
surements. Tandon et al. studied the binary symmetric channel
and showed that decoding the noisy measurements jointly
results in a significantly smaller probability of erroneous iden-
tification [18]. Later, Kiah et al. investigated efficient ways of
performing this joint decoding [19]. Specifically, for the binary
erasure and binary symmetric channels, they reduced the bee-
identification problem to certain combinatorial optimization
problems. Then, applying well-known algorithms, they demon-
strated that joint decoding can be performed in polynomial
time (in M).

Here, we extend this model by assuming that each of the
M bees results in N noisy measurements with N ≥ 1, and
we call this the bee identification problem for multi-draw
channels. Our first contribution is to reduce this identifica-
tion problem to the problem of finding a minimum-cost flow
on a related bipartite flow network, which we call the input-
output flow network. Then, applying the Edmonds-Karp or
Tomizawa algorithm [21], [22], we show that the bee iden-
tification problem for multi-draw channels can be solved in
O(M3) time, where N is fixed. To reduce the running time
complexity, we explore the use of peeling decoders to further
reduce the number of nodes and edges in the input-output flow
network in Section II-D.

Since the complexity of the network flow algorithm scales
with the number of edges, we provide estimates on the
expected number of edges. In Section III, we first study this
number for any general channel S. Next, similar to [19], our

2As pointed out a reviewer, here we are assuming that we are able to
accurately determine the corrupted prefix. A naive, and slightly costly, solution
is to separate the index and the file in each strand via some marker sequence,
like a run of � zeroes, and then forbid the file from containing such a run.
A comprehensive study is given by [20]. A potential research direction is to
determine the optimality of this solution.

second contribution is a detailed study of the input-output flow
network in the context of deletion channels in Section IV and
insertion channels in Section V. Since the analysis for the
deletion channels and for the insertion channels are similar,
we focus our in-depth analysis on the deletion channels. For
certain codebooks, we obtain closed formulae for the expected
number of edges and in the case when C = {0, 1}n, we show
that the expected edge density of the network tends to zero
when the deletion probability is less than 1/2. This implies
that the expected running time of the algorithm for the dele-
tion channel is sub-cubic. For other codebooks, determining
the expected number of edges is challenging. Nevertheless,
we develop techniques to compute this quantity in polynomial
time (in n) for any code that can be defined with linear syn-
drome in Section IV-B. In the next section, we formally define
our problem and describe our contributions.

A. DNA-Based Data Storage

For completeness, we survey some works that address the
unsorted nature of DNA-based data storage system.

1) Clustering-Correcting Codes: As described earlier, to
protect against the corruption, a solution is to cluster
the reads with respect to certain metric [9], [17]. As
this approach is computationally expensive, the authors
in [23] proposed a new family of codes called clustering-
correcting codes: These codes ensure that if the distance
between the addresses of two strands is small, then the
distance between their data blocks is large. In [23], the
authors then exploited this property to cluster the strands
correctly, even in the presence of errors.

2) Coding over Sets: To study this storage systems, another
line of work proposed a new channel model where data
is sent as an unordered set of strings. The channel is
sometimes referred to as the shuffling channel (see [8]
and the references therein), while the code design
problem is referred to as coding over sets [24]. Families
of such codes are constructed in [24], [25], [26], while
fundamental limits of such channels are studied in [8],
[27], [28], [29], [30].

3) Coding for Random Access: In the previous approach, all
files have to be read to retrieve any information. In order
to read a specific block of the information, Yazdi et al.
proposed a strategy that exploits the DNA hybridiza-
tion process to randomly access encoded DNA strands.
Coding design considerations were provided in [31],
while explicit codes were constructed in [32], [33].

II. PROBLEM FORMULATION

Let N and M be positive integers. Let [M] � {1, 2, . . . , M}.
An N-permutation π over [M] is an NM-tuple (π(i))i∈[MN]
where every symbol in [M] appears exactly N times, and we
denote the set of all N-permutations over [M] by SN(M). Let
� be an alphabet of size two and �n denote the set of all
binary words of length n. Let �∗ = ∪∞

n=0�
n. We consider

a length-n code C ⊆ �n with M codewords x1, x2, . . . , xM .
Consider, in addition, a channel S where the output y given
an input x is received with probability P(y|x).
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In our setup, we send all M codewords over the chan-
nel S and suppose that each codeword results in exactly
N outputs. Therefore, we obtain an unordered multiset
of MN outputs {y1, y2, . . . , yMN}. Note that the outputs
yiN−N+1, yiN−N+2, . . . , yiN are not necessarily the channel
output of xi and in fact, our task is to find an N-permutation π

over [M] such that yi is most likely to be the channel output
of the input xπ(i) for all i ∈ [MN]. Formally, assuming the
channels are independent, our task is as follows.

(Bee Identification for Multi-draw Channels). To
find an N-permutation π over [M] so as to maximize
the probability

∏MN
i=1 P(yi|xπ(i)).

We emphasize that codebook C is known to both the sender
and receiver. In particular, the channel inputs x1, x2, . . . , xM

are known to the receiver and the receiver’s task is to assign
each channel output y to some channel input x.

A. A Bipartite Flow Network

To perform our identification task, we define the input-
output flow network GN = (V,E,γγγ ,δδδ) using the M codewords
C = {xi : i ∈ [M]} and MN outputs Y = {yj : j ∈ [MN]}.

1) Nodes: The set of left and right nodes corresponds to
the set of M codewords and the multiset of MN outputs,
respectively. In other words, V � C ∪ Y.

2) Demands: For each left node / codeword x ∈ C, we
assign the demand δδδ(x) � −N, while for each right
node / output y ∈ Y, we assign the demand δδδ(y) � 1.

3) Edges: For a codeword x and an output y, we draw the
edge from x to y if and only if it is possible to obtain
the channel output y from the input codeword x, that is,
P(y|x) > 0. Hence, E � {(x, y) ∈ C × Y : P(y|x) > 0}.

4) Costs: For an edge (x, y) ∈ C × Y, we assign the
cost γγγ (x, y) = − log2 P(y|x). Note that the cost is
well-defined as the value P(y|x) is necessarily positive.

Given the input-output flow network GN , the minimum-cost
network flow problem is defined as follows.

min
∑

(x,y)∈E
f
(
x, y

)
γγγ
(
x, y

)

s.t.
∑

y∈Y
f
(
x, y

) = −δδδ(x) = N for every x ∈ C, (1)

∑

x∈C
f
(
x, y

) = δδδ
(
y
) = 1 for every y ∈ Y, (2)

f
(
x, y

) ∈ {0, 1} for all
(
x, y

) ∈ E.

Consider a flow f in GN with cost γγγ (f ) �∑
(x,y)∈E f (x, y)γγγ (x, y). That is, f fulfills both (1) and (2).

We construct an N-permutation π as follows: set π(j) = i
if and only if f (xi, yj) = 1. It follows from (2) that π(j) is
assigned a value for all j ∈ [MN]. From (1), we have that
every i ∈ [M] appears exactly N times in π , and so, π is
an N-permutation. Finally, we observe that

∏MN
i=1 P(yi|xπ(i))

is given by 2−γγγ (f ). Therefore, minimizing the cost of a flow

in GN is equivalent to maximizing the probability for the
bee-identification problem for multi-draw channels.3

For the binary erasure channel (BEC) and binary symmet-
ric channel (BSC), when N = 1, the preceding algorithm
reduces to the bee-identification problem to the problem of
finding a perfect matching and minimum-cost matching in G1,
respectively [19]. In this work, we focus on the deletion chan-
nel and the insertion channel, denoted by Del(p) and Ins(p)

respectively.
We provide a similar definition of the probabilistic dele-

tion and insertion channels as in [34] with little modification,
described in a general setting as follows.

Definition 1: The general insertion/deletion channel
sequentially takes an input symbol from a sent codeword
x = x1x2, . . . xn of length n, and constructs a variable length
output y = y1y2 · · · ∈ �∗ sequentially. The general channel
is defined by three parameters, namely pins, pdel, and pcor,
where pins + pdel + pcor = 1. Let the input pointer be i and
the output pointer be j. The initial pointer positions are at
i = 1 and j = 1. For the purpose of this paper, we assume
that xn+1 = ε is an empty bit. This is to allow the possibility
of more insertions happening after the last bit xn. Iteratively,
we sample one of the following three events with their
corresponding probabilities until i = n + 2.

• Insertion with probability pins. Choose yj uniformly at
random from �. Increase j by one.

