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A perfect code C in a graph Γ is an independent set of vertices 
of Γ such that every vertex outside C is adjacent to a unique 
vertex in C, and a total perfect code C in Γ is a set of vertices 
of Γ such that every vertex of Γ is adjacent to a unique vertex 
in C. Let G be a finite group and X a normal subset of G. 
The Cayley sum graph CS(G, X) of G with the connection 
set X is the graph with vertex set G and two vertices g and h
being adjacent if and only if gh ∈ X and g �= h. In this paper, 
we give some necessary conditions of a subgroup of a given 
group being a (total) perfect code in a Cayley sum graph of 
the group. As applications, the Cayley sum graphs of some 
families of groups which admit a subgroup as a (total) perfect 
code are classified.

© 2024 Elsevier Inc. All rights reserved.

1. Introduction

Throughout the paper, all groups are finite with identity element denoted by 1, and all 
graphs are finite, undirected and simple. Cayley sum graph, which is also called addition 
graph [4], addition Cayley graph [9,14,19] and sum graph [5], is a variation of the well-
studied Cayley graph. The concept of Cayley sum graphs was at first only for abelian 
groups and then generalized over arbitrary groups in [1]. Let G be a group and X a 
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normal subset of G (that is, g−1Xg = X for all g ∈ G). The Cayley sum graph CS(G, X)
of G with connection set X is the graph with vertex set G and two vertices g and h being 
adjacent if and only if gh ∈ X and g �= h. Note that this definition differs from that in 
[1] where loops in graphs are allowed and so g �= h is not required. An element a of G is 
called a square if a = g2 for some g ∈ G and a nonsquare if otherwise. A subset of G is 
said to be square-free if it contains no square of G. It is obvious that the neighborhood
of a vertex g is Xg−1 if g2 /∈ X and (X \ {g2})g−1 if g2 ∈ X. Therefore CS(G, X) is 
a regular graph if and only if either X is square-free in G or X consists of all squares 
of G.

Let Γ be a graph with vertex set V (Γ) and edge set E(Γ). Let C be a subset of 
V (Γ). If C is an independent set of Γ and every vertex in V (Γ) \ C has exactly one 
neighbor in C, then C is called a perfect code in Γ. If every vertex of Γ has exactly one 
neighbor in C, then C is called a total perfect code in Γ. It is obvious that a total perfect 
code in Γ induces a matching in Γ and therefore has even cardinality. In graph theory, a 
perfect code in a graph is also called an efficient dominating set [6] or independent perfect 
dominating set [13], and a total perfect code is called an efficient open dominating set
[10].

The concept of perfect codes in graphs was firstly introduced by Biggs [2] as a gen-
eralization of the classical notions of perfect Hamming- and Lee-error-correcting codes. 
Perfect codes in Cayley graphs have received considerable attention see [11, Section 1]
for a brief survey and [3,7,8,17,20–24] for a few recent papers. In particular, perfect codes 
in Cayley graphs which are subgroups of the underlying groups are especially interesting 
since they are generalizations of perfect linear codes [15] in the classical setting.

Let CS(G, X) be a Cayley sum graph of G with the connection set X. We use P(G, X)
(T (G, X)) to denote the collection of all subsets of G which are perfect codes (total 
perfect codes) in CS(G, X). A subgroup H of G is called a subgroup perfect code (subgroup 
total perfect code) in CS(G, X) if H ∈ P(G, X) (H ∈ T (G, X)). Note that {1} is a perfect 
code of CS(G, G \ {1}). A subgroup perfect code H of CS(G, X) is said to be nontrivial
if H �= {1}. Very recently, subgroup perfect codes in regular Cayley sum graphs of 
abelian groups were studied in [16,18]. In this paper, we study subgroup (total) perfect 
codes in Cayley sum graphs of groups where the graphs are not necessary regular and 
groups are not necessary abelian. The results in this paper include a necessary and 
sufficient condition and a few necessary conditions of a subgroup of a given group being 
a (total) perfect code in a Cayley sum graph of the group. These results are used to 
study (total) perfect codes in Cayley sum graphs of abelian groups, dihedral groups and 
one-dimensional affine groups.

Now we describe the results of this paper in detail as follows. In the next section, 
we prove a proposition which characterizes the relationship between normal subgroup 
perfect codes and normal subgroup total perfect codes in Cayley sum graphs. In Section 3, 
we focus on the study of subgroup perfect codes in Cayley sum graphs. After showing 
an easy necessary and sufficient condition, we mainly prove a few necessary conditions 
of a subgroup H of a given group G being a perfect code in a Cayley sum graph of G. 
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Using those necessary conditions, we prove that if the core of H in G is not contained 
in the center of G, then there is no connected Cayley sum graph of G admitting H as a 
perfect code. In Section 4, we develop the theory for perfect codes obtained in Section 3
in parallel to that for total perfect codes. In Section 5, we study (total) perfect codes in 
Cayley sum graphs of some special families of groups, including classifications of (total) 
perfect codes in connected Cayley sum graphs of abelian groups, dihedral groups and 
one-dimensional affine groups respectively. In particular, we give a simple proof of a main 
result in [18] which characterizes subgroup perfect codes in regular Cayley sum graphs 
of abelian groups.

