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Abstract
Let � be a graph with vertex set V , and let a, b be nonnegative integers. An (a, b)-regular set
in� is a nonempty proper subset D of V such that every vertex in D has exactly a neighbours
in D and every vertex in V \ D has exactly b neighbours in D. In particular, a (1, 1)-regular
set is called a total perfect code. Let G be a finite group and S a square-free subset of G
closed under conjugation. The Cayley sum graph CayS(G, S) of G is the graph with vertex
set G such that two vertices x, y are adjacent if and only if xy ∈ S. A subset (respectively,
subgroup) D of G is called an (a, b)-regular set (respectively, subgroup (a, b)-regular set) of
G if there exists a Cayley sum graph of G which admits D as an (a, b)-regular set. We obtain
two necessary and sufficient conditions for a subgroup of a finite groupG to be a total perfect
code in a Cayley sum graph of G. We also obtain two necessary and sufficient conditions
for a subgroup of a finite abelian group G to be a total perfect code of G. We classify finite
abelian groups whose all non-trivial subgroups of even order are total perfect codes of the
group, and as a corollary we obtain that a finite abelian group has the property that every
non-trivial subgroup is a total perfect code if and only if it is isomorphic to an elementary
abelian 2-group. We prove that, for a subgroup H of a finite abelian group G and any pair of
positive integers (a, b) within certain ranges depending on H , H is an (a, b)-regular set of
G if and only if it is a total perfect code of G. Finally, we give a classification of subgroup
total perfect codes of a cyclic group, a dihedral group and a generalized quaternion group.
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1 Introduction

All groups considered in this paper are finite, and all graphs considered are finite, undirected
and simple.We follow [3] and [12], respectively, for graph- and group-theoretical terminology
and notation. As usual, we use V (�) and E(�) to denote the vertex set and edge set of a graph
�, respectively. For a vertex v ∈ V (�), the neighbourhood of v in �, denoted by N�(v) or
simply N (v), is the set of vertices adjacent to v in�. The degree of v in�, denoted by deg(v),
is the number of edges of� incident with v in�. The edge between two adjacent vertices u, v

is denoted by {u, v}. The subgraph of� induced by a subset S of V (�), denoted by�[S], is the
graph with vertex set S in which two vertices are adjacent if and only if they are adjacent in�.
Let G be a group with identity element e. If there exists an element y of G such that x = y2,
then x is called a square element; otherwise x is a non-square element. A subset S of G is
called a square-free set if it contains no square elements of G. A subset S of G is normal if it
is the union of some conjugacy classes ofG, or, equivalently, g−1Sg := {g−1sg : s ∈ S} = S
for every g ∈ G. Given a square-free normal subset S of G, the Cayley sum graph [1, 5] of
G with respect to S, denoted by CayS(G, S), is the graph with vertex set G such that there is
an edge between x to y if and only if xy ∈ S. Since yx = y(xy)y−1, the condition that S is
normal ensures that CayS(G, S) is an undirected graph. The condition that S is square-free
implies that CayS(G, S) has no loops. Thus, CayS(G, S) is an undirected simple |S|-regular
graph. Given an inverse-closed subset S of G \ {e}, the Cayley graph Cay(G, S) is the graph
with vertex set G such that there is an edge between x to y if and only if xy−1 ∈ S.

Let a and b be nonnegative integers. An (a, b)-regular set [4] in a graph � is a nonempty
proper subset D of V (�) such that |N (v) ∩ D| = a for every v ∈ D and |N (v) ∩ D| = b
for every v ∈ V (�)\D. In particular, a (0, 1)-regular set in � is called a perfect code [11,
17, 22, 24], an independent perfect dominating set [10, 15], or an efficient dominating set
[6, 10]; a (1, 1)-regular set in � is called a total perfect code [11, 27], or an efficient open
dominating set [7, 10, 19]. For convenience, in the case when � is a 1-regular graph we also
treat V (�) as a total perfect code in �. Perfect codes, total perfect codes and regular sets
in Cayley graphs have been studied extensively in recent years; see, for example, [2, 6, 8,
11, 14, 15, 17, 19–22, 24–27]. In contrast, there are relatively few researches [16, 18, 23]
on these sets in Cayley sum graphs. This motivated us to study total perfect codes in Cayley
sum graphs in this paper. Similarly to the case of Cayley graphs, a subset D of a group G is
called an (a, b)-regular set of G if it is an (a, b)-regular set in some Cayley sum graph of
G, and an (a, b)-regular set of G is called a subgroup (a, b)-regular set of G if it is also a
subgroup of G. In particular, a (0, 1)-regular set of G is called a perfect code of G, and a
(1, 1)-regular set of G is called a total perfect code of G.

The structure and main results in this paper are as follows. In the next section we present
some basic results that will be used in subsequent sections. Among other things we give two
necessary and sufficient conditions for a subgroup of a group G to be a total perfect code
in a given Cayley sum graph of G (Theorem 2.3). In Sect. 3, we first give two necessary
and sufficient conditions for a subgroup of an abelian group G to be a total perfect code
of G (Theorem 3.2). Using this result, we then classify abelian groups whose all non-trivial
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subgroups of even order are total perfect codes of the group (Theorem3.5). As a consequence,
we obtain that an abelian group has the property that every non-trivial subgroup is a total
perfect code if and only if it is isomorphic to an elementary abelian 2-group (Corollary 3.6).
We determine all subgroup total perfect codes of a cyclic group (Theorem 3.7). In Sect. 3, we
also prove (Theorem 3.8) that a subgroup H of an abelian group G with ρ(H) ≥ 1 is a total
perfect code of G if and only if it is an (a, b)-regular set of G for any 1 ≤ a ≤ ρ(H) and
1 ≤ b ≤ |H | − ρ(H), where ρ(H) is the number of non-square elements of H . Finally, we
determine all subgroup total perfect codes of a dihedral group and a generalized quaternion
group (Theorems 4.2 and 4.4) in Sect. 4.

