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Preface

Information theory, launched by the pioneering work of Shannon in 1948,

has generated a lot of applications and ten of thousands of research pa-

pers. One can easily say, without stretching the truth, that its influence on

our daily lives is pervasive. Coding theory, which is one of the important

sub-areas of information theory, started with the work of Golay (1949) and

Hamming (1950). This research area was motivated by engineering prob-

lems, and from 1950 until today, with the growth of digital communication,

the demand for old and new techniques in coding theory has only increased.

Although some basics of the theory are not very difficult, over time more

and more sophisticated mathematics has been used and developed in coding

theory. This has made the area of coding theory very important to electrical

engineers and to computer scientists on one hand and to mathematicians

on the other hand.

Two of the most important types of codes are error-correcting codes

and covering codes. In the first thirty years of this research area, most

work done in coding theory was related to error-correcting codes. Several

textbooks and monographs were written in this research area. It was no

surprise that also undergraduate and graduate courses, in this area, were

developed in many universities. Forty years ago, as well, the area of cov-

ering codes started to develop, with hundreds of research papers and new

applications that were found quite frequently. Perfect codes, which are the

codes considered in our book, lie exactly in the intersection between error-

correcting codes and covering codes. They were considered in all the books

on coding theory, but were never the highlight of these books as they are

in our book.

The existing books on coding theory focus mainly on codes in the Ham-

ming space. In some books, there are one or two chapters related to other

vii
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metrics, such as codes in the Lee metric or constant-weight codes in the

Johnson metric. Nevertheless, the codes considered for other metrics were

usually not perfect. Moreover, in these books there are one or at most

two chapters devoted to perfect codes and related structures. Our book is

different. First, it is devoted solely to perfect codes of various types. It is

also different as we devote a few chapters to the Hamming space, but other

chapters, which comprise the greater part of the book, are devoted to com-

binatorial designs, mixed codes, constant-weight codes, to the Lee metric,

to the Grassmann scheme, to metrics related to storage devices, as well as

to other metric spaces and codes related to newly important applications.

Moreover, also in the Hamming space, we consider a few topics that are

not covered in other books.

We tried to make the book as self-contained as possible, providing de-

tailed proofs, many times more detailed than the ones that appear in the

literature. The detailed proofs will enable to use this book also as a text-

book for courses in coding theory. In many cases, no proofs for known

results were provided in the cited papers and the appropriate proofs are

given in our book. In some cases, we present results for the first time. Of

course, we could not provide details on every important technique known

in the literature and, in some cases, we offer only pointers to reference

material. These references and a summary of these techniques are usually

provided in the notes that form the last section of each chapter. Notably,

there are many techniques to prove the nonexistence of perfect codes in the

various metrics. Therefore, we concentrate on comprehensive treatment of

such techniques for one metric only, the Johnson metric.

Our intension is to offer a different perspective for the area of perfect

codes. For example, in many chapters there is a section devoted to diam-

eter perfect codes. In these codes, anticodes are used instead of balls and

these anticodes are related to intersecting families, an area that is part of

extremal combinatorics. This is one example that shows how we direct

our exposition in this book to both researchers in coding theory and math-

ematicians interested in combinatorics and extremal combinatorics. New

perspectives for MDS codes, different from the classic ones, which lead to

new directions of research on these codes are another example of how this

book may appeal to both researchers in coding theory and mathematicians.

Our point of view is mainly combinatorial and hence some of the algebraic

approach will be omitted (also for lack of space).

The book is so that it can be used by a beginner who just wants either

to learn something about prefect codes or to conduct research on perfect
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codes. Nevertheless, it can be also used by the more advanced reader who

has some knowledge on coding theory and wants to get some information on

perfect codes or to find some new lines of research in this area. Throughout

the book, there are many research problems, some of which we think can be

used to motivate graduate students and some which are extremely difficult.

We would be very happy to see the book’s reader make a breakthrough as

a result of insights gleaned through reading it. This book is a monograph;

as we did not introduce exercises and assignments for the reader. It was,

however, written in a way that enables it to also be used as a textbook

for either a basic combinatorial course in coding theory for undergraduate

students in mathematics, as an advanced course for the same students, or

for an advanced course in coding theory, for students in computer science

or electrical engineering, which emphasizes perfect codes. Each such course

should be based on different chapters of this book. This is the main reason

that we have provided proofs for most of the lemmas and theorems in the

book. Moreover, references are quoted only in the notes of each chapter

and not along the various sections of the chapter, although some isolated

proofs use results that are provided either without proofs or in the notes

with or without proofs.

As a basic course for undergraduate students in mathematics, we suggest

using the first seven chapters (excluding Chapter 1), which are devoted

to the Hamming metric and to combinatorial designs, and Chapter 11,

which focus on the Lee metric. The other chapters can be used in an

advanced course for math students. As for an advanced course for students

in computer science and electrical engineers, who have already completed

a basic course in coding theory, we suggest taking highlights from each

chapter, with the possible exception of the first chapter. In our opinion most

chapters cannot be taught in only two hours. If the course compromises

on thirteen weeks, we suggest splitting Chapter 3 into two weeks. We also

suggest combining Chapter 4 and Chapter 5 and cover them in two classes

since Chapter 4 is quite light, while Chapter 5 has lot of material.

A large part of this book is based on my own research work, which was

performed over the last thirty years. My Ph.D. advisor, Abraham Lempel,

guided me as I took my first steps into coding theory. My post-doc advi-

sor, Solomon W. Golomb, introduced me to combinatorial designs and their

intersection with coding theory in general and with perfect codes in particu-

lar. I was first introduced to some perfect codes problems by Gerard Cohen

and Simon Litsyn. The discussions I had with them led to my first paper

on perfect codes with Alexander Vardy. This was our first joint paper and
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led to a collaboration of more than twenty-five years. Some of our work was

on perfect codes, and our joint research on various topics in coding theory

is still ongoing today. I would like to thank Rudolph Ahlswede for many

discussions that we had, on many occasions, on perfect codes in various

metrics. I also had the honor to talk and work with Jack H. van Lint. We

shared several stimulating discussions on perfect codes, which also led to

a joint work. I would like also to thank many other colleagues and grad-

uate students for whom I indebted for many exciting collaborations and

inspiring discussions on perfect codes and related topics over the last thirty

years. They include Daniella Bar-Lev, Marina Biberstein, Sara Bitan, Si-

mon R. Blackburn, Michael Braun, Sarit Buzaglo, Yeow Meng Chee, Gadi

Greenberg, William J. Martin, Beniamin Mounits, Patrick R. J. Österg̊ard,

Netanel Raviv, Ron M. Roth, Moshe Schwartz, Gadiel Seroussi, Natalia

Silberstein, Neil J. A. Sloane, Antonia Wachter-Zeh, Alfred Wassermann,

and Eitan Yaakobi.

Some of my colleagues read some parts of the book and provided me

with some insightful comments. I am indebted to them. Eitan Yaakobi

for his comments mainly on the deletion channel, Peter Horak on the Lee

metric and tilings of Zn. Denis Krotov has provided me some information

on nonlinear perfect codes and on non-binary diameter perfect constant-

weight codes to which I was not aware. My student Daniella Bar-Lev read

some chapters, found many hidden errors and provided some perspective

of a graduate student which led me to change some of the definitions and

some of the proofs. Moshe Schwartz who is one of the few that worked on

almost all topics mentioned in the book, and some material is taken from

his work. His comments led me to make many significant changes that have

considerably amended this book.

Finally, I want to thank Maya Sidis for some of the figures she con-

tributed to the book and to Debbie Miller for her excellent proofreading.

T. Etzion

December 2021
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Chapter 1

Introduction

Error-correcting codes were introduced to combat errors in communication

channels, storage devices, and other computerized systems. In each such

system, the information may be coded in a different way and a different type

of an error-correcting code should be designed for each different coding

method. The information can be coded into binary words of the same

length, or words of the same length over any given alphabet, or words of

the same length with the same number of nonzero entries, or subspaces over

some alphabet with vectors of the same length, etc.

Any coded system has its own features, but all of them can be illustrated

in the same way. There is an information word of length k to be coded.

There are M(k) distinct such information words. Each information word x

is coded into a different codeword c taken from a code C that has M(k)

codewords. This code is designed so that it can correct up to e errors.

The coding of the information words into the codewords of C defines a

bijective mapping from the set of M(k) possible information words onto

the set of M(k) codewords of C. The codeword c is either transmitted

over a channel or stored in a storage device. The channel is noisy and

the storage system is subject to errors. When received from the channel

or retrieved from the storage device, the codeword c might incur some

errors. Hence, the received word y might be different from the transmitted

(stored) codeword c. Assume the code C was designed in a way that it can

correct any number up to e errors. If up to e errors occurred when c was

changed to y, then the decoder can detect and correct the errors and find

the submitted codeword c. Since the information word x was coded to the

codeword c using a bijective function, it follows that there is an inverse

bijective function that can transfer c back to the information word x. This

completes the coding and decoding process in the system.

1
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Perfect codes have always drawn the attention of coding theorists and

mathematician. Usually, their perfect structure yields a beautiful math-

ematical structure. Their optimality makes them very useful for applica-

tions in their related channel and its associated metric, and also as building

blocks for many other structures. Some of these structures are good only

for theory and some are used in applications. In such a metric, we are given

a space V and a distance between any two elements of V.
Ametric d on a set V (called also the space) is a function d : V×V → Z,

that satisfies the following three axioms:

(1) Identity : For each x, y ∈ V, d(x, y) = 0 if and only if x = y.

(2) Symmetry : For each x, y ∈ V, d(x, y) = d(y, x).

(3) Triangle inequality : For each x, y, z ∈ V, d(x, z) ≤ d(x, y) + d(y, z).

The definition is trivially generalized for d : V × V → R, but it is not

presented as it will not be used in the book. The elements of the space V
will be often called words or points.

A collection C of points, in the discrete space V, is a code. The code C is

a perfect code with radius e , if for any point x in the space V, there exists
a unique point in C whose distance from x is at most e. This definition is

very strict and usually the set of parameters for which there exists a perfect

code will be very limited. An equivalent definition is as follows. For a word

x ∈ V, the set of words that are within distance e from x is called the ball

with radius e around x (or centered at x). This set is denoted by Be(x),

where x is called the center of the ball Be(x). If the set of all balls with

radius e around the codewords of a code C forms a partition of V, then C
is called a perfect code.

Assume again that we are given a code C ⊆ V, a function d : V × V → Z

which is a metric, and each word x ∈ V is within distance e from at most

one codeword c ∈ C. If the size of a ball with radius e does not depend on

its center x from which it is computed and the length of a word is n, then

we can denote the ball with radius e by Be(n) instead of Be(x). Clearly, in

this case where all the balls with radius e have the same size, we have that

|C| · |Be(n)| ≤ |V|. (1.1)

This bound, called the sphere-packing bound (although it is a ball-

packing bound), is attained by a perfect code in a metric where all the

balls with radius e have the same size. Moreover, when all the balls with

radius e are of the same size, then (1.1) can be used as an alternative

definition for a perfect code. In other words, if the size of a ball with
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radius e does not depend of the center of the ball, then C is a perfect code

if

|C| · |Be(n)| = |V| .

About fifty years after the introduction of perfect codes, it was ob-

served that instead of looking at a ball with radius e, one can use a similar

definition using a shape called anticode (which is not necessarily a ball)

with diameter D to define similar codes that are called diameter perfect

codes. These codes will be discussed throughout the book.

There are always some trivial perfect codes, regardless of the (discrete)

space V or the metric d. The first trivial code is the whole space that is

a perfect code with radius 0. The second one is a unique point in a finite

space that forms a perfect code with radius e which represents the largest

distance from this unique point in the space. Depending on the space and

the given radius, other trivial perfect codes might exist.