• Deletion with probability pdel. Increase i by one.
• Correct with probability pcor. Set yj = xi. Increase both

i and j by one.
In [34], the authors included an additional parameter psub to

denote the substitution probability. For this paper, we focus on
the pure deletion channel (without insertion) and pure inser-
tion channel (without deletion). One future direction is to
consider combinations of deletions and insertions occurring in
the same channel. In the deletion channel, we set pdel to be a
positive number 0 < p < 1 and pins to be zero. In other words,
each bit in a sent codeword is independently deleted with prob-
ability p > 0. More generally, the deletion multi-draw channel,
denoted by Del(p; N), results in N independent outputs for
each codeword sent through the deletion channel. Similarly,
for the insertion channel, we set pdel to be zero and pins to be
a positive number 0 < p < 1. More generally, the insertion
multi-draw channel, denoted by Ins(p; N), results in N inde-
pendent outputs for each codeword sent through the insertion
channel. In the next few subsections, we discuss in detail how
we define the edge costs corresponding to the deletion and
insertion channels.

B. The Deletion Channel

First, we describe the solution and our result for the deletion
channel, where the probability pdel is a positive number 0 <

3This problem can be generalized to the case when each codeword results
in at most N outputs. In this case, we can modify the network in Section II-A
to address this. Specifically, when there are N′ < MN right nodes, we include
another MN − N′ right auxiliary nodes. For each of the M left nodes, we
draw an edge to each right auxiliary node. The cost of each edge is then set
to ∞. Then applying the minimum cost flow algorithm, we find the maximum-
likehood N-permutation.
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p < 1. For a codeword x and an output y, the probability
P(y|x) is given by Emb(x, y)pd(1−p)n−d. Here, d = |x|−|y| is
the number of deletions, while Emb(x, y) denotes embedding
number of y in x, that is, the number of times y occurs as
a subsequence of x. When P(y|x) > 0, we draw an edge
between x and y and we assign the cost − log2 Emb(x, y) −
d log2 p−(n−d) log2(1−p), where the logarithm base is two.

Example 1: Consider the multi-draw deletion channel with
p = 0.2 and N = 2. Let C = {0000, 1001, 0110, 1111} be
the code with M = 4 codewords of length four. This is a
Varshamov-Tenengolts (VT) code [35].

Suppose that we pass all four words through the channel
and obtain the following eight outputs are:

y1 = 0, y2 = 11, y3 = 11, y4 = 000,

y5 = 000, y6 = 0110, y7 = 0110, y8 = 1111.

Next, we describe the input-output flow network GN . For
the demand values, we simply have δδδ(x) = −2 for x ∈ C and
δδδ(y) = 1 for y ∈ Y. To display the cost values, we use a
4 × 8-table to reduce clutter. Here, the (i, j) entry is given by
the cost of the edge (xi, yj), i.e., − log2 P(xi, yj), and when
there is no edge between xi and yj, we write the entry as ∞.

Highlighted in blue are the edges whose flow values are one
in a minimum-cost flow of GN . Notice that in each row and
column, the number of blue edges are two and one, respec-
tively. This meets the respective flow constraints (1) and (2).
Then the corresponding maximum likelihood N-permutation is
given by (2, 2, 4, 1, 1, 3, 3, 4). Note that a minimum-cost flow,
or equivalently, a maximum-likelihood N-permutation, is not
unique. We refer to the reader to the concluding remarks for
a discussion.

In what follows, we discuss how to obtain this minimum-
cost flow efficiently. To this end, we apply the algorithm
of Edmonds and Karp [21], and Tomizawa [22], to com-
pute a minimum-cost flow, and hence, a maximum likehood
N-permutation, in O(|V|(|E|+ |V| log2 |V|)) time. However, in
the worst case, the network GN may form a complete bipartite
graph. That is, |E| = NM2 where M is the size of the code.
Thus, in the worst case, the running time of this method is
cubic in the number of codewords M.

However, observe that the input-output network GN in
Example 1 is sparse, that is, |E| = 14 is small as compared
to NM2 = 32. In this paper, under certain mild assumptions,
we show that on average this is indeed the case, that is, the
expected number of edges is o(M2). Specifically, for a code-
book C and channel S, we use BN(C; S) to denote the expected
number of edges in the input-output flow network GN . When
the codebook comprises all binary words of length n and the
deletion probability p is less than 1/2, we have the following
result which is immediate from Proposition 8 in Section IV.

Theorem 1: Let S = Del(p; N) for fixed values of p and N.
For p < 1/2, we have then BN({0, 1}n; S) ≤ NM1+ε , where

M = 2n and 0 < ε < 1 is a constant dependent only on p.
Therefore, the expected running time of the minimum-cost
flow algorithm is o(M3). Here, asymptotics are with respect
to n.

Furthermore, in Proposition 8, we show that the threshold
p = 1/2 is tight. Specifically, we demonstrate that the quantity
BN({0, 1}n; S)/NM2 tends to 1/2 and 1, when p = 1/2 and
p > 1/2, respectively. To obtain this result, we provide closed
formula for B1({0, 1}n, S) using combinatorial techniques.
Similar formulae are obtained for constant-weight and even-
weight codebooks. For other codebooks, this enumeration
problem is nontrivial and it is not clear that BN(C; S) can be
computed in polynomial time. Nevertheless, in Section IV-B,
we use standard dynamic programming techniques to com-
pute BN(C; S) in polynomial time for a class of codebooks.
We remark that this class is rather general and includes many
classical codes such as linear codes and VT codes.

C. The Insertion Channel

Similar to the deletion channel, we now describe the solu-
tion and our result for the insertion channel, where the
probability pins is a positive number 0 < p < 1. For a code-
word x and an output y, the probability P(y|x) is given by
Emb(y, x)pd(1 − p)n, where d = |y| − |x| is the number of
insertions. When P(y|x) > 0, we draw an edge between x
and y and we assign the cost − log2 Emb(y, x) − d log2 p −
n log2(1−p), where the logarithm base is two. Similarly to the
deletion channel, we then apply the algorithm of Edmonds and
Karp [21], and Tomizawa [22], to compute a minimum-cost
flow in O(|V|(|E| + |V| log2 |V|)) time.

D. Pruning With the Peeling Decoder

Next, we reduce the running time of the network flow algo-
rithm by pruning away certain nodes and edges. To do so,
we modify the classic peeling decoders used in graph-based
codes [36]. Intuitively, we search for degree-one nodes in
the input-output network GN . For any such node u with the
edge uv, we must assign u to v. In such cases, we either remove
u or v and the edge uv from the network. Specifically, we do
the following.

• If the output y is a degree-one node and x is the only
node adjacent to y, we remove the output node y and the
edge xy. We also increase the demand of x by one and
if the resulting demand is zero, we also remove the node
x too.

• If the codeword x is a degree-one node and y is the only
node adjacent to x, we then remove both nodes x and y
and all edges incident to the node y.

We repeat this procedure until neither of these rules can
be applied. That is, there is no degree-one node in the
resulting flow network. We then denote this flow network
by G∗

N .
Example 2: Continuing Example 1, we remove nodes and

edges from GN according to the rules. Then the resulting
network G∗

N has only codewords x2 and x4 with outputs y2
and y3.
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Here, the resulting demand is δδδ(x2) = δδδ(x4) = −1.
Applying the network flow algorithm to G∗

N recovers the same
solution as in Example 1.

As before, since the running time of the network flow
algorithm depends on the number of nodes and edges, we
are interested in determining the size of G∗

N . Specifically, we
estimate A∗

N(C; S) and B∗
N(C; S) which denote the expected

number of nodes and edges, respectively, in G∗
N .

III. EXPECTED NUMBER OF EDGES FOR GENERAL

MULTIDRAW CHANNELS

Throughout this section, we fix some codebook C with M
codewords. We send all M codewords through a general multi-
draw channel S and obtain NM noisy outputs. Following the
preceeding section, we then construct the input-output flow
network GN . First, we study the expected number of edges
in GN for any general channel S and denote this quantity by
BN(C; S).

Now, let the codewords in C be x1, x2, . . . , xM . For i ∈ [M],
let the N random noisy outputs of xi be yi,1, yi,2, . . . , yi,N . For
i, j ∈ [M] and k ∈ [N], we consider the event that we insert
an edge between codeword xi and output yj,k. Recall that we
insert an edge if and only if the channel probability P(yj,k|xi)

is strictly positive. As the expected number of edges in GN is
given by the sum of these probabilities, we have the following
proposition.

