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Abstract— A common method for reading information stored
in DNA molecules is shotgun sequencing. This method outputs
a histogram of the frequencies of all the molecules’ substrings
of a given length �. To protect against noisy readings, the
rank-modulation scheme encodes the information in the relative
ranking of the substring frequencies, instead of their absolute
values. However, the best rank-modulation codes for shotgun
sequencing have low rates which are asymptotically vanishing.
In this paper we propose new constructions of rank-modulation
codes for shotgun sequencing. The first code construction is
systematic, allowing the user to arbitrarily set the frequencies
of a large subset of the substrings, which the encoder then
completes to a permutation that may be realized by a DNA
molecule. The construction is then improved by allowing the
user to set the frequencies of additional substrings, at the cost of
imposing constraints on the frequencies. The resulting codes have
higher, non-vanishing rates, compared with previously known
codes. As an example, for histograms of substrings of length
� = 2, and an alphabet of size 4 (as in DNA molecules), we are
able to construct a code with rate ≈ 0.909, whereas previously,
the best construction resulted in a code with rate ≈ 0.654.
Additionally, the encoded information in our construction may
be written to shorter DNA molecules than possible before. We also
prove that the systematic codes constructed in this paper are the
largest possible among all systematic codes.

Index Terms— DNA storage, permutation codes, De Bruijn
graphs.

I. INTRODUCTION

STORING information in DNA molecules offers unparal-
leled information density, and has been proven to be feasi-

ble [6], [8], [12], [30]. Already, a density of 2.15 · 1017 bytes
per gram of DNA molecules has been demonstrated [9],
whereas the densest commercially available option [1] is
capable of storing only 1.86 · 1011 bytes per gram of hard-
ware. Long DNA sequences may be read relatively accurately
using the shotgun sequencing technique (see [21] and the
survey [20]). In this method, several copies of the same DNA
sequence are broken down into fragments. These fragments are
identified, and an algorithm reconstructs the DNA sequence
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using the knowledge of the multiset of fragments obtained.
Other similar variants of this reconstruction method have also
been studied [2], [10], [11], [23].

It has been suggested by [18] that we may skip the final
phase of sequence reconstruction, instead opting to have
the information encoded in the multiset of fragments. More
precisely, if the sequence is over an alphabet Σ, the shotgun
sequencing procedure provides us with a histogram, or a profile
vector, counting how many times each �-gram (substring of
length �) from Σ� (the set of all strings of length � over the
alphabet Σ) appears as a substring of the DNA sequence. Thus,
the actual sequence is of no consequence, acting merely as a
vehicle for its profile vector. As a side benefit, this allows us
to use ambiguous profile vectors that may describe more than
one sequence.

The profile vector obtained as part of the shotgun-
sequencing procedure is unfortunately noisy. Errors in it are
mainly due to substitution errors in the sequence-synthesis
phase, non-uniform fragmentation causing coverage gaps, and
�-gram substitutions due to sequencing [18]. One approach,
studied in [18] is to protect the profile vector using an error-
correcting code, where an appropriate metric is formulated to
capture the error patterns mentioned.

Another suggestion put forth by [18], and later studied
by [24], was to employ the rank-modulation scheme over
the profile vectors. Rank modulation has a long history,
starting with [5], [7], [25] for vector digitization and signal
detection, through communication over power lines [28], and
more recently, for information storage in non-volatile memo-
ries [16]. In our context, instead of storing the information in
the profile vector, whose integer entries count the number of
occurrences of each �-gram from Σ�, the information is stored
in the permutation over Σ� which is the ranking (by frequency
of appearance) of the entries of the profile vector. By doing so
we immediately gain a layer of protection since perturbations
of the profile vector that do not result in a change of ranking,
do not corrupt the stored information. Additionally, there are
known error-correcting codes for the rank-modulation scheme,
which we may use to gain further protection [3], [14], [15],
[17], [19], [26], [31]–[35].

Not all permutations on Σ� correspond to a ranking of a
profile vector of some sequence, as was observed in [24].
A linear programming algorithm was derived in [24], which
can decide whether a given permutation is feasible. However,
an exact characterization of all feasible permutations is still
unknown. Thus, [24] provided only upper bounds on the
number of feasible permutations, and recursive constructions
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that may also act as encoders. These constructions produce
codes whose rate is asymptotically 1

� when � is constant and
the alphabet size q = |Σ| goes to infinity, and 0 when q is fixed
and �→∞. Additionally, the length of the resulting encoded
sequence was bounded and shown to be polynomial in q�.
We also note that while [18] suggested the rank-modulation
scheme, it did so only for a strict subset of the entries of the
profile vector.

The goal of this paper is to construct rank-modulation
codes that improve upon the best known ones, namely those
from [24]. Our main contributions are the following: We
construct systematic codes for all alphabet sizes q � 3,
and all window sizes � � 2. We give an efficient encoding
algorithm for these codes. The asymptotic rate of these codes
is 1 when � is fixed and q → ∞, and is 1 − 1

q when q is
fixed and � → ∞, improving upon [24]. The length of the
encoded sequence is analyzed and upper bounded by O(q5�)
for � � 3, and O(q6) when � = 2. These improve upon the
order of the corresponding bounds from [24]. Additionally,
our upper bound is numerically lower than that of [24]
except for the case of q = 3 and � = 2. We also prove
an upper bound on the size of systematic codes, which
shows our construction produces optimal systematic codes.
Finally, we show a construction of non-systematic codes that
gives codes which are strictly larger than their systematic
counterparts.

The paper is organized as follows. In Section II we give the
necessary definitions used throughout the paper. In Section III
we construct systematic codes, provide an encoder, analyze
the resulting sequence length, and prove an upper bound on
the size of such codes. In Section IV we build larger codes
that are non-systematic. We conclude in Section V with a
summary and discussion of the results, as well as some open
problems.

II. PRELIMINARIES

Throughout the paper we use Σ to denote an alphabet of
size q. We assume no further structure on the alphabet. We use
Σ� to denote the set of all strings over Σ of length �, also
called �-grams, and Σ∗ to denote the set of all finite strings
over Σ. If s, s′ ∈ Σ∗ are strings, we use ss′ to denote their
concatenation, and |s| to denote the length of s. If the need
arises to consider specific letters in a string s ∈ Σn, we shall
usually denote the ith letter as si, namely, s = s0s1 . . . sn−1,
where si ∈ Σ for all i ∈ [n] � {0, 1, . . . , n− 1}.

If G = (V, E) is a directed graph, we denote the edge
e ∈ E from v ∈ V to v′ ∈ V by e = v → v′. We shall also
say its source is src(e) = v and its destination is dest(e) = v′.
Additionally, for any vertex v ∈ V we denote by Ein(v) the set
of edges entering v, and similarly, we use Eout(v) to denote
the set of edges leaving v, i.e.,

Ein(v) � {e ∈ E| dest(e) = v},
Eout(v) � {e ∈ E| src(e) = v}.

The in-degree and out-degree of v are similarly defined,

din(v) � |Ein(v)| dout(v) � |Eout(v)| .