2 A few basic results

As usual, for a group G and a subgroup H of G, we use |G : H | to denote the index of H in
G. A right transversal of H in G is a subset of G which contains exactly one element from
each right coset of H in G. For any two subsets A, B of G, set

AB := {ab : a ∈ A, b ∈ B}.
A partition π = {V1, V2, . . . , Vr } of V (�) is called an equitable partition of a graph �

(see, for example, [9]) if there is an r × r matrix M = (mi j ), called the quotient matrix
of π , such that for any 1 ≤ i, j ≤ r , every vertex in Vi has exactly mi j neighbours in Vj .
A graph � is called [27] a pseudocover of a graph � if there exists a surjective mapping
f : V (�) → V (�) such that �[ f −1(v)] is a matching for every v in V (�) and f is a
covering projection from �∗ to �, where �∗ is the graph obtained from � by deleting the
matching in each �[ f −1(v)]. The fiber of a vertex or an edge of � is its preimage under f .

Observe that if D is a total perfect code in a Cayley sum graph CayS(G, S) then |G| =
|D||S|.
Lemma 2.1 Let G be an abelian group. Let S be a square-free subset of G and set � =
CayS(G, S). If D is a subset of G such that D = D−1s for some s ∈ S, then |D| is even and
�[D] is a 1-regular subgraph of �.

Proof Since S is a square-free subset of G and D = D−1s, every vertex in D has at least
one neighbour in �[D]. If there exists a vertex u ∈ D which is adjacent to two distinct
vertices in �[D], say, v,w ∈ D, then v−1s = u and u−1s = w, and hence vu = s = wu, a
contradiction. Hence �[D] is a 1-regular subgraph of �. Consequently, |D| is even. �	

The following result gives a connection between total perfect codes of a Cayley sum graph
CayS(G, S) and partitions of G. This result is similar to [15, Lemma 3(b)] and [27, Lemma
2.1(b)].

Lemma 2.2 Let G be an abelian group. Let S be a square-free subset of G and set � =
CayS(G, S). If D ⊆ G is a total perfect code in �, then {D−1s : s ∈ S} is a partition of
V (�) = G. Conversely, if there is a subset D of G such that D = D−1s for at least one
s ∈ S and {D−1s : s ∈ S} is a partition of G, then D is a total perfect code in �.

Proof Denote S = {s1, s2, . . . , sk}. Suppose D ⊆ G is a total perfect code in �. Since �

is |S|-regular, we have |G| = |D||S|. If D−1si ∩ D−1s j �= ∅ for two distinct elements
si , s j of S, then there exist distinct elements di , d j ∈ D such that d−1

i si = d−1
j s j , which

implies that this vertex is adjacent to two distinct vertices in D, a contradiction. Hence
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D−1si ∩ D−1s j = ∅ for any two distinct si , s j ∈ S. Combining this with |G| = |D||S|, we
see that {D−1s1, . . . , D−1sk} is a partition of V (�) = G.

Now suppose D is a subset ofG such that D = D−1si for some i and {D−1s1, . . . , D−1sk}
is a partition of G. By Lemma 2.1, �[D] is a 1-regular subgraph of �. Moreover, since
{D−1s1, . . . , D−1sk} is a partition of G, for any vertex u ∈ G \ D, there exists a unique
element s j ∈ S such that u ∈ D−1s j , which implies that there exists a unique vertex v ∈ D
such that u = v−1s j . That is, every vertex in G \ D is adjacent to a unique vertex in D.
Hence D is a total perfect code in �. �	

It is not true that for every total perfect code D in CayS(G, S) there exists an element
s ∈ S such that D = D−1s. So Lemma 2.2 is not a necessary and sufficient condition for a
subset D of G to be a total perfect code in CayS(G, S).

The main result in this section, stated below, is the counterpart of [16, Lemma 2.1] for
total perfect codes.

Theorem 2.3 Let G be a group and H a subgroup of G. Let S be a square-free normal subset
of G and set � = CayS(G, S). Then the following statements are equivalent:

(a) H is a total perfect code in �;
(b) S is a right transversal of H in G;
(c) |G : H | = |S| and H ∩ (H(SS−1\{e})) = ∅.
Proof Note that V (�) = G. Set S = {s1, s2, . . . , sk}.

(a)⇒ (b) Since H is a subgroup total perfect code in �, by Lemma 2.2, {Hs : s ∈ S} is a
partition of G. That is, S is a right transversal of H in G.

(b) ⇒ (a) Suppose that S is a right transversal of H in G. Then {Hs1, Hs2, . . . , Hsk}
is a partition of G. Thus, for any vertex u ∈ G, there exists a unique element si of S such
that u ∈ Hsi , say, u = hsi for some h ∈ H . Then u is adjacent to h−1 ∈ H and hence
|N (u)∩H | ≥ 1. If u is adjacent to two distinct vertices hi , h j ∈ H , then hiu = si , h ju = s j
for two distinct elements si , s j ∈ S, which implies u = h−1

i si = h−1
j s j ∈ Hsi ∩ Hs j , a

contradiction. Hence |N (u) ∩ H | = 1 for any u ∈ G and therefore H is a total perfect code
in �.

(b) ⇒ (c) Suppose that S is a right transversal of H in G. Then |G : H | = |S|. If h is an
element of H ∩ (H(SS−1 \ {e})), then there exists an element hi ∈ H such that h = hi si s

−1
j

for two distinct elements si , s j ∈ S. Thus, hs j = hi si and Hsi = Hs j , a contradiction.
Therefore, H ∩ (H(SS−1\{e})) = ∅.

(c) ⇒ (b) Suppose that |G : H | = |S| and H ∩ (H(SS−1\{e})) = ∅. We claim that
Hsi ∩ Hs j = ∅ for any two distinct elements si , s j ∈ S. Suppose to the contrary that
Hsi ∩ Hs j �= ∅ for two distinct elements si , s j ∈ S, then hi si = h j s j for some hi , h j ∈ H ,
and hence hi = h j s j s

−1
i ∈ H ∩ (H(SS−1 \ {e})), a contradiction. Thus, Hsi �= Hs j for any

two distinct elements si , s j ∈ S. Since |G : H | = |S|, it follows that S is a right transversal
of H in G. �	

We now present six corollaries of Theorem 2.3.