Most metrics discussed in the book can be represented by an undirected

graph whose vertices represent the points of the space. Two vertices are

connected by an edge if their distance in the metric is exactly one. Generally

speaking, we can define a perfect code for any undirected graph Γ. A set

of vertices S in the graph Γ forms a perfect code with radius e, in the

graph, if for any vertex v in Γ there exists a unique vertex in S whose

distance, in the graph, from v is at most e. Nevertheless, one should be

careful and understand that there are metrics that cannot be represented

by a graph. To be represented by a graph in this way, the metric must

satisfy the following property: if for any two elements x, y ∈ V, d(x, y) = δ,

then the shortest path between x and y in the graph has length δ. This

property will be discussed in Chapter 2.

The research area of coding theory has drawn the attention of both

engineers and mathematicians. Information theory started with the cele-

brated work of Claude Elwood Shannon in 1948, which was mainly meant

for engineers. The first two papers on coding theory came in the following

two years. In 1949 Marcel Jules Edouard Golay introduced codes known

today as the Golay codes and in 1950 Richard Hamming introduced the

family of binary codes that are known as the binary Hamming codes. All

these codes fall into our family of perfect codes, which is the topic of this

book. Since these early days coding theory has been developed rapidly in

many directions. Even though the number of perfect codes is a relatively

very small fraction of the total number of codes, interest in these codes is

very strong as they have a beautiful structure. In fact, some might argue
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that they are the most important ones at least from a mathematical point

of view.

Coding theory was developed using many mathematical tools, with

many new ones developed especially for this area of research. These have

also been of a great interest for mathematicians who were interested in the

mathematical constructions of codes on one hand and on the mathematical

structure of the constructed codes on the other hand. Their mathematical

research was performed in parallel to the general research on other aspects

of these codes.

This book is organized as follows. Chapter 2 through Chapter 7 are

mainly concerned with codes using the Hamming metric, but the basic

definitions and claims, introduced in Chapter 2, are also related to other

metrics. Chapter 8 is devoted to the Johnson scheme, where the codes are

binary constant-weight codes, the metric is the Johnson distance defined to

be half of the Hamming distance. Chapter 9 considers nonbinary constant-

weight codes, where the metric is the Hamming distance. Chapter 10 con-

siders codes over subspaces, where other metrics are used. Chapter 11 and

Chapter 12 are devoted to codes where in addition to balls, shapes which

are defined by some union of unit cubes are considered. The most notable

metrics for these shapes are the Lee metric and the Manhatten metric.

Chapter 13 is devoted to other metrics, such as the poset metric and a

metric for correction of burst errors. It also discusses the deletion channel,

its distance measures and perfect codes.

The most studied metric over the years is the Hamming distance, which

is defined mainly on the Hamming space. The space consists of words of

length n over some finite alphabet. Usually, this alphabet is a finite field,

but alphabets whose size is not a power of a prime have also been considered.

There are also codes where each coordinate in the word can be over a

different alphabet size. The families of codes in the Hamming space can

be partitioned into two classes, linear codes and nonlinear codes. A linear

code forms a linear subspace over some finite field while nonlinear codes

are just sets of codewords that might not have any mathematical structure.

Most books on coding theory concentrate mainly on linear codes in the

Hamming space. The structure of the codes in the Hamming space, linear

or nonlinear, is interesting from both combinatorial and practical points

of view. Assorted codes with various properties, in the Hamming space,

are discussed in the various books on coding theory. For these discussions,

many definitions and basic properties that are in common for all codes

should be defined and discussed.
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We continue and discuss the material in each chapter of the book. Chap-

ter 2, is devoted to these definitions and properties that are in common for

all codes, but the emphasis is on codes in the Hamming space. Section 2.1

presents the basic definitions for nonlinear codes. It also considers binary

codes where all the codewords have the same number of nonzero entries,

called constant-weight codes. These codes are part of the Johnson scheme,

which is considered in Chapter 8. The alphabet used for linear codes forms

a finite field. The basic definitions of finite fields required for our exposi-

tion are defined in Section 2.2. Section 2.3 examines the definitions in the

context of linear codes and also presents the specific definitions and proper-

ties of linear codes. In Section 2.4 the various definitions for perfect codes

are provided and the definitions and the basic results on diameter perfect

codes are presented. Most of this chapter is written to accommodate the

discussions on codes in the Hamming space with the Hamming distance,

but the definitions and results are written in a more general way that can

be also used for other spaces and metrics. In particular, diameter perfect

codes are presented in a way that can be used by most metrics.

By definition, perfect codes are combinatorial objects. As combinatorial

objects they have many combinatorial properties and many combinatorial

designs are embedded in them. These combinatorial structures are dis-

cussed in Chapter 3. Section 3.1 is devoted to one of the most beautiful

families of such designs, the Steiner systems. Steiner systems are embed-

ded inside perfect codes in the Hamming space and inside perfect codes in

the Johnson space. They are diameter perfect codes in the Johnson space

discussed in Chapter 8 and similar systems are diameter perfect codes in

the space of nonbinary constant-weight words and in the Grassmann space

discussed in Chapters 9 and 10, respectively. Section 3.2 is devoted to an

introduction of several types of orthogonal designs, such as Latin squares,

Hadamard matrices, and orthogonal arrays. Some orthogonal arrays are

the nonlinear version of what are known as maximum distance separable

(abbreviated MDS) codes, one of the most important families of codes in

coding theory, for both theory and practice. Orthogonal arrays and MDS

codes are also diameter perfect codes and, as such, they will be consid-

ered in various sections of the book. MDS codes are highly related to

projective geometry, a very wide area of research in combinatorics, about

which several books have been written. Projective geometries yield some

important combinatorial designs and especially Steiner systems. Some of

their structures are equivalent to MDS codes. Basic definitions of projec-

tive geometries that are important in our discussion will be presented in
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Section 3.3. Bounds on the sizes of codes which are not prefect codes,

but highly related to perfect codes and/or combinatorial structures such as

combinatorial designs and codes that attain these bounds, are presented in

Section 3.4. These bounds are the Plotkin bound and the Griesmer bound.

The last important combinatorial structure that will be presented in this

chapter are the association schemes that are the topic of Section 3.5. Most

metrics discussed in this book, such as the Hamming metric and the John-

son metric, form association schemes with their associated spaces, and the

formulation of the related theory is important to obtain results on perfect

codes and to understand their structure.

The Hamming codes and the Golay codes are linear codes that surpris-

ingly, form the only nontrivial linear perfect codes in the Hamming scheme.

These codes are discussed in Chapter 4. Adding parity symbols for some of

these codes yields extended codes that have their own importance and will

be used throughout the book. The infinite family of Hamming codes and

extended Hamming codes have many fascinating properties. There are a

few representations for these codes, each of which can be used and applied

differently. These codes and their properties are discussed in Section 4.1.

The two Golay codes and their extended codes are the topic of Section 4.2.

Although they represent only four codes, these codes have been heavily

studied as they hold lot of interesting properties; moreover, they are also

significant for practical applications. Finally, in Section 4.3 nonlinear and

linear diameter perfect codes in the Hamming scheme are discussed. Other

than the Hamming codes and the Golay codes, there are no known perfect

codes with other parameters in the Hamming scheme. Nevertheless, the

research on perfect codes in the Hamming scheme does not end with these

codes.

There are many nonlinear perfect codes in the Hamming scheme. All

of them have the same parameters as the Hamming codes. These codes

are introduced in Chapter 5. A few constructions for such codes are given

in Section 5.1. Other constructions are given in the other sections of this

chapter, where properties such as the weight distribution, rank, and kernel

of perfect codes are considered. In Section 5.7 a lower bound on the number

of such inequivalent codes is proved. This lower bound is given for codes

over any finite field Fq, for any given q. There are no other parameters

for perfect codes, over an alphabet of size q, where q is power of a prime,

and the proof of this claim will be discussed in Section 5.8. The proof

is based on some polynomials, called Lloyd’s polynomials. The complete

proof is given in many other venues and it will be omitted in our discussion.
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The last section in this chapter, Section 5.9, is devoted to a variant of a

celebrated combinatorial game whose solution is obtained by using perfect

codes in the Hamming scheme.

Perfect codes are the most dense codes in coding theory when error-

correcting codes are discussed. They are also the most sparse codes when

covering codes are discussed. Error-correcting codes (covering codes, re-

spectively), which are dense (sparse, respectively) and are “almost perfect”,

are the topic of Chapter 6. The concepts of density and sparse/dense codes

are discussed in Section 6.1. The most important family of dense codes, that

are not perfect codes, are the Preparata codes, which will be constructed

in Section 6.3. These codes have many interesting properties that will be

used in other sections of the book. Preparata codes are part of a family

of codes called nearly-perfect codes. A code is a nearly-perfect code if it

attains the Johnson bound that is proved in Section 6.2. A stronger bound

is also proved in this section. They are also part of a larger family of codes,

called quasi-perfect codes, which are defined in Section 6.4. Unfortunately,

these codes are not as perfect as their name suggests. Therefore, we will be

interested only in dense quasi-perfect codes and sparse quasi-perfect codes,

respectively, depending on whether we are interested in error-correcting

codes or in covering codes, respectively. Density of covering codes with

radius two will be discussed in Section 6.5 and with radius three in Sec-

tion 6.6.

Chapter 7 is the first one that discusses codes which are not in the

Hamming scheme. The metric used is still the Hamming distance, but the

space consists of words of the same length, where not all coordinates are

over an alphabet of the same size. These codes are called mixed codes and

the related perfect codes are called perfect mixed codes. There are many

perfect mixed codes with radius one and they are the topic of Section 7.1.

Constructions of codes with radius one are based on partitioning of a group

into subgroups. One family of such partitions forms perfect codes where

the coordinates of the words are organized in bytes. The related perfect

codes are called perfect byte-correcting codes. These perfect byte-correcting

codes are discussed in Section 7.2. Finally, Section 7.3 is devoted mainly

to perfect mixed codes with larger radii. Most surprisingly, such nontrivial

perfect codes are based on properties of the Preparata code. Structures

associated with perfect mixed codes that are similar to Steiner systems will

be also defined and discussed in this section. It is also shown in this section

that there are diameter perfect codes for each distance if the alphabets in

each coordinate is not restricted.
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After the Hamming scheme, the most studied scheme is the Johnson

scheme. In the Johnson space, all the words are binary having length n

with a fixed number w of ones for all the words. Hence, these codes are

usually called constant-weight codes. The Johnson distance is exactly half

of the Hamming distance and this relation connects the two metrics. The

nonexistence of nontrivial perfect codes in the Johnson scheme is an in-

triguing question in coding theory and especially in the theory of perfect

codes. These codes are discussed in Chapter 8. The basic definitions for this

scheme are presented in Section 8.1. To handle the codes in this scheme,

we define the configuration distribution in Section 8.2. If nontrivial perfect

codes exist in the Johnson scheme, then there are many Steiner systems

embedded in these codes. The existence proofs for these embedded Steiner

systems are provided in Section 8.3. These Steiner systems yield many nec-

essary conditions for the existence of such codes and imply that in many

graphs of this scheme, there are no nontrivial perfect codes. Tradeoff be-

tween the various parameters of perfect codes in the Johnson scheme is

discussed in Section 8.4. Another approach for excluding possible perfect

codes in the Johnson scheme is to consider perfect codes with a given ra-

dius e. The approach is based on the regularity of perfect codes, which is

the topic of Sections 8.5, 8.6, and 8.7. The implications on the nonexistence

of perfect codes with a given radius based on this approach is discussed in

these sections. Diameter perfect codes in the Johnson scheme is another

interesting topic. Steiner systems and their complements are one family

of such codes. There may be other families, but it is conjectured that no

other such family exists, as will be discussed in Section 8.8.