Proposition 1: If Q(x ≺ x′) denote the probability that an
output of x is also an output of x′ i.e., the probability that
there exists an edge from x′ to the output of x in the bipartite
flow network, then we have

B1(C; S) =
∑

x∈C

∑

x′∈C
Q
(
x ≺ x′), (3)

BN(C; S) =
N∑

k=1

∑

x∈C

∑

x′∈C
Q
(
x ≺ x′) = NB1(C; S). (4)

Proof: Suppose that the code C has M codewords
x1, x2, . . . , xM and there are MN random variable outputs,
Y = {yi,j : 1 ≤ i ≤ M, 1 ≤ j ≤ N}, where yi,j is
the random variable of the j-th output of xi. Note that the
expected number of edges in the network GN is simply∑

x∈C
∑

y∈Y P(there exists an edge from x to y). And since
all the outputs of the channel S are independent, we have
P(there exists an edge from xi to yj,k) = Q(xj ≺ xi), for
any k. Therefore we have BN(C; S) = N

∑
x∈C

∑
x′∈C Q(x ≺

x′) = NB1(C; S).

Therefore, it suffices to compute B1(C; S) for general code-
books and channels. For the binary symmetric and binary
erasure channels, we have the following results on the expected
number of edges from [19].

Proposition 2 [19, Lemma 3]: If S is the BSC, then
B1(C; S) = |C|2. If S is the BEC with erasure probability p,
then B1(C; S) = D(p) where D(z) is the distance enumerator

of the code C. Here, D(z) is the polynomial D(z) = ∑n
i=0 Dizi,

where Di is the number of pairs of (not necessarily distinct)
codewords with distance i.

Since determining the distance enumerator D(z) for a gen-
eral linear code is NP-hard [37], we have that evaluating the
quantity B1(C; S) is also NP-hard4 when S is the binary era-
sure channel. Therefore, we conjecture that the problem of
determining B1(C; S) is also difficult when S is the dele-
tion channel. Nevertheless, in the next section, we study
this problem and obtain closed formulas for certain special
codebooks.

Here, we continue our discussion for general multidraw
channels. Using the peeling decoder described in Section II-D,
we can reduce the number of edges and vertices and obtain the
flow network G∗

N . Recall that A∗
N(C; S) and B∗

N(C; S) denote
expected number of nodes and edges, respectively, in G∗

N .
It turns out we can bound these values using the quantity
B1(C; S) defined in (3).

To this end, we estimate the number of degree-one nodes
in GN .

Proposition 3: The expected number of degree-one right
(output) nodes in GN is at least N(M − B1(C; S)/2).

Proof: We adopt the notation in the proof of Proposition 1.
For any output yi,j, the expected degree of yi,j (in GN) is∑

x∈C Q(xi ≺ x)). Then by Markov inequality, the probability
that yi,j has degree at least two is at most 1

2

∑
x∈C Q(xi ≺ x).

That is, the probability that yi,j has degree one is at least
1 − 1

2

∑
x∈C Q(xi ≺ x). Therefore, the expected number of

degree-one right nodes is at least

∑

i∈[M]

∑

j∈[N]

(

1 − 1

2

∑

x∈C
Q(xi ≺ x)

)

= N

(

M − 1

2

∑

x′∈C

∑

x∈C
Q
(
x′ ≺ x

)
)

= N

(

M − B1(C; S)

2

)

.

Corollary 1:

A∗
N(C; S) ≤

{
M + NB1(C;S)

2 , if N ≥ 2,

B1(C; S), if N = 1.

B∗
N(C; S) ≤ N

(
3

2
B1(C; S) − M

)

.

Proof: Recall that all degree-one nodes and their corre-
sponding edges must be removed at the first step. Thus, using
Proposition 3, the remaining number of edges is at most
NB1(C; S) − N(M − B1(C; S)/2) and the remaining number
of nodes is at most M(N + 1) − N(M − B1(C; S)/2). Note in
the case for N = 1, the expected number of degree-one left
nodes is also given by M − B1(C, S)/2 and these nodes can
be removed.

For the next two sections, we analyse the enumeration of
the expected number of edges for two particular channels,
namely the deletion channel and the insertion channel. Firstly,

4Suppose otherwise that there is a polynomial-time method to evaluate D(p)

for 0 ≤ p ≤ 1. Then we can evaluate D(z) at n+1 distinct points and recover
the coefficients of D(z) in polynomial time using Lagrange interpolation.

Authorized licensed use limited to: UNIVERSIDAD DE VIGO. Downloaded on October 11,2024 at 06:56:10 UTC from IEEE Xplore.  Restrictions apply. 



CHRISNATA et al.: BEE IDENTIFICATION PROBLEM FOR DNA STRANDS 195

in Section IV, we focus on the deletion channel, and give a
closed expression of the expected number of edges when the
codes are all binary words, even-weight codes and constant-
weight codes. Furthermore, in Section IV-A, we observe that
the edge density of the flow network in the deletion chan-
nel is polarized. Since our closed expression only works for
certain codes, we give an alternative enumeration method via
a dynamic programming approach in Section IV-B that works
for any code that can be defined by a linear sydnrome. Finally,
in Section V, we do a similar analysis for the insertion channel.

IV. DELETION CHANNEL

Throughout this section, we have that S = Del(p), for
0 < p < 1. Observe from (4) and Corollary 1 that the
quantity B1(C; Del(p)) is useful for providing estimates on
the sizes of the networks GN and G∗

N . Hence, we study
B1(C; Del(p)), and for brevity, we write this quantity as
B(C; Del(p)). Our first proposition states that the problem of
determining B(C, Del(p)) is equivalent to certain enumeration
problems concerning subsequences.

Proposition 4: Fix any code C ⊆ �n. We have that

B(C, Del(p)) =
n∑

t=0

∑

z∈�n−t

I(z;C)I∗(z;C)pt(1 − p)n−t. (5)

Here, I(z;C) denotes the number of words in C that contain z
as a subsequence, while I∗(z;C) = ∑

x∈C Emb(x, z). In other
words, I∗(z;C) counts the total number of occurrences of z
amongst all codewords in C.

Proof: Observe that for the Del(p)-channel, the quantity
Q(x ≺ x′) denotes the probability that an output of x is a
subsequence of x′. So, for 0 ≤ t ≤ n, if we use Dt(x) to
denote the set of all (n − t)-subsequences of x, then we have
Q(x ≺ x′) = ∑n

t=0
∑

z∈Dt(x) Emb(x, z)I(z ∈ x′)pt(1 − p)n−t.
Here, we use I(z ∈ x′) to denote the indicator function for the
event that z is a subsequence of x′. Using this expression and
switching the order of summation, we can rewrite (3) as

B(C, Del(p))

=
n∑

t=0

pt(1 − p)n−t
∑

z∈�n−t

∑

x∈C

∑

x′∈C
Emb(x, z)I

(
z ∈ x′)

=
n∑

t=0

pt(1 − p)n−t
∑

z∈�n−t

(
∑

x∈C
Emb(x, z)

)(
∑

x′∈C
I
(
z ∈ x′)

)

.

Since
∑

x∈C Emb(x, z) and
∑

x′∈C I(z ∈ x′) yields
the quantities I∗(z;C) and I(z;C), respectively, we
obtain (14).

Next, we look at the quantities I(z;C) and I∗(z;C) for the
following codebooks:

An � {0, 1}n,

En �
{
x ∈ {0, 1}n : wt(x) is even

}
,

Cn,w �
{
x ∈ {0, 1}n : wt(x) = w

}
.

The quantity I(z;C) has been studied in other con-
texts [38], [39]. Of significance, I(z; {0, 1}n) depends on |z|
and n only, while I(z;C(n, w)) depends on |z|, wt(z), n, and w

only. In both cases, this quantity does not depend on the actual
string z. Specifically, we have the following proposition.

Proposition 5 [38], [39]: Let |z| = n − t. Then,

I(z;An) =
t∑

i=0

(
n

i

)

� IA(n, t). (6)

Furthermore, if wt(z) = u,

I
(
z;Cn,w

)

� IC(n, w, t, u)

=
{(n

w

)
, if u = 0 and w ≤ t,

∑t−w+2u
i=u

( i−1
u−1

)( n−i
w−u

)
, if u ≥ 1.

(7)

Moreover,

I(z;En) =
� n

2
∑

k=0

I
(
z;Cn,2k

)
. (8)

Next, using standard combinatorial identities in enumera-
tive combinatorics [40], we have the following results. For
completeness, we also provide the proof below.

Proposition 6: If |z| = n − t and wt(z) = u, then

I∗(z;An) = 2t
(

n

t

)

, (9)

I∗(z;Cn,w
) =

(
n

t

)(
t

w − u

)

, (10)

I∗(z;En) =
⎧
⎨

⎩

2t−1
(n

t

)
, if t ≥ 1,

1, if t = 0, u is even,

0, if t = 0, u is odd.