Corollary 2.4 Let G be a group and H a subgroup of G. Let S be a square-free normal subset
of G and set � = CayS(G, S). If H is a subgroup total perfect code in �, then there exists a
unique element s of S such that for any edge {u, v} of �[H ] we have vu = uv = s.

Proof Since H is a subgroup total perfect code in �, by Theorem 2.3, S is a right transversal
of H inG. Thus, there exists a unique element s of S such that H = Hs. Of course, s ∈ H∩S.
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Since H is a subgroup of G, for any edge {u, v} of �[H ], we have uv, vu ∈ H ∩ S. Hence
H = H(uv) = H(vu). By the uniqueness of s, we then obtain uv = vu = s. �	

The following result follows from Corollary 2.4 and Theorem 2.3 immediately.

Corollary 2.5 Let G be a group and H a subgroup of G. Let S be a square-free normal subset
of G and set � = CayS(G, S). If H is a subgroup total perfect code in �, then |H ∩ S| = 1.

Corollary 2.6 Let G be an abelian group and H a subgroup of G. Let S be a square-free
subset of G and set � = CayS(G, S). If H is a subgroup total perfect code in �, then
{Hs : s ∈ S} is an equitable partition of �, and moreover each Hs, s ∈ S is a total perfect
code in �.

Proof Denote S = {s1, s2, . . . , sk}. By Theorem 2.3, we know that {Hs1, Hs2, . . . , Hsk} is
a partition of V (�) = G. We claim that for each t between 1 and k, any vertex u ∈ G has a
unique neighbour in Hst . Suppose to the contrary that u has two distinct neighbours vst , wst
in Hst , where v,w ∈ H . Then uvst = si and uwst = s j for some si , s j ∈ S. Note that
i �= j as v �= w. Hence ust = v−1si = w−1s j ∈ Hsi ∩ Hs j , which contradicts the fact that
{Hs1, Hs2, . . . , Hsk} is a partition of V (�). So each vertex of � has exactly one neighbour
in each part Hst . Consequently, {Hs1, Hs2, . . . , Hsk} is an equitable partition of � whose
quotient matrix is the k × k all-1 matrix, and each part Hst is a total perfect code in �. �	

Combining [27, Lemma 2.5], Theorem 2.3 and Corollary 2.6, we obtain the following
result.

Corollary 2.7 Let G be an abelian group and H a subgroup of G. Let S be a square-free
subset of G and set � = CayS(G, S). Then the following statements are equivalent:

(a) H is a total perfect code in �;
(b) there exists a pseudocovering f : CayS(G, S) → K|S| such that Hs is a vertex fibre of

f for some s in S;
(c) {Hs : s ∈ S} is an equitable partition of �.

The following result is the counterpart of [16, Proposition 2.5] for total perfect codes.

Corollary 2.8 Let G be a group and H a normal subgroup of G. Let S be a square-free normal
subset of G. If H is a subgroup total perfect code in CayS(G, S), then for any g ∈ G\S
there exists an element h ∈ H\{e} such that gh = hg, and there exists a unique element
h ∈ (H\{e}) ∩ S such that gh = hg.

Proof Since H is a subgroup total perfect code in CayS(G, S), by Theorem 2.3, S is a right
transversal of H in G. Thus, for any g ∈ G \ S, there exists a unique element s ∈ S such that
g ∈ Hs. So g = hs for some h ∈ H\{e}. Thus, Hg = Hs and so Hg−1 = Hs−1. Hence
Hg−1sg = (Hs−1)sg = Hg = Hs. On the other hand, we have g−1sg ∈ S as S is normal.
It follows that g−1sg = s and so gh = hg as s = h−1g.

Since both H and S are normal, we have gHg−1 ∩ gSg−1 = H ∩ S for each g ∈ G.
Moreover, by Corollary 2.5, H ∩ S only contains one element, say, h. Since h ∈ gHg−1 ∩
gSg−1, we have gh = hg. Note that h ∈ (H\{e}) ∩ S as e /∈ S. �	
Corollary 2.9 Let G be a group and H a subgroup of G. If H is a subgroup total perfect code
of G, then each coset of H in G contains at least one non-square element.
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Proof Since H is a subgroup total perfect code of G, there exists a square-free normal subset
S of G such that H is a total perfect code in CayS(G, S). By Theorem 2.3, for any g ∈ G
there exists an element s ∈ S such that g ∈ Hs. Hence Hg = Hs and so Hg contains the
non-square element s. �	

For a subset A of a group G, define

Ā =
∑

g∈G
μA(g)g ∈ Z[G],

where μA(g) = 1 if g ∈ A and μA(g) = 0 if g ∈ G\A. The following is the counterpart of
[22, Lemma 2.1] for Cayley sum graphs.

Lemma 2.10 Let G be a group, D a subset of G, and S a square-free normal subset of G.
Let a and b be nonnegative integers. Then the following statements are equivalent:

(a) D is an (a, b)-regular set in CayS(G, S);
(b) |D ∩ Sg−1| = a for each g ∈ D and |D ∩ Sg−1| = b for each g ∈ G\D;
(c) D−1 · S = aD + bG \ D;
(d) D−1 · S + (b − a)D = bG.

In particular, if D is a subgroup of G, then D is an (a, b)-regular set in CayS(G, S) if and
only if |D ∩ S| = a and S \ D · D = bG \ D.

Proof Denote � = CayS(G, S).
(a) ⇔ (b) This follows from the definition of an (a, b)-regular set in a Cayley sum graph.
(b) ⇔ (c) Note that

D−1 · S =
∑

d∈D

∑

s∈S
d−1s =

∑

x∈G

∑

(d,s)∈D×S
d−1s=x

x

=
∑

x∈G

∑

d∈D
dx∈S

x =
∑

x∈G

∑

d∈D
d∈Sx−1

x

=
∑

x∈G
|Sx−1 ∩ D|x

=
∑

x∈D
|Sx−1 ∩ D|x +

∑

x∈G\D
|Sx−1 ∩ D|x .

