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Abstract
We give two methods that are based on the representation theory of symmetric groups to
study the largest size P(n, d) of permutation codes of length n, i.e., subsets of the set Sn
of all permutations on {1, . . . , n} with the minimum distance (at least) d under the Kendall
τ -metric. The first method is an integer programming problem obtained from the transitive
actions of Sn . The second method can be applied to refute the existence of perfect codes in
Sn . Applying these methods, we reduce the known upper bound (n − 1)! − 1 for P(n, 3) to
(n − 1)! − � n

3 � + 2 ≤ (n − 1)! − 2, whenever n ≥ 11 is prime. If n = 6, 7, 11, 13, 14, 15,
17, the known upper bound for P(n, 3) is decreased by 3, 3, 9, 11, 1, 1, 4, respectively.
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1 Introduction

Rankmodulationwas proposed as a solution to the challenges posed byflashmemory storages
[9]. In the rank modulation framework, codes are permutation codes, where by a Permutation
Code (PC) of length n we simply mean a non-empty subset of Sn , the set of all permu-
tations of [n] := {1, 2, . . . , n}. Given a permutation π := [π(1), π(2), . . . , π(i), π(i +
1), . . . , π(n)] ∈ Sn , an adjacent transposition, (i, i + 1), for some 1 ≤ i ≤ n − 1, applied
to π will result in the permutation [π(1), π(2), . . . , π(i + 1), π(i), . . . , π(n)]. For two per-
mutations ρ, π ∈ Sn , the Kendall τ -distance between ρ and π , dK (ρ, π), is defined as the
minimum number of adjacent transpositions needed to write ρπ−1 as their product. Under
the Kendall τ -metric a PC of length n with minimum distance d can correct up to d−1

2 errors
caused by charge-constrained errors [9].
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The maximum size of a PC of length n and minimum Kendall τ -distance at least d is
denoted by P(n, d) and a PC attaining this size is said to be optimal. We will show in
Proposition 2.1, below, that if d is such that optimal PCs of minimum Kendall τ -distance
at least d exist, then there exists an optimal PC with the minimum distance exactly d and
therefore one can drop the condition “at least” in the latter definition of optimal codes. Several
researchers have presented bounds on P(n, d) (see [1, 2, 9, 11–13]), some of these results
are shown in Table 1. It is known that P(n, 1) = n! and P(n, 2) = n!

2 . Also it is known that
if 2

3

(n
2

)
< d ≤ (n

2

)
, then P(n, d) = 2 (see [2, Theorem 10]). However, determining P(n, d)

turns out to be difficult for 3 ≤ d ≤ 2
3

(n
2

)
. In this paper, we study the upper bound of P(n, 3).

By sphere packing bound (see [9, Theorems 12 and 13]) P(n, 3) ≤ (n − 1)!. A PC of size
(n − 1)! and with minimum Kendall τ -distance 3 is called a 1-perfect code. It is proved that
if n > 4 is a prime number or 4 ≤ n ≤ 10, then there is no 1-perfect code in Sn (see [5,
Corollary 2.5 and Theorem 2.6] or [2, Corollary 2]).

There are several works using optimization techniques to bound the size of permutation
codes under various distance metrics (Hamming, Kendall τ , Ulam) (see [7, 10, 11]). In
Section 2, we show that for any non-trivial subgroup of Sn , we can derive an integer pro-
gramming problem where the optimal value of the objective function gives an upper bound
on P(n, 3). In Section 3, by considering the integer programming problem corresponding to
the Young subgroups (see Definition 3.1, below) of Sn , we prove the following result:

Theorem 1.1 For all primes p ≥ 11, P(p, 3) ≤ (p − 1)! − � p
3 � + 2 ≤ (p − 1)! − 2.

We then use a software to solve the integer programming problems that are derived from
specific choices of the underline subgroup and obtain tighter upper bounds for some small
values of n. Finally, we apply a related method from [5] to prove the nonexistent of 1-perfect
codes in S14, S15.

2 Preliminaries

A simple graph � consists of a non-empty set of vertices V (�) and a possibly empty set of
edges E(�) which is a subset of the set of all 2-element subsets of V (�). Two vertices σ1
and σ2 are called adjacent, denoted by σ1 − σ2, if {σ1, σ2} ∈ E(�). A subgraph H of � is
a simple graph whose vertex set and edge set are subsets of those of �. A path is a simple
graph with the vertex set {σ0, σ1, . . . , σn} such that σ j − σ j+1 for j = 0, . . . , n − 1. The
length of a path is the number of its edges.