(11)

Proof: First, we give a proof of (9). Since |z| = n − t, after
t insertions, we have a supersequence of length n. Counting
multiplicity, the multiset of supersequences of z of length n
can be obtained by choosing (n− t) positions out of n to place
the bits of z in order and then determining the rest of the t
empty slots to be either 0 or 1. Thus the size of the multiset
of supersequences is 2t

( n
n−t

) = 2t
(n

t

)
.

Next, we give a proof of (10). Counting multiplicity, the
multiset of supersequences of length n of z can be obtained
by choosing (n−t) positions to place the bits of z in order, and
then choosing w − u positions out of the remaining t empty
slots to place 1’s. Finally the remaining t − (w − u) positions
will be filled with 0’s, and thus the supersequence is of length
n and weight w. Thus the size of the multiset of supersequence
is
(n

t

)( t
w−u

)
.

Finally, we give a proof of (11). The case of t = 0 is obvi-
ous. Thus we give a proof of when t ≥ 1. From the previous
part, we have I∗(z;En) = ∑

w is even I∗(z;Cn,w). If u is odd,
then I∗(z;En) = (n

t

){( t
1

)+ ( t
3

)+ · · · } = (n
t

)
2t−1. If u is even,

then I∗(z;En) = (n
t

){( t
0

)+ ( t
2

)+ · · · } = (n
t

)
2t−1.

Using (5)–(10), we then obtain the following closed formu-
lae for the expected number of edges.

Theorem 2: For all n,

B(An, Del(p)) = 2n
n∑

t=0

t∑

i=0

(
n

i

)(
n

t

)

pt(1 − p)n−t. (12)
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For w ≤ n,

B
(
Cn,w, Del(p)

)

=
n∑

t=0

w∑

u=0

(
n − t

u

)(
n

t

)(
t

w − u

)

IC(n, w, t, u)pt(1 − p)n−t. (13)

Proof: From (5), (6) and (9), we have

B(An, Del(p))

=
n∑

t=0

∑

z∈�n−t

I(z;An)I
∗(z;An)p

t(1 − p)n−t

=
n∑

t=0

2t
(

n

t

)

pt(1 − p)n−t
∑

z∈�n−t

t∑

i=0

(
n

i

)

=
n∑

t=0

2t
(

n

t

)

pt(1 − p)n−t2n−t
t∑

i=0

(
n

i

)

= 2n
n∑

t=0

t∑

i=0

(
n

i

)(
n

t

)

pt(1 − p)n−t.

For w ≤ n, we have from (5), (7) and (10),

B
(
Cn,w, Del(p)

)

=
n∑

t=0

∑

z∈�n−t

I
(
z;Cn,w

)
I∗(z;Cn,w

)
pt(1 − p)n−t

=
n∑

t=0

w∑

u=0

∑

z∈Cn−t,u

I
(
z;Cn,w

)
I∗(z;Cn,w

)
pt(1 − p)n−t

=
n∑

t=0

w∑

u=0

(
n − t

u

)

IC(n, w, t, u)

(
n

t

)(
t

w − u

)

pt(1 − p)n−t.

Now, for the codebook with even-weight words, one can
apply (8) and (11) directly. However, the formula becomes
unwieldy. Nevertheless, in what follows, we show that the
expected number of edges when C = En is approximately
a quarter of the expected number of edges when C = An.
Specifically, we have the following theorem.

Lemma 1: If n is odd,

B(En, Del(p)) = 1

4
B(An, Del(p)) + 2n−2(1 − p)n. (14)

To prove this lemma, we use the following combinatorial
proposition.

Proposition 7: Let 0 ≤ t ≤ n. If n is odd, then

∑

z∈{0,1}n−t

I(z;En) = 1

2

∑

z∈{0,1}n−t

I(z;An). (15)

Proof: For z ∈ {0, 1}n−t, we let z be the complement of z.
We consider the codebook On � {x ∈ {0, 1}n : wt(x) is odd},
and the sets I(z;En) = {x ∈ En : z ∈ x} and I(z;On) = {x ∈
On : z ∈ x}. Recall that z ∈ x if and only if z is a subsequence
of x. Since x ∈ I(z;En) if and only if x ∈ I(z;On). The two
sets have the same cardinality.

Therefore,

I(z;En) + I(z;En) = I(z;En) + I(z;On) = I(z,An).

Summing this equation over all z ∈ {0, 1}n−t, we
obtain (15).

Proof of Lemma 1: It is immediate from (9), (11) and (15)
that for t ≥ 1,

∑

z∈{0,1}n−t

I(z;En)I
∗(z;En) = 1

4

∑

z∈{0,1}n−t

I(z;An)I
∗(z;An).

So, we have that

B1(En, Del(p))

= 1

4

(
B(An, Del(p)) − 2n(1 − p)n)+ 2n−1(1 − p)n

= 1

4
B1(An, Del(p)) + 2n−2(1 − p)n.

Unfortunately, we are unable to obtain similar expression
to the case where n is even. Nevertheless, as we observe in
Figure 1(b), the edge density polarizes in a fashion similar to
the case where n is odd.

A. Polarization of Edge Density

In this subsection, we consider a family of codebooks
{Cn : n ≥ 1} with increasing block lengths n, and
study the quantity limn→∞ B(Cn, Del(p))/|Cn|2. Observe that
B(Cn, Del(p))/|Cn|2 represents the expected edge density of
the graph G1. When Cn = An, the next proposition states that
this density approaches zero whenever the deletion probability
is strictly less than half.

Proposition 8: Let C = An and M = 2n. For 0 ≤ p < 1/2,
set β = √

p/(
√

p + √
1 − p) and choose ε > H(β). Then for

sufficiently large n, we have that B(An, Del(p)) ≤ M1+ε =
o(M2).

Proof: Changing the order of summation in (12), we have
that

B(An, Del(p)) = 2n
n∑

i=0

(
n

i

) n∑

t=i

(
n

t

)

pt(1 − p)n−t.

Set t′ = �(n+1)p
 and we upper bound the above sum in two
parts. Specifically, for 0 ≤ i ≤ t′, we show that the sum is at
most 2(1+H(p))n, while for t′+1 ≤ i ≤ n, we show that the sum
is at most n22(H(β)+1)n with β as defined in the proposition.

First, for 0 ≤ i ≤ t′, we have
(

n

i

) n∑

t=i

(
n

t

)

pt(1 − p)n−t ≤
(

n

i

) n∑

t=0

(
n

t

)

pt(1 − p)n−t =
(

n

i

)

.

Hence,

2n
t′∑

i=0

(
n

i

) n∑

t=i

(
n

t

)

pt(1 − p)n−t ≤ 2n
t′∑

i=0

(
n

i

)

≤ 2(1+H(p))n, (16)

as required. Next, it follows from standard facts of the
binomial distribution that for all t,

(
n

t

)

pt(1 − p)n−t ≤
(

n

t′

)

pt′(1 − p)n−t′ ≤ 1, (17)

Furthermore, we have that
(

n

t

)

pt(1 − p)n−t ≥
(

n

s

)

ps(1 − p)n−s for all s ≥ t ≥ t′. (18)
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So, for t′ + 1 ≤ i ≤ n,
(

n

i

) n∑

t=i

(
n

t

)

pt(1 − p)n−t ≤ n

(
n

i

)(
n

i

)

pi(1 − p)n−i,

we have that

2n
n∑

i=t′+1

(
n

i

) n∑

t=i

(
n

t

)

pt(1 − p)n−t ≤ n2n
n∑

i=0

(
n

i

)2

pi(1 − p)n−i.

Now, since log2(
(n

i

)2
pi(1 − p)n−i) is at most (2H(i/n) +

(i/n) log2 p+(1−i/n) log2(1−p))n, we maximize the function
2H(x)+x log2 p+(1−x) log2(1−p) in the interval 0 ≤ x ≤ 1.
By considering its first derivative, we have that the function is
maximized when x = √

p/(
√

p + √
1 − p) � β. Then for this

value of β, we have that
( n
βn

)2
pβn(1−p)n−βn ≤ ( n

βn

) ≤ 2H(β)n.
Therefore,

n2n
n∑

i=0

(
n

i

)2

pi(1 − p)n−i ≤ n22n · 2H(β)n = n22(H(β)+1)n. (19)

Finally, since p < 1/2, via standard manipulations, we have
that p < β < 1/2 and so, H(p) < H(β) < 1. Then, combining
both (16) and (19), we have that the expected number of edges
is at most 2(1+ε)n = M(1+ε) for any ε > H(β) and sufficiently
large n.

Applying (4), we obtain Theorem 1 and hence, on average,
the running time of the network flow algorithm is sub-cubic.
Next, to complete our analysis, we show that the thresh-
old p = 1/2 is tight and that the edge density polarizes.
That is, when p = 1/2, we no longer have the property
that B1(An, Del(p)) = o(M2) and when p > 1/2, we have
B1(An, Del(p)) approaches M2. Before we formally state the
result, we also observe that B1(En, Del(p)) share the same
polarization behavior as B1(An, Del(p)). This follows directly
from (14).