Note also that (b) holds if and only if
∑

x∈D
|Sx−1 ∩ D|x = aD and

∑

x∈G\D
|Sx−1 ∩ D|x = bG \ D.

Thus part (b) and part (c) are equivalent.
(c) ⇔ (d) This can be verified by a straightforward computation.
Now assume D is a subgroup of G. Then condition (c) becomes D · S = aD + bG\D.

Since {S ∩ D, S\D} is a partition of S and d̄ · D = D for all d ∈ D, we have D · S =
(S ∩ D + S\D) · D = S ∩ D · D + S\D · D = |D ∩ S|D + S\D · D. Hence D is an
(a, b)-regular set in � if and only if |D ∩ S| = a and S\D · D = bG\D. �	
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3 Subgroup total perfect codes of abelian groups

In this section we focus on subgroup total perfect codes of abelian groups. Since any total
perfect code contains an even number of vertices, an abelian group cannot admit any subgroup
total perfect code unless its order is even. So we only consider abelian groups of even order
in this section. Let us begin with the following known result.

Lemma 3.1 [16] Let G1,G2, . . . ,Gn be groups and let Hi be a subgroup of Gi for 1 ≤ i ≤ n.
If Si is a right transversal of Hi in Gi for 1 ≤ i ≤ n, then S1 × S2 × · · · × Sn is a right
transversal of H1 × H2 × · · · × Hn in G1 × G2 × · · · × Gn.

The following is the first main result in this section, where the equivalence between (a)
and (b) is the counterpart of [16, Theorem 3.1] for total perfect codes.

Theorem 3.2 Let G be an abelian group of even order with non-trivial Sylow 2-subgroup P.
Let H be a subgroup of G. Then the following statements are equivalent:

(a) H is a subgroup total perfect code of G;
(b) H ∩ P is a subgroup total perfect code of P;
(c) H contains a non-square element of G.

Proof Since P is the Sylow 2-subgroup of G, we may write G = P × Q, where Q is the
Hall 2′-subgroup of G. Since |G| is even, P is non-trivial and hence H ∩ P is the Sylow
2-subgroup of H . Let H = P1 × Q1, where P1 = H ∩ P and Q1 consists of the elements
of H with odd order.

(a)⇒ (b) Suppose that H is a subgroup total perfect code ofG. Then there exists a square-
free normal subset S ofG such that H is a total perfect code in CayS(G, S). By Theorem 2.3,
S is a right transversal of H in G. Set l = |G|/|S| and denote

S = {(p1, q1), . . . , (pl , ql)},
where pi ∈ P and qi ∈ Q for 1 ≤ i ≤ l. Since (pi , qi ), 1 ≤ i ≤ l are non-square elements
of G, we know that pi , 1 ≤ i ≤ l are non-square elements of P . That is, T = {p1, . . . , pl}
is a square-free subset of P . Note that |P1| ≥ 2, for otherwise each element (e, q) ∈ H =
{e} × Q1 would be a square element, a contradiction. If P1 = P , then |P1| is even. Since
pi , 1 ≤ i ≤ l are non-square elements of P , there is a non-square element p of P such that
P is a total perfect code in CayS(P, {p}). Assume P1 �= P . Define S′ to be the subset of T
with maximum cardinality such that P1 pi for pi ∈ S′ are pairwise distinct. Then P1 pi for
pi ∈ S′ are pairwise disjoint. Since T is a square-free subset of P , so is S′. If ∪pi∈S′ P1 pi
is a proper subset of P , then there exists p ∈ P\(∪pi∈S′ P1 pi ) such that p ∈ P1 pt for some
pt ∈ {p1, . . . , pl}\S′. Thus, P1 p j for p j ∈ S′ ∪ {pt } are pairwise distinct, which contradicts
the choice of S′. Hence S′ is a right transversal of P1 in P . By Theorem 2.3, it follows that
P1 is a subgroup total perfect code of P .

(b)⇒ (a) Suppose that P1 is a subgroup total perfect code of P . Take S′ = {q0, q1, . . . , ql}
to be a right transversal of Q1 in Q, where q0 ∈ Q1. If P1 = P , then there exists a non-
square element x ∈ P such that S = {(x, q0), (x, q1), . . . , (x, ql)} is a square-free subset of
G. In this case, S is a right transversal of H in G by Lemma 3.1, and therefore H is a total
perfect code of G by Theorem 2.3. Assume P1 �= P . That is, P is not a subset of H . Since
P1 is a subgroup total perfect code of P , by Theorem 2.3 there exists a square-free subset
S1 = {p1, p2, . . . , pm} of P which is a right transversal of P1 in P . Define S = S1 × S′. By
Lemma 3.1, S is a right transversal of H in G. Since each pi ∈ S1 is a non-square element of
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P , each (pi , q j ) ∈ S is a non-square element of G. That is, S is a square-free normal subset
of G. Thus, by Theorem 2.3, H is a total perfect code in CayS(G, S) and therefore is a total
perfect code of G.

(a) ⇒ (c) This follows from Corollary 2.9.
(c) ⇒ (a) Suppose that H contains a non-square element of G, say, s ∈ H . Then P1 �= ∅

and |H | is even. Since s ∈ H , we may take a right transversal S = {s, s1, . . . , sk} of H in G
containing s. If for some i both si ∈ S and ssi are square elements, say, ssi = g21, si = g22
for some g1, g2 ∈ G, then s = g21(g

2
2)

−1 = (g1g
−1
2 )2, which contradicts the assumption that

s is a non-square element of G. Thus, if si ∈ S is a square element, then ssi is a non-square
element and in this case we replace si by ssi in S. In this way we obtain a square-free subset
of G which is also a right transversal of H in G. It follows from Theorem 2.3 that H is a
subgroup total perfect code of G. �	

By the proof of Theorem 3.2, if a subgroup H of an abelian groupG contains a non-square
element, then there exists a square-free subset S of G which is a right transversal of H in G.
So there is a unique element s of S such that Hs = H , and hence (S \ {s}) ∪ {e} is also a
right transversal of H in G. Combining this with [16, Lemma 2.1], we obtain the following
result.