These definitions are extended to sets of vertices in the natural
way. Let V ′ ⊆ V be a subset of vertices. Then we define

Ein(V ′) � {e ∈ E| dest(e) ∈ V ′, src(e) �∈ V ′},
Eout(V ′) � {e ∈ E| src(e) ∈ V ′, dest(e) �∈ V ′}.

A. Strings, Profiles, and Weighted De Bruijn Graphs

A useful tool in the context of string analysis is the De
Bruijn graph, which is defined as follows.

Definition 1: The De Bruijn graph of order � � 1 over Σ
is the directed graph Gq,� whose vertex set is V (Gq,�) = Σ�,
and whose edge set is

E(Gq,�) = {w0w1 . . . w�−1 → w1w2 . . . w�|for all wi ∈ Σ}.
By definition, each vertex of Gq,� is identified with a

string w0w1 . . . w�−1 from Σ�. Furthermore, we observe that
in Gq,�−1, the edge w0w1 . . . w�−2 → w1w2 . . . w�−1 is
also uniquely identified by w0w1 . . . w�−1 ∈ Σ�. Let s =
s0 . . . sn−1 ∈ Σn be a string. We say that sisi+1 . . . si+�−1 is
a window of length � into s, where indices are taken modulo
n (i.e., we consider the string cyclically). Thus, by scanning s
with a sliding window of length �, we obtain a cycle in Gq,�

whose sequence of vertices corresponds to the windows into
s. Alternatively, with the same sliding window of length � we
obtain a cycle in Gq,�−1 whose sequence of edges corresponds
to the windows into s. This latter correspondence between
cycles in Gq,�−1 and strings will be used throughout the paper.

Motivated by the process of shotgun sequencing, previous
papers [18], [24] suggested that information be encoded in the
profile vector of the DNA sequence, whose definition follows
shortly. First, let A and B be sets. We denote by BA the
set of all functions from A to B. When A is finite, as shall
be our case, we can think of f ∈ BA as vector indexed by
the elements of A, and containing elements of B. Namely,
in index a ∈ A the vector contains f(a) ∈ B.

Definition 2: Let s = s0 . . . sn−1 ∈ Σn be a string. The
profile vector of s of order �, denoted by ps,� ∈ (N ∪ {0})Σ�

,
is a non-negative integer vector indexed by Σ� such that for
each w ∈ Σ�, ps,�(w) counts the number of occurrences of w
in s (cyclically). Formally,

ps,�(w) � |{i ∈ [n]|sisi+1 . . . si+�−1 = w}| ,
where indices are taken modulo n.

Definition 3: Let x ∈ (N ∪ {0})Σ�

. We say x is feasible
if there exists s ∈ Σ∗ whose profile vector of order � is x,
namely, ps,� = x.

Example 1: Let Σ = {A, C, G}, and consider the string

s =GGGGAGAGAGGGGAAAAAAAACCCCCCC

AGGGGCGCGCGCGCGCGCCCCAGCCGCCG.

The profile vector of s of order 2 is

ps,2 = (7, 1, 5, 2, 11, 8, 4, 9, 10), (1)

where the indices of the profile vector are in lexicographic
order, i.e., AA, AC, AG, CA, CC, CG, GA, GC, GG.

Not every vector x ∈ (N ∪ {0})Σ�

is feasible. Let us build
the following directed graph, G, with vertices V = Σ�−1,
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Fig. 1. The weighted De Bruijn graph of Example 2.

and for every w = w0 . . . w�−1 ∈ Σ� we place x(w) parallel
copies of the edge w0 . . . w�−2 → w1 . . . w�−1. Then by our
previous discussion of De Bruijn graphs, it is obvious that x is
the profile vector of order � of some string s if and only if G
contains an Eulerian cycle (i.e., a cycle passing through each
edge exactly once). In turn, an Eulerian cycle exists if and
only if G is strongly connected (excluding isolated vertices)
and for every vertex v ∈ V , its in-degree equals its out-degree,
din(v) = dout(v).

For our convenience, we replace the x(w) parallel edges
discussed above with a single edge of weight x(w). In general,
for a directed graph G = (V, E) we use wtG(e) ∈ R to denote
the weight of an edge e ∈ E. We omit the subscript G if it is
clear from context. We also extend this definition to subsets
of edges E′ ⊆ E by defining wt(E′) �

∑
e∈E′ wt(e).

Definition 4: Let G = (V, E) be a directed weighted graph.
We say G is balanced if wt(Ein(v)) = wt(Eout(v)) for all
v ∈ V .

We therefore have the following corollary, translating our
previous observation that uses parallel edges, to one using
weights.

Lemma 1: A vector x ∈ N
Σ�

is feasible if and only if the
weighted De Bruijn graph, Gq,�−1, with weights wt(e) = x(e)
for all e ∈ Σ�, is balanced.

Proof: Replace each edge e with wt(e) parallel edges.
Since the weight of every edge is positive, the resulting graph,
G′, is strongly connected, and therefore x is feasible if and
only if din(v) = dout(v) for every v ∈ G′. But that happens
if and only if Gq,�−1 is balanced.

Following [24], we shall almost always consider strings s
whose profile vectors are all positive integers, i.e., for all w ∈
Σ�, ps,�(w) > 0.

Example 2: We continue the setting of Example 1. In Fig. 1
we draw the De Bruijn graph with edge weights in accordance
with the profile vector ps,2 of (1). We observe that the resulting
graph is balanced, not surprising as the profile vector was taken
from a string, i.e, the profile vector is feasible.

We would like to make one more simple observation that
will be useful later.

Lemma 2: Let G = (V, E) be a finite weighted directed
graph. Then G is balanced if and only if for every U ⊆ V ,
wt(Ein(U)) = wt(Eout(U)).

Proof: One direction is trivial. If wt(Ein(U)) =
wt(Eout(U)) for all U ⊆ V , then it is true in particular for
subsets U containing exactly one vertex, making G balanced
by definition.

In the other direction, for any U ⊆ V we have

wt(Ein(U))− wt(Eout(U))

=
∑

e∈Ein(U)

wt(e)−
∑

e∈Eout(U)

wt(e)

(a)
=

∑
v∈U

(wt(Ein(v)) − wt(Eout(v))) = 0,

and (a) follows from the fact that edges v′ → v′′, where
v′, v′′ ∈ U , that are added to the sum

∑
v∈U wt(Ein(v)),

are also added to the sum
∑

v∈U wt(Eout(v)), thus, canceling
out.

B. Permutations and Rank Modulation

Let A be a finite set. We use SA to denote the set of permu-
tations over A. Each permutation π ∈ SA may be considered
as a bijection A → [|A|], sending each element of A to its
unique ranking in the permutation. Encoding information in
permutations of the set A, instead of vectors over A, has a long
history under the name rank modulation. The identity of the set
A depends on the specifics of the applications. As examples we
bring [7] dealing with signal detection with impulsive noise,
[28] for powerline communications, and [16] for coding in
flash memories.

