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METRICS ON PERMUTATIONS WITH THE SAME PEAK SET

ALEXANDER DIAZ-LOPEZ, KATHRYN HAYMAKER, KATHRYN KEOUGH, JEONGBIN PARK, EDWARD
WHITE

Abstract. Let Sn be the symmetric group on the set {1, 2, . . . , n}. Given a permutation σ =
σ1σ2 · · ·σn ∈ Sn, we say it has a peak at index i if σi−1 < σi > σi+1. Let Peak(σ) be the set of
all peaks of σ and define P (S;n) = {σ ∈ Sn |Peak(σ) = S}. In this paper we study the Hamming
metric, ℓ∞-metric, and Kendall-Tau metric on the sets P (S;n) for all possible S, and determine
the minimum and maximum possible values that these metrics can attain in these subsets of Sn.
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1. Introduction

In this article we look at various sets of permutations and measure maximum and minimum
distances between the elements in these sets. Let Sn be the symmetric group, that is, the set of
n! symmetries of {1, 2, . . . , n}. We write the elements of Sn in one-line notation, so for σ ∈ Sn we
write σ = σ1σ2 · · · σn to denote the permutation that sends 1 → σ1, 2 → σ2, . . . , n → σn. We say
σ has a peak at position i in {2, 3, . . . , n − 1} if σi−1 < σi > σi+1, that is, σi is greater than its
two neighbors. We define the peak set of σ, Peak(σ), to be the set of all indices at which σ has a
peak. For example, if σ = 58327164 ∈ S8 then Peak(σ) = {2, 5, 7}.

We can collect all permutations that have the same peak set S and define

P (S;n) = {σ ∈ Sn |Peak(σ) = S}.

We can partition Sn as a disjoint union of sets of the form P (S;n) as we range through all possible
peak sets S. The main purpose of this article is to describe the maximum and minimum distances
for each subset P (S;n) under three different metrics: the Hamming metric, ℓ∞-metric, and Kendall-
Tau metric. We report our results in Proposition 3.2 and Theorems 3.4, 3.5, and 3.6.

Our study was motivated by recent work on peaks of permutations. The sets P (S;n) were
first studied by Nyman in [13] to show that sums of permutations with the same peak set form a
subalgebra of the group algebra of Sn (over Q). Later, Billey, Burdzy, and Sagan [2] studied the
cardinality of the sets P (S;n) and showed

|P (S;n)| = 2n−|S|−1pS(n),

where pS(n) is a polynomial in n known as the peak polynomial of S. The study of these polynomials
has led to a flurry of work such as [3, 8, 9, 10, 14].

Permutations can be used to rank a collection of objects or quantities, and different notions
of distances between pairs of permutations have been studied extensively [5, 11]. More recent
applications of permutations include data representation, for example in flash memory storage.
In the context of data representation, the Hamming metric, the ℓ∞ metric, and the Kendall-Tau
metric have all been considered [1, 4, 12].

2. Metrics on Sn

In this section we will formally define the metrics we use to measure the distance between two
permutations. First we recall the definition of a metric. Given a set S, a metric d on S is a map
d : S × S → [0,∞) such that for σ, ρ, τ ∈ S,
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(1) d(σ, ρ) = 0 if and only if σ = ρ,
(2) d(σ, ρ) = d(ρ, σ),
(3) d(σ, τ) ≤ d(σ, ρ) + d(ρ, τ).

In this article, we will use three metrics: the Hamming metric, ℓ∞-metric, and Kendall-Tau metric.

Definition 2.1. Let dH , denoting the Hamming metric, be the map dH : Sn × Sn → [0,∞)
such that dH(σ, ρ) is the number of indices where σ and ρ differ. That is, if σ = σ1σ2 . . . σn and
ρ = ρ1ρ2 . . . ρn then

dH(σ, ρ) = |{i |σi 6= ρi}|.