Proposition 9:

lim
m→∞

B(E2m+1, Del(p))

|E2m+1|2 = lim
n→∞

B(An, Del(p))

|An|2

=
⎧
⎨

⎩

0, if p < 1/2,
1
2 , if p = 1/2,

1, if p > 1/2.

Proof:
• When p < 1/2, the limit value is immediate from

Proposition 8.
• When p = 1/2, the expression (12) reduces to

B(An, Del(p)) =
n∑

t=0

t∑

i=0

(
n

t

)(
n

i

)

(20)

Note that by changing the order of summation, we have
that

B(An, Del(p)) =
n∑

i=0

n∑

t=i

(
n

t

)(
n

i

)

=
n∑

t=0

n∑

i=t

(
n

t

)(
n

i

)

. (21)

The second equality results from the renaming of vari-
ables. Then adding (20) and (21), we have

2B(An, Del(p)) =
n∑

i=0

n∑

t=0

(
n

t

)(
n

i

)

+
n∑

t=0

(
n

t

)2

.

Now,
∑n

i=0
∑n

t=0

(n
t

)(n
i

) = (
∑n

t=0

(n
t

)
)2 = 22n, while

∑n
t=0

(n
t

)2 = (2n
n

)
. Since

(2n
n

) ∼ 22n/
√

πn, we
have that limn→∞

(2n
n

)
/22n = limn→∞ 1/

√
πn = 0.

Therefore, limn→∞ 2B(An, Del(p))/22n = 1 and so,
limn→∞ B(An, Del(p))/22n = 1/2.

• When p > 1/2, we rewrite the expression (12) as

B(An, Del(p))

= 2n
n∑

i=0

(
n

i

) n∑

t=0

(
n

t

)

pt(1 − p)n−t

−2n
n∑

i=0

(
n

i

) i−1∑

t=0

(
n

t

)

pt(1 − p)n−t. (22)

For the first summand, we have

2n
n∑

i=0

(
n

i

) n∑

t=0

(
n

t

)

pt(1 − p)n−t = 2n
n∑

i=0

(
n

i

)

= 22n. (23)

For the second summand, we change variables by setting
t′ = n − t and i′ = n − i and we have

2n
n∑

i=0

(
n

i

) i−1∑

t=0

(
n

t

)

pt(1 − p)n−t

= 2n
n∑

i=0

(
n

i

) n∑

t′=n−i+1

(
n

t′

)

pn−t′(1 − p)t′

= 2n
n∑

i′=0

(
n

i′

) n∑

t′=i′+1

(
n

t′

)

pn−t′(1 − p)t′

≤ 2n
n∑

i′=0

(
n

i′

) n∑

t′=i′

(
n

t′

)

pn−t′(1 − p)t′ . (24)

Since p > 1/2, we have that (1 − p) < 1/2 and then
Proposition 8 implies that the second summand (24) is
o(M2). The proposition is then immediate from (22)
and (23).

Here, we conjecture that the same polarization phenomenon
is present for constant-weight codebooks.

Conjecture 1: Let 0 < ω < 1/2. There exists 0 < pω < 1,
a constant dependent on ω only, such that

lim
n→∞

B1
(
Cn,�ωn
, Del(p)

)

|Cn,�ωn
|2 =
{

0, if p < pω,

1, if p > pω.

In Figure 1, we exhibit this polarization phenomenon
numerically. Specifically, Figure 1(a) and (c) corroborate with
Proposition 9 and Conjecture 1, respectively.

B. Enumeration via Dynamic Programming

Here, we consider the problem of enumerating
B1(C, Del(p)) for a certain class of codebooks. Consider a
finite ring R that contains the q-ary alphabet �. We fix H to
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Fig. 1. Polarization behavior of expected edge density for certain codebooks over deletion and insertion channels. Exact formulas for edge densities are
given in Theorems 2 and 3. Figure 1(d) is obtained from Theorem 3 in Section V.

be a r × n-matrix over R and σσσ to be some syndrome in Rr.
Then we consider the codebook C is defined to where

C �
{
x ∈ �n : xHT = σσσ

}
.

If a codebook satisfies this definition, we say that the codebook
is defined by a linear syndrome and we remark this general
definition includes many classical codes.

• If R = Zn+1, � = {0, 1}, H = (1, 2, . . . , n) and σσσ = (a)

where a ∈ Zn+1, then the resulting codebook C is the
Varshamov-Tenengolts code [35] that corrects a single
deletion.

• If R = � = F2, H = (1, 1, . . . , 1) and σσσ = (0). Then
C = En. More generally, if we allow H to be any parity-
check matrix, then C is a binary linear code.

Before we describe the detailed recursive formulae and
the dynamic programming implementation, we first state the
running time of our proposed enumeration method.

Proposition 10: Let C be the q-ary code defined by a lin-
ear syndrome with ring R, r × n-matrix H and syndrome σσσ .
Then B(C, Del(p)) can be determined in O(n2q|R|2r) time. In
particular, if C is a VT code of length n, we can determine
B(C, Del(p)) in O(n6) time.

The proof of Proposition 10 will be discussed later
in the paper, but for now, we describe our enumera-
tion method. Let the columns of H be h1, h2, . . . , hn.
In other words, H = (h1, h2, . . . , hn). For z ∈ ��

with � ≤ n, we define its �-th partial syndrome
S�(z) = zHT

� , where H� = (h1, h2, . . . , h�). Note that
S�(z) ∈ Rr.

To simplify our exposition, we describe our method for the
binary alphabet � = {0, 1} only. The method can be easily
extended for nonbinary alphabet. First, we partition the set
of binary strings according to the positions of their last one
and/or zero. Let m ≤ n. Define B(m, �0, �1,ααα) to be the set
of binary strings x of length m whose last index is zero and
one are �0 and �1, respectively, such that Sm(x) = ααα. Observe
that we have either �0 = m and 0 ≤ �1 ≤ m − 1 or vice
versa. Here, we adopt the convention that �0 = 0 or �1 =
0 if the string contains all ones or all zeroes, respectively.
For simplicity, we define G(m,ααα) to be the number of binary
strings x of length m such that Sm(x) = ααα. Therefore, we
have the following recursion G(m,ααα) = G(m−1,ααα)+G(m−
1,ααα − hm), where G(0,ααα) = 1, if ααα = 0; and G(0,ααα) = 0,
otherwise.
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Next, we consider the quantity

T(i, a,ααα; j, �0, �1,βββ) �
∑

|x|=i,
xi=a,

Si(x)=ααα

∑

y∈B(j,�0,�1,βββ)

Q
(
x ≺ y

)
. (25)

To keep our notations succinct, we adopt the following
abbreviations.

T(i, a,ααα; j, ∗, �1,βββ) =
{∑j−1

k=0 T(i, a,ααα; j, k, j,βββ), if �1 = j > 0,

T(i, a,ααα; j, j, �1,βββ), if �1 < j,

T(i, a,ααα; j, �0, ∗,βββ) =
{∑j−1

k=0 T(i, a,ααα; j, j, k,βββ), if �0 = j > 0,

T(i, a,ααα; j, �0, j,βββ), if �0 < j,

T(i, a,ααα; j, ∗, ∗,βββ) = T(i, a,ααα; j, ∗, j,βββ) + T(i, a,ααα; j, j, ∗,βββ), if j > 0,

T(i, ∗,ααα; j, �0, �1,βββ) = T(i, 0,ααα; j, �0, �1,βββ) + T(i, 1; j, �0, �1,βββ), if i > 0,

T(i, ∗,ααα; j, �0, ∗,βββ) = T(i, 0,ααα; j, �0, ∗,βββ) + T(i, 1,ααα; j, �0, ∗,βββ), if i > 0,

T(i, ∗,ααα; j, ∗, �1,βββ) = T(i, 0,ααα; j, ∗, �1,βββ) + T(i, 1,ααα; j, ∗, �1,βββ), if i > 0,

T(i, ∗,ααα; j, ∗, ∗,βββ) = T(i, 0,ααα; j, ∗, ∗,βββ) + T(i, 1,ααα; j, ∗, ∗,βββ), if i > 0,

B(j, �0, ∗,βββ) =
{⋃j−1

k=0 B(j, j, k,βββ), if �0 = j > 0,

B(j, �0, j,βββ), if �0 < j,

B(j, ∗, �1,βββ) =
{⋃j−1

k=0 B(j, k, j,βββ), if �1 = j > 0,

B(j, j, �1,βββ), if �1 < j,

B(j, ∗, ∗,βββ) = B(j, j, ∗,βββ) ∪ B(j, ∗, j,βββ).