When nonbinary constant-weight codes are considered, there are a few

families of perfect codes and diameter perfect codes. These codes are dis-

cussed in Chapter 9. Constructions of nonbinary perfect constant-weight

codes are discussed in Section 9.1. Six families of nonbinary diameter per-

fect constant-weight codes include generalized Steiner systems, the so-called

constant-weight MDS codes, and some other interesting families of codes.

An introduction to these codes is given in Section 9.2. Each one of these

families is discussed in one of the sections from Section 9.3 through Sec-

tion 9.8. Four families of nonbinary constant-weight maximum size anti-

codes are defined and compared in Section 9.9.

In Chapter 10 we turn our attention to the third most studied scheme

(after the Hamming and the Johnson schemes), the Grassmann scheme. In

this scheme the space consists of subspaces of the same dimension from a

given n-space over some finite field. The metric in this scheme, the Grass-
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mann distance, is akin to the Johnson distance. Perfect codes do not exist in

this scheme and this claim is proved in Section 10.1. Diameter perfect codes

in this scheme are akin to Steiner systems in the Johnson scheme, and they

are called q-Steiner systems. These codes are the topic of Section 10.2. The

only known infinite family of such codes contains codes called spreads and

they are the only known class of perfect byte-correcting codes mentioned

in the context of perfect mixed codes and discussed in Chapter 7. Normal

spreads form a family of spreads with important properties and they are

discussed in Section 10.3. The set of subspaces of all dimensions from a

given n-space is called the projective space. On these subspaces a metric

called the subspace distance is defined. The Grassmann distance is half of

the subspace distance in the same way that the Johnson distance is half of

the Hamming distance. It is proved in Section 10.4 that, also in this space,

there are no nontrivial perfect codes. The codes in the Grassmann space

and the projective space are closely related to codes in a space whose words

are matrices of the same size over a given finite field. The metric in this

space is called the rank distance, which is defined as the rank of the differ-

ence between the two related matrices. This space of matrices with the rank

metric is also a scheme called the bilinear forms scheme. There are also no

prefect codes in this scheme, but there are diameter perfect codes. These

rank-metric codes are the topic of Section 10.5. Finally, in Section 10.6 we

consider another interesting type of codes, which are constant-dimension

MDS codes, also called subspace-MDS codes. These codes as well as all the

codes discussed in this chapter are related to network coding and this topic

will also get our attention in this chapter.

A very important metric which drew attention beginning from 1970 and

on is the Lee metric. This metric does not define an association scheme and

it is the topic of Chapter 11. This metric is also related to another metric

called the Manhattan metric, also known as the L1 metric, the rectilinear

metric, and the taxicab metric. The definitions for these metrics are given

in Section 11.1. Linear codes in the Lee and the Manhattan metrics can be

represented and defined with lattices. A perfect code can be represented by

a tiling and a linear perfect code can be represented by a lattice tiling. The

basic concepts of tilings and lattice tilings are presented in Section 11.2.

Perfect codes in these metrics are constructed in Section 11.3. Diameter

perfect codes are discussed and presented in Section 11.4. In Section 11.5

a lower bound on the number of different perfect codes is proved. This

bound is related to nonperiodic perfect codes. Except for the parameters

of the known perfect codes, it is conjectured that there are no perfect codes
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in these metrics. A lot of work has been done over the years to prove

this conjecture. In Section 11.6 one technique to prove the nonexistence of

such codes for many parameters is given and the other known results are

summarized, with references provided, in Section 11.7.

A perfect code in the Lee metric is related to a tiling of the space with

error balls that are formed by union of unit cubes. Such error balls (called

also shapes) have a combinatorial structure and also a geometric structure.

They were discussed in the context of algebraic tilings with lattices. These

concepts are the topics of Chapter 12. Another technique for forming a

tiling with these shapes (balls) is group splitting, which is discussed in

Section 12.1. Crosses and semi-crosses are the first two shapes that will

be discussed in Section 12.2. The associated codes have found applications

in nonvolatile memories, which are heavily used, at the beginning of the

21st century, in computerized systems. This type of memory is discussed

in Section 12.3. The type of codes associated with these memories have

asymmetric types of errors. The related ball errors are called quasi-crosses

and they are the topic of Section 12.4. Another shape in this context is the

notched cube and its tilings are discussed in Section 12.5. This section also

demonstrates some of the previous techniques and their equivalence.

In Chapter 13 other metrics are considered. Section 13.1 is devoted to

the deletion channel, in which the deletions and/or insertions are defined,

but perfect codes are defined when only deletions are considered. The

Hamming metric is generalized to many different metrics called poset met-

rics, which are discussed in Section 13.2. Perfect codes with ball of radius

one for these metrics are fully characterized. In computer systems, errors

can come in bursts. For such errors, burst-correcting codes were designed.

Section 13.3 considers perfect codes to correct one such burst.

Before we continue to the comprehensive exposition on perfect codes, let

us present a few notations that will be used throughout the book (generally,

they will be also defined in the appropriate place):

(1) Z - the set of integers.

(2) R - the set of real numbers.

(3) Zm - the set of integers {0, 1, . . . ,m − 1}. Also used for the ring of

integers modulo m, which is a field if m is a prime.

(4) Fq - the finite field with q elements, known also as the Galois

field GF(q).

(5) E
n
2 - the set of all binary words of length n and even weight.

(6) |A| - the size of the set A.
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(7) 〈A〉 - the linear span of the rows of a matrix A.

(8) 〈C〉 - the linear span of a set C of codewords.

(9) gcd(x, y) - the greatest common divisor of the nonzero integers x and y.

(10) C(G) - the code generated from the generator matrix G, i.e.,

C(G) = 〈G〉.
(11) X− - the set (or group) X without its zero element.

(12) Atr (xtr) - the transpose of the matrix A (or the vector x).

(13) For two integers i, j, where i < j, [i, j] denotes the set of integers

{i, i+ 1, . . . , j − 1, j}.
(14) [n] - the set of integers {1, 2, . . . , n}.
(15) 0 - an all-zero vector and also an all-zero matrix.

(16) 1 - an all-one vector.

(17) In - the n× n identity matrix.

(18) ei - a word with exactly one nonzero entry, a one in the i-th coordinate.

(19) d(x, y) - the distance between x and y, where the exact metric is

understood from the context.

(20) wt(x) - the weight of x, which is also the distance between x and the

identity (zero) element.

(21) p(x) - the parity (the sum modulo 2) of a binary vector x.

(22) For a set S, we denote by Sn, the set of all vectors of length n whose

entries are taken from the set S. There are |S|n distinct vectors in the

set Sn.

(23) For any string α of any length, αn denotes a sequence obtained by a

concatenation of n α’s, i.e., αn �
n times︷ ︸︸ ︷

αα · · · · · ·α.
(24) X + Y - the sum of two sets (or subspaces) X and Y , i.e.,

X + Y � {x+ y : x ∈ X, y ∈ Y } .

(25) X⊕Y - the sum of two disjoint subspaces X and Y , i.e., X ∩ Y = {0},
and

X ⊕ Y � {x+ y : x ∈ X, y ∈ Y } .

(26) X × Y - the cartesian product of two sets x and Y , i.e.,

X × Y � {(x, y) : x ∈ X, y ∈ Y }.

(27) X ⊗ Y - the direct product of two ordered sets of subsets

X = {X1, X2, . . . , Xm} and Y = {Y1, Y2, . . . , Ym}, is defined by

X⊗ Y �
m⋃
i=1

(Xi × Yi) .
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(28) k-subspace will abbreviate the term k-dimensional subspace.

(29) Sn - the symmetric group, which contains the set of n! permutations

of [n] (or any n-set).

(30) A permutation π ∈ Sn is applied on a vector x = (x1, x2, . . . , xn).

The permutation π can be represented as [π(1), π(2), . . . , π(n)], which

implies that the i-th position of π(x) will be xπ(i).

(31) A permutation π ∈ Sn, on x = (x1, x2, . . . , xn), can be also rep-

resented by its cycles decomposition (π1, . . . , πk)(πk+1, . . . , πm) · · · ,
which implies that the elements in position π1 of x will be moved

to position π2, the elements in position π2 of x will be moved to

position π3, and so on, and the element in position πk of x will be

moved to position π1. The same procedure will be applied on the

cycle (πk+1, . . . , πm) and so on.

1.1 Notes

As noted in the Introduction, the area of information theory started with

the seminal work of [Shannon (1948)]. The next two papers present the

only known nontrivial binary linear perfect codes. The two Golay codes

were introduced by [Golay (1949)]. Binary Hamming codes were presented

in [Hamming (1950)].

There are many excellent books on coding theory, such as the one

by [MacWilliams and Sloane (1977)] on error-correcting codes, or the one

by [Cohen, Honkala, Litsyn, and Lobstein (1997)] on covering codes. Many

books on error-correcting codes were written beginning in 1960 and in the

following years. Of these we mention some of the important ones: [Peter-

son (1961); Berlkamp (1968); van Lint (1971b); Blake and Mullin (1975);

Blahut (1983); Pless (1989); Lin and Costello (2004); Roth (2005)]. Last,

but not the least, we point out the excellent “Handbook on Coding Theory”

by [Pless and Huffman (1998)].
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Definitions and Preliminaries

In this chapter we present the basic concepts in coding theory used for

perfect codes. Section 2.1 is devoted to nonlinear codes and also to the basic

definitions of words and codes. In contrast to the research and the literature

on error-correcting codes, most perfect codes are not linear, although many

of them are constructed based on linear codes. Basic properties of and

facts about nonlinear codes are discussed in this section. Two product

constructions that will be used throughout the book will be presented in this

section. Another part of this section is devoted to the family of constant-

weight codes. Finally, we will define the concepts of packing radius and

covering radius. These two concepts coincide only for perfect codes. A short

introduction to finite fields, which are used in linear codes, is given in

Section 2.2. In Section 2.3 basic definitions for linear codes are presented.

These codes form the most important family of error-correcting codes. This

is the family of codes that is most studied in the literature since they can

be adapted for many practical applications relatively easily. They have

comparably simple encoding and decoding algorithms that are useful for

these applications. A few families of important perfect codes are linear

and they will be discussed in the following chapters. The definitions in

this chapter will be mainly used for perfect codes in the Hamming space,

which is the space primarily used in the literature as well as in this book.

Notwithstanding, linear codes can also be used for codes whose codewords

are subspaces, for codes related to computer memories, and to codes in the

Lee metric.

In Section 2.4 we finally touch on the main topic of this book, perfect

codes. Their definitions will be given from a few points of view. Perfect

codes attain the well-known upper bound on the size of a code, known as the

sphere-packing bound. This bound is based on the sizes of the balls with a

13
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given radius in the space. In particular, the bound is very effective when all

the balls, with the same radius, in the space have the same size. Analogous

to the concept of a ball, which is based on a radius of a shape, there is the

concept of an anticode, which is based on the diameter of the shape. In

this case, an analog to perfect codes, in this context of balls and anticodes,

is the concept of diameter perfect codes. These two concepts of anticodes

and diameter perfect codes will be discussed in this section. Many concepts

mentioned in this chapter are defined only for the Hamming metric, but

most of them can be used for other metrics. Notably, most definitions of

perfect codes are appropriate for all metrics and not just for the Hamming

metric. The general concepts and the results when the Hamming metric is

not mentioned are used for almost all the other metrics.

2.1 Nonlinear Codes

The discussion of perfect codes starts with nonlinear codes. The algebraic

structure of linear codes makes it easier to handle this set of codes, which are

considered in Section 2.3. Indeed, most of the literature on error-correcting

codes is based on linear codes. A nonlinear code is just a collection of

words (also called vectors) that have the same length. These words are

called codewords. The codewords of the code are taken from a space V
with words of length n, where one of the words will be identified as the

zero (sometimes all-zero) word. Usually, our space will be finite, but some

infinite spaces will be also discussed in Chapter 11 and in Chapter 12. The

words will be over some alphabet Σ, where one of the alphabet symbols

will be identified as the zero symbol.