Recently, [18] suggested applying the rank-modulation
scheme to DNA storage, with a follow-up work [24]. There,
the set of permutations is Sq,� � SΣ� , and the ranking is
done by the entries of the profile vector of the DNA sequence.
Precise definitions follow:

Definition 5: Let π ∈ Sq,� be a permutation, and let x ∈
N

Σ�

be some vector. We say that x satisfies π, writing x � π,
if the entries of x are distinct and for w, w′ ∈ Σ�, π(w) <
π(w′) if and only if x(w) < x(w′). Additionally, we say π is
feasible if there exists a feasible x that satisfies π.

We denote the set of all feasible permutations over Σ� by
Τq,�, and their number by Fq,� � |Τq,�|. Since we will also
be interested in rates, in the coding-theoretic meaning, for any
non-empty subset C ⊆ SA, we define its rate as

R(C) � log2 |C|
log2 |SA| .

We can then define the feasible rate as

Rq,� � R(Τq,�) =
log2 |Τq,�|
log2 |Sq,�| =

log2 Fq,�

log2(q�!)
.

Example 3: We continue Example 2. When ranking the
profile vector ps,2 of (1) we obtain:

AC < CA < GA < AG < AA < CG < GC < GG < CC.

Therefore, this ranking induces a feasible permutation π ∈
S3,2 as follows:

π =
(

AA AC AG CA CC CG GA GC GG
4 0 3 1 8 5 2 6 7

)
, (2)

presented in the standard two-line notation.
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We shall need the following projection operator for
permutations.

Definition 6: Let B ⊆ A be two finite sets, and let π ∈ SA

be a permutation over A. We use π|B to denote the unique
permutation in SB that keeps the relative order of the elements
of B in π, namely, for all b, b′ ∈ B, π|B(b) < π|B(b′) if and
only if π(b) < π(b′).

We can think of π|B in the previous definition as the
projection of π onto the elements in the set B.

Example 4: We continue Example 3. Taking the permuta-
tion π of (2), for the set B = {AC, CC, GA, GC} we have

π|B =
(

AC CC GA GC
0 3 1 2

)
,

since π(AC) < π(GA) < π(GC) < π(CC).
As usual in rank modulation, we define a code C to be a

subset of SA. If |A| = n and |C| = M , we say that C is an
(n, M)-code. Of particular interest to us are systematic codes,
which are analogous to systematic linear codes.

Definition 7: Let A be some set, |A| = n. We say C ⊆ SA

is an [n, k]-systematic code, if there exists a set B ⊆ A, |B| =
k, |C| = k!, and

{π|B|π ∈ C} = SB.

We call B an information set for the code C.
Intuitively, in a systematic code the user may set the ranking

of the information set, B ⊆ A, arbitrarily (thereby, storing the
user information). The remaining entries of the permutation,
A\B, are then determined by the code, creating a permutation
over A.

III. OPTIMAL SYSTEMATIC CODES FOR FEASIBLE

PERMUTATIONS

In this section we study systematic codes for feasible
permutation, namely, systematic subsets C ⊆ Τq,�. We provide
a construction for such codes for all parameters, and show
an efficient encoding algorithm. We further prove these are
optimal, i.e., having the largest possible size of all systematic
codes. Additionally, we analyze the length of the realizing
strings, and show they are at most polynomial in the trivial
lower bound.

A. Construction

We start by giving some technical lemmas. The first shows
two basic operations that take a balanced directed graph,
modify the weights, but keep it balanced.

Lemma 3: Let G = (V, E) be a finite balanced directed
graph. Construct G′ = (V, E). Then:

1) If for all e ∈ E, wtG′(e) = c · wtG(e), where c ∈ R is
some constant, then G′ is also balanced.

2) Let e0, e1, . . . , em−1 be a sequence of edges in E that
form a cycle, and let c ∈ R be some constant. If

wtG′(e) =

{
wtG(e) + c e = ei for some i,

wtG(e) otherwise,

then G′ is also balanced.

Proof: Multiplying the weights by a constant naturally
keeps all vertices balanced. For the second case, we note that
vertices that reside on the cycle have the same number of edges
from the cycle entering as there are leaving. Thus, adding a
constant weight to the edges of the cycle keeps the graph
balanced.

Another simple lemma states that if we know that all but one
of the vertices are balanced, then that vertex is also balanced.

Lemma 4: Let G = (V, E) be a directed weighted graph,
and let v ∈ V be some vertex. If wt(Ein(v′)) = wt(Eout(v′))
for all v′ ∈ V \ {v}, then also wt(Ein(v)) = wt(Eout(v)).

Proof: We observe that {Ein(v′)|v′ ∈ V } is a partition of
E, as is {Eout(v′)|v′ ∈ V }. Thus,

wt(Ein(v)) = wt(E)−
∑

v′∈V \{v}
wt(Ein(v′))

= wt(E)−
∑

v′∈V \{v}
wt(Eout(v′))

= wt(Eout(v)),

which proves the claim.
We recall that a Hamiltonian cycle/path in a graph visits

every vertex exactly once, whereas an Eulerian cycle/path
visits every edge exactly once. It is well known (see [27])
that a Hamiltonian cycle in the De Bruijn graph Gq,� (which
is equivalent to a De Bruijn sequence) exists for all q, � � 2.
Such a Hamiltonian cycle is also equivalent to an Eulerian
cycle in Gq,�−1.

De Bruijn sequences may be nested, with lower-order
sequences being prefixes of higher-order sequences. We cite
the following result from [4].

Lemma 5: [4, Th. 1] Let Gq,�−1 be a De Bruijn graph with
q � 3 and � � 2, then every Hamiltonian cycle in Gq,�−1 can
be extended to an Eulerian cycle.

We shall further need the following technical lemma, which
shows that we can complete cycles while avoiding a given
Hamiltonian path.

Lemma 6: Let Gq,�−1 be a De Bruijn graph, q � 3,
� � 2, and let EH = {e0, e1, . . . , eq�−1−1} be the edges of a
Hamiltonian cycle in Gq,�−1. Then for any i ∈ [q�−1], there
is a cycle passing through ei while not passing through any
ej , j �= i.

Proof: As a consequence of Lemma 5, after removing the
edges of EH from Gq,�−1, there exists an Eulerian cycle, β,
in the remaining graph. Let ei = vi → vi+1 (where indices
are taken modulo q�−1) be the edge that we wish to complete
to a cycle. Since q � 3, there exists at least one outgoing edge
from vi+1 and one incoming edge to vi that are not in EH .
Thus, at some point β leaves vi+1 and at some point it enters
vi. Denote by β̃ a part of β that forms a path vi+1 � vi.
It now follows that ei, β̃ is a cycle passing through ei but
avoiding all ej , j �= i.

We are now ready for the main theorem of this section,
that constructs a large systematic code in the space of feasi-
ble permutations. The construction steps are summarized in
Algorithm 1.

Theorem 1: Let Gq,�−1 = (V, E) be a De Bruijn graph,
q � 3, � � 2. Let e0, e1, . . . , eq�−1−1 be a sequence of
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edges forming a Hamiltonian cycle in Gq,�−1, and define
E′

H � {e0, . . . , eq�−1−2}. Then there is an injective mapping
SE\E′

H
→ Τq,�, namely, between the set of permutations over

E \E′
H and the set of feasible permutations over Σ�.