Let dℓ, denoting the ℓ∞-metric, be the map dℓ : Sn × Sn → [0,∞) such that

dℓ(σ, ρ) = max{|σi − ρi| | 1 ≤ i ≤ n}.

Let dK , denoting the Kendall-Tau metric, be the map dK : Sn×Sn → [0,∞) such that dK(σ, ρ)
is the number of pairs (i, j) such that 1 ≤ i < j ≤ n and (σi − σj)(ρi − ρj) < 0. The pairs (i, j)
counted by dK are called deranged pairs.

Example 2.2. Consider σ, ρ ∈ S5 where σ = 14325 and ρ = 25314. Then, σ and ρ differ in
four of the five entries, thus dH(σ, ρ) = 4. The differences between the indices of σ and ρ are
|1 − 2|, |4 − 5|, |3 − 3|, |2 − 1|, |5 − 4|, thus dℓ(σ, ρ) = 1. Finally, out of the 10 possible pairs (i, j)
with 1 ≤ i < j ≤ 5, only (1, 4) and (2, 5) satisfy that (σi − σj)(ρi − ρj) < 0, hence dK(σ, ρ) = 2.

It is worth noting that the Kendall-Tau metric has an alternative description which is helpful
in some contexts. For permutations σ, ρ ∈ Sn, let d′K(σ, ρ) be the minimum number of swaps of
the form (i, i + 1) that transform σ into ρ, that is, d′K(σ, ρ) is the minimum number n such that
there exist transpositions τ1, . . . , τn of the form (i, i+1) with τn · · · τ1σ = ρ. In Proposition 2.5 we
show that dK(σ, ρ) = d′K(σ, ρ), for all σ, ρ ∈ Sn. For example, for the permutations σ = 14325 and
ρ = 25314 in Example 2.2, we can swap 1 and 2 and then swap 4 and 5 to convert σ into ρ.

We now present two lemmas, one about dK and one about d′K , that will be helpful in proving
Proposition 2.5.

Lemma 2.3. The Kendall-Tau metric is right invariant, that is, for any σ, τ, α ∈ Sn, dK(σ, ρ) =
dK(σα, ρα).

Proof. Let (i, j) be any pair such that 1 ≤ i < j ≤ n. Consider the pair (α−1(i), α−1(j)) or
(α−1(j), α−1(i)), whichever has the first entry greater than the second entry. Without loss of
generality, assume it is (α−1(i), α−1(j)). Then,

(1) (σαα−1(i) − σαα−1(j))(ραα−1(i) − ραα−1(j)) = (σi − σj)(ρi − ρj).

Thus, if (i, j) is a deranged pair for (σ, ρ) then (α−1(i), α−1(j)) is a deranged pair for (σα, ρα).
Similarly, if (i, j) is not a deranged pair for (σ, ρ) (meaning (σi−σj)(ρi−ρj) > 0) then by Equation
(1) neither (α−1(i), α−1(j)) nor (α−1(j), α−1(i)) are deranged pairs for (σα, ρα). Since both (σ, ρ)
and (σα, ρα) have the same number of deranged pairs, then dK(σ, ρ) = dK(σα, ρα). �

Lemma 2.4. For σ, ρ, α ∈ Sn, the following statements hold:

(a) d′K(σ, ρ) = d′K(σα, ρα),
(b) d′K(σ, ρ) = d′K(ρ, σ),

Proof. Let τ1, τ2, . . . , τn be any collection of transpositions of the form (i, i + 1) that transforms σ
into ρ, that is, τn · · · τ2τ1σ = ρ. Multiplying by α on both sides we get τn · · · τ2τ1σα = ρα, thus
d′K(σ, ρ) ≥ d′K(σα, ρα). Similarly, let τ ′1, τ

′
2, . . . , τ

′
m be any collection of transpositions of the form

(i, i + 1) that transforms σα into ρα, that is, τ ′n · · · τ
′
2τ

′
1σα = ρα. Multiplying by α−1 on the right

we get τ ′n · · · τ
′
2τ

′
1σ = ρ. Thus, d′K(σ, ρ) ≤ d′K(σα, ρα), which completes the proof of part (a).
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Part (b) follows from the fact that for any collection τ1, τ2, . . . , τn of transpositions of the form
(i, i+1) we have that if τn · · · τ1σ = ρ then σ = τ1 · · · τnρ. Thus, the minimum number of swaps of
the form (i, i + 1) that transforms σ into ρ is the minimum number of swaps of the form (i, i + 1)
that transforms ρ into σ. �

We are now ready to prove that both dK and d′K are the same metric.