Table 1 Some results on the upper bounds of P(n, 3)

n 6 7 11 13

Old UB 5!-1a 6!-1a 10!-1a 12!-1a

UB

n 14 15 17 prime n ≥ 19

Old UB 13! [9] 14! [9] 16!-1a (n-1)!-1a

UB

The superscripts show the references from which the upper bound is taken, where “a” is [2, 5], and gray color
shows our main results
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By a graphical code of minimum distance at least d we mean a subset of vertices of a
simple graph such that any two distinct vertices has distance at least d , where the distance of
two vertices is defined to be the shortest length of a path between the vertices. Examples of
such codes are permutation codes under Kendall τ -metric or Ulammetric, where the vertices
of the simple graph are the permutations of length n and two permutations are connected by
an edge if and only if their distance under the metric is one. In fact the set of all permutations
with the Kendall τ or Ulam metrics can be represented as Cayley graphs (see Definition 2.4,
below) and PCs are then subgraphs of the Cayley graph. The methods used in this paper rely
on the fact that the permutation set with Kendall τ -metric is a Cayley graph.

Here we observe that if d is such that graphical codes of minimum distance at least d
exist, then the ones with the minimum distance exactly d exist.

Proposition 2.1 Let � be any simple graph and d ≥ 1 an integer. Then

{|C | | C ⊆ V (�) and d�(C) = d} = {|C | | C ⊆ V (�) and d�(C) ≥ d},
where d�(C) = min{d�(x, y) | x, y ∈ C and x �= y}.
Proof LetC be a graphical code with the minimum distance at least d . Suppose that σ, τ ∈ C
such that d�(C) = d�(σ, τ ) = d + � for some non-negative integer �. If � = 0, we are done;
so from now on assume that � > 0. Let σ −σ1−· · ·−σ�−· · ·−σd+�−1−τ be a shortest path
in the graph � between σ and τ . Consider Ĉ = (C \ {σ }) ∪ {σ�}. We claim that |C | = |Ĉ |
and d�(Ĉ) = d , this will complete the proof. If σ� ∈ C , then d(σ�, τ ) = d , which implies
� = 0, a contradiction. It follows that |C | = |Ĉ |. To prove that d�(Ĉ) = d , it is enough
to show that d�(δ, σ�) ≥ d for all δ ∈ C \ {σ }. Since d�(C) = d + � and by the triangle
inequality we have

d + � ≤ d�(δ, σ ) ≤ d�(δ, σ�) + d�(σ�, σ ) = d�(δ, σ�) + �.

So d�(δ, σ�) ≥ d , as required. 
�
A PC with Hamming metric is not a graphical code as the Hamming distance between

two permutations is never equal to 1 and so we cannot apply Proposition 2.1 for the latter
case. We do not know if the conclusion of Proposition of 2.1 is valid for PCs with Hamming
metric. We propose the following question.

Question 2.2 Let dH be the Hamming metric on Sn and d ≥ 2 be an arbitrary integer. Is it
true that

{|C | | C ⊆ Sn and dH (C) = d} = {|C | | C ⊆ Sn and dH (C) ≥ d}?,
where dH (C) = min{dH (x, y) | x, y ∈ C and x �= y}.
Definition 2.3 Let G be a finite group and B,C be two non-empty subsets of G. As usual we
denote by BC the set {bc | b ∈ B, c ∈ C}, where by g = bc we refer to the group operation.
Also, for each g ∈ G we denote by Bg the set B{g}. The set B is called inverse closed if
B = B−1 := {b−1 | b ∈ B}. We also use the notation ξ to denote the identity element of G.

Let G be a finite group and denote by C[G] the “complex group algebra” of G. The
elements of C[G] are the formal sums

∑

g∈G
agg, (2.1)
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where ag ∈ C. The complex group algebra is a C-algebra with the following addition,
multiplication and scalar product:

∑

g∈G
agg +

∑

g∈G
bgg =

∑

g∈G
(ag + bg)σ,

( ∑

g∈G
agg

)( ∑

g∈G
bgg

) =
∑

g∈G

( ∑

g=g1g2

ag1bg2
)
g,

λ
∑

g∈G
agg =

∑

g∈G
(λag)g,

where λ, ag, bg ∈ C. If ag = 0 for some g, the term agg will be neglected in (2.1) and∑
g∈G agg is written as a1g1 + · · ·+ akgk , where {g | ag �= 0} = {g1, . . . , gk} is non-empty

and otherwise
∑

g∈G agg is denoted by 0. For a non-empty finite subset � of G, we denote

by �̂ the element
∑

θ∈� θ of C[G].
Definition 2.4 Let G be a finite group and S be a non-empty inverse closed subset of G not
containing the identity element ξ of G. Then the Cayley graph � := Cay(G, S) is a simple
graph with V (�) = {g | g ∈ G} and E(�) = {{g, h} ∣

∣ g, h ∈ G, gh−1 ∈ S
}
.