For two words x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn), in the space V
over an alphabet Σ, the addition x+ y is defined by

x+ y � (x1 + y1, x2 + y2, . . . , xn + yn),

where xi + yi is the addition defined on the alphabet Σ.

A word x = (x1, x2, . . . , xn) can be also over a mixed alphabet, i.e., each

coordinate can by over another alphabet. If the symbol in the i-th coordi-

nate is taken from the alphabet Σi we say that x is over Σ1 × Σ2 × · · · × Σn.

When x and y are over Σ1 × Σ2 × · · · × Σn, in x + y, the addition xi + yi
is defined on the alphabet Σi.

Two codes C1 and C2 with codewords of length n are said to be isomor-

phic if there exists a permutation π ∈ Sn, such that C2 = {π(c) : c ∈ C1}.
They are said to be equivalent if there exists a vector u of length n and a

permutation π ∈ Sn, such that C2 = {u+ π(c) : c ∈ C1}.
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The Hamming distance between two words x = (x1, x2, . . . , xn) and

y = (y1, y2, . . . , yn), over some alphabet, dH(x, y), is the number of coordi-

nates in which x and y differ. In other words

dH(x, y) � |{i : xi �= yi}| .

The distance between two elements x, y ∈ V will be denoted by d(x, y),

when the metric will be understood from the context. The same will be

used for the Hamming distance.

The minimum distance of a code C, d(C), is the smallest integer δ,

such that there exist two distinct codewords x, y ∈ C for which d(x, y) = δ.

The minimum distance of a code cannot always be easily computed or

verified. Hence, in some cases when it is said that the minimum distance of

the code is at least δ, it can be larger than δ, but usually in our exposition

it will be exactly δ.

For a given code C ⊆ V, the distance of a word x ∈ V from the code C,
d(x, C), is defined as the minimum distance of x from a codeword of C, i.e.,
d(x, C) = min{d(x, c) : c ∈ C}.

The weight of a word x, wt(x), is its distance from the all-zero word,

i.e., wt(x) = d(x,0). For the Hamming metric, or when there is no specified

metric, wt(x) is the number of nonzero coordinates in the word x. The

support of a word x = (x1, x2, . . . , xn), supp(x), is the indices of the

nonzero coordinates in x, i.e.,

supp(x) � {i : xi �= 0} .

Clearly, in the Hamming metric the weight of x is the size of the sup-

port of x, i.e., wt(x) = |supp(x)|. The complement of a binary word

x = (x1, x2, . . . , xn) is the word x̄ = (x̄1, x̄2, . . . , x̄n), where b̄ is the binary

complement of b ∈ {0, 1}. The complement code C̄ of a binary code C is

the code whose codewords are all the complements of the codewords of C,
i.e.,

C̄ � {c̄ : c ∈ C} .

A binary code C is called self-complement when c ∈ C if and only if c̄ ∈ C,
i.e., C̄ = C.

The set of all binary words of length n and even weight is denoted by E
n
2

and its words are called the even weight words.

A code C is called a cyclic code if c ∈ C implies that each cyclic shift

of c is also a codeword of C. Note, that in some places cyclic codes refer

only to linear codes. Here also nonlinear codes can be called cyclic.
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An (n,M, d)q code is a set of M distinct words of length n over an

alphabet with q symbols whose minimum Hamming distance is at least d.

The alphabet size q will be omitted whenever it is understood from the

context. This omission of the alphabet size will also be done for other

concepts, which follow.

Theorem 2.1. For an (n,M, d)q code C, M ≤ qn−d+1.

Proof. Assume C is represented by an M×n matrix A, i.e., each codeword

is a row in A. Consider the projection of any n−d+1 columns of A. If two

distinct rows in this projection are equal, then the associated codewords of

these two rows can differ at most in the other d − 1 columns, and hence

their distance is at most d − 1, a contradiction. Thus, all the rows in this

projection are distinct, and hence M ≤ qn−d+1.

The bound of Theorem 2.1 is called the Singleton bound and linear

codes that attain it with equality are called maximum distance separa-

ble codes (MDS codes in short) and they are probably the most important

codes that combine theory and practice. These codes will also have a signif-

icant role in our discussions. Nonlinear codes that attain this bound with

equality are called orthogonal arrays (see Section 3.2) and they are as

important as MDS codes.

Weight distribution and distance distribution are two fundamental prop-

erties of a code from which we can find some of its other properties. For

a given (n,M, d) code C, the weight distribution of C is the sequence

(A0, A1, . . . , An), where Ai is the number of codewords in C whose weight

is i. The distance distribution of C is the sequence (D0, D1, . . . , Dn),

where

Di �
|{(c1, c2) : c1, c2 ∈ C, d(c1, c2) = i}|

|C| .

In other words, the distance distribution represents the average of the num-

ber of ordered pairs of codewords for any given distance, where clearly

D0 = 1 by this average.

Definition 2.1. For a code C, the punctured code C′ with respect to the

i-th coordinate is obtained from all the codewords of C by deleting the i-th

coordinate from all the codewords.

Remark 2.1. In many of the constructions C′ will denote a code with no

connection to another code C used in the construction, i.e. C′ is not a

punctured code in these constructions.
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The following lemma can be readily verified.

Lemma 2.1. If C is an (n,M, d) code, then its punctured code C′, with

respect to the i-th coordinate, is an (n− 1,M ′, d− 1) code, where M ′ = M

if d > 1, and M ′ < M if and only if there exists a pair of codewords in C
that differ only in the i-th coordinate.

Definition 2.2. For a code C, the shortened code with respect to the

i-th coordinate, is a subset of the punctured code (with respect to the i-th

coordinate), obtained from all the codewords of C having a zero in the i-th

coordinate.

Lemma 2.2. If C is an (n,M, d) code, then its shortened code, with respect

to the i-th coordinate, is an (n− 1,M ′, d) code, where M ′ ≤ M . M ′ = M

if and only if all the codewords in C have a zero in the i-th coordinate.

Clearly, a shortened code can be defined in exactly the same way, when

any other different symbol is considered instead of the zero.

Definition 2.3. Let C be a code over a space V and let x ∈ V . The

translate of C by the word x is the set of words

x+ C � {x+ c : c ∈ C},

where ‘+’ is the addition (or any binary operation) defined on the space V .
This translate is a left translate , and similarly a right translate is de-

fined by

C + x � {c+ x : c ∈ C}.

A translate whose codewords have only even weights is called an even

translate and a translate whose codewords have only odd weights is called

an odd translate .

When x+y = y+x for each two elements x, y ∈ V, a right translate coincides
with a left translate and it will be called a translate . This will be the case

in most binary operations used in the book. Translates can be defined

in other spaces (and not just the Hamming space where the definition of

“addition” is trivial) where instead of addition, another binary operation

is defined. Such binary operations will be discussed in the related chapters.

Definition 2.4. A code C has the linear space tiling property if the

space V can be partitioned into pairwise disjoint translates of C. A code C
has the space tiling property if the space V can be partitioned into
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pairwise disjoint codes whose size and other required parameters (such as

the minimum distance) are the same as those of the code C. Let X and Y

be two subsets of V. The pair (X,Y ) is called a tiling of V if each element

v ∈ V has a unique representation as v = x+ y, where x ∈ X and y ∈ Y .

Usually, most of the binary operations which will be discussed in the

book are commutative operations and usually this will be our assumption.

Without loss of generality (w.l.o.g. in short) the translates in Definition 2.4

will be left translates. Clearly, if + is a commutative binary operation then

(X,Y ) is a tiling if and only if (Y,X) is tiling.

The required parameters for the space tiling property will be defined

depending on the specific space and metric. It should be noted that the

space V can be taken in different ways for the same metric. For example,

a subspace V ′ ⊂ V can be taken instead of V and, in particular, a code

V ′ = C ⊂ V can take the role of the space, instead of V, in the tiling. In

this case, the pair (X,Y ) form, the tiling of C, where each element c ∈ C
can be uniquely written as c = x+ y, x ∈ X, and y ∈ Y . It should also be

noted that the definition of tiling will be generalized later in this section.

Tilings will be used in the product constructions that are described next.

Theorem 2.2. A code C ⊂ V has the linear space tiling property if and

only if there exists a subset A such that the pair (A, C) is a tiling.

Proof. Assume first that C has the linear space tiling property, i.e.,

V =
⋃�

i=1(xi + C), where {x1, x2, . . . , x�} ⊆ V and � = |V| / |C|. This im-

plies that (xi + C) ∩ (xj + C) = ∅, for any 1 ≤ i < j ≤ �. Therefore,

(
⋃�

i=1{xi}, C) is a tiling.

Assume now that (A, C) is a tiling, i.e., for each v ∈ V, there is a unique

representation of v as v = x+ c, where x ∈ A and c ∈ C. This implies that

for each two distinct elements x, y ∈ A, we have (x + C) ∩ (y + C) = ∅.

Therefore, {{x+ C} : x ∈ A} forms a partition of V and hence C has the

linear space tiling property.

Codes with the space tiling property will be used as building blocks of

other codes, especially with the so-called product constructions. Two

such constructions will be heavily used in a few chapters. To distinguish

between the two constructions, they will be called by different names. The

first construction is a union of direct (cartesian) products, where the direct

(cartesian) product , A×B, for two codes A and B, is defined by

A×B � {(a, b) : a ∈ A, b ∈ B} .
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The Direct Product Construction

Let C be a code that has the space tiling property and let C1, C2, . . . , Cm
be the partition of a subspace V into disjoint translates (or codes with the

same parameters) of C. Let C′ be a code (the same or a different one) that

has the space tiling property and let C′1, C′2, . . . , C′m be the partition of a sub-

space V ′ into disjoint translates (or codes with the same parameters) of C′.
The direct product of C = {C1, C2, . . . , Cm} and C

′ = {C′1, C′2, . . . , C′m} is

the code defined by

C⊗ C
′ �

m⋃
i=0

Ci × C′i = {(x, y) : x ∈ Ci, y ∈ C′i, 1 ≤ i ≤ m} .

The General Product Construction

Let C a code of length n over Q1×Q2×· · ·×Qn, where |Qi| = qi. Let Ci,
1 ≤ i ≤ n, be a code of length ni over Vi with the space tiling property,

where Ci1, Ci2, . . . , Ciqi is the partition of Vi into disjoint translates (or codes

with the same parameters) of Ci. The general product for C, the set of

codes {Ci}ni=1, and their translates is the code defined by

{(x1, x2, . . . , xn) : xi ∈ Cici , 1 ≤ i ≤ n, (c1, c2, . . . , cn) ∈ C} .

In other words, the element ci in coordinate i of the codeword c ∈ C is

replaced by codewords from the ci-th code in the partition of the i-th code

in all possible combinations.

Properties of these two product constructions will be discussed when

their variants will be implemented on specific metrics and codes.

We now turn our attention to constant-weight codes, which form an im-

portant family of codes in coding theory. An (n, d, w)q code is a constant-

weight code over an alphabet with q symbols, whose codewords are of

length n, each one has a constant weight w, and the Hamming distance

between any two distinct codewords is at least d. Let Aq(n, d, w) denote

the maximum number of codewords in an (n, d, w)q code. When q = 2 we

can omit the alphabet size q and use (n, d, w) and A(n, d, w) instead of

(n, d, w)2 and A2(n, d, w), respectively. The following two bounds, known

as Johnson bounds, are of a special interest. The next lemma is the first

Johnson bound.

Lemma 2.3.

A(n, d, w) ≤
⌊

n

n− w
A(n− 1, d, w)

⌋
.
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Proof. Let C be a binary (n, d, w) code with M codewords, where

M = A(n, d, w). Clearly, the shortened code of C with respect to any coor-

dinate is an (n− 1, d, w) code. Each codeword c ∈ C has n− w zeroes and

hence c is considered in n − w codes of these shortened codes. Therefore,

the total number of codewords in all the n shortened codes is (n − w)M .