Proposition 2.5. For σ, ρ ∈ Sn, the value dK(σ, ρ) = d′K(σ, ρ).

Proof. Theorem 1 in [4] shows that for any permutation τ ∈ Sn, we have dK(τ, e) = d′K(τ, e), where
e is the identity permutation. This, together with Lemmas 2.3 and 2.4, imply

dK(σ, ρ) = dK(e, ρσ−1) = dK(ρσ−1, e) = d′K(ρσ−1, e) = d′K(e, ρσ−1) = d′K(σ, ρ). �

Remark 2.6. The definition of the Kendall-Tau metric varies among different sources, although
most often the definitions are equivalent. For example, Diaconis (p.112, [6]) defines the Kendall-
Tau distance between permutations π and σ as follows:

I(π, σ) = minimum number of pairwise adjacent transpositions taking π−1 to σ−1.

This definition is equivalent to the one we present in Definition 2.1 and d′K(σ, ρ). The same definition
appears in [7], and is named after Kendall based on work in the 1930’s and beyond [11]. Some
ambiguity arises since Kendall defined a metric on rankings, and rankings can be transformed into
permutations in two different ways. A non-equivalent definition of Kendall-Tau distance between
permutations is often used in rank modulation applications in the area of coding for flash memory
storage (see, for example [1]).

For a given set S of permutations, we will consider the pair-wise distances between distinct
permutations in the set as well as the maximum and minimum values attained.

Definition 2.7. For a metric d on a set S, let d(S) be the set of positive integers defined as follows:

d(S) = {d(σ, ρ)|σ, ρ ∈ S, σ 6= ρ}.

We will denote the minimum and maximum of the set d(S) as min(d(S)) and max(d(S)), respec-
tively.

When S = Sn, it is straightforward to compute the values of min(d(S)) and max(d(S)) for the
Hamming, ℓ∞, and Kendall-Tau metrics, as we show in Proposition 2.8. In Section 3, we consider
the same question for subsets of Sn defined by their common peak set.

Proposition 2.8. For Sn with n ≥ 2, the minimum and maximum for each of the three metrics
in Definition 2.1 are

• min(dH(Sn)) = 2, max(dH(Sn)) = n
• min(dℓ(Sn)) = 1, max(dℓ(Sn)) = n− 1
• min(dK(Sn)) = 1, max(dK(Sn)) =

(

n
2

)

.

Proof. For the Hamming metric, the minimum possible value min(dH(Sn)) is 2 because distinct
permutations must differ in at least 2 indices. This minimum distance is achieved by, e.g., the pair
σ = 123 · · · n and ρ = 213 · · · n. The maximum distance occurs when all indices of σ and ρ are
different, for example, with σ = 12 · · · n and ρ = 23 · · ·n 1, so max(dH(Sn)) = n.

For the ℓ∞-metric, the minimum possible value of min(dℓ(Sn)) is 1, which is achieved by, e.g.,
the pair σ = 12 · · · n and ρ = 213 · · · n. The maximum possible value of max(dℓ(Sn)) would be
n− 1, which occurs when σi = n and ρi = 1 (or vice-versa) for some index i. The pair σ = 12 · · · n
and ρ = nn− 1 · · · 1 achieves this maximum.