Corollary 3.3 Let G be an abelian group. Then any a subgroup of G which contains a non-
square element is a perfect code of G.

To prove our second main result in this section we need the following lemma which is
analogous to [16, Lemma 3.4].

Lemma 3.4 Let G1, G2, . . . ,Gn be cyclic 2-groups. Let G = G1 × G2 × · · · × Gn and let
H = H1 × H2 × · · · × Hn be a non-trivial subgroup of G, where Hi is a subgroup of Gi for
1 ≤ i ≤ n. Then H is a subgroup total perfect code of G if and only if Hi = Gi holds for at
least one i between 1 and n.

Proof We first prove the necessity. Suppose that H is a subgroup total perfect code of G.
Then there exists a square-free subset S = {s1, s2, . . . , sm} of G which is a right transversal
of H in G. In particular, G = Hs1 ∪ Hs2 ∪ · · · ∪ Hsm . Note that each element of S is of
the form si = (si(1), si(2), . . . , si(n)), where si( j) is an element of G j for 1 ≤ j ≤ n. By
Corollary 2.5, there exists an element si ∈ S ∩ H and an element si( j) ∈ G j such that si( j)
is a non-square element of G j . Since G j is a cyclic 2-group and Hj is a subgroup of G j , we
have 〈si( j)〉 = Hj and 〈si( j)〉 = G j . Hence Hj = G j .

Nowwe prove the sufficiency.Without loss of generality we may assume H1 = G1. Since
H1 = G1 is a cyclic 2-group, it contains a non-square element, say, g. Take a right transversal
Si of Hi in Gi for 2 ≤ i ≤ n, and set S = {g} × S2 × · · · × Sn . Since g is a non-square
element, each element of S is a non-square element of G. Thus, by Lemma 3.1, S is a right
transversal of H in G. Therefore, by Theorem 2.3, H is a subgroup total perfect code of G.

�	
It would be interesting to determine all groups for which every non-trivial subgroup of

even order is a total perfect code. The next result solves this problem for abelian groups
(see [16, Theorem 3.5] for a result of the same spirit for subgroup perfect codes of abelian
groups).

Theorem 3.5 Let G be an abelian group. Every non-trivial subgroup of G with even order
is a subgroup total perfect code of G if and only if G is isomorphic to Z

n
2 with n ≥ 2, or

Z
n
2 × Q with Q a non-trivial abelian group of odd order.
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Proof The sufficiency follows from Theorem 3.2 and Lemma 3.4. To prove the necessity,
suppose that every non-trivial subgroup of G with even order is a subgroup total perfect code
of G. In the case when G is a 2-group, if G has an element g of order 4, then 〈g2〉 contains
square elements only and hence is not a total perfect code ofG. This contradiction shows that
G has no elements of order 4 and so G ∼= Z

n
2 for some n ≥ 2. It remains to consider the case

when G is not a 2-group. In this case we have G = P ×Q, where P is the Sylow 2-subgroup
of G and Q is the Hall 2′-subgroup of G. Let H be a non-trivial subgroup of G with even
order. Then |H ∩ P| �= 1. If there is an element g of order 4 in P , then 〈(e, e), (g2, e)〉
contains square elements only and hence is not a total perfect code of G, a contradiction.
Thus, P does not contain elements of order 4 and hence G ∼= Z

n
2 × Q. �	

The following corollary follows from Theorem 3.5 immediately.

Corollary 3.6 Let G be an abelian group. Every non-trivial subgroup of G is a subgroup total
perfect code of G if and only if G is isomorphic to Z

n
2 for some n ≥ 2.

Cayley sum graphs of Zn
2 are the same as Cayley graphs of Zn

2, which are called cubelike
graphs in the literature. Since the index of any non-trivial subgroup of Zn

2 is a power of 2,
we see that any cubelike graph admits a subgroup total perfect code if and only if its degree
is a power of 2. This result is exactly the first statement in [27, Theorem 4.1].

Using Theorem 3.2, we can construct all subgroup perfect codes of some special abelian
groups. For example, from Theorem 3.2 we obtain the following result, which is the
counterpart of [16, Theorem 3.7] for total perfect codes.

Theorem 3.7 Let G = 〈g〉 be a cyclic group. Let H = 〈gt 〉 be a non-trivial subgroup of G,
where t is the smallest positive integer such that gt generates H. Then H is a subgroup total
perfect code of G if and only if t is odd and |H | is even.
Proof We first prove the necessity. Suppose H is a subgroup total perfect code of G. Then
|H | is even. Also, t must be odd, for otherwise git is a square element for each i ≥ 1 and
hence, by Corollary 2.5, H is not a subgroup total perfect code of G, a contradiction.

Next we prove the sufficiency. Suppose t = 2 j + 1 is odd and |H | = 2i is even, where
i, j ≥ 1. Then g2i t = e and t ≤ n/2 by the choice of t . It is readily seen that S =
{g, g2, . . . , gt } is a right transversal of H inG. If gk ∈ S is a square element, then we replace
it by gk+t in S. In this way we obtain S′ = {g, g2+t , g3, g4+t , . . . , g2 j+t , gt } which is a
square-free subset of G. Since S is a right transversal of H in G, we have Hg2i+1 �= Hg2 j+1

and Hg2i+t �= Hg2 j+t for 0 ≤ i �= j ≤ (t − 1)/2. If Hg2i+1 = Hg2 j+t for some
0 ≤ i, j ≤ (t − 1)/2, then Hg2i+1 = Hg2 j+t = Hgt g2 j = Hg2 j , but this contradicts the
fact that S is a right transversal of H in G. Therefore, S′ is a right transversal of H in G.
Thus, by Theorem 3.2, H is a subgroup total perfect code of G. �	

It follows from Lemma 3.4 and Theorem 3.7 that for any k ≥ 1 the cyclic group of order
2k has no non-trivial subgroup total perfect code.

The following result is the counterpart of [22, Theorem1.2] forCayley sumgraphs.Denote
by ρ(G) the number of non-square elements of a group G. Note that ρ(G) < |G| as the
identity element of G is a square element.