We can also see that, obviously, one of these n codes, say C1, has at least

an average number of codewords of the total number of codewords in all

these shortened codes, i.e., at least (n−w)M
n codewords. This code is an

(n− 1, d, w) code and thus,

n− w

n
A(n, d, w) =

n− w

n
M ≤ |C1| ≤ A(n− 1, d, w),

which implies that

A(n, d, w) ≤ n

n− w
A(n− 1, d, w) ,

and the claim of the lemma follows.

We can use similar arguments to the ones used in the proof of Lemma 2.3

and construct shortened codes using the ones instead of the zeroes in the

codewords of the code C. If |C| = A(n, d, w), then we obtain the following

lemma which is the second Johnson bound.

Lemma 2.4.

A(n, d, w) ≤
⌊
n

w
A(n− 1, d, w − 1)

⌋
. (2.1)

Constant-weight codes are related to the Johnson scheme. The Johnson

scheme (the concept of “scheme” will be discussed in Section 3.5) is the

most studied scheme after the Hamming scheme. It can be described with

binary words of length n and weight w, but it is usually defined using

w-subsets. Hence, we must have a one-to-one correspondence between all

the words of length n and weight w, and all the w-subsets of an n-set.

One such correspondence is achieved using the following translation. The

characteristic vector of a w-subset S of an n-set Q is a binary word of

length n and weight w whose i-th coordinate is a one if and only if the i-th

element of Q is contained in S. It should be noted that for a binary word x

and its support supp(x), the characteristic vector of supp(x) is x.

Definition 2.5. If C is a binary (n,M, 2e + 1) code, then the code C∗
obtained by adding a parity for each codeword of C is called the extended

code of C.
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Clearly, we have the following lemma.

Lemma 2.5. If C is a binary (n,M, 2e + 1) code, then C∗ is an

(n+ 1,M, 2e+ 2) code.

Similarly to A(n, d, w), we define A(n, d) to be the maximum number of

codewords in a binary code of length n and minimum distance at least d.

Theorem 2.3. If 1 ≤ 2r − 1 ≤ n, then A(n, 2r − 1) = A(n+ 1, 2r).

Proof. This is an immediate observation, by first adding a parity bit

to each codeword of the binary (n,M, 2r − 1) code to prove that

A(n, 2r − 1) ≤ A(n+ 1, 2r). Thereafter, to complete the proof, puncturing

of a binary (n+1,M, 2r) code implies that A(n, 2r−1) ≥ A(n+1, 2r).

Theorem 2.4. If 1 ≤ d ≤ n, then A(n, d) ≤ 2A(n− 1, d).

Proof. The proof follows immediately by considering the codewords that

start with a zero and the codewords that start with a one in any one of

the coordinates of a binary (n,M, d) code for which M = A(n, d). These

two sets of codewords form codes of length n− 1 and minimum distance d.

One of these two sets has at least M/2 codewords, which completes the

proof.

We now turn our attention to the size of the largest code with a given

minimum distance and recall some concepts from Chapter 1. A ball with

radius e (e-ball) of an element v ∈ V (or around an element v, or centered

at v), Be(v), contains the subset of elements in V that are within distance e

from v, i.e.,

Be(v) � {x : x ∈ V, d(v, x) ≤ e} .

If all such balls in the metric are of the same size and the length of the words

is n, then Be(v) will also be denoted by Be(n). A metric in which for each

e ≥ 0, the size of a ball with radius e does not depend on the center of the

ball, will be called a regular metric. Since most of the metrics that will

be discussed in this book are regular, this will be our general assumption.

Whenever non-regular metrics are discussed, it will be specified.

The definition of a ball leads to the most basic bound on the size of a

code, the sphere-packing bound . A code is called an e-error-correcting

code (or an e-code) if the e-balls around the codewords of C are noninter-

secting. These definitions immediately imply the following theorem.
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Theorem 2.5. If C is an e-code in a finite space V with a metric d, then∑
c∈C

|Be(c)| ≤ |V|,

or

|C| · |Be(n)| ≤ |V|

if the metric is regular.

The bounds in Theorem 2.5 should have been called the ball-packing

bound , but we will use the usual name, common to all coding theory books,

which is the “sphere-packing bound”. For completeness, the sphere with

radius e (e-sphere) of a vertex v ∈ V contains the subset of vertices in V
that are at exactly distance e to v, i.e.,

{x : d(x, v) = e, x ∈ V} .

Having mentioned the term radius, we should note that for each code

we are interested in two types of radii, the packing radius and the covering

radius.

The packing radius of a code C in a space V is the largest integer e

such that each element x ∈ V is within radius (distance) e from at most one

codeword of C, i.e., for each x ∈ V , there exists at most one codeword c ∈ C
such that d(c, x) ≤ e. In other words, the e-balls around the codewords of C
are nonintersecting. Such a code can correct any e errors, or less, which

occurred during transmission of a codeword. For each e′ ≤ e, we can also

say that e′ is a packing radius of C since the balls of radius e′ around
the codewords of C are nonintersecting. The error correction for an e-code

is based on the following analysis.

Lemma 2.6. A code C has a packing radius e if and only if for each word

x ∈ V, the ball Be(x) contains at most one codeword of C.

Proof. Assume first that C has a packing radius e and assume the contrary,

that c1, c2 ∈ C are two distinct codewords such that c1, c2 ∈ Be(x) for some

x ∈ V. By the definition of the ball Be(x), we have that d(x, c1) ≤ e and

d(x, c2) ≤ e, which contradict the fact that the packing radius of C is e.

Hence, for any word x ∈ V , the ball Be(x) contains at most one codeword

of C.
Assume now that for any word x ∈ V the ball Be(x) contains at most one

codeword of C. Assume the contrary, that there exists a word x ∈ V such

that x ∈ Be(c1) and x ∈ Be(c2), where c1, c2 ∈ C. Clearly, a word y ∈ V
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is contained in the ball Be(x) if and only if x ∈ Be(y). This implies that

c1 ∈ Be(x) and c2 ∈ Be(x), a contradiction. Hence, x is within distance e

from at most one codeword of C, i.e., C has a packing radius e.

Corollary 2.1. A code C has packing radius e if and only if C is an e-code.

Assume that a codeword c of an e-code C was transmitted and a word x

was received, and that no more than e errors occurred in c during transmis-

sion, i.e., d(c, x) ≤ e. Hence, since C is an e-code, it follows by Lemma 2.6

that the word x is in exactly one ball with radius e around a codeword of C.
This codeword is the transmitted codeword. This codeword can be found

by computing the ball of radius e around x, Be(x), since by Lemma 2.6,

this ball cannot contain more than one codeword of C. The codeword c will

be the unique codeword in this ball.

Lemma 2.7. If the minimum distance of a code C is 2e+1, then the code C
has packing radius e.

Proof. Assume the contrary, that e is not a packing radius of C, i.e.,

there exist two codewords c1, c2 ∈ C such that Be(c1) ∩ Be(c2) �= ∅. If

x ∈ Be(c1) ∩ Be(c2), then d(c1, x) ≤ e and d(x, c2) ≤ e, and by the triangle

inequality

d(c1, c2) ≤ d(c1, x) + d(x, c2) ≤ 2e,

in contradiction to the minimum distance of C.

Corollary 2.2. If the minimum distance of a code C is d, then the code C
has packing radius

⌊
d−1
2

⌋
.

Corollary 2.3. A code C whose minimum distance is 2e + 1 can correct

any e errors occurring in a transmitted codeword.

At this point it is important to note that the converse of Lemma 2.7 is

not necessarily correct. The following example illustrates this scenario.

Example 2.1. Let V = {0, 1, 2, 3}, d(0, 1) = d(1, 2) = d(2, 3) = 1, d(0, 2) =

d(1, 3) = d(0, 3) = 2, d(x, x) = 0 for each x ∈ V , and d(x, y) = d(y, x) for

each x, y ∈ V . It is readily verified that d is a metric. If C = {0, 3}, then
C has packing radius e = 1; but the minimum distance of C is 2, which is

less than 2e+ 1 = 3.
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The metric in Example 2.1 is not regular. Nevertheless, the converse

of Lemma 2.7 might also be incorrect for regular metrics. The following

example illustrates it on a regular metric.

Example 2.2. Let V = Z6, d(i, i + 1) = 1 for each i ∈ Z6, d(x, x) = 0 for

each x ∈ Zn, d(i, i+2) = d(i, i+3) = 2 for each i ∈ Z6, and d(x, y) = d(y, x)

for each x, y ∈ V. It is readily verified that d is a metric. It is also readily

verified that the metric is regular, but the code C = {0, 3} has packing

radius e = 1, while its minimum distance is 2, which is less than 2e+1 = 3.

The covering radius of a code C in a space V is the smallest integer R

such that each element x ∈ V is within radius (distance) R from at least

one codeword of C. In other words, for each x ∈ V, there exists at least one
codeword c ∈ C such that d(c, x) ≤ R. Such a code is a covering code

with radius R. Similarly to the packing radius, for each R′ ≥ R we can

say that R′ is a covering radius of C since the balls of radius R′ around
the codewords of C cover all the elements of V. Similarly, we say that a

codeword c in an e-code covers a word x in the space V if d(c, x) ≤ e.

The distinction between a packing code C (which is an error-correcting

code) and a covering code C is based only on whether we are interested

in the packing radius of C or in the covering radius of C. Generally, a

packing is associated with filling of a space with copies of a shape or several

shapes, where there is no intersection between any two shapes. Similarly, a

covering is associated with a similar filling of the space, where each point

of the space is covered by at least one shape, but distinct shapes can have

a nonempty intersection. The shapes in which we will be interested are

balls, anticodes, or error spheres (which will be defined later). Similarly

to the sphere-packing bound of Theorem 2.5, we have the following ball-

covering bound , which is implied by the definitions similarly to the proof

of Theorem 2.5.

Theorem 2.6. If C is a code with covering radius R, in a finite space V
with a metric d, then ∑

c∈C
|BR(c)| ≥ |V|

or

|C| · |BR(n)| ≥ |V|

if the metric is regular.
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Corollary 2.4. A code C in a finite space V attains the bound of Theo-

rem 2.5 with equality if and only if C attains the bound of Theorem 2.6 with

equality, where e of Theorem 2.5 is equal to R of Theorem 2.6.

In other words, Corollary 2.4 is implied by the fact that if each word

x ∈ V is contained in exactly one ball with radius e centered in a codeword c

of a code C, then C meets the bounds of Theorems 2.5 and 2.6.

2.2 Finite Fields

Finite fields play a major role in coding theory, especially for linear codes,

but also in codes based on subspaces and in some constructions of nonlinear

codes. Two concepts which are related to finite fields and their definition

lead to the definition of a finite field are a group and a ring.

Definition 2.6. A pair (G, ◦) is called a group if G is a nonempty set,

◦ is a binary operation defined on G, and the following three properties are

satisfied:

(1) (a ◦ b) ◦ c = a ◦ (b ◦ c) for all a, b, c ∈ G.
(2) There is an identity element e ∈ G such that a ◦ e = e ◦ a = a for all

a ∈ G.
(3) For each a ∈ G there exists an inverse element a−1 ∈ G such that

a ◦ a−1 = a−1 ◦ a = e.

The group (G, ◦) is called an abelian group (or a commutative

group) if a ◦ b = b ◦ a for all a, b ∈ G.
The group (G, ◦) is a cyclic group if there exists an element a ∈ G,

such that each b ∈ G is equal to ai �
i times︷ ︸︸ ︷

a ◦ a ◦ · · · ◦ a for some integer i. The

element a is called a generator of the group.