Let G be a finite group and S be a non-empty inverse closed subset of G not containing
the identity element ξ of G. Now we have a metric d� on G defined by � which is the
shortest length of a path between two vertices in Cay(G, S). For example if G = Sn and
S = {(1, 2), (2, 3), . . . , (n − 1, n)}, the metric d� is the Kendall τ -metric on Sn . Also if
G = Sn and S = T ∪ T−1, where T := {(a, a + 1, . . . , b) | a < b, a, b ∈ [n]}, the metric
d� is the Ulam metric on Sn .

Definition 2.5 For a positive integer r and an element g ∈ G, the ball of radius r in G under
the metric d� is denoted by B�

r (g) defined by B�
r (g) = {h ∈ G | d�(g, h) ≤ r}.

Remark 2.6 Note that B�
r (g) = (Sr ∪ {ξ})g, where Sr := {s1 · · · st | s1, . . . , st ∈ S, 1 ≤

t ≤ r}. Also note that since S is inverse closed, B�
r (g) = Sr g for all r ≥ 2. It follows that

|B�
r (g)| = |B�

r (ξ)| = |Sr ∪ {ξ}| for all g ∈ G.

Proposition 2.7 Let G be a finite group and d� be themetric induced by the graphCay(G, S).
Then a subset C of G is a code with min{d�(x, y) | x, y ∈ C} ≥ d if and only if there exists
Y ⊂ G such that

̂
(S d−1

2 � ∪ {ξ})Ĉ = Ĝ − Ŷ , (2.2)

Proof Let r :=  d−1
2 �, Y = G \ ∪c∈C B�

r (c) and T := Sr ∪ {ξ}. So G = ∪c∈C B�
r (c) ∪ Y .

It follows from Remark 2.6 that for each c ∈ C , B�
r (c) = T c and so ∪c∈C B�

r (c) = TC .
Therefore, Ĝ = T̂ C + Ŷ . On the other hand, for any two distinct elements c, c′ in C ,
T c ∩ T c′ = ∅ since otherwise d�(c, c′) ≤ d − 1 that is a contradiction. Hence, T̂ C = T̂ Ĉ
and this completes the proof. 
�
Definition 2.8 Let G be a finite group and d� be the metric induced by Cay(G, S). For a
positive integer r , an r-perfect code or a perfect code of radius r of G under the metric d�

is a subset C of G such that G = ∪c∈C B�
r (c) and B�

r (c) ∩ B�
r (c′) = ∅ for any two distinct

c, c′ ∈ C.

Remark 2.9 By a similar argument as the proof of Proposition 2.7, it can be seen that if C is
an r-perfect code, then ̂(Sr ∪ {ξ})Ĉ = Ĝ. We note that according to Remark 2.6, if C is an
r-perfect code then |C ||Sr ∪ {ξ}| = |G|.

123



Cryptography and Communications

Let ρ be any (complex) representation of a finite groupG of dimension k for some positive
integer k, i.e., any group homomorphism from G to the general linear group GLk(C) of k×k
invertible matrices over C. Then by the universal property of C[G], ρ can be extended to an
algebra homomorphism ρ̂ from C[G] to the algebra Matk(C) of k × k matrices over C such
that gρ̂ = gρ for all g ∈ G. Thus the image of �̂ for any non-empty subset � of G under
ρ̂ is the element

∑
θ∈� θρ of Matk(C). In particular by applying ρ̂ on the equality (2.2), we

obtain ( ∑

s∈S∪{ξ}
sρ

)( ∑

c∈C
cρ

) =
∑

g∈G
gρ −

∑

y∈Y
yρ, (2.3)

where the latter equality is between elements of Matk(C).
In the following, we state an important definition that will play a central role in the proof

of the main results of this paper.

Definition 2.10 • Given a group G and a non-empty set �, recall that we say G acts on �

(from the right) if there exists a function � × G → � denoted by (θ, g) �→ θ g for all
(θ, g) ∈ � × G if (θ g)h = θ gh and θξ = θ for all θ ∈ � and all g, h ∈ G.