For Kendall-Tau metric, the minimum distance occurs when the least number of pairs (i, j) such
that 1 ≤ i < j ≤ n and (σi − σj)(ρi − ρj) < 0 is obtained. The least number of pairs (i, j) possible
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is 1, and this occurs when σ = 12 · · · n and τ = 213 · · · n. The maximum distance occurs when all
(

n
2

)

pairs (i, j) with 1 ≤ i < j ≤ n satisfy (σi − σj)(ρi − ρj) < 0. This happens when σ = 12 · · · n
and ρ = nn− 1 · · · 1. �

3. Maximum and minimum distances among permutations with the same peak set

For the remainder of this paper, we will explore the maximum and minimum values of the three
metrics described in Definition 2.1 in sets of permutations with the same peak set. Recall that for
any set S ⊆ [n] of indices

P (S;n) = {σ ∈ Sn |Peak(σ) = S}.

We say S is admissible if P (S;n) 6= ∅.
In Proposition 3.2 we explore min(dK(P (S;n)),min(dℓ(P (S;n)), and min(dH(P (S;n)) for ad-

missible sets S and in Theorems 3.4, 3.5, and 3.6 we explore the equivalent problem for maximum
values. The following lemma is useful for subsequent results.

Lemma 3.1 ([15, Lemma 4.4]). Let S be an admissible set and σ ∈ P (S;n). For any i ∈
{2, 3, . . . , n− 1}, if i and i+1 do not appear consecutively in σ then swapping i and i+1 creates a
permutation σ′ with the same peak set as σ, i.e., σ′ ∈ P (S;n). If i = 1 then swapping 1 and 2 will
produce a permutation with the same peak set as σ.

Proposition 3.2. Given an admissible peak set S and P = P (S;n) for n ≥ 2, we have

min(dH(P )) = 2, min(dℓ(P )) = 1, and min(dK(P )) = 1.

Proof. For any set S, by definition we have that P (S;n) ⊆ Sn. Hence, by Proposition 2.8 the
minimum value of min(dH(P )) is at least 2 and for both min(dℓ(P )) and min(dK(P )) it is at least
1. Hence, it is enough to find pairs of permutation in P that attain these values.

Let S be admissable and σ be any permutation in P (S;n). By Lemma 3.1, swapping 1 and 2
in σ will lead to a permutation σ′ with the same peak set as σ. Since σ and σ′ only differ in the
indices where 1 and 2 are located, dH(σ, σ′) = 2. Using the same σ and σ′ we see that dℓ(σ, σ

′) = 1
as the only indices in which they differ have entries 1 and 2 and |2− 1| = |1 − 2| = 1. Finally, for
the Kendall-Tau metric, we get that dK(σ, σ′) = 1 as the only deranged pair between σ and σ′ is
the pair of indices where 1 and 2 are located. �

We now proceed to explore the maximum values of the metrics when restricted to sets of
permutations with the same peak set. Proposition 2.8 bounds the values of max(dH(P (S;n))),
max(dℓ(P (S;n))), and max(dK(P (S;n))) by n, n − 1, and

(

n
2

)

, respectively, as P (S;n) ⊆ Sn. In
the main results of this section, Theorems 3.4, 3.5, and 3.6 we show that these values are not always
attained in the sets P (S;n). Throughout the next results, we will use two particular permutations
as our starting point to create others.

Definition 3.3. Let e be the identity permutation e = 12 · · · n− 1n and e∗ = nn− 1 · · · 2 1. For
an admissible peak set S, define e[S] as the permutation obtained by swapping the entries of k and
k+1 in e for each k ∈ S. Similarly, let e∗[S] be the permutation obtained by swapping the entries
of k − 1 and k in e∗, for each k ∈ S. Since any admissible set S has no consecutive entries, these
permutations are well-defined as the order of the swaps does not matter. More explicitly, we have
that for i ∈ {1, 2, . . . , n},

e[S]i =











i+ 1 if i ∈ S

i− 1 if i ∈ {s + 1 | s ∈ S}

i otherwise,

and e∗[S]i =











(n+ 1− i) + 1 if i ∈ S

(n+ 1− i)− 1 if i ∈ {s− 1 | s ∈ S}

n+ 1− i otherwise.