2. Preliminaries

In [1], a necessary and sufficient condition of a Cayley sum graph being connected 
was given. Note that this result also holds for Cayley sum graphs in the present paper 
as these graphs are exactly obtained from the Cayley sum graphs in [1] by removing all 
loops. This result is stated as follows.

Lemma 2.1 ([1]). Let X be a normal subset of a group G. Then the Cayley sum graph 
CS(G, X) is connected if and only if G = 〈X〉 and |G : 〈X−1X〉| ≤ 2.

Recall that the center Z(G) of a group G is a subgroup of G consisting of all elements 
x ∈ G such that xg = gx for all g ∈ G. Write gx := x−1gx, Sx := {gx | g ∈ S} for 
every subset S of G and xG := {xg | x ∈ G}. The following lemma characterizes the 
relationship between normal subgroup perfect codes and normal subgroup total perfect 
codes in Cayley sum graphs.

Proposition 2.2. Let G be a group and H a normal subgroup of G. Then H is a total 
perfect code of some Cayley sum graph of G if and only if H is a perfect code of some 
Cayley sum graph of G and Z(G) contains a nonsquare of H.

Proof. Let H ∈ T (G, Y ) for some normal subset Y of G. Then every g ∈ G is adjacent 
to a unique vertex h ∈ H in CS(G, Y ). Let z be the unique element in H adjacent to 
1. Then H ∩ Y = {z} and z is a nonsquare of H. Since both H and Y are normal 
in G, we have zG ⊆ H ∩ Y and therefore zg = z for all g ∈ G. Thus z ∈ Z(G). Set 
X = Y \{z}. Since Y is normal in G and z ∈ Z(G), we have that X is normal in G. Note 
that H ∩X = ∅. Therefore H is an independent set of CS(G, X). Let a be an arbitrary 
element in G \ H and h the unique vertex in H adjacent to a in CS(G, Y ). Then h is 
the unique element in H satisfying ah ∈ X. In other words, h is the unique vertex in H
adjacent to a in CS(G, X). It follows that H ∈ P(G, X).

Let H ∈ P(G, X) for some normal subset X of G, z ∈ Z(G) ∩H and z be a nonsquare 
of H. Set Y = X ∪ {z}. Then Y is normal in G and it is straightforward to check that 
H ∈ T (G, Y ). �
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3. Perfect codes

In this section, we first confirm a few simple facts on perfect codes in Cayley sum 
graphs and then prove two theorems which characterize those codes more deeply.

The first lemma gives a necessary and sufficient condition of a subgroup of a given 
group being a perfect code in a Cayley sum graph of the group.

Lemma 3.1. Let G be a group and H a subgroup of G. Then H is a perfect code of some 
Cayley sum graph of G if and only if G has a normal subset X such that X ∪ {1} is a 
left transversal of H in G.

Proof. ⇒) Let H ∈ P(G, X) for some normal subset X of G. Then H is an independent 
set of CS(G, X), and every g ∈ G \H is adjacent to a unique vertex h ∈ H. It follows 
that H ∩ X = ∅ and every g ∈ G \ H can be uniquely written as g = xh−1 for some 
x ∈ X and h ∈ H. Therefore X ∪ {1} is a left transversal of H in G.

⇐) Let X be a normal subset of G such that X ∪ {1} is a left transversal of H in G. 
Then H ∩ X = ∅ and every g ∈ G \ H can be uniquely written as g = xh−1 for some 
x ∈ X and h ∈ H. Therefore H is an independent set of the Cayley sum graph CS(G, X)
and every g ∈ G \H is adjacent to a unique vertex h ∈ H. Thus H ∈ P(G, X). �

Let σ be an automorphism of G. We use xσ to denote the image of x under σ for all 
x ∈ G and set Xσ := {xσ | x ∈ X} for all subset X of G. Since

(Xσ)g = g−1Xσg =
(
(gσ

−1
)−1)σXσ(gσ

−1
)σ =

(
(gσ

−1
)−1Xgσ

−1)σ = (Xgσ−1

)σ,

we conclude that X is normal in G if and only if Xσ is normal in G. Obviously, if X∪{1}
is a left transversal of H in G, then Xσ ∪ {1} is a left transversal of Hσ in G. Therefore 
Lemma 3.1 leads to the following result.

Lemma 3.2. Let G be a group, H a subgroup of G, X a normal subset of G and σ an 
automorphism of G. Then H ∈ P(G, X) if and only if Hσ ∈ P(G, Xσ). In particular, 
H ∈ P(G, X) if and only if Hg ∈ P(G, X) for a given g ∈ G.