Recall that C comprises all words x of length n with
Sn(x) = σσσ . Hence, the quantity of interest B(C, Del(p)) is
given by T(n, ∗,σσσ ; n, ∗, ∗,σσσ ). The following base cases are
trivial and hence we state them without proof.

Lemma 2 (Base Cases): In what follows, we use the sym-
bol ? to represent any symbol, i.e., (?, ?) can be either (∗, ∗)

or (�0, ∗) or (∗, �1), or (�0, �1).
1) When i = 0, we have the following.

a) If j < 0, then T(0, a,ααα; j, �0, �1,βββ) = 0.
b) If j ≥ 0, then T(0, ∗, 0; j, ?, ?,βββ) = |B(j, ?, ?,βββ)|

and T(0, ∗,ααα; j, ?, ?,βββ) = 0, if ααα �= 0.
2) When i > 0, we have the following.

a) T(i, ∗,ααα; 0, ?, ?,βββ) = 0, if βββ �= 0.
b) T(i, ∗,ααα; 0, ?, ?, 0) = pi|{x ∈ {0, 1}i : Si(x) =

ααα}| = pi|B(i, ∗, ∗,ααα)| = piG(i,ααα).
Now, to compute the size of B, we use the following lemma.
Lemma 3 (Size of B): As before, we use the symbol ? to

represent any symbol, i.e., (?, ?) can be either (∗, ∗) or (�0, ∗)

or (∗, �1), or (�0, �1).
1) If j = 0, then |B(0, ?, ?, 0)| = 1 and |B(0, ?, ?,βββ)| = 0,

if βββ �= 0.
2) If j > 0, then

|B(j, ∗, ∗,βββ)| = G(j,βββ),

|B(j, �0, ∗,βββ)| =
{

G
(
�0−1,βββ−hj−hj−1−· · ·−h�0+1

)
, if 0<�0≤j,

G
(
0,βββ−hj−hj−1−· · ·−h1

)
, if 0=�0<j.

|B(j, ∗, �1,βββ)| =
{

G
(
�1−1,βββ−h�1

)
, if 0<�1≤j,

G(0,βββ), if 0=�1<j.

|B(j, �0, �1,βββ)| =
{

|B(j, ∗, �1,βββ)|=G
(
�1−1,βββ−h�1

)
if �0>�1>0,

G(0,βββ) if �0>�1=0.

|B(j, �0, �1,βββ)| =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

|B(j, �0, ∗,βββ)|=G
(
�0−1,βββ−hj−hj−1−· · ·−h�0+1

)
,

if 0<�0<�1,

|B(j, �0, ∗,βββ)|=G
(
0,βββ−h1−h2−· · ·−hj

)

if 0=�0<�1.

Next, we demonstrate the following recursion rules.
Lemma 4 (Recursion Rules): Let i > 0 and j > 0. We have

the following recursion rules.
1) If a = 0, �0 = j, then T(i, 0,ααα; j, j, �1,βββ) = pT(i −

1, ∗,ααα; j, j, �1,βββ) + (1 − p)T(i − 1, ∗,ααα; j − 1, ∗, �1,βββ).
2) If a = 0, �1 = j, then T(i, 0,ααα; j, �0, j,βββ) = pT(i −

1, ∗,ααα; j, �0, j,βββ)+ (1−p)T(i−1, ∗,ααα; �0 −1, ∗, ∗,βββ −
(
∑j

k=�0+1 hk)).
3) If a = 1, �0 = j, then T(i, 1,ααα; j, j, �1,βββ) = pT(i −

1, ∗,ααα − hi; j, j, �1,βββ) + (1 − p)T(i − 1, ∗,ααα − hi; �1 −
1, ∗, ∗,βββ − h�1).

4) If a = 1, �1 = j, then T(i, 1,ααα; j, �0, j,βββ) = pT(i −
1, ∗,ααα − hi; j, �0, j,βββ) + (1 − p)T(i − 1, ∗,ααα − hi; j −
1, �0, ∗,βββ − hj).

Proof: For 1), observe that T(i, 0,ααα; j, j, �1,βββ) is the sum of
Q(x ≺ y) for all x ∈ B(i, i, ∗,ααα) and y ∈ B(j, j, �1,βββ). Recall
that each bit in x is independently deleted with probability p.
So, we analyze according to the last bit of x, and perform
recursion on the remaining i − 1 bits. Given that the last bit
of x is deleted, then

∑
x∈B(i,i,∗,ααα)

∑
y∈B(j,j,�1,βββ) Q(x ≺ y)

= ∑
x∈B(i−1,∗,∗,ααα)

∑
y∈B(j,j,�1,βββ) Q(x ≺ y) = T(i − 1,

∗,ααα; j, �0, �1,βββ).
On the other hand, if the last bit of x = x1x2 . . . xi is

not deleted, then the output of x is a subsequence of y if
and only if the output of x1x2 . . . xi−1 is a subsequence of
y1y2 . . . yj−1, since y ends with 0 = xi. Thus given that
xi is not deleted, we have Q(x ≺ y) = Q(x1x2 . . . xi−1 ≺
y1y2, . . . yj−1). Thus, given that the last bit of x is not
deleted, we have that

∑
x∈B(i,i,∗,ααα)

∑
y∈B(j,j,�1,βββ) Q(x ≺ y) =∑

x∈B(i−1,∗,∗,ααα)

∑
y∈B(j−1,∗,�1,βββ) Q(x ≺ y) = T(i−1, ∗,ααα; j−

1, ∗, �1,βββ). Finally, combining the two cases, we obtain
recursion rule 1).

For 2), observe that T(i, 0,ααα; j, �0, j,βββ) is the sum of Q(x ≺
y) for all x ∈ B(i, i, ∗,ααα) and y ∈ B(j, �0, j,βββ). Similarly, we
can split away the analysis of the output of the last bit of x, and
do recursion on the remaining i−1 bits. Given that the last bit
of x is deleted, then

∑
x∈B(i,i,∗,ααα)

∑
y∈B(j,j,�1,βββ) Q(x ≺ y) =

T(i − 1, ∗,ααα; j, �0, �1,βββ). If the last bit of x = x1x2, . . . xi

is not deleted, then the output of x is a subsequence of y
if and only if the output of x1x2 . . . xi−1 is a subsequence
of y1y2 . . . y�0−1, since the last occurrence of 0 in y is at
y�0 . Therefore, given that xi is not deleted, Q(x ≺ y) =
Q(x1x2 . . . xi−1 ≺ y1y2 . . . y�0−1). Thus, given that the last bit
of x is not deleted, we have

∑
x∈B(i,i,∗,ααα)

∑
y∈B(j,�0,j,βββ) Q(x ≺

y) = ∑
x∈B(i−1,∗,∗,ααα)

∑
y∈B(�0−1,∗,∗,βββ−∑j

k=�0+1 hk)
Q(x ≺

y) = T(i − 1, ∗,ααα; �0 − 1, ∗, ∗,βββ − ∑j
k=�0+1 hk). Finally,

combining the two cases, we recursion rule 2).
The proof of 3) is similar to 2), and the proof of 4) is similar

to 1).
Finally, we provide a running time analysis for our enumer-

ation method and complete the proof of Proposition 10.
Proof of Proposition 10: For �q = {0, 1, . . . , q − 1}, we

are interested in T(n, ∗,σσσ ; n, ∗, ∗, . . . , ∗,σσσ) that represents

∑

a∈�q

∑

0≤�0,�1,...,�q−1≤n,

where �k=n for some 0≤k≤q−1

T
(
n, a,σσσ ; n, �0, �1, . . . , �q−1,σσσ

)
.
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As with typical analysis for dynamic programming algo-
rithms, we first determine the total number of sub-problems,
that is, the total number of possible inputs for T .

• There are q possibilities for the second argument of T .
• The first and second powers of n come from the possi-

bilities for first and fourth arguments of T .
• The power of q − 1 of n comes from the possibilities for

�0 until �q−1, except that one of them is fixed to be n.
• Finally, the third and last arguments of T each has |R|r

possibilities.
Hence, in total, we compute O(nq+1|R|2r) possible inputs
for T .

Next, we need to determine the running time for
each input. In all cases in Lemma 4, a recursion rule
involves O(nq−1) summands. For example, suppose that
a = 0 and �0 is the smallest among all �k, then the
q-ary generalization for the recursion rule in Lemma 4,
T(i, 0,ααα; j, �0, �1, . . . , �q−1,βββ) has q summands for the first
part pT(i − 1, ∗,ααα; j, �0, �1, . . . , �q−1,βββ) and O(nq−1) sum-
mands for the second part (1 − p)T(i − 1, ∗,ααα; �0 −
1, ∗, ∗, . . . , ∗,βββ ′) for some βββ ′. Thus in total, the time com-
plexity of the algorithm is O(n2q|R|2r).