Proof: Let us index the vertices of Gq,�−1 as
v0, v1, . . . , vq�−1−1, ordered such that ei = vi → vi+1 for
all i ∈ [q�−1] (and where indices are taken modulo q�−1).
We need to show that for every permutation on E \ E′

H we
can build a distinct feasible permutation on Σ� ∼= E.

Let π ∈ SE\E′
H

be any permutation on E \E′
H . We assign

the edges in E \ E′
H distinct positive weights while keeping

the ranking as in π. This is easily achieved by setting wt(e) =
π(e) + 1 for all e ∈ E \ E′

H . Notice that because the edges
in E′

H form a Hamiltonian path, then every vertex in V \
{vq�−1−1} is left with exactly one outgoing edge whose weight
has not been set yet.

In the next step, we assign weights to the remaining edges,
i.e., the edges in E′

H . We do so in such a way that all vertices
become balanced. For i = 0, 1, . . . , q�−1 − 2, in that order,
we assign the weight of ei to be

wt(ei) = wt(Ein(vi))− wt(Eout(vi) \ {ei}).
Thus, all the vertices in V \ {vq�−1−1} are balanced.
By Lemma 4 we must have that vq�−1−1 is also balanced.

At this point we have assigned integer weights to all of
the edges. In order for the weights to induce a permutation
over E, we need them to be distinct. This is certainly true,
by construction, for the edges in E \E′

H . However, following
the balancing process that set the weights for edges in E′

H ,
we are not guaranteed distinctness of weights for edges in
E, and we therefore need to break ties. For the remainder
of the proof we proceed with slightly different sets of edges.
Define EH � E′

H ∪ {eq�−1−1} to be the set of edges in the
Hamiltonian cycle required by the theorem. Since E \ EH ⊆
E\E′

H , the weights of edges in E\EH are distinct. It follows
that there are only two cases in which we could be seeing
equality between weights of two edges: the two edges are from
EH , or one edge is from EH and the other from E \ EH .

Let us start by resolving the first case. For each
i ∈ [q�−1−1], let γi be a cycle in Gq,�−1 that contains ei ∈ EH

but does not contain any e ∈ EH , e �= ei. The existence of
such cycles is guaranteed by Lemma 6. We define

Δ �
(

q�−1

2

)
+ 1 =

q�−1(q�−1 − 1)
2

+ 1,

and then add (i+1)·Δ−1 to the weight of each of the edges in
γi, for all i ∈ [q�−1− 1]. By Lemma 3, we therefore keep the
graph balanced. We further observe that the maximum total
weight added to any single edge is upper bounded by

q�−1−2∑
i=0

i + 1
Δ

=
1
Δ
·
(

q�−1

2

)
� 1− 1

Δ
. (3)

It follows that if wt(e) > wt(e′) before the weight addition,
then this relation remains unchanged after the weight addition.
In particular, the ranking of edges by weight in E\E′

H remains
unchanged. Additionally, since distinct weights in the interval

[0, 1 − Δ−1] were added to the integer weights of edges of
EH , all weights of edges in EH are now distinct.

For the second case, we increase the weights of edges in
the Hamiltonian cycle, EH , by 1

2Δ−1. By Lemma 3, the graph
remains balanced. However, now edges in E\EH have weights
that are integer multiples of Δ−1, whereas the weights of
edges in EH are not. Additionally, by (3), the addition of
1
2Δ−1 to the weight does not change the ranking of edges in
E \ E′

H . Thus, the second case is resolved as well.
We are now in possession of a weighted graph that

is balanced, while keeping the relative ranking of weights
of edges in E \ E′

H , and having distinct weights. Using
Lemma 3, we now multiply all the edge weights by 2Δ,
to obtain the same properties mentioned above, only with
integer weights. Finally, we subtract mine∈E wt(e) − 1 from
all the weights. Since Gq,�−1 is Eulerian, by Lemma 3, the
resulting weights are positive integers, and the graph has the
properties mentioned above.

Let us denote the permutation induced by the weights of
the edges by π′ ∈ SE . Clearly, by the previous discussion,

π′|E\E′
H

= π,

hence the mapping described here, SE\E′
H
→ SE is injective.

Furthermore, since the resulting weighted graphs are all bal-
anced, all resulting permutations are feasible and this mapping
is in fact SE\E′

H
→ Τq,�.

The algorithm described in the proof of Theorem 1 is
summarized using pseudocode as Algorithm 1.

Example 5: We demonstrate Algorithm 1 in action. Assume
Σ = {A, C, G, T }, hence, q = 4. Additionally, fix the window
size as � = 2. Algorithm 1 makes use of a predetermined
Hamiltonian cycle, which we arbitrarily fix to be the one that
is described by AGTC, namely, α = A → G, G → T, T →
C, C → A. Also, the algorithm requires an Eulerian cycle
(whose prefix is α), which we arbitrarily fix as the cycle
described by the string AGTCAACCTTATGGCG (namely,
α, β = A→ G, G→ T, . . . ).

Assume the user supplies the following input permutation:

π =
(

AA AC AT CA CC CG
9 0 8 1 12 4

CT GA GC GG TA TG TT
2 8 3 10 5 7 11

)
.

The main steps of the algorithms are:
1) Weights taken directly from π are assigned to edges.

This is shown in Fig. 2a. The dashed edges are the
Hamiltonian path, and at this point, their weight has not
been determined yet.

2) Next, the algorithm determines the weights on the
Hamiltonian path so that the graph becomes balanced.
The result is shown in Fig. 2b. We notice that two ties
form: the weight of A→ G equals that of G→ T , and
the weight of T → C equals that of C → G.

3) The algorithm then proceeds to break all ties. First, ties
within α are broken. We assume here the algorithm does
no optimization when finding s and s′ in β, and simply
takes the first occurrence satisfying the requirements.
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Algorithm 1 A Systematic Encoding Algorithm for Any
q � 3 and � � 2
Parameters:
• Alphabet Σ, |Σ| = q � 3, � � 2
• The De Bruijn graph Gq,�−1 = (V, E)
• A sequence of edges α = e0, . . . , eq�−1−1 forming a

Hamiltonian cycle in Gq,�−1.
• A sequence of edges β = ẽ0, . . . , ẽq�−q�−1−1 such that

α, β is an Eulerian cycle in Gq,�−1.

Input:
• A permutation π ∈ SE\E′

H
, where

E′
H � {e0, . . . , eq�−1−2}.

Output:
• A profile vector x ∈ N

Σ�

such that x � π′ ∈ SE and
π′|E\E′

H
= π.