Unlike perfect codes in Cayley graph, the subgroup H of G being a perfect code of 
a Cayley sum graph CS(G, X) can not guarantee that a coset Hg is a perfect code of 
CS(G, X). Actually, Hg is not necessary an independent set of CS(G, X) when H is. 
However, we have the following lemma.

Lemma 3.3. Let G be a group, H be a subgroup of G, X be a normal subset of G and b be 
an involution of G such that Hb = H. Then H ∈ P(G, X) if and only if Hb ∈ P(G, X).

Proof. ⇒) Let H ∈ P(G, X). By Lemma 3.1, X ∪ {1} is a left transversal of H in G. 
Since b is an involution and Hb = H, we get (Hb)(Hb) = HHb = H. Therefore Hb
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is an independent set of CS(G, X) as (Hb)(Hb) ∩ X = H ∩ X = ∅. Now let g be an 
arbitrary element in G \Hb. Then gb /∈ H. Since X ∪ {1} is a left transversal of H in 
G, we get |gbH ∩ X| = 1. Therefore there exists a unique h ∈ H such that gbh ∈ X, 
that is, bh is the unique vertex in Hb (= bH) adjacent to g in CS(G, X). It follows that 
Hb ∈ P(G, X).

⇐) Let Hb ∈ P(G, X). Then Hb is an independent set of CS(G, X) and every vertex 
in G \ Hb is adjacent to a unique vertex in Hb. Since b is an involution and Hb = H, 
we have H ∩X = (Hb)(Hb) ∩X = ∅. Therefore H is an independent set of CS(G, X). 
Let g be an arbitrary element in G \H. Then gb /∈ Hb. Let hb be the unique vertex in 
Hb adjacent to gb. Then hb is the unique vertex in Hb satisfying gbhb ∈ X. Set h1 = hb. 
Then h1 is a unique vertex in H satisfying gh1 ∈ X. Therefore H ∈ P(G, X). �

We use ∪̇n
i=1Si to denote the union of the pair-wise disjoint sets S1, S2, . . . , Sn. Let 

G be a group and H a subgroup of G. We use |G : H| to denote the index of H in G. 
The core of H in G is the largest normal subgroup of G contained in H. For each g ∈ G, 
we use CG(g) to denote the centralizer of g in G. The following theorem gives a few 
necessary conditions of H being a perfect code in a Cayley sum graph of G.

Theorem 3.4. Let G be a group, X a normal subset of G, and H a subgroup perfect code 
of the Cayley sum graph CS(G, X). Then the following statements hold.

(i) The core of H in G is contained in CG(x) for each x ∈ X.
(ii) If X = ∪̇s

i=1x
G
i and H is normal in G, then 1

|G:H| +
∑s

i=1
1

|CG(xi):H| = 1.
(iii) If |X| > 1 and H is normal in G, then X is a union of at least two conjugacy 

classes of elements in G.

Proof. (i) By Lemma 3.1, X ∪{1} is a left transversal of H in G. Let N be the core of H
in G. Suppose to the contrary that N is not contained in CG(x) for some x ∈ X. Then 
a−1xa �= x for some a ∈ N . Since X is normal in G, we have a−1xa ∈ X. However, since 
N is the core of H in G, we have a−1xaH = x(x−1a−1x)aH = xH. This contradicts the 
fact that X ∪ {1} is a left transversal of H in G.

(ii) Since X ∪ {1} is a left transversal of H in G, we have 1 + |X| = |G : H|. Since 
X = ∪̇s

i=1x
G
i , we get 1 +

∑s
i=1 |xG

i | = |G : H|. Noting that |xG
i | = |G : CG(xi)| for every 

i ∈ {1, . . . , s}, we obtain, 1 +
∑s

i=1 |G : CG(xi)| = |G : H|. By the conclusion of (i), 
we have that H is contained in CG(xi) for every i ∈ {1, . . . , s} as H is normal in G. 
Therefore |G : CG(xi)| = |G:H|

|CG(xi):H| and it follows that 1
|G:H| +

∑s
i=1

1
|CG(xi):H| = 1.

(iii) If otherwise we have that X = xG for some x ∈ G, then (ii) implies 1
|G:H| +

1
|CG(x):H| = 1. Since H is normal in G, by (i) we have that H is contained in CG(x). 
Therefore |G : H| = |G : CG(x)||CG(x) : H|. It follows that (1 + |G : CG(x)|) = |G : H|. 
Since |G : CG(x)| divides |G : H|, we conclude that |G : CG(x)| = 1, contradicting to 
|X| > 1. �
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The following theorem provides a basis for denying some subgroups to be perfect codes 
in connected Cayley sum graphs.