For example, for the set S = {2, 5, 7} and S9, we have e[S] = 132465879 and e∗[S] = 897563421.
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Theorem 3.4. For n ≥ 2, the maximum Kendall-Tau distance between permutations in P (S;n) is
(

n
2

)

− 2|S|.

Proof. For any pair of permutations σ and ρ in P (S;n), we have that σi−1 < σi > σi+1 for each
i ∈ S, and analogously for ρ. Therefore, the pairs (i− 1, i) and (i, i+1) are not deranged pairs for
σ, ρ since

(σi−1 − σi)(ρi−1 − ρi) > 0 and (σi − σi+1)(ρi − ρi+1) > 0.

Since there are a total of
(

n
2

)

pairs of possible deranged pairs, we have that dK(σ, ρ) ≤
(

n
2

)

− 2|S|.

We now consider a pair of permutations that attain the bound
(

n
2

)

− 2|S|. First, note that

the permutations e and e∗ are Kendall-Tau distance
(

n
2

)

apart since for all index pairs (i, j) with
1 ≤ i < j ≤ n, e has (ei − ej) < 0 while e∗ has (e∗i − e∗j ) > 0. Consider e[S] and e∗[S] as defined

in Definition 3.3. We claim dK(e[S], e∗[S]) =
(

n
2

)

− 2|S|.
Since every pair of indices (i, j) with 1 ≤ i < j ≤ n was a deranged pair for e and e∗ and we

only altered the (consecutive) entries in indices k − 1 and k in e[S], and (consecutive) entries in
indices k and k+1 in e∗[S] for k ∈ S, then only the pairs (k− 1, k), and (k, k+1) might no longer
be deranged pairs for e[S] and e∗[S]. Indeed, for the pair (k, k + 1),

(e[S]k − e[S]k+1)(e
∗[S]k − e∗[S]k+1)

= (k + 1− k)((n + 1− k) + 1− (n+ 1− (k + 1)) = 2 > 0.

Similarly, for the pair (k − 1, k) we have

(e[S]k−1 − e[S]k)(e
∗[S]k−1 − e∗[S]k)

= (k − 1− (k + 1))(n + 1− (k − 1)− 1− ((n+ 1− k) + 1)) = 2 > 0.

Thus, for each peak in S we have two pairs that are not deranged, hence dK(e[S], e∗[S]) =
(

n
2

)

−2|S|.
�

Theorem 3.5. For n ≥ 2, the maximum ℓ∞ distance between permutations in P (S;n) is n − 2
when S contains peaks at indices 2 and n− 1, and n− 1 otherwise.

Proof. First consider the case when {2, n− 1} 6⊆ S. If 2 /∈ S, then the permutations e[S] and e∗[S]
achieve the maximum ℓ∞-distance n− 1 as e[S]1 = 1 and e∗[S]1 = n. Similarly, if n− 1 6∈ S then
e[S]n = n and e∗[S]n = 1, and therefore dℓ(e[S], e

∗[S]) = n− 1.
If {2, n − 1} ⊆ S, then we first claim dℓ(σ, ρ) ≤ n − 2 for any pair of distinct permutations

σ, ρ ∈ P (S;n). In any permutation in P (S;n), n must not appear in index 1 nor index n since
indices 2 and n − 1 are peaks. Since n is larger than any other number in the permutation, it
must be in an index that is a peak. On the other side, 1 will never appear in an index that is
a peak. Hence, dℓ(σ, ρ) cannot be n − 1 as the only way to obtain this would be for n and 1 to
appear in the same index in σ and ρ, respectively. Thus, dℓ(σ, ρ) ≤ n− 2. To show that this bound
is achieved, consider the permutations e[S] and e∗[S]. Since e[S]1 = 1 and e∗[S]1 = n − 1, then
dℓ(e[S], e

∗[S]) = n− 2. �

The next result considers the maximum Hamming distance between permutations with the
same peak set in Sn for n ≥ 4. We first remark that for n = 2, the only peak set is ∅ and
max dH(P (∅; 2)) = 2, and for n = 3, we have that max dH(P (∅; 3)) = 3 and max dH(P ({2}; 3)) = 2.