A special interest is in the group Zm, m ≥ 2, that contains the set

{0, 1, . . . ,m − 1} of integers, where the binary operation is addition mod-

ulom. The elements of Zm can also be considered as them distinct residues

modulo m.

Definition 2.7. A triple (R,+, ·) is called a ring if R is a nonempty set,

+ and · are two binary operations defined on R, and the following four

properties are satisfied:

(1) (R,+) is an abelian group.
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(2) (a · b) · c = a · (b · c) for all a, b, c ∈ R.

(3) There is a unique element 1 ∈ R such that a ·1 = 1 ·a = a for all a ∈ R.

(4) a · (b+ c) = a · b+ a · c and (a+ b) · c = a · c+ b · c for all a, b, c ∈ R.

The identity element of the group (R,+) is denoted by 0.

The ring (R,+, ·) is called a commutative ring if a · b = b · a for all

a, b ∈ R.

Note that (R\ {0}, ·) is not necessarily a group since it might not have

an inverse for each element of R \ {0}.

Definition 2.8. A ring (F,+, ·) is called a field if the pair (F\{0}, ·) is an
abelian group. The element 0 is the identity element of the abelian group

(F,+) and 1 is the identity element of the abelian group (F \ {0}, ·).

We denote the set G \ {0}, where G is a group (also for a ring or a field)

by G−. The group (F,+) is called the additive group of the field and the

group (F−, ·) is called the multiplicative group of the field.

Our main interest is in finite fields, i.e., fields with a finite number of

elements. All such fields with the same number of elements are isomorphic

and they are called Galois fields. The number of elements in such a field

is q, where q is a power of a prime and it is denoted by GF(q) or Fq. The

abelian group (F−q , ·) is a cyclic group.

The ring of integers modulom will be denoted by Zm (as the group Zm).

Addition and multiplication in the ring is performed modulom. This ring is

a field if p is a prime integer. It contains the set of integers {0, 1, . . . , p− 1}
(or equivalently the set of p distinct residues modulo p) where addition and

multiplication are performed modulo p.

The finite field Fqk , where q is a power of a prime, has qk elements.

The multiplicative group of F−
qk

is a cyclic group with a generator α. The

generator α is a root of some irreducible polynomial

c(x) = xk −
k∑

i=1

cix
k−i, ci ∈ Fq

called a primitive polynomial and each one of its root α is called a

primitive element . The elements of GF(qk) can be represented as the qk

vectors of length k over Fq. For two elements αi, αj , represented by the

vectors x = (x1, x2, . . . , xk) ∈ F
k
q and y = (y1, y2, . . . , yk) ∈ F

k
q , respectively,

we have that αi · αj = αi+j , where superscripts are taken modulo qk − 1,

and

αi + αj = x+ y = (x1 + y1, x2 + y2, . . . , xk + yk) = α� ,
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where α� is represented by the vector (x1 + y1, x2 + y2, . . . , xk + yk) ∈ F
k
q .

Since α is a root of c(x), it follows that 0 = c(α) = αk −
∑k

i=1 ciα
k−i

and αk =
∑k

i=1 ciα
k−i. The element α0 = 1 is represented by the

vector (00 · · · 001), the element α by the vector (00 · · · 010), and so on,

where αk−1 is represented by the vector (10 · · · 000). The element αk is

represented by the vector (c1, c2, . . . , ck). Similarly, if αi = (a1, a2, . . . , ak),

then αi+1 = (a2, . . . , ak, 0) when a1 = 0 and if a1 �= 0, then

αi+1 = (a2, . . . , ak, 0) + a1α
k = (a2, . . . , ak, 0) + (a1c1, a1c2, . . . , a1ck).

The irreducible polynomial c(x) is a primitive polynomial if each of its

roots (primitive elements) generates the field, i.e., the qk − 1 powers of any

root α, of c(x), are distinct elements as q-ary vectors in this computation.

The representation of the elements of GF(qk) by the q-ary vectors of

length k, over Fq, induces a bijection between Fqk and F
k
q . This bijection is

used to simplify many results and to simplify some representations of codes

in general and perfect codes in particular.

Finally, in many cases we are required to take the elements of a group G
(a ring R, a field F, or a subspace X, respectively) without its additive

identity. The structure without the identity (the zero element) will be

denoted, as was defined before, by G− (R−, F−, X−, respectively). In the

literature it is frequently denoted by G∗ (R∗, F∗, X∗, respectively), but the
different notation, which is used in the book, serves to distinguish it from

the extended code C∗ of a code C.

2.3 Linear Codes

An [n, k]q (linear) code is a linear subspace of dimension k over Fn
q , i.e.,

a linear subspace, whose dimension is k, from the set of all words (vectors)

of length n over Fq. Later on, the abbreviation a k-subspace will be

used frequently instead of a subspace of dimension k or a k-dimensional

subspace.

An [n, k]q code C can be represented by two matrices. The first one

is a generator matrix G, which is a k × n matrix over Fq, whose rows

form a basis for the code, i.e., the linear span of the rows of G is C. We

also denote by C(G) the code generated from the generator matrix G, i.e.,

C(G) = 〈G〉, where 〈A〉 is the linear span of the rows from the matrix A.

The second matrix is a parity-check matrix H, which is an (n− k) × n

matrix over Fq, whose rows form a basis for the dual subspace C⊥ of

the code C. The dimension r = n − k of this dual subspace is called the
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redundancy of the code.

A generator matrix of an [n, k]q code is in standard form if its first k

columns form an identity matrix of order k, i.e.,

G = [ Ik | A ] ,

where Ik is the k × k identity matrix. The related parity-check matrix is

given by

H =
[
−Atr | In−k

]
.

It is readily verified that with this representation we have that

G ·Htr = 0

and

H ·Gtr = 0,

where 0 is an all-zero matrix of the appropriate size and Atr is the trans-

pose of the matrix A.

One can use a generator matrix with more than k rows for an [n, k]q
code or a parity-check matrix with more than r = n−k rows, by using some

redundant rows. Usually, these redundant rows will not be necessary, but

in some cases they will be required. The following proposition is a simple

observation.

Proposition 2.1. The parity-check matrix H of an [n, k]q code C is a gen-

erator matrix of an [n, n− k]q code.

If G is the generator matrix of an [n, k]q code C, then the [n, n − k]q code

whose generator matrix is the parity-check matrix H of C is called the

dual code of C. The dual code of C is denoted by C⊥. A code C is called

self-dual if C = C⊥.
There is another representation of the parity-check matrix. Let α be

a primitive element in Fqr and let H = [h1, h2, . . . , hn] be an r × n par-

ity check-matrix for the code C. Assume that hj is the q-ary represen-

tation of the element αij , 1 ≤ j ≤ n, in Fqr . The parity-check ma-

trix can be written as H = [αi1 , αi2 , . . . , αin ]. Finally, note that the word

x = (x1, x2, . . . , xn) ∈ F
n
q is a codeword in C if and only if H · xtr = 0.

A set S of k coordinates in a code C (not necessarily linear), over a

q-set Q, are called systematic if in the projection on these k coordinates

of C, each of the qk vectors of length k over Q appears exactly once. Clearly,

in an [n, k]q code whose generator matrix is in standard form, the first k
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coordinates are systematic. By definition one can easily verify the following

lemma.

Lemma 2.8. A set of k coordinates in the generator matrix G of an [n, k]q
code C are systematic coordinates if and only if the related k vector columns

of G are linearly independent.

A code C is a systematic code if it has k systematic coordinates.

Clearly, all linear codes are systematic.

For an [n, k]q code C and a word x ∈ F
n
q , the translate

x+ C � {x+ c : c ∈ C},

is called a coset of C.
Let y and z be a two words in the coset x+ C. Clearly, y = x+ c1 and

z = x+ c2, where c1, c2 ∈ C, and z− y = c2− c1. Since the code C is linear,

it follows that c2 − c1 ∈ C. This implies the following lemma.

Lemma 2.9. The words y and z are in the same coset of an [n, k]q linear

code C if and only if y − z ∈ C.

Corollary 2.5. If C is a linear code, then z is a word in the coset x+ C if

and only if −z ∈ x+ C.

Corollary 2.6. The words y and z are in the same coset of an [n, k]q linear

code C if and only if y + z ∈ C.

Proposition 2.2. The cosets of an [n, k]q code C form a partition of Fn
q ,

where each coset has qk distinct words of length n.

Proof. Clearly, for any word x ∈ F
n
q and two distinct codewords c1, c2 ∈ C,

we have that x+ c1 �= x+ c2. This implies that each coset has qk distinct

words of length n.

If y ∈ x1 + C and y ∈ x2 + C, then y = x1 + c1 = x2 + c2, where

c1, c2 ∈ C. If z ∈ x1 + C, then z = x1 + c3, where c3 ∈ C. Hence,

z = y − c1 + c3 = x2 + c2 − c1 + c3 = x2 + c4, where c4 ∈ C. This implies

that z ∈ x2+C and, therefore, any two cosets are either disjoint or coincide.

Thus, the disjoint cosets of C form a partition of Fn
q .

Corollary 2.7. Any two cosets of an [n, k]q code are either equal or dis-

joint.

Corollary 2.8. A linear code C has the linear space tiling property.
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A set S of representatives from the cosets of a linear codes C is a set

which contains exactly one word from each coset of C.

Corollary 2.9. If A is a set of qn−k representatives of the qn−k distinct

cosets of an [n, k]q code C, then (A, C) is a tiling.

The coset leader of a coset x+ C is a word of minimum weight in the

coset. If there are a few words with minimum weight, then one of them

is chosen randomly to be the coset leader. The following claim is implied

from Corollary 2.9.

Corollary 2.10. If A is a set of qn−k coset leaders of an [n, k]q code C,
then (A, C) is a tiling.

Definition 2.9. Let C be a linear code, over Fq, with an r×n parity-check

matrix H. For any word x = (x1, x2, . . . , xn) ∈ F
n
q , the syndrome of x,

S(x), is defined by

S(x) = H · xtr .

Clearly, the syndromes are column vectors of length r, the redundancy

of the code. Hence, there are qr possible distinct syndromes. The first

important property related to the syndromes is about the syndromes of the

codewords. The value of these syndromes can be verified from the definition

of the parity-check matrix of a code C.

Proposition 2.3. The syndrome of a codeword in a linear code is equal to

the all-zero vector.

The syndromes have some properties that are very useful in correcting

errors that occur during the transmission of the information words using a

linear code. A certain set of syndromes are also very important in answering

the question whether a linear code is a perfect code.

Definition 2.10. An [n, k, d]q code is an [n, k]q code whose minimum

Hamming distance is at least d.

Corollary 2.11. The minimum distance d on an [n, k, d]q code C is the

minimum number of linearly dependent columns of its parity-check ma-

trix H.

Proof. The claim follows immediately from the fact that c ∈ C if and only

if H ·ctr = 0 and hence the minimum number of linearly dependent columns

of H is the minimum weight of a nonzero codeword in C.
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The [n, k, d]q code C has a generator matrix G and a parity-check ma-

trix H. The code C is used to transmit information words of length k

over Fq, via a channel that accepts words of length n. An information word

z = (z1, z2, . . . , zk) is transformed into a codeword c = (c1, c2, . . . , cn) of

length n, where c = z · G. Since c is generated as a linear combination of

rows from G and the rows of H span a subspace orthogonal to the linear

span of the rows of G, it follows, as also implied by Proposition 2.3, that

S(c) = H · ctr = 0. Assume that in the channel, an error ε has occurred in

the codeword c and instead of the codeword c, the word c+ ε was received.

The syndrome of c+ ε is

S(c+ ε) = H · (c+ ε)tr = H · ctr +H · εtr = H · εtr .

This implies that if it is assumed that only a set E of errors can occur and

each of the elements in the set E has a different syndrome, then using the

value of the syndrome of the received word we have the syndrome of the

error. This syndrome should be unique to this error and hence we can find

the exact error and recover the codeword that was transmitted over the

channel. This implies the following observation.