Theorem 3.5. Let G be a group and H a subgroup of G. If the core of H in G is not 
contained in the center of G, then there is no connected Cayley sum graph of G admitting 
H as a perfect code. In particular, if H is normal in G and not contained in the center 
of G, then H is not a perfect code of any connected Cayley sum graph of G.

Proof. Let X be an arbitrary normal subset of G such that the Cayley sum graph 
CS(G, X) is connected. By Lemma 2.1 we have G = 〈X〉. Since the core N of H in G
is not contained in the center of G, we conclude that N is not contained in CG(x) for 
some x ∈ X. By Theorem 3.4 (i), we have that H /∈ P(G, X).

For the special case that H is normal in G, the core of H in G is H itself. Therefore 
H is not a perfect code of any connected Cayley sum graph of G provided that H is not 
contained in the center of G. �
4. Total perfect codes

In this section, we give some results on total perfect codes which are analogous to the 
results about perfect codes in Section 3.

Parallel to Lemma 3.1, we obtain a necessary and sufficient condition of a subgroup of 
a given group being a total perfect code in a Cayley sum graph of the group as follows.

Lemma 4.1. Let G be a group and H a subgroup of G. Then H is a total perfect code of 
some Cayley sum graph of G if and only if G contains a normal subset Y such that Y is 
a left transversal of H in G and the unique common element of H and Y is a nonsquare 
of H.

Proof. ⇒) Let H ∈ T (G, Y ) for some normal subset Y of G. Then every g ∈ G is 
adjacent to a unique vertex h ∈ H, that is, every g ∈ G can be uniquely written as 
g = yh−1 for some y ∈ Y and h ∈ H. Therefore Y is a left transversal of H in G. In 
particular, |H ∩ Y | = 1. Set H ∩ Y = {z}. Since H induces a matching of T (G, Y ), we 
conclude that z is a nonsquare of H.

⇐) Let Y be a normal subset of G such that Y is a left transversal of H in G and 
the unique common element of H and Y is a nonsquare of H. Then every g ∈ G \ H

can be uniquely written as g = yh−1 for some y ∈ Y and h ∈ H. Therefore H induces a 
matching of CS(G, Y ) and every g ∈ G \H is adjacent to a unique vertex h ∈ H. Thus 
H ∈ T (G, Y ). �

The following obvious result is the counterpart of Lemma 3.2.
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Lemma 4.2. Let G be a group, H a subgroup of G, Y a normal subset of G and σ an 
automorphism of G. Then H ∈ T (G, Y ) if and only if Hσ ∈ T (G, Y σ). In particular, 
H ∈ T (G, Y ) if and only if Hg ∈ P(G, Y ) for a given g ∈ G.

The following Lemma is akin to Lemma 3.3. Its proof is omitted as it is similar to the 
proof of Lemma 3.3.

Lemma 4.3. Let G be a group, H a subgroup of G, Y a normal subset of G and b an 
involution of G such that Hb = H. Then the H ∈ T (G, X) if and only if Hb ∈ T (G, X).

The following two theorems are the counterparts of Theorem 3.4 and 3.5. Note that 
Theorem 4.5 can be seen as a corollary of Theorem 4.4. Its proof is similar to that of 
Theorem 3.5 and therefore omitted.

Theorem 4.4. Let G be a group, Y a normal subset of G, and H a subgroup total perfect 
code of the Cayley sum graph CS(G, Y ). Then the following statements hold.

(i) H is contained in CG(z) where z is the unique common element of H and X.
(ii) The core of H in G is contained in CG(y) for each y ∈ Y .
(iii) If Y = ∪̇s

i=1y
G
i and H is normal in G, then 

∑s
i=1

1
|CG(yi):H| = 1.

(iv) If |Y | > 1 and H is normal in G, then Y is a union of at least two conjugacy classes 
of elements in G.

Proof. (i) Let z be the unique common element of H and Y . Since Y is normal in G, we 
have zh ∈ Y for every h ∈ H. Therefore zh ∈ H ∩ Y as z, h ∈ H. By the uniqueness of 
z, we have zh = z and it follows that H is contained in CG(z).

The proofs of (ii), (iii) and (iv) are omitted as they are similar to the proof of Theo-
rem 3.4. �
Theorem 4.5. Let G be a group and H a subgroup of G. If the core of H in G is not 
contained in the center of G, then there is no connected Cayley sum graph of G admitting 
H as a total perfect code.

5. For some special families of groups

5.1. Abelian groups

The following result is obvious.

Theorem 5.1. Every subgroup H of an abelian group G is a perfect code of some Cayley 
sum graph CS(G, X) of G.
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Proof. Since G is abelian, every subset of G is normal in G. Let T be a left transversal of 
H in G. Set X = T \H. Then X is a normal subset of G and X ∪{1} is a left transversal 
of H in G. By Lemma 3.1, H is a perfect code of the Cayley sum graph CS(G, X). �

Recall that the Frattini subgroup Φ(G) of G consists of elements x of G such that 
G = 〈S, x〉 leads to G = 〈S〉 for any subset S of G. The Hall 2′-subgroup of G is an 
odd order subgroup of index a power of 2. The following obvious result can be checked 
directly.