// Initial systematic part values
for i← 0 to q� − q�−1 − 1 do

x(ẽi)← π(ẽi) + 1
end
x(eq�−1−1)← π(eq�−1−1) + 1
// Balance the graph
for i← 0 to q�−1 − 2 do

x(ei)←
∑

e∈Ein(src(ei))
x(e)−∑

e∈Eout(src(ei))
x(e)

end
// Break ties in α

Δ← (
q�−1

2

)
+ 1

for i← 0 to q�−1 − 2 do
Find s, s′ such that src(ei) = dest(ẽs′) and
dest(ei) = src(ẽs)
for j ← s to s′ (cyclically) do

x(ẽj)← x(ẽj) + (i + 1) ·Δ−1

end
x(ei)← x(ei) + (i + 1) ·Δ−1

end
// Break ties between α and β
for i← 0 to q�−1 − 1 do

x(ei)← x(ei) + 1
2Δ−1

end
// Make weights integers
forall the e ∈ E do

x(e)← 2Δ · x(e)
end
// Make weights start at 1
m← mine∈E x(e)
forall the e ∈ E do

x(e)← x(e)−m + 1
end

Thus, for A → G the algorithm uses G → G → C →
G → A, for G → T it uses T → T → A → T → G,
and for T → C it uses C → C → T . Only then ties
between α and β are broken. The result is shown in
Fig. 2c.

4) The weights are made integers by multiplying by 2Δ =
14. Finally, the weights are shifted so that the minimal

weight is 1, in this, reducing all weights by 13. The end
result, and algorithm output, is shown in Fig. 2d.

We can see that at the end of the process we are left
with weights that induce a permutation on the edges while
preserving the order induced by the input permutation given
by the user.

The size, and asymptotic rate of the code described in
Theorem 1 is presented in the following corollary.

Corollary 1: For all q � 3 and � � 2, there exists a
[q�, q� − q�−1 + 1]-systematic code Cq,� ⊆ Τq,�. Additionally,
the number of feasible permutations is lower bounded by

Fq,� � |Cq,�| = (q� − q�−1 + 1)!,

and asymptotically the rate of feasible permutations satisfies

lim
�→∞

Rq,� � lim
�→∞

log2|Cq,�|
log2(q�!)

= 1− 1
q

(4)

lim
q→∞Rq,� � lim

q→∞
log2|Cq,�|
log2(q�!)

= 1. (5)

Proof: The existence of Cq,� with these parameters
is immediate from Theorem 1, being the image of the
injective mapping described there. For the asymptotic form,
we recall Stirling’s approximation, ln(n!) = n ln(n) + O(n)
(e.g., see [13, p. 452]). With that we have

Rq,� �
log2|Cq,�|
log2(q�!)

=
log2((q� − q�−1 + 1)!)

log2(q�!)

=
(q� − q�−1 + 1) log2(q

� − q�−1 + 1) + O(q�)
q� log2(q�) + O(q�)

,

and the claims follow.
At this point we compare our results with the best known

ones, described in [24]. For q � 3 and � � 2, a non-systematic
code C′q,� ⊆ Τq,� was constructed in [24], for which

|C′q,�| = 30240 ·
q∏

j=4

(
j! ·

(
j2 − j + 1

j

))

·
�∏

i=3

(q!)qi−1−2qi−2+qi−3
.

Apart for the case of q = 3 and � = 2 in which, in which our
new code is smaller,

|C3,2| = 5040 < 30240 = |C′3,2|,
for all other cases, our new code is larger,

|Cq,�| > |C′q,�|.
It should be emphasized that no explicit construction was
presented in [24] for q = 3 and � = 2. Since this case
was the basis for a recursive construction, the size 30240 was
obtained via an exhaustive computer search for all feasible
permutations. Asymptotically, as noted in [24],

lim
q→∞

log2|C′q,�|
log2(q�!)

=
1
�
,
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Fig. 2. A depiction of Algorithm 1 in the setting of Example 5: (a) the user information weights, (b) the initial balancing, (c) the tie breaking, and (d) the
algorithm’s output.

which is out-performed by our results in (5). More importantly,
in practical settings q is fixed while �→∞. In this asymptotic
regime, the code of [24] gives

lim
�→∞

log2|C′q,�|
log2(q�!)

= 0,

which is inferior to our results in (4) that show a non-vanishing
rate.

B. Upper Bound on the Size of Systematic Codes

Having found a construction of systematic codes for feasible
permutation, it is natural to ask how large such systematic
codes can be. We provide an answer in the following theorem.

Theorem 2: Let q � 3 and k � 2 be integers, and assume
there exists a [q�, k]-systematic code C ⊆ Τq,�. Then,

k � q� − q�−1 + 1.

Proof: Assume to the contrary k > q� − q�−1 + 1, and
let Gq,�−1 = (V, E) be the De Bruijn graph and E′ ⊆ E
be an information set of size |E′| = k. If we look at G′ =
(V, E \ E′), and forget the edge directions, then we have a
graph with q�−1 vertices, and strictly less than q�−1−1 edges.

Since the number of edges in E \E′ is strictly less than those
required for a spanning tree, this implies that in G′ there exists
a non-empty proper subset of vertices ∅ ⊂ V ′ ⊂ V that is not
connected by an edge to V \ V ′. Back in G, it then follows
that

∅ �= Ein(V ′)�Eout(V ′)
= (Ein(V ′) \ Eout(V ′)) ∪ (Eout(V ′) \ Ein(V ′)) ⊆ E′,

namely, all of the edges entering or leaving V ′ which are not
internal to V ′, are part of the information set.

By the definition of systematic codes,

{π|E′ |π ∈ C} = SE′ .

In particular, there exists π ∈ C such that π(e) < π(e′) for
all e ∈ Ein(V ′) \ Eout(V ′) and e′ ∈ Eout(V ′) \ Ein(V ′).
However, π is clearly not feasible since we cannot balance V ′

(as is required by Lemma 2) when the weights of all externally
incoming edges are smaller than the weights of all externally
outgoing edges. Thus, we have reached a contradiction.

Corollary 2: The systematic codes from Theorem 1 have
the largest possible size of all systematic codes in Τq,�.
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C. String Length

An important figure of merit is the length of the string that
the encoder generates. We would like this string to be as short
as possible, to facilitate its synthesis. Thus, in this section we
would like to derive an upper bound on the maximal length of
the string that is generated by our algorithm. For any q � 3 and
� � 2 we will show that this length is polynomial in the
input length. A comparison with [24] will show significant
improvement.

Recall that Algorithm 1 produces a profile vector, being
the weights of the De Bruijn graph Gq,�−1. The length of
the associated string is simply the total weight of all edges.
We now prove an upper bound on this total weight. First,
the following lemma bounds the weight of an edge on the
Hamiltonian path that is used by the algorithm, before tie
breaking. Since this weight might be negative, we upper bound
its absolute value.

Lemma 7: Let Gq,�−1 = (V, E) be the weighted De Bruijn
graph after the balancing done in Algorithm 1, but before
breaking ties. Let E′

H be the set of edges in Gq,�−1 defined in
Algorithm 1, and forming a Hamiltonian path. Then for each
e ∈ E′

H ,

|wt(e)| � wt(E \ E′
H)

=
q�−q�−1+1∑

i=1

i =
(

q� − q�−1 + 2
2

)
� 1

2
q2�.