Corollary 2.12. In a linear e-code all the syndromes of the distinct words

with weight at most e are distinct.

Finally, to conclude this section we will prove that the two concepts of

weight distribution and distance distribution coincide for linear codes.

Theorem 2.7. If (A0, A1, . . . , An) and (D0, D1, . . . , Dn) are the weight dis-

tribution and the distance distribution, respectively, of an [n, k]q code C,
then Ai = Di for each 0 ≤ i ≤ n.

Proof. Assume that for a given i, 0 ≤ i ≤ n, Ai = t, i.e., C has t codewords

c1, c2, . . . , ct of weight i. Hence, if c ∈ C, then c + c1, c + c2, . . . , c + ct are

distinct codewords for which d(c, c + cj) = i for each 1 ≤ j ≤ t and there

is no other codeword c′ such that d(c, c′) = i. In other words, there are

exactly t pairs in the set {(c, c′) : d(c, c′) = i, c′ ∈ C}. Therefore, we have

that

|{(x, y) : x, y ∈ C, d(x, y) = i}| = |{(c, cj) : c ∈ C, 1 ≤ j ≤ t}| = t |C|

and hence Di = t = Ai.
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2.4 Definitions of Perfect Codes

We are now in a position to present the definitions of perfect codes and their

generalizations. The most simple definition relates to metrics that can be

described in terms of a graph. Given an undirected graph Γ = (V, E),

where V is a set of vertices (the space) and E is the edge set of Γ, we

define the following simple metric Γ. First we note that Γ denotes the

graph and we refer to it also as the metric defined by that graph. But, the

distance between two vertices x, y of the graph will be denoted by dΓ(x, y)

and in the metric their distance will be denoted by d(x, y). The distance

between two vertices u, v ∈ V, dΓ(u, v) is the length of the shortest path

between two vertices u and v in Γ (the number of edges in this path). The

length δ of this shortest path, between u, v ∈ V, is also the distance for the

metric Γ defined by the graph, i.e., dΓ(u, v) = δ. It is easy to verify that

this definition of distance based on the length of the shortest path in the

graph Γ is a metric. A code (set of vertices) C in the graph is an e-perfect

code if for each v ∈ V there exists exactly one codeword c ∈ C such that

dΓ(v, c) ≤ e. In other words, a code C is an e-perfect code if the balls

with radius e around the codewords (vertices) of C form a partition of the

vertices in V. Given a space V and a metric d on V, can d be represented

by a graph Γ = (V, E), where E = {{x, y} : x, y ∈ V, d(x, y) = 1}?
The answer is very simple. This representation is possible if for any two

elements x and y of the space V such that d(x, y) = δ, the shortest path

between x and y in the graph Γ has length δ. This immediately implies

that Γ must be a connected graph to define a metric and in particular to

define a perfect code via the graph Γ. The following lemma asserts that if

d(x, y) = δ, then this distance between x and y, in the graph, cannot be

smaller than δ.

Lemma 2.10. Let d : V × V → Z be a metric and let Γ = (V, E) be the

graph defined for this metric, i.e., d(x, y) = 1 if and only if {x, y} ∈ E, and

assume that Γ is a connected graph. Let x and y be two distinct vertices

in V. If d(x, y) = δ, then the length of the shortest path between x and y,

in Γ, is at least δ.

Proof. Assume the contrary, that d(x, y) = δ but dΓ(x, y) = δ−ε < d(x, y),

i.e., ε > 0. Assume that δ − ε is the length of the shortest path in Γ with

this required property, i.e., if for u, v ∈ V , dΓ(u, v) = δ′ and d(u, v) > δ′,
then δ − ε ≤ δ′. Since, by definition, for u, v ∈ V, dΓ(u, v) = 1 if and

only if d(u, v) = 1, it follows that δ − ε > 1. Consider now the path of
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length δ − ε between x and y in Γ. This path contains another δ − ε − 1

vertices. Let z be the first of these vertices in this path, i.e., dΓ(x, z) = 1

and dΓ(z, y) = δ − ε − 1. Clearly, by definition d(x, z) = 1 and by the

triangle inequality, we have that δ = d(x, y) ≤ d(x, z) + d(z, y) and hence

d(z, y) ≥ δ − 1. This implies that dΓ(z, y) = δ − ε − 1 < δ − 1 ≤ d(z, y),

which contradicts the fact that δ − ε is the shortest path in Γ with the

required property, and the claim of the lemma is proved.

Lemma 2.10 implies that if Γ is a connected graph defined by the met-

ric d, then the distance in Γ between any two vertices is at least their

distance in the metric. Is the converse also correct? The answer is no

and as an example we can consider the metric defined in Example 2.1 or

the metric defined in Example 2.2. This implies that the distance in the

graph Γ is not necessarily equal to the distance in the metric, from which Γ

was defined, and the metric cannot be represented by a graph for these two

examples. Another scenario in which this property is not satisfied is when Γ

is not a connected graph. Such an example will be discussed in Chapter 9.

In the case when the graph is not a connected graph, we will also have to

be careful in the definition for an e-perfect code.

A metric d on a finite space V is called a graphic metric if it can

be represented by a graph Γ = (V, E), where {x, y} ∈ E if and only if

d(x, y) = 1, and for each two vertices x, y ∈ V, dΓ(x, y) = δ if and only if

d(x, y) = δ.

Fortunately, most metrics in our context are graphic. The formal defini-

tions that follow, however, can serve for all metrics and they are equivalent

to the definitions given for a connected graph.

Lemma 2.11. If C an e-code in a graphic metric, then d(C) ≥ 2e+ 1.

Proof. Since C is an e-code, it follows by Corollary 2.1 that C has

packing radius e. Let c1, c2 ∈ C and assume that d(c1, c2) < 2e + 1.

Since d is a graphic metric, it follows that there exist a word x ∈ V
such that d(x, c1) ≤ e and d(x, c2) ≤ e, contradicting Lemma 2.6. Thus,

d(C) ≥ 2e+ 1.

We continue with the metric considered by its formal definition (not by

the related graph). There are two basic definitions for a perfect code, which

will now be presented. Although in most of our book the space V is finite,

these two definitions can also serve in the case where the space V is infinite.

Definition 2.11. A code C ⊆ V is an e-perfect code with respect to a
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metric d : V × V → Z if, for each element x ∈ V , there exists a unique

codeword c ∈ C such that d(c, x) ≤ e.

Definition 2.12. A code C ⊆ V is an e-perfect code with respect to a

metric d : V × V → Z if the set of balls {Be(c) : c ∈ C} form a partition

of V.

It can easily be verified that a code that satisfies Definitions 2.11

and 2.12 also meets the sphere-packing bound and the ball-covering bound

when V is finite. These two bounds can also be used to supply alternative

definitions of an e-perfect code, but only when V is a finite space.

Definition 2.13. A code C ⊆ V is an e-perfect code with respect to a

metric d : V × V → Z, where V is a finite space, if it meets the bound of

Theorem 2.5.

Definition 2.14. A code C ⊆ V is an R-perfect code with respect to a

metric d : V × V → Z, where V is a finite space, if it meets the bound of

Theorem 2.6.

The equivalence of all these four definitions for a perfect code is sum-

marized as follows.

Theorem 2.8. A code C ⊆ V satisfies Definition 2.11 if and only if C
satisfies Definition 2.12. Furthermore, if V is a finite space, then Defini-

tions 2.11, 2.12, 2.13, and 2.14 are equivalent.

If the code is linear, then a perfect code can be defined using the parity-

check matrix H. An [n, k]q code is e-perfect if the syndromes related to

all possible errors of weight at most e are distinct and contains all the

qn−k column vectors of length n− k.

Lemma 2.12. If C is a linear e-perfect code in a space V and A is a set

which contains all the words in V of weight e or less, then (A, C) is a tiling.

Proof. If C is a linear e-perfect code, then all the coset leaders have weight

at most e. If two x and y words of V are in the same coset of C, then by

Corollary 2.6 their sum x+ y is a codeword in C. If x and y have weight at

most e, then their sum x+y has weight at most 2e and hence by d(C) ≤ 2e,

contradicting Lemma 2.11. Hence, x and y are in a different cosets of C,
which by Corollary 2.10 implies that the pair (A, C) is a tiling.
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Corollary 2.13. If C is a linear e-perfect code, then each coset contains

exactly one word from each ball Be(c), for each c ∈ C.

There are scenarios where the criterion (for different syndromes) will be

the most convenient one for proving that a code is perfect. When the set

of errors in an [n, k]q code over a space V is confined to a set S and the

syndromes associated with the words in S are disjoint and contain all the

qn−k vectors of length n− k, then the code C is a perfect code. This type

of code will be discussed in some sections later on in the book.

If the metric is regular, i.e., for each e ≥ 1, all the balls of radius e are

of the same size, and the sphere-packing bound is attained with equality

by a code C, i.e., C is an e-perfect code for some e, then there are three

properties that C satisfies:

(1) The size of the code that is given by the sphere-packing bound,

(2) its packing radius is e, and

(3) its covering radius is also e.

Nevertheless, to verify that a given code C, in a regular metric, is an

e-perfect code, we need only verify that any two of these three proper-

ties are satisfied. In other words, if we prove that the packing radius of the

code is e and its covering radius is also e, then the code is e-perfect and we

do not need to compute its size. If we compute the size of C and it attains

the sphere-packing bound for radius e and we also prove that either the

packing radius is e or the covering radius is e, then it implies that the other

radius is also e and hence the code C is e-perfect.

If the metric is regular, and we can partition the space V into copies of

these related balls, then the code formed by the centers of all these balls of

the partition is e-perfect. This claim is readily verified from Definition 2.12.

It also leads to the following simple observation.

Theorem 2.9. Assume C is an e-perfect code in a space V with a regular

metric d, and ◦ is a binary operation between the elements of V. If for each

x ∈ V we have Be(x) = x ◦ Be(0), then (C,Be(0)) is a tiling of V, where 0

is the identity element of V. In other words, C has the linear space tiling

property and Be(n) also has the linear space tiling property, where n is the

length of the elements in V.

There are definitions of codes that are “almost” perfect. We will mention

two types of such definitions. The first one is for quasi-perfect codes,
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where both the packing radius and the covering radius are considered. Such

a code has packing radius e and covering radius e+ 1. Quasi-perfect codes

will be considered in this book only for the Hamming space (although they

are defined for other metrics too). This family of codes will be discussed

in Chapter 6. The reason that we consider quasi-perfect codes only in the

Hamming space is that although called quasi-perfect, these codes are not

“almost” perfect, as it looks based on the two radii whose difference is one.

For most of them, not “almost” all words are within distance e from exactly

one codeword, i.e., too many words do not have such a codeword. This is

related to the fact that these codes might not be dense, a property that

will be defined in Chapter 6. Fortunately, there are families of quasi-perfect

codes that are dense, e.g., nearly-perfect codes (see Section 6.2). All these

concepts will be also discussed in Chapter 6. We should note that if we

consider quasi-perfect codes from a covering point of view, they should be

sparse. A code can be dense from a packing point of view and sparse from

a covering point of view if and only if it is a perfect code.

The second definition of codes that are “almost” perfect, relates to di-

ameter perfect codes, where an anticode takes the role of a ball. This

family of codes, which forms a natural generalization for the family of per-

fect codes, will be discussed throughout this book and we now define it.

The most basic concept in an error-correcting code is its minimum dis-

tance. The minimum distance d dictates the number of errors that can be

corrected when the code is used in practice. This distance is related to the

packing radius
⌊
d−1
2

⌋
of the code (see Corollary 2.2). The balls with this

packing radius around the codewords of the code are disjoint.