Theorem 3.6. For n ≥ 4 and any admissible peak set S, the maximum Hamming distance between
permutations in P (S;n) is n.

Proof. We proceed by induction on n. For the base cases of n = 4 and n = 5, consider the pairs
of permutations in each of the admissible peak sets shown in Tables 1 and 2, respectively. Suppose
that for every 4 ≤ j < n the maximum Hamming distance between permutations in P (S; j) is j.
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S = ∅ S = {2} S = {3}
1 2 3 4 1 3 2 4 1 3 4 2
4 3 2 1 2 4 3 1 4 2 3 1

Table 1. Pairs of permutations in S4 with the same peak set and Hamming distance four.

S = ∅ S = {2} S = {3} S = {4} S = {2, 4}
1 2 3 4 5 1 3 2 4 5 1 3 4 2 5 4 3 2 5 1 1 3 2 5 4
5 3 2 1 4 2 5 3 1 4 5 2 3 1 4 5 4 1 3 2 4 5 1 3 2

Table 2. Pairs of permutations in S5 with the same peak set and Hamming distance five.

S = ∅ S = {2} S = {3} S = {4} S = {5} S = {2, 4} S = {2, 5} S = {3, 5}
1 2 3 4 5 6 1 3 2 4 5 6 1 3 4 2 5 6 4 3 2 5 1 6 1 2 3 4 6 5 1 3 2 5 4 6 1 3 2 4 6 5 1 3 4 2 6 5
6 3 2 1 4 5 2 6 3 1 4 5 6 2 3 1 4 5 6 4 1 3 2 5 6 3 2 1 5 4 4 6 1 3 2 5 2 6 3 1 5 4 6 2 3 1 5 4

Table 3. Pairs of permutations in S6 with the same peak set and Hamming distance
six, created using the constructions in the proof of Theorem 3.6.

Let S be an admissible peak set for permutations in Sn, and for this case assume n−1 /∈ S. Since
n − 1 /∈ S, S is also an admissible peak set for permutations in Sn−1, so there exist permutations
σ, ρ ∈ P (S;n − 1) such that dH(σ, ρ) = n − 1 by the inductive hypothesis. Since σ and ρ differ in
every index, in at least one of the permutations n − 1 does not appear in index n − 1. Without
loss of generality, assume ρn−1 6= n− 1. Construct permutations σ′, ρ′ in Sn as follows: σ′ equals σ
with n appended at the end. For ρ′, first form an intermediate permutation ρ′′ by appending n to
the end of ρ. Then to obtain ρ′, swap values n and n− 1 in ρ′′. We claim that dH(σ′, ρ′) = n and
the peak set of both σ′ and ρ′ is S.

First recall that since dH(σ, ρ) = n−1, we have that dH(σ′, ρ′′) = n−1 since they are formed by
appending n to the end of each permutation. Swapping the values n− 1 and n in ρ′′ results in the
distance dH(σ′, ρ′) = n. The peak set of σ′ and ρ′′, S, is inherited from σ and ρ by construction.
Since ρn−1 6= n− 1 then n− 1 and n are not neighbors in ρ′′. By Lemma 3.1 the peak set of ρ′ is
the same as the peak set of ρ′′, which is S.

Now assume S is an admissible peak set for permutations in Sn, and n − 1 ∈ S. Define S′ =
S \ {n − 1}, which is an admissible peak set on Sn−2. By our inductive assumption there exist
permutations σ, ρ ∈ P (S′;n− 2) such that dH(σ, ρ) = n− 2. Thus, at least one of σ or ρ must have
its n − 2 index not equal to n − 2. Without loss of generality, suppose ρn−2 6= n − 2. Define the
following permutations in Sn: σ′ equals σ with values n and n − 1 appended to the end, in that
order, that is,

σ′ = σ1 · · · σn−2 nn− 1.