V. INSERTION CHANNELS

Throughout this section, we have that S = Ins(p). Similar
to Section IV, the quantity B1(C; S) is useful for providing
estimates on sizes of the networks GN and G∗

N . Hence, we
study B1(C; Ins(p)), and for brevity, we write this quantity as
B(C; Ins(p)). Our first proposition states that the problem of
determining B(C, Ins(p)) is equivalent to certain enumeration
problems concerning supersequences.

Proposition 11: Fix some code C ⊆ �n. We have that

B(C, Ins(p)) =
∞∑

t=0

∑

z∈�n+t

D(z;C)D∗(z;C)(p/2)t(1 − p)n+1. (26)

Here, D(z;C) denotes the number of words in C that are sub-
sequences5 of z, while D∗(z;C) = ∑

x∈C Emb(z, x). In other
words, D∗(z;C) counts the total number of occurrences of all
codewords in C as a subsequence of z.

Proof: Observe for the Ins(p)-channel, the quantity
Q(x ≺ x′) denotes the probability that an output of x is
a supersequence of x′. So, for t ≥ 0, if we use It(x) to
denote the set of all (n+ t)-supersequences of x, then we have
Q(x ≺ x′) = ∑∞

t=0
∑

z∈It(x) Emb(z, x)I(x′ ∈ z)(p/2)t(1 −
p)n+1. This is because for each z ∈ It(x), the probability of
x being a specific embedding of z is to have n + 1 Correct
events based on Definition 1, and t Insertion events, each with
probability 1

2 p (because each bit may be inserted with equal
probability). Here, we use I(x′ ∈ z) to denote the indicator
function for the event that x′ is a subsequence of z. Using
this expression and switching the order of summation, we can
rewrite (3) as

5We point out a key difference from Proposition 9. Here, D(z;C) denote
the number codewords that are subsequences of z, while I(z;C) denote the
number codewords that are supersequences of z. Similar differences are true
for D∗ and I∗.

B(C, Ins(p))

=
∞∑

t=0

(p/2)t(1 − p)n+1
∑

z∈�n+t

∑

x∈C

∑

x′∈C
Emb(z, x)I

(
x′ ∈ z

)

=
∞∑

t=0

(p/2)t(1 − p)n+1
∑

z∈�n+t

(
∑

x∈C
Emb(z, x)

)(
∑

x′∈C
I
(
x′ ∈ z

)
)

.

Since
∑

x∈C Emb(z, x) and
∑

x′∈C I(x′ ∈ z) yield
the quantities D∗(z;C) and D(z;C), respectively, we
obtain (26).

Next, similar to Section IV, we look at the quantities
D(z;C) and D∗(z;C) for An,En and Cn,w as defined in the
previous section. Now, the quantity D(z;An) has been stud-
ied in other contexts [15]. However, unlike the insertion ball,
the quantity D(z; {0, 1}n) closely depends on the actual string
z. Nevertheless, since we are only interested in the quantity∑

z∈�n+t D(z;C)D∗(z;C), we are able to obtain closed expres-
sions for these sums. Using standard techniques in enumerative
combinatorics [40], we have the following results.

Proposition 12: If |z| = n + t and wt(z) = u, then

D∗(z;An) =
(

n + t

t

)

, (27)

D∗(z;Cn,w
) =

(
n + t − u

n − w

)(
u

w

)

, (28)

D∗(z;En) =
�n/2
∑

k=0

(
n + t − u

n − 2k

)(
u

2k

)

. (29)

Proof: First, we give a proof of (27). Since |z| = n + t,
after t deletions, we have a subsequence of length n. Counting
multiplicity, the multiset of subsequences of z of length n can
be obtained by choosing t positions out of n + t positions
of z to delete. Thus the size of the multiset of subsequences
is
(n+t

t

)
.

Next, we give a proof of (28). Note that we want a subse-
quence of length n and weight w, while z is of length n + t
and weight u. Therefore, counting multiplicity, the multiset of
subsequences of length n and weight w of z can be obtained
by choosing w 1’s from z and choosing n − w 0’s from z.
Thus the size of the multiset of subsequences is

(n+t−u
n−w

)(u
w

)
.

Finally, we give a proof of (29). We make use of the for-
mula for D∗(z;Cn,w) that we have already obtained, namely
D∗(z;En) = ∑�n/2


k=0 D∗(z;Cn,2k).
Using (26–28), we obtain the following closed formulae for

the expected number of edges.
Theorem 3: For all n,

B(An, Ins(p)) = 2n
∞∑

t=0

t∑

i=0

(
n + t

i

)(
n + t

t

)

(p/2)t(1 − p)n+1.

(30)

For w ≤ n,

B
(
Cn,w, Ins(p)

) =
∞∑

t=0

∑

u≥0

(
n + t − u

n − w

)(
u

w

)(
n

w

)

IC(n + t, u, t, w)(p/2)t(1 − p)n+1. (31)
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Proof: From (26), (27) and finally (6), we have

B(An, Ins(p))

=
∞∑

t=0

∑

z∈�n+t

D(z;An)

(
n + t

t

)

(p/2)t(1 − p)n+1

=
∞∑

t=0

(p/2)t(1 − p)n+1
(

n + t

t

) ∑

z∈�n+t

D(z;An)

=
∞∑

t=0

(p/2)t(1 − p)n+1
(

n + t

t

) ∑

z∈�n

I(z;An+t)

=
∞∑

t=0

(p/2)t(1 − p)n+1
(

n + t

t

)

2n
t∑

i=0

(
n + t

i

)

,

which results in the expression in (30).
For w ≤ n, applying (26), (28) and finally (7), we have that

B
(
Cn,w, Ins(p)

)

=
∞∑

t=0

∑

z∈�n+t

D
(
z;Cn,w

)
D∗(z;Cn,w

)
(p/2)t(1 − p)n+1

=
∞∑

t=0

∑

u≥0

∑

z∈Cn+t,u

D
(
z;Cn,w

)
D∗(z;Cn,w

)
(p/2)t(1 − p)n+1

=
∞∑

t=0

∑

u≥0

(
n + t − u

n − w

)(
u

w

)

(p/2)t(1 − p)n+1
∑

z∈Cn+t,u

D
(
z;Cn,w

)

=
∞∑

t=0

∑

u≥0

(
n + t − u

n − w

)(
u

w

)

(p/2)t(1 − p)n+1
∑

z∈Cn,w

I
(
z;Cn+t,u

)

=
∞∑

t=0

∑

u≥0

(
n + t − u

n − w

)(
u

w

)(
n

w

)

(p/2)t(1 − p)n+1IC(n + t, u, t, w),

which results in the expression in (31).
For the remaining of this section, we demonstrate the polar-

ization behavior of the edge density for the insertion channel.
As with Section IV-A, we first show that the edge density
approaches zero whenever the insertion probability is strictly
less than half.

Proposition 13: Let C = An and M = 2n. If 0 ≤ p < 1/2,
then B(C, Ins(p)) = o(M2).

Proof: Let t′ =
⌈

np+p−1
1−p

⌉
for p < 1/2. Observe that

p < 1 − p, and thus, n p
1−p − 1 < n − 1. Therefore

t′ =
⌈

np
1−p − 1

⌉
< n. Next, we choose a constant α < 1

that satisfies both

α >
p

1 − p
and (32)

α >
log2 2(1 − p)

log2
1

2p

. (33)

Note that α is only dependent on p, and from (32), we have
that

αn >
np

1 − p
>

⌈
np

1 − p
− 1

⌉

= t′. (34)

Moreover, 2(1 − p) < 1
2p and therefore, 0 <

log2 2(1−p)

log2
1
2p

< 1.

Thus, α < 1 can be chosen to satisfy (33).

From (30), we have that

B(An, Ins(p)) = 2n(1 − p)n+1
∞∑

t=0

(
n + t

t

)

(p/2)t
t∑

i=0

(
n + t

i

)

.

We then split the outer summation of t into two parts, namely
from t = 0 to t = �αn
, and then from t = �αn
+1 to t = ∞.

Observe that

2n(1 − p)n+1
�αn
∑

t=0

(
n + t

t

)

(p/2)t
t∑

i=0

(
n + t

i

)

≤ 2n(1 − p)n+1
�αn
∑

t=0

(
n + t

t

)

(p/2)t2
(n+t)H

(
t

n+t

)

≤ 2n(1 − p)n+1
�αn
∑

t=0

(
n + t

t

)

pt2
nH
(

t
n+t

)

≤ 2n(1 − p)n+12
nH
(

α
1+α

) �αn
∑

t=0

(
n + t

t

)

pt

≤ 2n(1 − p)n+12
nH
(

α
1+α

) ∞∑

t=0

(
n + t

t

)

pt

≤ 2n2
nH
(

α
1+α

)

.