Theorem 3.8 Let G be an abelian group and H a subgroup of G with ρ(H) ≥ 1. Then
H is an (a, b)-regular set of G for every pair of integers (a, b) with 1 ≤ a ≤ ρ(H) and
1 ≤ b ≤ |H | − ρ(H) if and only if H is a total perfect code of G.
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Proof Suppose that H is an (a, b)-regular set of G for any 1 ≤ a ≤ ρ(H) and 1 ≤ b ≤
|H | − ρ(H). Since 1 ≤ ρ(H) < |H |, we can take a = b = 1 and thus obtain that H is a
subgroup total perfect code of G.

Now suppose that H is a total perfect code of G. Then there is a square-free subset
S = {s1, s2, . . . , sm} of G such that H is a total perfect code in CayS(G, S). By Theorem
2.3, S is a right transversal of H in G. Without loss of generality we may assume H = Hs1.
Consider an arbitrary pair of integers (a, b) with 1 ≤ a ≤ ρ(H) and 1 ≤ b ≤ |H | − ρ(H).
Since H contains ρ(H) non-square elements and 1 ≤ a ≤ ρ(H), we can take a distinct non-
square elements s1,1, s1,2, . . . , s1,a in H . Denote S1 = {s1,1, s1,2, . . . , s1,a}. By Theorem
2.3, for any element g ∈ G \ H , there is a unique element si ∈ S such that g ∈ Hsi .
Since H contains |H | − ρ(H) square elements and 1 ≤ b ≤ |H | − ρ(H), we can take
b square elements h1, h2, . . . , hb in H . Since S is a non-square subset of G, we see that
S2 = {hi s j : 1 ≤ i ≤ b, 2 ≤ j ≤ m} is a non-square subset of G. Since S1 is also a
non-square subset of G, so is S′ = S1 ∪ S2. We claim that H is an (a, b)-regular set in
CayS(G, S′). In fact, since S1 ⊆ H and H is a subgroup of G, for any g ∈ H , there are
a distinct elements h1,1, h1,2, . . . , h1,a of H such that h1,i g = s1,i for 1 ≤ i ≤ a. Since
H ∩ Hsi = ∅ for 2 ≤ i ≤ m, it follows that |H ∩ S′g−1| = |H ∩ S1g| = a. On the
other hand, for any g ∈ G\H , there is an element s j ∈ S\{s1} such that g ∈ Hs j . Since
Hs j = (Hhi )s j = H(hi s j ) for 1 ≤ i ≤ b, we have g ∈ H(hi s j ) for 1 ≤ i ≤ b. Hence
there are b elements hi,1, hi,2, . . . , hi,b in H such that g = h−1

i, j hi s j for 1 ≤ i ≤ b. It follows
that there are b elements hi,1, hi,2, . . . , hi,b in H such that hi, j g = hi s j for 1 ≤ i ≤ b.
So |H ∩ S′g−1| = |H ∩ S2g−1| = b for any g ∈ G \ H . Thus, by Lemma 2.10, H is an
(a, b)-regular set in CayS(G, S). Therefore, H is an (a, b)-regular set of G for any pair of
integers (a, b) with 1 ≤ a ≤ ρ(H) and 1 ≤ b ≤ |H | − ρ(H). �	

4 Dihedral groups and generalized quaternion groups

In this section we determine all subgroup total perfect codes of dihedral groups and gen-
eralized quaternion groups. Recall that the dihedral group D2n of order 2n is defined
as

D2n = 〈a, b | an = b2 = e, bab = a−1〉. (1)

The subgroups of D2n are the cyclic groups 〈at 〉 with t dividing n and the dihedral groups
〈at , arb〉 with t dividing n and 0 ≤ r ≤ t − 1.

Lemma 4.1 [13, p. 108] Let D2n be the dihedral group of order 2n ≥ 6 as given in (1).

(a) If n is odd, then the conjugacy classes of D2n are: {e}, {ai , a−i }, {a jb : 0 ≤ j ≤ n − 1},
where 1 ≤ i ≤ (n − 1)/2.

(b) If n is even, then the conjugacy classes of D2n are: {e}, {a n
2 }, {ai , a−i }, {a2 j b : 0 ≤ j ≤

(n/2) − 1}, {a2 j+1b : 0 ≤ j ≤ (n/2) − 1}, where 1 ≤ i ≤ (n/2) − 1.

The following result is the counterpart of [16, Theorem 4.1] for total perfect codes.

Theorem 4.2 Let D2n be the dihedral group of order 2n ≥ 6 as given in (1), and let H be
a subgroup of D2n. Then H is a subgroup total perfect code of D2n if and only if one of the
following holds:

(a) n is even and H is one of the following:
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(i) H = 〈a n
2 〉 and n/2 is odd;

(ii) H = 〈at , arb〉, where 0 ≤ r ≤ t − 1, and either t = n or n/2 is odd and t is a
divisor of n/2;

(b) n is odd and H = 〈arb〉 = {e, arb}, where 0 ≤ r ≤ n − 1.

Proof (a) We prove the necessity first. Suppose that H is a subgroup total perfect code of
D2n . Then there exists a square-free normal subset S of D2n such that H is a total perfect
code in CayS(D2n, S). So |S||H | = |G| = 2n and |H ∩ S| = 1 by Corollary 2.5. Since H
is a subgroup of D2n , we have either H = 〈at 〉 with t dividing n or H = 〈at , arb〉 with t
dividing n and 0 ≤ r ≤ t − 1.