Starting with ρ, define ρ′′ to be the permutation ρ with n and n − 1 appended to the end in that
order. Let i be the index such that ρi = n− 2, then ρ′′ is of the form

ρ′′ = ρ1 · · · ρi−1 n− 2 ρi+1 · · · ρn−2 nn− 1.

Let ρ′ be

ρ′ = ρ1 · · · ρi−1 n ρi+1 · · · ρn−2 n− 1n− 2.

In other words, ρ′ equals ρ with value n − 2 replaced by n, and then n − 1, n − 2 appended in
that order to the end of the permutation. By construction, σ′ and ρ′ differ in every index, so
dH(σ′, ρ′) = n. Finally, the peak set of both σ′ and ρ′ is S as we have introduced a peak at n − 1
and have not altered any other entry other than cyclically permuting (n, n− 1, n− 2) in ρ′′, which
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does not change the peak set. Hence, the result is proven. Table 3 showcases these constructions
for the case n = 6. �

4. Acknowledgements

The authors thank Villanova’s Co-MaStER program. A. Diaz-Lopez’s research is supported in
part by National Science Foundation grant DMS-2211379.

References

1. Alexander Barg and Arya Mazumdar, Codes in permutations and error correction for rank modulation, IEEE
Trans. Inform. Theory 56 (2010), no. 7, 3158–3165. MR 2798981

2. Sara Billey, Krzysztof Burdzy, and Bruce E. Sagan, Permutations with given peak set, J. Integer Seq. 16 (2013),
no. 6, Article 13.6.1, 18. MR 3083179

3. Sara Billey, Matthew Fahrbach, and Alan Talmage, Coefficients and roots of peak polynomials, Exp. Math. 25
(2016), no. 2, 165–175. MR 3463566

4. Henry D. Chadwick and Ludwik Kurz, Rank permutation group codes based on Kendall’s correlation statistic,
IEEE Trans. Inform. Theory IT-15 (1969), 306–315. MR 252093

5. Michel Deza and Tayuan Huang, Metrics on permutations, a survey, vol. 23, 1998, J. N. Srivastava: felicitation
volume, pp. 173–185. MR 1737796

6. Persi Diaconis, Group representations in probability and statistics, Institute of Mathematical Statistics Lecture
Notes—Monograph Series, vol. 11, Institute of Mathematical Statistics, Hayward, CA, 1988. MR 964069

7. Persi Diaconis and R. L. Graham, Spearman’s footrule as a measure of disarray, J. Roy. Statist. Soc. Ser. B 39

(1977), no. 2, 262–268. MR 652736
8. Alexander Diaz-Lopez, Pamela E. Harris, Erik Insko, and Mohamed Omar, A proof of the peak polynomial

positivity conjecture, J. Combin. Theory Ser. A 149 (2017), 21–29. MR 3620729
9. Alexander Diaz-Lopez, Pamela E. Harris, Erik Insko, and Darleen Perez-Lavin, Peak sets of classical Coxeter

groups, Involve 10 (2017), no. 2, 263–290. MR 3574301
10. Christian Gaetz and Yibo Gao, On q-analogs of descent and peak polynomials, European J. Combin. 97 (2021),

Paper No. 103397, 11. MR 4282636
11. Maurice Kendall and Jean Dickinson Gibbons, Rank correlation methods, fifth ed., A Charles Griffin Title, Edward

Arnold, London, 1990. MR 1079065
12. Torleiv Kløve, Te-Tsung Lin, Shi-Chun Tsai, and Wen-Guey Tzeng, Permutation arrays under the Chebyshev

distance, IEEE Trans. Inform. Theory 56 (2010), no. 6, 2611–2617. MR 2683423
13. Kathryn L. Nyman, The peak algebra of the symmetric group, J. Algebraic Combin. 17 (2003), no. 3, 309–322.

MR 2001673
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