Lemma 5.2. Let G be an abelian group. Let Q and K be the Sylow 2-subgroup and the 
Hall 2′-subgroup of G respectively. Then an element g of G is a square if and only if 
g ∈ Φ(Q)K.

The following result can be found in [18]. Here we give it a short proof.

Theorem 5.3 ([18]). Let G be an abelian group and H a nontrivial subgroup of G. Then 
H is a perfect code of some regular Cayley sum graph of G if and only if H contains a 
non-square of G or H = Φ(Q)K where Q and K are respectively the Sylow 2-subgroup 
and the Hall 2′-subgroup of G.

Proof. ⇒) Let CS(G, X) be a regular Cayley sum graph of G and H a perfect code of 
CS(G, X). Assume that every element of H is a square of G. It suffices to show that 
H = Φ(Q)K. By Lemma 5.2, H is contained in Φ(Q)K. Let g be an arbitrary element of 
Φ(Q)K. Since H is a perfect code of CS(G, X), it follows from Lemma 3.1 that X ∪ {1}
is a left transversal of H in G. Therefore g can be uniquely written as g = yh for some 
y ∈ X∪{1} and h ∈ H. Since h, g ∈ Φ(Q)K, we get y ∈ Φ(Q)K. Therefore y is a square. 
Since CS(G, X) is regular, either X = Φ(Q)K or X is square-free. Since X ∪ {1} is a 
left transversal of H in G and H is nontrivial, we have X �= Φ(Q)K and hence X is 
square-free. It follows that y = 1 and g ∈ H. Therefore H = Φ(Q)K.

⇐) Let X ∪ {1} be a left transversal of H in G. Then X ∩H = ∅. Since G is abelian, 
X is normal in G. If H = Φ(Q)K, then Lemma 5.2 implies that X is square-free in G. 
It follows that CS(G, X) is a regular Cayley sum graph of G and H a perfect code of 
CS(G, X). In what follows we assume that H contains a non-square, say a. Let Z be a 
subset of X consists of elements being squares of G. If Z = ∅, then we set Y = X. If 
Z �= ∅, then we set Y = aZ ∪ (X \ Z). It is obvious that Y ∪ {1} is a left transversal 
of H in G and Y is a square-free normal subset of G. Therefore CS(G, Y ) is a regular 
Cayley sum graph of G and H a perfect code of CS(G, Y ). �

The following result can be directly deduced from Proposition 2.2 and Theorem 5.1.

Theorem 5.4. Every even order subgroup H of an abelian group G is a total perfect code 
of some Cayley sum graph of G.
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By Proposition 2.2 and Theorem 5.3, we have the following result.

Theorem 5.5. Let G be an abelian group and H an even order subgroup of G. Then H
is a total perfect code of some regular Cayley sum graph of G if and only if H contains 
a non-square of G or H = Φ(Q)K where Q and K are respectively the Sylow 2-subgroup 
and the Hall 2′-subgroup of G.

5.2. Dihedral groups

Throughout this subsection. We use D2n to denote the dihedral group of order 2n
which has a cyclic subgroup 〈a〉 of order n and an involution b /∈ 〈a〉 such that ab = a−1. 
Thus D2n has the following presentation

D2n = 〈a, b | an = b2 = 1, ab = a−1〉.

Example 5.6. The subset X := {b, ab, a2b, . . . , an−1b} is normal in D2n and the Cayley 
sum graph Γ := CS(D2n, X) is isomorphic to the complete bipartite graph Kn,n. It is 
obvious that 〈b〉 is a total perfect code of Γ.

Example 5.7. Let n = 2� where � is a positive integer. Then bD2n = {b, a2b, . . . , a2�−2b}
and (ab)D2n ={ab, a3b, . . . , a2�−1b}. Set Z={a2, a4, . . . , a2�−2} and Z ′={a, a3, . . . , a2�−1}.
Then both Z and Z ′ are normal in D2n. It is straightforward to check that 〈ab〉 is a 
perfect code of the Cayley sum graph Γ0 := CS(D2n, bD2n ∪ Z) and 〈b〉 is a perfect code 
of the Cayley sum graph Γ1 := CS(D2n, (ab)D2n ∪ Z). Moreover, 〈b〉 is a total perfect 
code of the Cayley sum graph Γ′

0 := CS(D2n, bD2n ∪ Z ′) and 〈ab〉 is a total perfect code 
of the Cayley sum graph Γ′

1 := CS(D2n, (ab)D2n ∪ Z ′).