• For any θ ∈ � the set StabG(θ) := {g ∈ G | θ g = θ} is called the stabilizer of θ in G
which is a subgroup of G.

• If the action is transitive (i.e., for any two elements θ1, θ2 ∈ �, there exists g ∈ G such
that θ

g
1 = θ2), all stabilizers are conjugate under the elements of G, more precisely

StabG(θ1)
g = StabG(θ2) whenever θ

g
1 = θ2, where StabG(θ1)

g = g−1StabG(θ1)g.
• Suppose that G acts on� and |�| = k is finite. Fix an arbitrary ordering on the elements

of � so that θi < θ j whenever i < j for distinct elements θi , θ j ∈ �. Denote by ρG
� the

map from G to GLk(Z) (the group of all k × k invertible matrices with integer entries)
defined by g �→ Pg, where Pg is the k × k matrix whose (i, j) entry is 1 if θ gi = θ j and
0 otherwise.

Remark 2.11 Note that the definitions of ρG
� depends on the choice of the ordering on �,

however any two such representations of G are conjugate by a permutation matrix.

Remark 2.12 Let H be a subgroup of a finite group G and X be the set of right cosets of H
in G, i.e., X := {Hg | g ∈ G}. Then G acts transitively on X via (Hg, g0) −→ Hgg0. It is
known that X partitions G, i.e., G = ∪x∈X x and x ∩ x ′ = ∅ for all distinct elements x and
x ′ of X, and |X | = |G|/|H |.

Lemma 2.13 Let H be a subgroup of a finite group G and X = {Ha1, . . . , Ham} be the set
of right cosets of H in G. If Y ⊂ G, then by fixing the ordering Hai < Ha j whenever i < j ,

the (i, j) entry of
∑

y∈Y yρG
X is |Y ∩ ai−1Ha j |.

Proof Clearly, for any y ∈ Y , the (i, j) entry of yρG
X is 1 if Hai y = Ha j and is 0 otherwise.

So the (i, j) entry of yρG
X is 1 if ai ya j

−1 ∈ H and therefore y ∈ ai−1Ha j . Hence, the (i, j)

entry of
∑

y∈Y yρG
X is equal to |{y ∈ Y | y ∈ ai−1Ha j }|. This completes the proof. 
�

The following result summarizes the main method used in this paper.

Theorem 2.14 Let G be a finite group and d� be the metric induced by the graph Cay(G, S).
Also, let C be a code in G with min{d�(c, c′) | c �= c′ ∈ C} ≥ d. If H is a subgroup of G
and X is the set of right cosets of H in G, then the optimal value of the objective function of
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the following integer programming problem gives an upper bound on |C |.

Maximize
|X |∑

i=1

xi ,

subject to
̂
T ρG

X (x1, . . . , x|X |)t ≤ |H |1,

xi ∈ Z, xi ≥ 0, i ∈ {1, . . . , |X |},
where T := S d−1

2 � ∪ {ξ}, 1 is the column vector of order |X | × 1 whose entries are equal to
1.

Proof Let r :=  d−1
2 �. By (2.3), there exists Y ⊂ G such that

( ∑

s∈T
sρG

X
)( ∑

c∈C
cρG

X
) =

∑

g∈G
gρG

X −
∑

y∈Y
yρG

X , (2.4)

Suppose that X = {Ha1, . . . , Ham}. Without loss of generality, we may assume that a1 = 1.
We fix the ordering Hai < Ha j whenever i < j . By Lemma 2.13, the (i, j) entry of
∑

g∈G gρG
X is equal to |G∩ai−1Ha j | and since ai−1Ha j ⊆ G, the (i, j) entry of

∑
g∈G gρG

X

is equal to |ai−1Ha j | = |H |. So if B is a column of
∑

g∈G gρG
X , then B = |H |1. Let C be

the first column of
∑

c∈C cρG
X . Then Lemma 2.13 implies that for all 1 ≤ i ≤ |X |, i-th

row of C, denoted by ci , is equal to |C ∩ Hai |. Since C = C ∩ G = ∪|X |
i=1(C ∩ Hai ) and

(C ∩ Hai ) ∩ (C ∩ Ha j ) = ∅ for all i �= j ,
∑|X |

i=1 ci = |C |. We note that by Lemma 2.13,

all entries of matrix
̂
FρG

X , F ∈ {C,G, Y , T }, are integer and non-negative. Therefore C is an
integer solution for the following system of inequalities