Consider H = 〈at 〉 first, where t is a divisor of n. Since S is a normal subset of D2n , by
part (b) of Lemma 4.1, we must have H ∩ S = {a n

2 }. Since S is a square-free subset of D2n ,
we obtain further that n/2 is odd. Since a

n
2 ∈ H and t divides n, we may assume without loss

of generality that t divides n/2. (If t does not divide n, then we can choose another divisor
t ′ of n such that H = 〈at ′ 〉 and t ′ divides n/2.) Then |S| = 2t . Since t ≤ n/2 and S has an
element of the form aib, we have 2t ≥ n/2 by Lemma 4.1. Hence n/4 ≤ t ≤ n/2. Since
t is a divisor of n and n/2 is odd, we have t = n/2 or n/3. However, if t = n/3, then t is
even as n is even. So all elements of H are square elements, which contradicts the fact that
H ∩ S �= ∅ and S is square-free. Therefore, we have t = n/2 and hence H = 〈a n

2 〉.
Assume H = 〈at , arb〉 in the sequel, where t divides n and 0 ≤ r ≤ n − 1. Since

|H ∩ S| = 1, we have |〈at 〉 ∩ S| = 0 or 1.
Case 1. |〈at 〉 ∩ S| = 0.
Since |H ∩ S| = 1, we have α0, α1 ∈ {0, 1} in this case, where α0 = |H ∩ {a2 j b : 0 ≤

j ≤ (n/2) − 1}| and α1 = |H ∩ {a2 j+1b : 0 ≤ j ≤ (n/2) − 1}|. If α0 = 0 and α1 = 1,
then H = 〈arb〉 and r is odd. If α0 = 1 and α1 = 0, then H = 〈arb〉 and r is even. If
α0 = α1 = 1, then H = 〈e, ar2−r1 , ar1b, ar2b〉 for some odd integer r1 and even integer r2
with 1 ≤ r1, r2 ≤ n − 1. Since |H ∩ S| = 1, we have r2 − r1 = n/2 and n/2 is odd. Thus,
H = 〈at , arb〉, where t = n/2 is odd.

Case 2. |〈at 〉 ∩ S| = 1.
In this case, we have 〈at 〉 ∩ S = {a n

2 } and n/2 is odd. Hence t is an odd divisor of n/2.
Up to now we have completed the proof of the necessity.
Now we prove the sufficiency. Consider H = 〈a n

2 〉 first, where n/2 is an odd integer. Set

S = {a n
2 } ∪ {a2 j+1b : 0 ≤ j ≤ (n/2) − 1} ∪ {ai , a−i : 1 ≤ i ≤ (n/2) − 1, i is odd}.

Then S is a square-free normal subset of D2n . We have

H S = (e + a
n
2 )

⎛

⎜⎝a
n
2 +

n−6
4∑

l=0

a2l+1 +
n−6
4∑

l=0

a−(2l+1) +
n
2 −1∑

j=0

a2 j+1b

⎞

⎟⎠

= a
n
2 +

n−6
4∑

l=0

a2l+1 +
n−6
4∑

l=0

a−(2l+1) +
n
2 −1∑

j=0

a2 j+1b

+ e +
n−6
4∑

l=0

a2l+1+ n
2 +

n−6
4∑

l=0

a−(2l+1)+ n
2 +

n
2 −1∑

j=0

a2 j+1+ n
2 b

= a
n
2 +

n−6
4∑

l=0

a2l+1 +
n−6
4∑

l=0

a−(2l+1) +
n
2 −1∑

j=0

a2 j+1b

123



2610 X. Wang et al.

+ e +
n−6
4∑

l ′=0

a2l
′ +

n−6
4∑

l ′=0

a−2l ′ +
n
2 −1∑

j ′=0

a2 j
′
b

= D2n .

If H = 〈at , arb〉, where t = n, then H = 〈arb〉 and S = {aib : 0 ≤ i ≤ n − 1} is a
square-free normal subset of D2n containing arb ∈ S. We have

H S = (e + arb)

(
n−1∑

i=0

aib

)
=

n−1∑

i=0

aib +
n−1∑

i=0

arbaib =
n−1∑

i=0

aib +
n−1∑

i=0

ar−i = D2n .

It remains to consider H = 〈at , arb〉, where 0 ≤ r ≤ t − 1, n/2 is odd, and t is a divisor
of n/2. Assume t = 2k + 1. Set

S = S1 ∪ {n/2},

where S1 = {a2i+1, a−(2i+1) : 0 ≤ i ≤ k − 1}. Since by Lemma 4.1, S1 and { n2 } are normal
subsets of D2n , so is S. Since n is even and j is odd for each a j ∈ S, S is a square-free normal
subset of D2n . Denote by O and E the sets of odd integers and even integers between 1 and
t − 1, respectively. Then

H S =
⎛

⎝
n/t∑

i=1

(ait + ar+i t b)

⎞

⎠

⎛

⎝a
n
2 +

k−1∑

j=0

(a2 j+1 + a−(2 j+1))

⎞

⎠

=
⎛

⎝
n/t∑

i=1

(ait + ar+i t b)

⎞

⎠ a
n
2 +

⎛

⎝
n/t∑

i=1

(ait + ar+i t b)

⎞

⎠

⎛

⎝
k−1∑

j=0

(a2 j+1 + a−(2 j+1))

⎞

⎠

=
⎛

⎝
n/t∑

i=1

(ait + ar+i t b)

⎞

⎠ a
n
2 +

⎛

⎝
n/t∑

i=1

(ait + ar+i t b)

⎞

⎠

⎛

⎝
k−1∑

j=0

a2 j+1

⎞

⎠

+
⎛

⎝
n/t∑

i=1

(ait + ar+i t b)

⎞

⎠

⎛

⎝
k−1∑

j=0

a−(2 j+1)

⎞

⎠

=
n/t∑

i=1

(ait + ar+i t b) +
∑

j∈O

⎛

⎝a j

⎛

⎝
n/t∑

i=1

(ait + ar+i t b)

⎞

⎠

⎞

⎠

+
∑

j∈E

⎛

⎝a j

⎛

⎝
n/t∑

i=1

(ait + ar+i t b)

⎞

⎠

⎞

⎠

=
t∑

j=1

⎛

⎝a j

⎛

⎝
n/t∑

i=1

(ait + ar+i t b)

⎞

⎠

⎞

⎠

= D2n .