Example 5.8. Let n = 4k+2 where k is a positive integer. Then bD2n = {b, a2b, . . . , a4kb}
and (ab)D2n = {ab, a3b, . . . , a4k+1b}. Choose an inverse-closed left transversal Z of 
〈a2k+1〉 in 〈a〉 (for example, let Z = {a, a2, . . . , ak, a−1, a−2, . . . , a−k, 1}). Let

X = bD2n ∪ (Z \ 〈a2k+1〉) or (ab)D2n ∪ (Z \ 〈a2k+1〉).

Then X is a normal subset of D2n. It is straightforward to check that 〈a2k+1〉 is a perfect 
code of the Cayley sum graph Γ := CS(D2n, X) and a total perfect code of the Cayley 
sum graph Γ′ := CS(D2n, X ∪ {a2k+1}).

Theorem 5.9. Every connected Cayley sum graph of D2n has no nontrivial subgroup per-
fect code except the graphs Γ0, Γ1 in Example 5.7 and Γ in Example 5.8.

Proof. Let Σ := CS(D2n, X) be a connected Cayley sum graph of D2n. Then X is a 
normal subset of G. By Lemma 2.1, we have D2n = 〈X〉. Therefore X ∩ 〈a〉b �= ∅. 
Suppose that Σ has a nontrivial subgroup perfect code, say H. It suffices to prove that 
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Σ coincides with one of the graphs Γ0, Γ1 in Example 5.7 and Γ in Example 5.8. By 
Lemma 3.1, X ∪ {1} is a left transversal of H in D2n and therefore |H|(|X| + 1) = 2n. 
Since |H| > 1, we have |X| < n. It follows that 〈a〉b is not contained in X. Therefore 
n is even and exactly one of the two conjugacy classes bD2n and (ab)D2n is contained in 
X. Set Y = X ∩ 〈a〉b. Then Y = bD2n or (ab)D2n . In particular, |Y | = n

2 . It follows that 
n
2 < |X| + 1 ≤ n. Since |H|(|X| + 1) = 2n, we have |H| = 2 or 3. By Theorem 3.4, the 
core of H in D2n is contained in the center of D2n. Note that every odd order subgroup 
of D2n is normal in D2n but not contained in the center of D2n. Therefore |H| �= 3. It 
follows that |H| = 2 and |X| = n − 1. Write n = 2�. Then |Y | = � and |X \ Y | = � − 1. 
The remainder proof is divided into two cases.

Case 1. H ∩ 〈a〉b �= ∅.
In this case, H = 〈aib〉 for some i ∈ {0, 1, . . . , n − 1}. Set Z = {a2, a4, . . . , a2�−2}. If i

is odd, then Z is the unique subset of D2n such that bD2n ∪Z ∪{1} is normal in D2n and 
a left transversal of H in D2n. Therefore Σ is the graph Γ0 in Example 5.7. Similarly, if 
i is even, then Σ is the graph Γ1 in Example 5.7.

Case 2. H ∩ 〈a〉b = ∅.
In this case, H = 〈a�〉. Set Z = X \ Y . Since X ∪ {1} is a left transversal of 〈a�〉 in 

D2n, we conclude that Z ∪ {1} is a left transversal of 〈a�〉 in 〈a〉 and Y 〈a�〉 = 〈a〉b. Note 
that Y = Y ai provided i is even. Therefore Y 〈a�〉 �= 〈a〉b if � is even. It follows that � is 
odd. Thus Σ is the graph Γ in Example 5.8. �

Theorem 5.10. Every connected Cayley sum graph of D2n has no subgroup total perfect 
code except the graphs Γ in Example 5.6, Γ′

0, Γ′
1 in Example 5.7 and Γ′ in Example 5.8.

Proof. Let Σ := CS(D2n, X) be a connected Cayley sum graph admitting a subgroup 
total perfect code H. Then H is of even order, and X is a normal subset of D2n and a 
left transversal of H in D2n. It suffices to prove that Σ coincides with one of the graphs 
Γ in Example 5.6, Γ′

0, Γ′
1 in Example 5.7 and Γ′ in Example 5.8. If 〈a〉b ⊆ X, then 

we have |H| = 2 and X = 〈a〉b as 2n = |H||X|. It follows that Σ is the graph Γ in 
Example 5.6. If the unique common element of X and H is contained in 〈a〉, then H is 
subgroup perfect code of the Cayley sum graph CS(D2n, X \ 〈a〉). By Theorem 5.9, we 
have that CS(D2n, X \ 〈a〉) is the graph Γ in Example 5.8. Therefore Σ is the graph Γ′

in Example 5.8. Now we assume that 〈a〉b is not a subset of X and the unique common 
element of X and H is not contained in 〈a〉. Then X ∩H = 〈aib〉 for some i ∈ {1, . . . , n}
and (aib)D2n �= 〈a〉b. It follows that n is even, X ∩ 〈a〉b = (aib)D2n , |(aib)D2n | = n