̂
T ρG

X (x1, . . . , x|X |)t ≤ |H |1
such that

∑|X |
i=1 ci = |C | and this completes the proof. 
�

3 Results

Let G = Sn and S = {(i, i + 1) | 1 ≤ i ≤ n − 1}. Then the metric induced by Cay(G, S) on
Sn is the Kendall τ -metric. In this section, by using the results in Section 2, we improve the
upper bound of P(n, 3) when n ∈ {6, 14, 15} or n ≥ 7 is a prime number. We note that for
two permutations σ and λ of Sn , their multiplication λ · σ is defined as the composition of σ

on λ, namely λ · σ(i) = σ(λ(i)) for all i ∈ [n].
In order to apply Theorem 2.14, we need to fix the subgroup H . Clearly, different choices

for H will lead to different results. Throughout this paper, H will be chosen from the collection
of all Young subgroups, which are well studied subgroups of Sn (see [8]). The definition of
Young subgroup is given next.

Definition 3.1 By a number partition λ of n (with the length m) we mean an m-tuple
(λ1, . . . , λm) of positive integers such that λ1 ≥ · · · ≥ λm and n = ∑m

i=1 λi . If λ and
μ are two partitions of n, we say that λ dominates μ, and write λ � μ, provided that∑ j

i=1 λi ≥ ∑ j
i=1 μi for all j . Let λ be a partition of n and  := (1, . . . , m) be an

m-tuple of non-empty subsets of [n] consisting of a set partition for [n] with |i | = λi for
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all i = 1, . . . ,m. We associate a Young subgroup S of Sn by taking S = S1 ×· · ·× Sm ,
where Si is the symmetric group on the set i for all i = 1, . . . ,m.

Remark 3.2 Let λ be a partition of n and , ′ be two m-tuples of non-empty subsets of [n]
consisting of a set partition for [n] with |i | = |′

i | = λi for all i = 1, . . . ,m. It is known

that the representations ρ
Sn
X and ρ

Sn
X ′ , where X and X ′ are the set of right cosets of the Young

subgroups S and S′ in Sn, respectively, are equivalent (i.e., an invertible matrix U exists
such that U−1ρ

Sn
X (σ )U = ρ

Sn
X ′ (σ ) for all σ ∈ Sn). Hence, we use the m-tuples of non-empty

subsets of [n], [{1, . . . , λ1}, {λ1 +1, . . . , λ1 +λ2}, . . . , {n−λm +1, . . . , n}] for considering
the Young subgroup corresponding to the partition λ = (λ1, . . . , λm), as we are studying
these representations up to equivalence.

For example, if n = 7 and λ = (3, 2, 2), then the Young subgroup corresponding to the
partition λ is the subgroup H = {σ1 · σ2 · σ3 | σ1 ∈ S3, σ2 ∈ S{4,5}, σ3 ∈ S{6,7}}.
Lemma 3.3 Let H be a Young subgroup of Sn corresponding to the partition λ := (n − 1, 1)
and X be the set of right cosets of H in Sn. If S = {(i, i+1) | 1 ≤ i ≤ n−1} and T := S∪{ξ},
then

̂
T ρ

Sn
X is a conjugate by a permutation matrix of the following matrix

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

n − 1 1 0 0 . . . 0
1 n − 2 1 0 . . . 0
0 1 n − 2 1 0 0
... . . .

. . .
. . .

. . .
...

0 0 . . . 1 n − 2 1
0 0 . . . 0 1 n − 1

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

. (3.1)

Proof Without loss of generality we may assume that λ is the partition {{1}, {2, . . . , n}} of
n and therefore H = StabSn (1). Clearly, for each i ∈ [n], if σ ∈ H(1, i), then σ(1) = i and
so H(1, i) ∩ H(1, j) = ∅ for all i �= j . So we can let X = {H(1, i) | 1 ≤ i ≤ n}, where we
are using the convention H(1, 1) := H . Fix the ordering of X such that H(1, i) < H(1, j)

if i < j . By Lemma 2.13, the (i, j) entry of
̂
T ρ

Sn
X is equal to |T ∩ (1, i)H(1, j)|. If

i = j , then Definition 2.10 implies (1, i)H(1, i) = StabSn (i) and hence T ∩ (1, i)H(1, i) =
T \ {(i − 1, i), (i, i + 1)} if 2 ≤ i ≤ n − 1, T ∩ (1, n)H(1, n) = T \ {(n, n − 1)} and
T ∩ H = T \ {(1, 2)}. Now suppose that i �= j . Clearly (1, i) · (i, j) · (1, j) = (i, j). Let
h ∈ H . Then σ := (1, i) · h · (1, j) = π(1, j, i), where π = (1, i) · h · (1, i) ∈ StabSn (i).
Since π(i) = i , σ( j) = i and therefore σ is an transposition if and only if h = (i, j).
Hence, if j = i + 1 and i − 1, then T ∩ (1, i)H(1, j) is equal to {(i, i + 1)} and {(i − 1, i)},
respectively, and otherwise T ∩ (1, i)H(1, j) = ∅. This completes the proof. 
�
Theorem 3.4 Let p ≥ 7 be a prime number and consider the p × p matrix

M =

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

p − 1 1 0 0 . . . 0
1 p − 2 1 0 . . . 0
0 1 p − 2 1 0 0
... . . .