Proof: We use the notation of Algorithm 1. Assume E′
H �

{e0, . . . , eq�−1−2} and e0, e1, . . . , eq�−1−2 is a Hamiltonian
path in Gq,�−1, where ei is the edge vi → vi+1. For all
i ∈ [q�−1−1], we define Ui � {v0, v1, . . . , vi}, and we observe
that

E′
H ∩ Ein(Ui) = ∅, and E′

H ∩ Eout(Ui) = {ei}.

By Lemma 2 we get that

wt(ei) = wt(Ein(Ui))− wt(Eout(Ui) \ {ei}).

The claim is now immediate, since both Ein(Ui) ⊆ E \ E′
H

and Eout(Ui) \ {ei} ⊆ E \ E′
H .

Theorem 3: Let Gq,�−1 = (V, E) be the weighted De
Bruijn graph that is the output of Algorithm 1. Then

wt(E) � q5�.

Proof: We again use the notation of Algorithm 1. Recall
that all the edges in E \E′

H are initially given distinct weights
from {1, . . . , q�− q�−1 +1}, whose sum is upper bounded by
q2�/2, as in Lemma 7. Again, by Lemma 7, the weight of
any e ∈ E′

H satisfies |wt(e)| � q2�/2, before breaking ties.
After the algorithm breaks all ties, the weight of each edge is
increased by no more than 1. Then all weights are multiplied
by 2Δ = 2(

(
q�−1

2

)
+ 1) � q2�−2. Finally, the normalization

process may decrease or increase the weight of all edges. If an
increase occurs, that it is only because some edge in E′

H has
negative weight. Thus, a weight of no more than q2�/2 is
added to all edges. It follows that the total weight of the output

weighted graph satisfies,

wt(E) � 2Δ
(

q2�

2
+ (q�−1 − 1) · q

2�

2
+ q� · 1

)
+ q� · q

2�

2
� q5�,

as claimed.
We first comment that the bound of Theorem 3 may be

improved by a constant factor by having a more careful
analysis in Lemma 7, taking into account the maximal cut size
in Gq,�−1, as well as finer inequalities in Theorem 3. However,
recognizing the fact that we are interested in the asymptotic
regime where q is constant and � → ∞, the resulting upper
bound is still O(q5�).

Putting our results in context, if we denote the length of the
input to Algorithm 1 by N � q� − q�−1 + 1, then the upper
bound of Theorem 3 is O(N5). Thus, Algorithm 1 guarantees
an output string length that is polynomial in the input length.
Additionally, the absolute minimum string length is lower
bounded by the case of assigning the weights {1, 2, . . . , q�}
to the edges, giving a lower bound of

q�∑
i=1

i =
(

q� + 1
2

)
= Ω(q2�) = Ω(N2).

Finally, we would like to compare our upper bound on the
length of the output string from Algorithm 1, to the upper
bound on the length of the output string from the encoding
algorithms in [24]. For general q � 3 and � � 2, it was shown
in [24] that the upper bound is

16 · 2
q−4 · q! · (q + 1)!

144 · q2
· 3�−2 · q�(q2+1) = O(3�q�(q2+1)),

in the asymptotic regime of constant q and �→∞. This bound
is worse than that of Theorem 3.

Remark 1: When � = 2, the phase of tie-breaking in α in
Algorithm 1 takes on a very simple form. This is because for
every edge ei, 1 � i � q�−1−1, the reverse edge exists in the
graph, and is not part of α. Thus, all the cycles used in this
phase may be chosen to be edge disjoint, and then Δ may be
reduced to Δ = q�−1. In that case, the bound on the output-
string length of Theorem 3 becomes wt(E) � 3

2q6 + 2q3.
For the specific case of � = 2, [24] showed an upper bound

of q2 · 2q−3 · q!
6 · (q+1)!

24 · 16, which for q = 3 is better than the

bound in Remark 1, but is otherwise worse.

IV. NON-SYSTEMATIC CODES

In the previous section we studied systematic rank-
modulation codes, and we attained the maximum possible
rate (Corollary 2). In this section we drop this constraint,
and show that there are significantly larger codes that are
non-systematic. Since the number of feasible permutations
is still unknown, comparing our results with the optimum is
impossible, and instead we compare against the systematic
codes of the previous section.

Our first observation is a trivial increase in the code size,
by using the self-loop edges in the De Bruijn graph.

Lemma 8: For all q � 3 and � � 2, there exists a
(q, M)-code C ⊆ Τq,�, with M = (q�− q�−1 +1− q)! q�!

(q�−q)! .
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Proof: Remove the q self-loop edges from the De Bruijn
graph, and run Algorithm 1. We note that removing these
edges does not affect the algorithm in any way. Then, set the
weight of the self-loop edges arbitrarily. The weighted graph
will remain balanced. The number of permutations obtained
this way is the claimed value of M .

Next, we explore new sufficient conditions and necessary
conditions for the existence of feasible permutations. We begin
with a simple extension of a necessary condition presented
in [24]. Since [24] used the vertices of the De Bruijn graph,
whereas here we balance edge weights, we require the follow-
ing new definition.

Definition 8: Assume q � 3, � � 2, and let Gq,�−1 =
(V, E) be a weighted balanced De Bruijn graph. Let ∅ ⊂ U ⊂
V be a non-empty proper subset of V , and assume

Ein(U) = {e0, . . . , ek−1}, Eout(U) = {e′0, . . . , e′k−1},
are indexed such that

wt(e0) < · · · < wt(ek−1), wt(e′0) < · · · < wt(e′k−1).

We say U exhibits a Dyck configuation if either

wt(ei) < wt(e′i) for all i ∈ [k],

or

wt(e′i) < wt(ei) for all i ∈ [k].

Additionally, we say a permutation π ∈ SE′ , Ein(U) ∪
Eout(U) ⊆ E′ ⊆ E, exhibits a Dyck configuration at U ,
if setting wt(e) = π(e) for all e ∈ E′, creates a Dyck
configuration at U .

Assume the edges in Ein(U)∪Eout(U) = {e0, . . . , e2k−1}
are indexed such that e0 < e1 < · · · < e2k−1. We can
construct the following binary word b0, b1, . . . , b2k−1, where
bi is 0 if ei ∈ Ein(U), and is 1 otherwise. This word is a
Dyck word1 if and only if U exhibits a Dyck configuration.
We now present a necessary condition for a permutation to be
feasible.

Lemma 9: Let q � 3 and � � 2. If π ∈ Τq,� is a feasible
permutation, then for all ∅ ⊂ U ⊂ Σ�−1, π does not exhibit a
Dyck configuration at U .

Proof: Let Gq,�−1 = (V, E) be the De Bruijn graph, and
set wt(e) = π(e) for all e ∈ E. Assume to the contrary that
π is feasible but there exists ∅ ⊂ U ⊂ V = Σ�−1 that exhibits
a Dyck configuration. It follows that either wt(Ein(U)) <
wt(Eout(U)), or wt(Ein(U)) > wt(Eout(U)). Since π is
feasible, there exists a feasible x ∈ N

Σ�

such that x � π.
It then follows that, either∑

e∈Ein(U)

x(e) <
∑

e∈Eout(U)

x(e),

or ∑
e∈Ein(U)

x(e) >
∑

e∈Eout(U)

x(e).