2 and 
〈(aib)D2n〉 �= D2n. Since Σ is connected, we have D2n = 〈X〉. Therefore X \ (aib)D2n �= ∅
and so |X| > n

2 . Since |H| is even and 2n = |H||X|, we have |H| = 2 and |X| = n. In 
particular, H = 〈aib〉. Therefore (aib)D2nH = {1, a2, . . . , a2�−2} ∪ (aib)D2n and it follows 
that X \ (aib)D2n = {a, a3, . . . , a2�−1}. Thus Σ is the graph Γ′

0 or Γ′
1 in Example 5.7. �
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5.3. One-dimensional affine groups

Let Fq be the finite field of order q, AGL1(q) the one-dimensional affine group over 
Fq where q is a prime power. It is well known that AGL1(q) is a Frobenius group with 
an elementary abelian Frobenius kernel of order q and cyclic Frobenius complements of 
order q − 1. Throughout this subsection, let G = AGL1(q), and use K and C to denote 
the Frobenius kernel and a Frobenius complement of G respectively. By the Frobenius 
partitions (see [12, Page 79]) of Frobenius groups, we have the following lemma.

Lemma 5.11. G = K ∪ (∪x∈KCx).

We aim to classify Cayley sum graphs of one-dimensional affine groups admitting a 
subgroup (total) perfect code. Before doing that, we need prove the following lemma.

Lemma 5.12. Let Y be a conjugacy class of G not containing 1. Then either Y = K \{1}
or |Y | = q and |Y ∩ Cg| = 1 for all g ∈ G.

Proof. Take y ∈ Y . Then Y = yG. It suffices to show that Y = K \ {1} if y ∈ K \ {1}, 
and |Y | = q and |Y ∩ Cg| = 1 for all g ∈ G if y /∈ K.

Firstly, we assume y ∈ K \{1}. Since K is normal in G, we conclude that Y ⊆ K \{1}. 
Since G is a Frobenius group with the Frobenius kernel K and a Frobenius complement 
C, we have Cy ∩ C = 1. In particular cy �= yc for all c ∈ C \ {1}. Therefore yc1 �= yc2

for each pair of distinct elements c1, c2 ∈ C. This leads to |Y | ≥ |C| = q − 1. Since 
Y ⊆ K \ {1} and |K \ {1}| = q − 1, it follows that Y = K \ {1}.

Now we assume that y /∈ K. By Lemma 5.11, y is an nonidentity element contained in a 
Frobenius complement of G. Without loss of generality, we assume that y ∈ C\{1}. Then 
yx1 �= yx1 for each pair of distinct elements x1, x2 ∈ K as Cx1x

−1 ∩ C = {1}. Therefore 
|yK | = |K| = q. Since G = CK and C is abelian, we have Y = yCK = yK and it follows 
that |Y | = q. For every g ∈ G, we have yg ∈ Cg. If there exists h ∈ G satisfying yh ∈ Cg, 
then y ∈ Cgh−1 ∩ C and it follows that gh−1 ∈ C. Therefore ygh

−1 = y. This implies 
that yg = yh. Therefore yg is the unique element of Y ∩ Cg, that is, |Y ∩ Cg| = 1. �

The following two theorems give a classification of Cayley sum graphs of one-
dimensional affine groups which admit a subgroup (total) perfect code.

Theorem 5.13. Let C = 〈c〉 and q − 1 = st with t > 1. Let {a0, a1, . . . , as−1} be a 
left transversal of 〈cs〉 in C with a0 ∈ 〈cs〉 \ {1}. Set X := (∪s−1

i=1a
G
i ) ∪ (K \ {1}) and 

Y := ∪s−1
i=0a

G
i . Then 〈cs〉 is a perfect code of CS(G, X). Moreover, if c0 is a nonsquare 

of 〈cs〉, then 〈cs〉 is a total perfect code of CS(G, Y ).

Proof. Since {a0, a1, . . . , as−1} is a left transversal of 〈cs〉 in C and a0 ∈ 〈cs〉 \ {1}, we 
have that ai �= 1 for every i ∈ {0, 1, . . . , s − 1}. By Lemma 5.12, we have |aGi | = q and 
aGi ∩ C = {ai}. Therefore aGj ∩ aGk = ∅ for each pair of distinct elements aj and ak. It 
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follows that |Y | = | ∪s−1
i=0 aGi | =

∑s−1
i=0 |aGi | = sq. Since q − 1 = st and |〈c〉| = q − 1, we 

have |Y ||〈cs〉| = sqt = q(q − 1) = |G|. Take agi , a
h
j ∈ Y such that agi 〈cs〉 = ahj 〈cs〉. Since 

(agi )−1ahj = [g, ai][hai, a−1
j ]aia−1

j , we have [g, ai][hai, a−1
j ]aia−1

j ∈ 〈cs〉. By Lemma 5.11, 
we have [g, ai][hai, a−1

j ] ∈ K. It follows that [g, ai][hai, a−1
j ] = 1 and aia

−1
j ∈ 〈cs〉. 