. . .
. . .

. . .
...

0 0 . . . 1 p − 2 1
0 0 . . . 0 1 p − 1

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

.

Consider the system of inequalities M(x1, . . . , xp)t ≤ (p−1)!1 with (x1, . . . , xp)t ≥ 0 and
xi are integers. Let xmax := max{xi | i = 1, . . . , p}. Then
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(1) |{i ∈ [p] | xi ≤ (p−1)!
p }| ≥ � p

3 �.
(2) If

∑p
i=1 xi = (p − 1)! − k, then |{i | xi = xmax}| ≥ p − k − 2.

(3)
∑p

i=1 xi ≤ (p − 1)! − � p
3 � + 2

Proof Let A := {i ∈ [p] | xi ≤ (p−1)!
p } and B := {i | xi = xmax}. Consider the partition

{{1, 2}, {3, 4, 5}, {6, 7, 8}, . . . , {p − 2, p − 1, p}} of [p] if p ≡ 2 mod 3 and the partition
{{1, 2}, {3, 4, 5}, {6, 7, 8}, . . . , {p − 4, p − 3, p − 2}, {p − 1, p}} if p ≡ 1 mod 3. Each
member of partitions corresponds to an obvious inequality, e.g. {1, 2} and {p − 2, p − 1, p}
are respectively corresponding to (p−1)x1+ x2 ≤ (p−1)! and xp−2+ (p−2)xp−1+ xp ≤
(p−1)!. Each inequality corresponding to amember P of the partitions forces xi ≤ (p−1)!/p
for some i ∈ P , where xi = min{x j | j ∈ P}. Since the size of both partitions is � p

3 �, we
have that |A| ≥ � p

3 � and so the first part is proved.
It follows fromM(x1, . . . , xp)t ≤ (p−1)!1 and (x1, . . . , xp)t ≥ 0 that 0 ≤ ∑p

i=1 Mix =
p(

∑p
i=1 xi ) ≤ p!, where Mi is i-th row of M and so 0 ≤ ∑p

i=1 xi ≤ (p−1)!. Let � ∈ [p] be
such that x� = xmax. Thus

∑p
i=1,i �=�−1,�+1(x� −xi ) = x�−1+(p−2)x� +x�+1−∑p

i=1 xi ≤
(p − 1)! − ((p − 1)! − k). Thus

∑p
i=1,i �=�−1,�+1(x� − xi ) ∈ {0, 1, . . . , k}. It follows that

|{i | xi < xmax}| ≤ k + 2 and so |B| ≥ p − k − 2 and the second part is proved.
Let

∑p
i=1 xi = (p − 1)! − k and suppose, for a contradiction, that k < � p

3 � − 2. So
|B| ≥ p − � p

3 � + 1 and therefore

|A ∩ B| ≥ |A| + |B| − p ≥ � p
3

� + p − � p
3

� + 1 − p ≥ 1.

Hence A ∩ B �= ∅ and xmax ≤ (p − 1)!/p. Since p is prime, by Wilson theorem
[4, P. 27] (p − 1)! ≡ −1 mod p. Since xmax is integer, we have that xi ≤ (p−1)!+1

p − 1 for
all i ∈ [p]. Therefore

p∑

i=1

xi = (p − 1)! − k ≤ p(
(p − 1)! + 1

p
− 1) = (p − 1)! + 1 − p

and so
p ≤ k + 1 < � p

3
� − 1,

which is a contradiction. So we must have k ≥ � p
3 � − 2. This completes the proof. 
�

In the following we will prove Theorem 1.1.

Theorem 3.5 For all primes p ≥ 11, P(p, 3) ≤ (p − 1)! − � p
3 � + 2 ≤ (p − 1)! − 2.