In each case above we obtain from Lemma 2.10 that H is a subgroup total perfect code
of D2n .
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(b) We first prove the sufficiency. Consider the subgroup H = 〈arb〉 of D2n , where
0 ≤ r ≤ n − 1. Set S = {a jb : 0 ≤ j ≤ n − 1}. Then S is a square-free subset of D2n , and
by Lemma 4.1, S is normal as well. We have

H S = (e + arb)

(
n−1∑

i=0

aib

)
=

n−1∑

i=0

aib +
n−1∑

i=0

arbaib =
n−1∑

i=0

aib +
n−1∑

i=0

ar−i = D2n .

Setting a = b = 1 in Lemma 2.10, we obtain that H is a subgroup total perfect code of D2n .
Now we prove the necessity. If H = 〈at 〉 is a subgroup total perfect code of D2n , where t

is a divisor of n, then there exists a square-free normal subset S of D2n such that H is a total
perfect code in CayS(D2n, S). By Corollary 2.5, we have |H ∩ S| = 1. Since H = 〈at 〉, the
unique element of H∩S is of the form ait , where 0 ≤ i ≤ (n/t)−1. Since S is a normal subset
of D2n , by Lemma 4.1, we have a−i t ∈ H ∩ S, but this contradicts the fact that |H ∩ S| = 1.
Thus, H = 〈at 〉 cannot be a total perfect code of D2n . Suppose H = 〈at , arb〉 is a subgroup
total perfect code of D2n , where t is a divisor of n and 0 ≤ r ≤ t − 1. Then |H ∩ S| = 1
by Corollary 2.5. If ai ∈ H ∩ S for some positive integer i , then a−i ∈ H ∩ S by Lemma
4.1, but this contradicts the fact that |H ∩ S| = 1. So there is a positive integer i such that
ar+i t b ∈ H ∩ S. By Lemma 4.1, we know that all elements ar+ j t b with 0 ≤ j ≤ (n − 1)/2
are in H ∩ S. Since |H∩S|=1, we must have at = e and hence H =〈arb〉={e, arb}. �	

The generalized quaternion group Q4n of order 4n ≥ 8 is defined as

Q4n = 〈a, b | an = b2, a2n = e, b−1ab = a−1〉. (2)

It is known that the subgroups of Q4n are 〈at 〉with t dividing 2n and 〈at , arb〉with t dividing
2n and 0 ≤ r ≤ t − 1.

Lemma 4.3 [13, p. 420] The generalized quaternion group Q4n has precisely n+3 conjugacy
classes: {e}, {an}, {ai , a−i }, {a2 j b : 0 ≤ j ≤ n − 1}, {a2 j+1b : 0 ≤ j ≤ n − 1}, where
1 ≤ i ≤ n − 1.

Similarly to [16, Theorem 5.1], we can determine all subgroup total perfect codes of Q4n .

Theorem 4.4 Let Q4n be the generalized quaternion group of order 4n ≥ 8 as given in (2),
and let H be a subgroup of Q4n. Then H is a subgroup total perfect code of Q4n if and only
if n is odd and H = {e, arb, b2, arb3} for some 0 ≤ r ≤ n − 1.

Proof Suppose that n is odd and H = {e, arb, b2, arb3} for some 0 ≤ r ≤ n − 1. Then
S = {a2 j+1b : 0 ≤ j ≤ n − 1} is a square-free normal subset of Q4n . Since n is odd, we
have

H S = (e + arb + b2 + arb3)

⎛

⎝
n−1∑

j=0

a2 j+1b

⎞

⎠

=
n−1∑

j=0

a2 j+1b +
n−1∑

j=0

arba2 j+1b +
n−1∑

j=0

b2a2 j+1b +
n−1∑

j=0

arb3a2 j+1b

=
n−1∑

j=0

a2 j+1b +
n−1∑

j=0

ar−(2 j+1)b2 +
n−1∑

j=0

a2 j+1b3 +
n−1∑

j=0

ar−(2 j+1)

=
n−1∑

j=0

a2 j+1b +
n−1∑

j=0

ar+n−(2 j+1) +
n−1∑

j=0

an+(2 j+1)b +
n−1∑

j=0

ar−(2 j+1)
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=
n−1∑

j=0

a2 j+1b +
n−1∑

j=0

ar+2 j +
n−1∑

j=0

a2 j b +
n−1∑

j=0

ar−(2 j−1)

= Q4n .

Thus, by Lemma 2.10, H is a subgroup total perfect code of Q4n .
We now prove the necessity. Let H be a subgroup total perfect code of Q4n . Then

there exists a square-free normal subset S of Q4n such that H is a total perfect code in
CayS(Q4n, S). By Corollary 2.9, we have |H ∩ S| = 1. We have either H = 〈at 〉 with
t dividing 2n or H = 〈at , arb〉 with t dividing 2n and 0 ≤ r ≤ t − 1. However, if
H = 〈at 〉, then H ∩ S = {b2}, which is a contradiction as b2 is a square element of
Q4n . Thus, H = 〈at , arb〉 for some t dividing 2n and r between 0 and t − 1. Since S
is normal, by Lemma 4.3, if ait ∈ 〈at 〉 ∩ S for some i , then a−i t ∈ 〈at 〉 ∩ S. Since
|H ∩ S| = 1, it follows that |〈at 〉 ∩ S| = 0. Set α0 = |H ∩ {a2 j b : 0 ≤ i ≤ n − 1}|
and α1 = |H ∩ {a2 j+1b : 0 ≤ i ≤ n − 1}|. Then α0, α1 ∈ {0, 1}. If α0 = 1 and
α1 = 0, then a2r b ∈ H for some 0 ≤ r ≤ n − 1, and hence b2, a2r+nb ∈ H . Thus,
a2r+n ∈ H ∩ {a2 j+1b : 0 ≤ i ≤ n − 1} or a2r+n ∈ H ∩ {a2 j b : 0 ≤ i ≤ n − 1}, which
is a contradiction. So (α0, α1) �= (1, 0). Similarly, (α0, α1) �= (0, 1). If α0 = α1 = 1, then
we must have H = {e, arb, b2, arb3} for some odd r with 0 ≤ r ≤ n − 1. Moreover, if n
is even, then arb and arb3 are in the same conjugacy class of Q4n , which contradicts the
assumption that α0 = α1 = 1. Thus, n must be odd. �	
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