Since {a0, a1, . . . , as−1} is a left transversal of 〈cs〉 in C, we have ai = aj and therefore 
[g, ai][hai, a−1

i ] = 1. Since [g, ai][hai, a−1
i ] = g−1a−1

i gaia
−1
i h−1aihaia

−1
i = (agi )−1ahi , we 

get agi = ahi , that is, agi = ahj . Now we have proved that |Y ||〈cs〉| = |G| and agi 〈cs〉 =
ahj 〈cs〉 implies agi = ahj for agi , ahj ∈ Y . Therefore Y is a left transversal of 〈cs〉 in G. By 
Lemma 4.1, 〈cs〉 is a total perfect code of CS(G, Y ) if a0 is a non-square of 〈cs〉.

It remains to prove that 〈cs〉 is a perfect code of CS(G, X). Since K is normal in G, 
we have that K〈cs〉 is a subgroup of G. By Lemma 5.11, we have [g, a−1

0 ] ∈ K for all 
g ∈ G. Therefore ag0 = [g, a−1

0 ]a0 ∈ K〈cs〉 as a0 ∈ 〈cs〉. It follows that aG0 〈cs〉 ⊆ K〈cs〉. 
Since |aG0 〈cs〉| = |aG0 ||〈cs〉| = qt = |K〈cs〉|, we conclude that aG0 〈cs〉 = K〈cs〉. Note that 
X ∪ {1} = (Y \ aG0 ) ∪K. Therefore (X ∪ {1})〈cs〉 = Y 〈cs〉 = G. Since |X ∪ {1}| = |Y |
and Y is a left transversal of 〈cs〉 in G, it follows that X ∪{1} is a left transversal of 〈cs〉
in G. By Lemma 3.1, 〈cs〉 is a perfect code of CS(G, X). �
Theorem 5.14. Every Cayley sum graph of AGL1(q) has no nontrivial subgroup perfect 
code except the graphs CS(G, X) in Theorem 5.13 and no subgroup total perfect code 
except the graphs CS(G, Y ) in Theorem 5.13.

Proof. Suppose that CS(G, X) is a Cayley sum graph of G admitting a subgroup perfect 
code H. Since X is a normal subset of G, it is a disjoint union of conjugacy classes of 
G. By Lemma 5.12, either (K \ {1}) ⊆ X or |X| = �q for some integer �. By Lemma 3.1, 
{1} ∪X is a left transversal of H in G. In particular, (|X| + 1) is a divisor of q(q − 1). 
Since (�q+ 1) � q(q− 1), we conclude that (K \ {1}) ⊆ X. It follows that H ∩K = 1 and 
therefore H is contained in a Frobenius complement of G. Without loss of generality, 
we assume H ≤ C. By Lemma 5.12, every conjugacy class contained in X \ K has a 
unique element belonging to C. Therefore we can set X = (∪s−1

i=1a
G
i ) ∪ (K \ {1}) where 

ai is the unique common element of C and a conjugacy class for all i ∈ {1, . . . , s − 1}. 
In particular, we have X ∩ C = {a1, . . . , as−1}. Since {1} ∪ X is a left transversal 
of H in G, we have that {a0, a1, . . . , as−1} is a left transversal of H in C for each 
a0 ∈ H. Therefore the graph CS(G, X) here is inconsistent with the graphs CS(G, X) in 
Theorem 5.13.

Suppose that CS(G, Y ) is a Cayley sum graph of G admitting a subgroup total 
perfect code H. By Lemma 5.12, either (K \ {1}) ⊆ Y or |Y | is divisible by q. By 
Lemma 4.1, Y is a left transversal of H in G. In particular, |Y | is a divisor of q(q − 1). 
Note that |Y | = �q − 1 for some nonnegative integer � if (K \ {1}) ⊆ Y . Since 
(�q − 1) � q(q − 1), we conclude that K \ {1} is not contained in Y . Therefore |Y | is 
divisible by q. Since |Y ||H| = |G| = q(q − 1), we have that |H| is a divisor of q − 1. 
Thus H is contained in a Frobenius complement of G. Without loss of generality, we 
assume H ≤ C. Let a0 be the unique common element of Y and H. Then a0 is a 
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nonsquare of H. Set Y ∩ C = {a0, a1, . . . , as−1}. Then Y = ∪s−1
i=0a

G
i . Since Y is a left 

transversal of H in G, we have that {a0, a1, . . . , as−1} is a left transversal of H in C. 
Therefore the graph CS(G, Y ) here is inconsistent with the graphs CS(G, Y ) in Theo-
rem 5.13. �
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