Proof Let C be a code in Sp with minimum Kendall τ -distance 3. Let H be the Young
subgroup of Sp corresponding to the partition λ := (p−1, 1) and X be the set of right cosets

of H in Sp . If S = {(i, i + 1) | 1 ≤ i ≤ p − 1} and T := S ∪ {ξ}, then by Lemma 3.3,
̂
T ρ

Sn
X

is a conjugate by a permutation matrix of the matrix M in Theorem 3.4. Now Theorem 2.14
implies that the optimal value of the objective function of the following integer programming
problem gives an upper bound on |C |

Maximize
p∑

i=1

xi ,

subject to M(x1, . . . , xp)
t ≤ |H |1 = (n − 1)!1,

xi ∈ Z, xi ≥ 0, i ∈ {1, . . . , p},
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where 1 is a column vector of order p × 1 whose entries are equal to 1. Therefore, the result
follows from Theorem 3.4. This completes the proof.

Theorem 3.6 If n is equal to 6, 7, 11, 13 and 17, then P(n, 3) is less than or equal to 116,
716, 10! − 10, 12! − 12 and 16! − 5, respectively.

Proof Let S := {(i, i + 1) | 1 ≤ i ≤ n − 1}. In view of Theorem 2.14, we have used CPLEX
software [3] and GAP software [6] to determine the upper bound for P(n, 3) obtained from
solving the integer programming problem corresponding to the subgroup H of Sn , where H
is the Young subgroup corresponding to the partition (2, 2, 2), when n = 6, (5, 1, 1), when
n = 7, (9, 2), when n = 11, (11, 2), when n = 13 and (16, 1), when n = 17. For each of the

above subgroups, using GAP software [6], first, we determined the matrix
̂
(T )ρ

Sn
X , where X

is the set of right cosets of H in Sn and T := S ∪ {ξ}, then using CPLEX software [3], we
solved the integer programming problem corresponding to the subgroup H .

To prove the non-existence of 1-perfect codes in S14 and S15, we are using techniques in [5]
which is stated in the following proposition.

Proposition 3.7 [5, Theorem 2.2] Let S = {(i, i + 1) | 1 ≤ i ≤ n − 1} and T := S ∪ {ξ}. If
Sn contains a subgroup H such that n � |H | and ̂

(T )ρ
Sn
X is invertible, where X is the set of

right cosets of H in Sn, then Sn contains no 1-perfect codes.

Theorem 3.8 There are no 1-perfect codes under the Kendall τ -metric in Sn when n ∈
{14, 15}.
Proof Let S = {(i, i + 1) | 1 ≤ i ≤ n − 1} and T := S ∪ {ξ}. By Proposition 3.7, to prove
the non-existence of 1-perfect codes under the Kendall τ -metric in Sn , we need to show the
existence of a subgroup H of Sn , n ∈ {14, 15}, with following two properties: (1) n � |H |; (2)
the matrix

̂
(T )ρ

Sn
X is invertible. Since

̂
(T )ρ

Sn
X is a matrix of dimension n!/|H |, by choosing

H with a larger size, the dimension of the matrix
̂
(T )ρ

Sn
X decreases. In the case n = 14,

we consider the Young subgroup H corresponding to the partition (6, 6, 2). It is clear that

14 � |H | = 6!6!2!. Also, by a computer check the matrix
̂

(T )ρ
S14
X which is a matrix of

dimension 84084 is invertible and so there are no 1-perfect codes under the Kendall τ -metric
in S14. In the case n = 15, the largest Young subgroup H of S15 which satisfies the condition
(1) is the Young subgroup corresponding to the partition λ := (4, 4, 4, 3). In this case the

matrix
̂

(T )ρ
S15
X is of dimension 1051050 that the software was unable to check its invertibility.

Therefore, we use [8, Corollary 2.2.22] to check its invertibility. By [8, Corollary 2.2.22],
if for all partitions μ of n which μ � λ, T̂ ρμ are invertible, where ρμ is the irreducible

representation of S15 corresponding to μ, then
̂
T ρ

S15
X is invertible. There exist 54 partitions

of 15 which dominates the partition λ. By computer check, for each partition μ of these 54
partition the matrix T̂ ρμ is invertible (Table 2 shows the dimension and the eigenvalue with

smallest absolute value of theses martices) and so
̂

(T )ρ
S15
X is invertible and this completes

the proof. 
�
Conjecture 3.9 If H is the Young subgroup corresponding to the partition (p − 1, p − 1, 2)
of S2p, where p ≥ 3 is a prime number, and X is the set of right cosets of H in S2p, then
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Table 2 The dimension and the
eigenvalue with smallest absolute