1A Dyck word is a binary sequence, exactly half of its bits are 0’s, such
that, in each of its prefixes, the number of 0’s is at least the number of 1’s.

However, the fact that x is feasible implies, by Lemma 2, that∑
e∈Ein(U)

x(e) =
∑

e∈Eout(U)

x(e),

a contradiction.
The necessary condition for a permutation to be feasible,

which was presented in Lemma 9, is unfortunately not a
sufficient condition, as the following example shows.

Example 6: Take q = 4 with Σ = {A, C, G, T }, and � = 2.
Consider the following permutation:

π =
(

AA AC AG AT CA CC CG CT
12 0 1 5 4 13 11 7
GA GC GG GT TA TC TG TT
3 10 14 6 2 8 9 15

)
.

By inspection, one can verify that no ∅ ⊂ U ⊂ Σ exhibits a
Dyck configuration. However, by computer we find that this
permutation is infeasible (see the linear-programming method
for deciding feasibility in [24, Section IV]).

Not all is lost though. In the next theorem we show that,
compared with the systematic code of Theorem 1, the user
may set another edge, provided that a Dyck configuration does
not appear. To prove this claim we first bring some necessary
definitions and preliminary results.

Definition 9: Let G = (V, E) be a finite directed weighted
graph. A vertex v ∈ V is said to be in an over (respectively,
under) state, if wt(Ein(v)) < wt(Eout(v)) (respectively,
wt(Ein(v)) > wt(Eout(v))). Otherwise, v is said to be
balanced.

Definition 10: Let G = (V, E) be a finite directed weighted
graph. For any e ∈ E, define

E�e � {e′ ∈ E|wt(e′) � wt(e)}.
We say e∗ ∈ E is a step-up edge for v ∈ V if
|E�e∗ ∩ Ein(v)| < |E�e∗ ∩Eout(v)|. We say e∗ ∈ E
is a step-down edge for v ∈ V if |E�e∗ ∩ Ein(v)| >
|E�e∗ ∩ Eout(v)|. Finally, we say e∗ ∈ E is a stable edge
for v ∈ V if |E�e∗ ∩ Ein(v)| = |E�e∗ ∩ Eout(v)|.

Unlike Lemma 3, we introduce an operation that may
change the balanced state of vertices.

Lemma 10: Let G = (V, E) be a finite directed weighted
graph. Assume that v ∈ V is in an over state (resp., in an
under state), and that e∗ ∈ E is a step-down edge (resp.,
step-up edge) for v. Construct G′ = (V, E), and set its edge
weights as follows:

wtG′(e) =

{
wtG(e) e /∈ E�e∗ ,

wtG(e) + c e ∈ E�e∗ ,

for all e ∈ E, and where

c =
|wtG(Ein(v))− wtG(Eout(v))|

||E�e∗ ∩ Ein(v)| − |E�e∗ ∩ Eout(v)|| .

Then the relative order of edges (by weight) in G and G′ are
the same, and v is balanced in G′.

Proof: The fact that the relative order of edges does
not change between G and G′, is trivial. Assume v is in an
under state, i.e., wtG(Ein(v)) > wtG(Eout(v)). Since e∗ is a
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step-up edge for v, by definition we have |E�e∗ ∩Ein(v)| <
|E�e∗ ∩ Eout(v)|. We now note that increasing the weights
of the edges in E�e∗ by 1, adds |E�e∗ ∩ Ein(v)| weight to
the incoming edges of v, and |E�e∗ ∩Eout(v)| weight to the
outgoing edges of v. Thus,

wtG′(Ein(v))− wtG′(Eout(v))
= wtG(Ein(v)) + c |E�e∗ ∩ Ein(v)|
− wtG(Eout(v))− c |E�e∗ ∩ Eout(v)| = 0.

A symmetric argument proves the case when v is in an over
state.

We are now in a position to show how another edge may
be set (compared with systematic codes), provided a Dyck
configuration is avoided.

Theorem 4: Assume the same setting as in Theorem 1.
Then every permutation π on E \ E′

H ∪ {e0}, that does not
exhibit a Dyck configuration at {v1}, can be extended to a
feasible permutation π′ ∈ Τq,�, namely, π′|E\E′

H∪{e0} = π.
Proof: Our goal is to show that we can find weights x(e)

for each e ∈ E, such that the graph is balanced, and the relative
order (by weight) of the edges in E \E′

H ∪{e0} is preserved.
We start by setting x(e) = π(e)+1 for each e ∈ E\E′

H∪{e0}.
We then note v0 is the only vertex all of whose incident edge
weight have already been set.

If v0 is not balanced, then it is either in an over state or an
under state. Let us assume that v0 is in an under state. The
proof for the over state is symmetric. Arrange the edges of
Ein(v0) ∪Eout(v0) in ascending weight order, e′0, . . . , e

′
2k−1,

where we note that by definition, self loops are not included in
this union. Create the binary word b0, . . . , b2k−1, bi ∈ {0, 1},
where bi = 0 if and only if e′i ∈ Ein(v0). In this word exactly
half of the bits are 0’s. Since there is no Dyck configuration
at {v0}, there exists a proper prefix b0, . . . , bt−1 that contains
strictly more 0’s than 1’s, and therefore, bt, . . . , b2k−1 contains
strictly more 1’s than 0’s. Thus, e′t is a step-up edge for v0.

Using Lemma 10, we can adjust the weights of edges (that
have already been assigned) and ensure that v0 is balanced,
while keeping the relative order of edges by weight. We also
point out that the resulting weights must all be distinct.
If needed, we multiply all edge weights by the same con-
stant to obtain integer weights. We now continue by running
Algorithm 1, starting from the balancing part. The resulting
weights induce a permutation π′ ∈ Τq,�, as desired.

Corollary 3: For all q � 3 and � � 2, there exists a code
C′q,� ⊆ Τq,� with

Fq,� � |C′q,�| = (q� − q�−1 + 2− q)! · q − 1
q + 1

· q�!
(q� − q)!

.

Proof: We choose v0 in the setting of Theorem 4 to
be a vertex with no self loops. It follows that |Ein(v0)| =
|Eout(v0)| = q. We first look locally at v0. We can arrange the
q incoming edges among themselves in q! ways, and similarly
for the q outgoing edges. Next, we count the number of ways
these two orderings may be merged so as not to exhibit a
Dyck configuration. A Dyck configuration is equivalent to
a Dyck word, and the number of those is known to be the
Catalan number Cq � 1

q+1

(
2q
q

)
(e.g., see [13, p. 358]). There

are also two ways to choose whether the first edge is from
Ein(v0) or Eout(v0). We obtain that the total ways of ordering
Ein(v0) ∪ Eout(v0) is given by

(q!)2
((

2q

q

)
− 2Cq

)
= (2q)! · q − 1

q + 1
.

We then extend this to a permutation of E \E′
H ∪ {e0}, for a

total number of permutations equalling

(q� − q�−1 + 2)! · q − 1
q + 1

.

By Theorem 4 these may be injectively extended to feasible
permutations of E. As a final step, we may employ the same
strategy as Lemma 8: exclude the self loops from the entire
process, and set their value only at the end. This results in the
claimed number of permutations in C′q,�.