Therefore we have

lim
n→∞

2n(1 − p)n+1∑�αn

t=0

(n+t
t

)
(p/2)t ∑t

i=0

(n+t
i

)

22n

≤ lim
n→∞

2
nH
(

α
1+α

)

2n
= 0. (35)

Next, we observe that

2n(1 − p)n+1
∞∑

t=�αn
+1

(
n + t

t

)

(p/2)t
t∑

i=0

(
n + t

i

)

≤ 2n(1 − p)n+1
∞∑

t=�αn
+1

(
n + t

t

)

(p/2)t2n+t

= 22n(1 − p)n+1
∞∑

t=�αn
+1

(
n + t

t

)

pt. (36)

Let f (t) = (n+t
t

)
pt. Observe that f (t + 1)/f (t) = (n+t+1

t+1 )pt+1

(n+t
t )pt =

n+t+1
t+1 p < 1 if and only if t >

np+p−1
1−p . Therefore, f (t) achieves

its maximum value at t = t′. Furthermore, f (t + 1) < f (t) if
t ≥ t′. Lastly, from (34), we have �αn
 + 1 ≥ αn ≥ t′. All
these imply that we can upper bound

∑∞
t=�αn
+1

(n+t
t

)
pt as

a geometric series with initial value
(n+�αn
+1

�αn
+1

)
pαn and ratio

n+t+1
t+1 p = ( n

t+1+1)p ≤ ( 1
α
+1)p which is less than 1 because of

condition (32). Our observation can be summarized as follows

∞∑

t=�αn
+1

(
n+t

t

)

pt≤
(n+�αn
+1

�αn
+1

)
p�αn
+1

1−
(

1
α
+1
)

p
≤2n+�αn
+1p�αn
+1

1−
(

1
α
+1
)

p
. (37)

Thus combining (36) and (37), we have

lim
n→∞

2n(1−p)n+1∑∞
t=�αn
+1

(n+t
t

)
(p/2)t ∑t

i=0

(n+t
i

)

22n

Authorized licensed use limited to: UNIVERSIDAD DE VIGO. Downloaded on October 11,2024 at 06:56:10 UTC from IEEE Xplore.  Restrictions apply. 



202 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 4, 2023

≤ lim
n→∞

1−p

1−
(

1
α
+1
)

p
(2(1−p))n(2p)�αn
+1

≤2p
1−p

1−
(

1
α
+1
)

p
lim

n→∞

⎛

⎜
⎝

2(1−p)
(

1
2p

)α

⎞

⎟
⎠

n

=0, (38)

where the last equation comes from condition (33).
Finally, combining (35) and (38), we have that 2n(1−

p)n+1∑∞
t=0

(n+t
t

)
(p/2)t ∑t

i=0

(n+t
i

)=o(22n).
To conclude this section, we have the following analogue

of Proposition 9.
Proposition 14:

lim
n→∞

B(An, Ins(p))

|An|2 =
{

0, if p < 1/2,

1, if p > 1/2.

Proof:
• When p < 1/2, the limit value is immediate from

Proposition 13.
• When p > 1/2, we want to show that

limn→∞ 22n−B(An,Ins(p))

22n = 0. Note that

2n(1 − p)n+1
∞∑

t=0

(
n + t

t

)

(p/2)t
n+t∑

i=0

(
n + t

i

)

= 2n(1 − p)n+1
∞∑

t=0

(
n + t

t

)

(p/2)t2n+t

= 22n(1 − p)n+1
∞∑

t=0

(
n + t

t

)

pt

= 22n(1 − p)n+1 1

(1 − p)n+1
= 22n. (39)

Therefore from (30) and (39), we have

22n − B(An, Ins(p))

= 2n(1 − p)n+1
∞∑

t=0

(
n + t

t

)

(p/2)t
n+t∑

i=t+1

(
n + t

i

)

= 2n(1 − p)n+1
∞∑

t=0

(
n + t

t

)

(p/2)t
n−1∑

i=0

(
n + t

i

)

.

First, we choose a constant α > 1 such that

α <
log2

1
2(1−p)

log2 2p
and (40)

α <
p

1 − p
. (41)

This is feasible, because 1
2(1−p)

> 2p for 1/2 < p < 1,

and thus log2
1

2(1−p)
> log2 2p. Observe also that f (t) =

(n+t
t

)
pt is maximized when t = t′ =

⌈
np

1−p − 1
⌉

≥ n.

Furthermore, f (t + 1) > f (t) if t ≤ αn ≤ t′. Moreover,
from (40), it implies that (2p)α < 1

2(1−p)
, and thus

2(1 − p)(2p)α � β < 1. (42)

Now, similar to Proposition 13, we split the summation
of t into two parts. Using all these information, we have

2n(1 − p)n+1
αn∑

t=0

(
n + t

t

)

(p/2)t
n−1∑

i=0

(
n + t

i

)

≤ 2n(1 − p)n+1
αn∑

t=0

(
n + t

t

)

(p/2)t2n+t

= 22n(1 − p)n+1
αn∑

t=0

(
n + t

t

)

pt

≤ 22n(1 − p)n+1αn

(
n + αn

αn

)

pαn

≤ 22n(1 − p)n+1αn2n+αnpαn

= 22nα(1 − p)n
(
2(1 − p)(2p)α

)n

= 22nα(1 − p)nβn. (43)

Secondly, for the second part of the summation, we have

2n(1 − p)n+1
∞∑

t=αn

(
n + t

t

)

(p/2)t
n−1∑

i=0

(
n + t

i

)

≤ 2n(1 − p)n+1
∞∑

t=αn

(
n + t

t

)

(p/2)t2
(n+t)H

(
n−1
n+t

)

≤ 2n(1 − p)n+1
∞∑

t=αn

(
n + t

t

)

(p/2)t2
(n+t)H

(
n

n+αn

)

≤ 2n(1 − p)n+12
nH
(

1
1+α

) ∞∑

t=αn

(
n + t

t

)

pt

≤ 2n(1 − p)n+12
nH
(

1
1+α

)
1

(1 − p)n+1

= 2n2
nH
(

1
1+α

)

. (44)

Here, the penultimate inequality follows from the negative
binomial series expansion: (1 − p)−n−1 = ∑

t≥0

(n+t
t

)
pt.

Combining (43) and (44), we have

lim
n→∞

22n − B(An, Ins(p))

22n

≤ lim
n→∞

22nα(1 − p)nβn + 2n2
nH
(

1
1+α

)

22n

= lim
n→∞ α(1 − p)nβn + lim

n→∞
2

nH
(

1
1+α

)

2n

= 0 + 0,

where the last equation holds because β < 1 from (42)
and H( 1

1+α
) < 1, since α > 1.

As before, we exhibit the polarization behavior numerically
for the insertion channel in Figure 1(c). Also, we make the
following conjecture on the asymptotic behavior with p = 1/2.

Conjecture 2: Let p = 1/2. Then

lim
n→∞

B(An, Ins(p))

|An|2 = 1

2
.
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VI. CONCLUDING REMARKS

We conclude by discussing extensions and future work.
• Expected edge density for other codebooks: In this paper,

we provided closed formulae and efficient methods to
compute the expected edge density for some code fam-
ilies. In particular, when the codebook comprises all
binary words, we show that this quantity is sub-quadratic
when the deletion or insertion probability is less than 1/2.
In contrast, for the binary erasure channel, in [19], this
quantity was shown to be linear for certain families of
code. Therefore, it will be of interest to find such code
families for the insertion and deletion channels.

• Polarization behavior of edge density: In
Sections IV-A and V, we demonstrated that the
expected edge density for An polarizes for both the
deletion and insertion channels. Nevertheless, we also
observe similar behavior for constant weight codebooks
and hence, we have Conjecture 1. Again, it will be
interesting to exhibit this polarization behavior for
other code families and determine the corresponding
probability threshold.

• Data-driven decoder: In Section II-D, we described a
simple peeling decoder and in Corollary 1, we provided
a rudimentary analysis of the decoder by estimating the
number of degree-one nodes. In our future work, we
refine this analysis and provide sharper estimates on the
probability of successful decoding.
Recall that we are motivated by applications in DNA-
based data storage, where we are required to identify files
using their reads. In our approach, we ignored the data
blocks contents and only made use the noisy reads of
the addresses. In our preliminary studies [41], we pro-
pose a method to efficiently use this data to increase the
identification.
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