value of the matrix T̂ ρμ for all
partitions μ of 15 which
dominates the partition (4,4,4,3)

item Partition Dimension Eigenvalue

1 (15) 1 1.5 ×10

2 (14, 1) 14 1.104 ×10

3 (13, 2) 90 7.232

4 (13, 1, 1) 91 7.217

5 (12, 3) 350 3.686

6 (12, 2, 1) 715 3.619

7 (11, 4) 910 5.467 ×10−1

8 (8, 7) 1430 −8.095 ×10−3

9 (10, 5) 1638 −2.611 ×10−3

10 (11, 2, 2) 1925 3.149 ×10−1

11 (9, 6) 2002 -4.503 ×10−3

12 (11, 3, 1) 2835 3.745 ×10−1

13 (7, 7, 1) 5005 1.035 ×10−2

14 (5, 5, 5) 6006 −1.497 ×10−3

15 (10, 4, 1) 7007 −7.028 ×10−3

16 (10, 3, 2) 9100 1.12 ×10−2

17 (9, 5, 1) 11375 2.99 ×10−3

18 (8, 6, 1) 11583 −4.224 ×10−3

19 (9, 3, 3) 12740 −4.444 ×10−3

20 (9, 2, 2, 2) 13650 −1.825 ×10−4

21 (6, 6, 3) 21450 −1.728 × 10−6

22 (9, 4, 2) 22113 9.626 ×10−5

23 (4, 4, 4, 3) 24024 −8.294 ×10−4

24 (7, 6, 2) 25025 −2.424 ×10−4

25 (7, 4, 4) 25025 1.108 ×10−3

26 (6, 5, 4) 30030 1.033 ×10−5

27 (8, 5, 2) 32032 8.217 ×10−4

28 (8, 4, 3) 35035 −2.925 ×10−4

29 (7, 5, 3) 45045 3.142 ×10−5

30 (6, 3, 3, 3) 50050 3.128 ×10−5

31 (8, 3, 2, 2) 58968 3.477 ×10−4

32 (5, 4, 3, 3) 75075 −1.733 ×10−4

33 (5, 4, 4, 2) 81081 −5 ×10−5

34 (7, 3, 3, 2) 90090 2.1 ×10−5

35 (5, 5, 3, 2) 96525 −5.987 ×10−5

36 (6, 5, 2, 2) 100100 2.946 ×10−5

37 (7, 4, 2, 2) 112112 −6.787 ×10−5

38 (6, 4, 3, 2) 175175 −3.594 ×10−5

39 (12, 1, 1, 1) 364 3.599

40 (11, 2, 1, 1) 2925 2.852 ×10−1
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Table 2 continued item Partition Dimension Eigenvalue

41 (10, 2, 2, 1) 9450 −1.485 ×10−4

42 (10, 3, 1, 1) 11088 5.085 ×10−3

43 (9, 4, 1, 1) 25025 −1.767 ×10−4

44 (7, 6, 1, 1) 27027 3.757 ×10−4

45 (8, 5, 1, 1) 35100 −7.440 ×10−5

46 (9, 3, 2, 1) 42042 6.633 ×10−4

47 (6, 6, 2, 1) 50050 −1.680 ×10−5

48 (5, 5, 4, 1) 54054 1.934 ×10−4

49 (8, 3, 3, 1) 57330 9.513 ×10−5

50 (6, 4, 4, 1) 80080 −2.972 ×10−5

51 (8, 4, 2, 1) 91000 −2.590 ×10−5

52 (7, 5, 2, 1) 108108 −3.672 ×10−5

53 (6, 5, 3, 1) 128700 −1.920 × 10−5

54 (7, 4, 3, 1) 135135 −2.627 × 10−6

̂
(S ∪ {ξ})ρ

S2p
X is invertible. In particular, there is no 1-perfect permutation code of length 2p

with respect to the Kendall τ -metric.

We note that by computer checking Conjecture 3.9 holds valid for p ∈ {3, 5, 7}.

4 Conclusion

Due to the applications of PCs under the Kendall τ -metric in flash memories, they have
attracted the attention of many researchers. In this paper, we consider the upper bound of the
size of the largest PC with minimumKendall τ -distance 3. Using group theory, we formulate
an integer programming problem depending on the choice of a non-trivial subgroup of Sn ,
where the optimal value of the objective function gives an upper bound on P(n, 3). After
that, by solving the integer programming problem corresponding to some subgroups of Sn ,
when n ≥ 7 is a prime number or n ∈ {6, 14, 15}, we improve the upper bound on P(n, 3).
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