We can further improve Theorem 4, by considering permu-
tations on all the edges of the De Bruijn graph. A sufficient
condition is described in the following theorem.

Theorem 5: Assume q � 3, � � 2, and let Gq,�−1 = (V, E)
be the De Bruijn graph. Let π ∈ SE , and assign wt(e) =
π(e) + 1, for all e ∈ E. If we can index the vertices V =
{v0, . . . , vq�−1−1} such that for each i ∈ [q�−1 − 1]:

1) there is no Dyck configuration at {vi}, and
2) vi has a step-up edge e ∈ E, and a step-down edge

e′ ∈ E, such that e and e′ are stable edges for vj , for
all j ∈ [i],

then π is feasible, i.e., π ∈ Τq,�.
Proof: When the conditions in the lemma are satisfied,

we can balance each v0, . . . , vq�−1−2, one by one, in this
order, using Lemma 10. Note that while we balance vi, we do
not harm the balance of v0, . . . , vi−1. Also note that vertex
vq�−1−1 is automatically balanced once all the previous ones
are. The result is a balanced graph with rational weights.
Multiplying all the weights by an appropriate constant we
achieve a balanced graph with distinct integer positive weights,
that realize the permutation π.

Alas, the sufficient condition for a permutation to be fea-
sible, which was presented in Theorem 5, is not necessary,
as the following example shows.

Example 7: Take q = 4 with Σ = {A, C, G, T }, and � = 2.
Consider the following permutation:

π =
(

AA AC AG AT CA CC CG CT
12 0 1 7 2 13 6 8
GA GC GG GT TA TC TG TT
3 5 14 10 4 11 9 15

)
,

By inspection one can verify that the requirements of
Theorem 5 are not satisfied, yet the permutation is feasible,
as Fig. 3 shows.

Table I shows a comparison between the size of the codes
resulting from the different methods in this paper and in [24].
We first note that the last row, the total number of feasible
permutations, was obtained using an exhaustive computer
search, and hence the limitation to � = 2 and q = 3, 4. We also
observe that the entry for q = 3, � = 2, from [24] was obtained
in the same way, i.e., an exhaustive computer search, whose
results bootstrapped a recursive construction in [24].
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Fig. 3. The balanced graph for the permutation from Example 7.

TABLE I

THE RATE OF RANK-MODULATION CODES FOR DNA STORAGE WITH

SHOTGUN SEQUENCING (IN PARENTHESES, THE CODE RATES)

V. CONCLUSION

In this paper we studied rank-modulation codes for DNA
storage when used in conjunction with shotgun sequencing.
We constructed systematic codes for all parameters q � 3 and
� � 2, which we proved are optimal. These improve upon
the results of [24] by obtaining an asymptotic rate of 1 − 1

q
when q is fixed and � → ∞, compared with an asymptotic
rate of 0 in [24]. In the asymptotic regime of � fixed and
q → ∞ we obtain asymptotic rate of 1 compared with 1

�
in [24]. The construction we gave was accompanied by an
efficient encoding algorithm. We further note that the decoding
process is also efficient since the permutation given to the
algorithm as input is simply the ranking of the frequencies
of the information edges. Finally, we also showed how larger
codes may be obtained by avoiding Dyck configurations.

We would like to further discuss additional aspects that may
be readily combined into the coding schemes we presented in
this paper:

a) Weight balancing: When considering data storage in
synthesized DNA molecules, it has been argued that an overall
GC-content2 of roughly 50% contributes to the stability of the
molecule [29]. We can adjust Algorithm 1 to accomplish this
by removing the self loops from the set of information edges in
the De Bruijn graph Gq,�−1. After running the algorithm and
obtaining an encoded sequence, we may increase the weights
of the relevant self loops to reach the desired GC-content of
the encoded sequence.

b) Forbidden �-grams: Research suggests that some
�-grams are likely to cause sequencing errors [22]. We can

2The GC-content of a DNA molecule is the percentage of bases that are
either G or C.

ensure these �-grams never appear as a substring of the
encoded output sequence by removing their corresponding
edges from the De Bruijn graph Gq,�−1 to obtain a graph G′.
A careful reading of Theorem 1 and Algorithm 1 reveals that
the claims hold for G′ as well, provided the following hold:

• G′ has an Eulerian cycle.
• G′ has a Hamiltonian path.
• For each edge e on the Hamiltonian path, there is a

directed cycle passing through e and not through any of
the other edges on the Hamiltonian path.

When these requirements hold, the edges not on the Hamil-
tonian path form an information set, and trivial adjustments to
Algorithm 1 make it work for G′ as well.

c) Error correction: As mentioned in the introduction,
the mere use of the rank-modulation scheme already protects
against perturbations of the profile vector that do not change
the ranking. If we desire more error-protection capabilities,
then we may use any of the rank-modulation error-correcting
codes known in the literature. These may be trivially combined
with the systematic encoding of Section III. In the notation of
Theorem 1, if C ⊆ SE\E′

H
is a rank-modulation code, then

each of its codewords may be mapped to Τq,�. The reverse
process is easily accomplished by projecting the receiving per-
mutation onto E\E′

H , and then decoding using C. We can also
use the larger non-systematic codes from Section IV. Assume
Cout ⊆ Sq,� is the (non-systematic) code from Section IV, and
let Cin ⊆ Sq,� be a rank-modulation error-correcting code.
If Cin is a subgroup code (e.g., the codes studied in [26]),
then its cosets partition Sq,� into error-correcting codes (in the
case of [26], due to the right-invariance of the �∞-metric on
permutations). Thus, one of these cosets intersects Cout in a
code that is both feasible, has the error-correction capabilities
of Cin, and whose size is at least |Cout| · |Cin|/|Sq,�|.

We would like to mention some open questions. Finding
the exact number of feasible permutations is first and fore-
most. The upper bound on the asymptotic rate of feasible
permutations is still 1 (see [24]), whereas the lower bound has
been improved in this paper to 1− 1

q , assuming q is constant
and � → ∞. This lower bound is obtained by considering
systematic codes, and it is the best possible. Unfortunately,
even though the non-systematic codes of Corollary 3 have
strictly larger size compared with systematic codes, they do
not offer any improvement asymptotically.

Another interesting open question concerns the length of the
encoded sequences. The trivial lower bound is Ω(q2�), whereas
the upper bound from the systematic codes of Section III is
O(q5�). What are the worst-case bound and the average-case
bound is still unknown.

Yet another open problem is determining the minimum dis-
tance of feasible permutations. Several metrics have been stud-
ied in connection with rank-modulation codes, e.g., Kendall’s
τ -metric, the �∞-metric (also known as Chebyshev’s metric),
and Ulam’s metric, to name a few. Intrinsically, the set of
feasible permutations may possess sufficient minimal distance
to allow error correction. What this distance is, or bounds on
it, are as of yet, unknown.

Finally, finding a concise sufficient and necessary condition
for a permutation to be feasible, remains an open problem.
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Finding such a condition might pave the way to constructing
encoders for feasible permutations. We leave all of these open
problems for future work.
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