Any given ball (in any space) has a radius; a related parameter of a ball

is its diameter. For example, in Euclidian space, the diameter of a ball with

radius e is 2e. Nevertheless, the diameter is a concept that is independent

of the radius and exists also in shapes that are not balls. The diameter of

a shape (set) S ⊆ V , defined with a metric d : V × V → Z, is the maximum

distance between any two elements of S. In this definition of the diameter,

the maximum distance between any two elements is considered, in contrast

to the minimum distance that is considered for error-correcting codes. This

leads to the next definition.

Definition 2.15. An anticode A with diameter D is a set of elements

taken from a space V with a distance d : V × V → Z, where the maximum

distance between the codewords of A is at most D. Elements of an anticode

will be called anticodewords to distinguish them from codewords.



February 21, 2022 16:26 ws-book9x6 Perfect Codes and Related Structures Perfect˙Codes˙Main page 37

Definitions and Preliminaries 37

Theorem 2.10. In any metric, an e-ball is an anticode whose diameter is

at most 2e.

Proof. Let y, z ∈ Be(x) be two distinct words in a the ball centered at x,

i.e., d(y, x) ≤ e and d(x, z) ≤ e. Hence, by the triangle inequality,

d(y, z) ≤ d(y, x) + d(x, z) ≤ 2e,

which implies that an e-ball is an anticode whose diameter is at most 2e.

Any ball has a center, while anticodes that are not balls usually do not

have a center. Sometimes, however, anticodes must have a point that can

fulfil the role of a center in a ball. This point can be chosen arbitrarily and

it is called the balanced point of the anticode. Once chosen, it should be

the same for all the translates of the anticode, i.e., if b is the balanced point

of the anticode A, then x+b is the balanced point of its translate x+A. The
importance of the balanced point is, for example, when we consider a tiling

of a space V with an anticode A and the set of points T . In this (T ,A)
tiling, the balanced points, in the translates of A in the tiling, assume the

role of the centers of the balls as they coincides with the points of T .
We are interested in an as large as possible anticode with diameter D.

As noted, codes and anticodes are defined as sets of elements from the

space V. The distinction between the two concepts is that in codes, the

important parameter is the minimum distance, while in anticodes the im-

portant parameter is the maximum distance. By Theorem 2.10, a ball with

radius e is an anticode with diameter at most 2e. A ball, however, is not

necessarily the largest possible anticode with diameter 2e. Moreover, a

ball might not be a maximal anticode. Finding the largest anticode for

any given metric is an interesting problem. It will be discussed later for

some of the regular metrics in which we are interested. At this point we

will concentrate on a bound that will be used as a generalization for the

sphere-packing bound. This bound is called the code-anticode bound .

In contrast to the sphere-packing bound, the proof of this bound might

require separate proofs for different metrics. In the present section it will

be proved for most of the metrics discussed in this book. For other metrics,

separate proofs will be given in Sections 8.8, 9.2, and 10.2.

A metric d : V × V → Z on a space V (not necessarily a group space)

with a binary operation ◦, i.e., for each two elements x, y ∈ V , x ◦ y ∈ V ,
is right distance invariant if, for each three elements x, y, z ∈ V ,
d(x ◦ z, y ◦ z) = d(x, y). Similarly, d is left distance invariant if, for

each three elements x, y, z ∈ V, d(z ◦ x, z ◦ y) = d(x, y). The metric d
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is distance invariant if it is both right distance invariant and left dis-

tance invariant. Throughout this book all the metrics that we consider are

distance invariant if there exists a binary operation ◦ (an exception will

be mentioned in the notes of Chapter 13). It should be noted that there

are spaces and metric with no binary operation between the elements, but

there are other transformations applied on the elements which also make

the metric d distance invariant in the same way which is required in this

section. The existence of a binary operation ◦, associated with the space V
and the metric d : V × V → Z, has some applications. For example, to

compute d(x, y) for x, y ∈ V, when the metric is right distance invariant,

we have to note that

d(x, y) = d(x ◦ x−1, y ◦ x−1) = d(0, y ◦ x−1) = wt(y ◦ x−1) .

It is important to note that for this equation, we have used the inverse of

the element x. This is essential and such an inverse exists for some of our

spaces, but not for all of them.

Lemma 2.13. If d is a right (or left) distance invariant metric in a finite

space V with a binary operation ◦, then for each x, y ∈ V, there exists a

unique α ∈ V such that y = α ◦ x. Similarly, for each x, y ∈ V, there exists

a unique α ∈ V such that y = x ◦ α.

Proof. Let d : V × V → Z be a right distance invariant metric on a finite

space V. Let α1, α2 be two distinct elements of V. Since the metric d with

the operation ◦ is right distance invariant and d(α1, α2) > 0, it follows that

for each x ∈ V, d(α1 ◦ x, α2 ◦ x) > 0, i.e., α1 ◦ x �= α2 ◦ x. Thus, since V is

a finite space, it follows that for each x, y ∈ V, there exists a unique α ∈ V
such that y = α ◦ x. This also implies that x has a left inverse x−1.

Now assume the contrary, that for some x ∈ V there exist two distinct

elements α1, α2 ∈ V such that x ◦ α1 = x ◦ α2. Since x has a left inverse, it

follows that α1 = α2, a contradiction. Therefore, for each x, y ∈ V , there
exists a unique α ∈ V such that y = x ◦ α.

Similarly, if d is a left distance invariant metric, then for each x, y ∈ V,
there exists a unique α ∈ V such that y = x ◦ α, and for each x, y ∈ V,
there exists a unique α ∈ V such that y = α ◦ x.

Corollary 2.14. Let d : V × V → Z be a metric on a finite space V with

a binary operation ◦. If d is a right or left distance invariant metric, then

each element x ∈ V has a right and a left inverse.
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The consequence of Lemma 2.13 can be obtained also if for each ele-

ment of V there exists a right inverse and a left inverse, where there is no

requirement for a distance invariant metric. The result was obtained when

V together with its binary operation might not define a group. Lemma 2.13

was written in a way that it is readily verified that only some of the con-

ditions are required, while in reality the metrics used in this book satisfy

more properties than the ones required by the lemma. The following lemma,

called the local inequality lemma is the key result required for our next

definition of diameter perfect codes. It has several proofs, depending on

the space and the metric being considered. Nevertheless, there are spaces

and metrics for which this lemma is not satisfied and hence it cannot be

used.

The Local Inequality Lemma

Let CD be a code in a finite space V with a metric d : V × V → Z, where

the distances between the codewords in CD are taken from a subset D. Let
A be a nonempty subset of V and let C′D ⊆ A be the largest code in A,
where the distances between the codewords of C′D are taken from D. Then

|CD|
|V| ≤

|C′D|
|A| . (2.2)

Equation (2.2) in the local inequality lemma will be referred to as the

local inequality bound . The local inequality lemma implies the code-

anticode bound, given in the following statement.

Corollary 2.15. Assume that for a metric d on a space V, the set of

possible distances in V is Δ. Assume further that the conditions of the

local inequality lemma on D, CD, A, and C′D are satisfied, and also (2.2) is

satisfied. If A is an anticode with maximum distance D and C is a code

with minimum distance D + 1, then

|C| · |A| ≤ |V| . (2.3)

Proof. In the local inequality lemma, let D � Δ \ {1, 2, . . . , D} and let

A be a maximum size anticode with distances taken from {0, 1, 2, . . . , D}.
Since the minimum distance of C′D is at least D+ 1 and C′D ⊂ A, it follows
that C′D contains exactly one codeword. As a consequence, it immediately

implied from (2.2) in the local inequality lemma that

|CD| · |A| ≤ |V| ,

and the claim of the corollary follows.
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A code C that attains (2.3) with equality is called a D-diameter perfect

code . The following theorem implies a tight connection between perfect

codes and diameter perfect codes.

Theorem 2.11. An e-perfect code in a graphic metric is a (2e)-diameter

perfect code.

Proof. Let C be an e-perfect code. By Theorem 2.10, the ball with ra-

dius e is an anticode with diameter at most 2e. Assume the contrary, that

c1, c2 ∈ C are two distinct codewords for which d(c1, c2) ≤ 2e. Since the

metric is graphic, it follows that there exists a path whose length is at

most 2e between c1 and c2 and hence there exists an element x such that

d(c1, x) ≤ e and d(x, c2) ≤ e, which implies that C is not e-perfect, a con-

tradiction. This implies that the minimum distance of C is 2e+ 1 and also

that the diameter of the ball with radius e is 2e.

Clearly, C attains the sphere-packing bound with equality and hence it

also attains (2.3) with equality. Thus, an e-perfect code in a graphic metric

is a (2e)-diameter perfect code.

Corollary 2.16. An e-perfect code in a graphic metric has minimum dis-

tance 2e+ 1.

The following lemma is an instant of the local inequality lemma for a

certain family of metrics that covers a large number of the spaces with their

defined metrics and binary operations.

Lemma 2.14. Let d be a right (left) distance invariant metric in a finite

space V with a binary operation ◦. Let CD be a code in V, where the distances
between codewords in CD are taken from a subset D. Let A be a subset of V
and let C′D ⊆ A be the largest code in A with distances taken from D. Then

|CD|
|V| ≤

|C′D|
|A| . (2.4)

Proof. Assume that d : V × V → Z is a right distance invariant metric

in a finite space V. Let S � {(c, v) : c ∈ CD, v ∈ V, c ◦ v ∈ A}.
Since by Corollary 2.14, each element in V has a left inverse, it follows by

Lemma 2.13 that for a given codeword c ∈ CD and an element α ∈ A,
there exists exactly one element v ∈ V such that α = c ◦ v. Therefore,

|S| = |CD| · |A|.
Since the metric is right distance invariant, it follows that for each u ∈ V,

the set Cu � {c◦u : c ∈ CD} has the same distances between its codewords
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as in CD, i.e., the distances between codewords of Cu are taken from the

set D. Together with the fact that C′D is the largest code in A, where the

distances between codewords in C′D are taken from the set D, it follows that
for any given word u ∈ V, the set Su � {(c, u) : c ∈ CD, c ◦ u ∈ A} has at
most |C′D| codewords, i.e., |Su| ≤ |C′D|. Clearly, by the definition of Su, for

each two distinct elements u1, u2 ∈ V, we have that Su1 ∩ Su2 = ∅, and

also S =
⋃

v∈V Sv, and hence |S| ≤ |C′D| · |V|.
Thus, since |S| = |CD| · |A|, it follows that |CD| · |A| ≤ |C′D| · |V| and the

claim of the lemma is proved.

The local inequality lemma can be applied to many metrics that are

discussed in this book. The given proof of Lemma 2.14 can be applied on

a large number of such metrics, but unfortunately, it cannot be applied

to all these metrics since not all the metrics on the given spaces have the

necessary binary operation ◦ (for example, an inverse to the obvious binary

operation does not always exist). In some cases, such a binary operation

does not exist. As an example, the requirements of Lemma 2.14 does not

hold for the Johnson scheme and the Grassmann scheme. A specific proof

for each of these metrics, for the local inequality lemma, will be given in

the relevant sections. Moreover, for each metric it will be required to show

either that the conditions of Lemma 2.14 are satisfied or to provide another

proof for the local inequality lemma.

Are there diameter perfect codes that are not perfect codes? Many such

codes will be presented in this book. The bound in (2.3) of Corollary 2.15

is called the code-anticode bound . By Theorem 2.11 it is a generalization

and an improvement on the sphere-packing bound.

The code-anticode bound is also a generalization and improvement of

the Johnson bounds (Lemmas 2.3 and 2.4) as will be proved in Section 8.8.

We can also generalize the definition of diameter perfect codes for infinite

spaces as it will be discussed in Section 11.4.

For the proof of the next result, recall that the distances between words

in a translate A′ of a set A are exactly the same distances as the ones in A.

Corollary 2.17. Let C be a code in V whose minimum distance is D + 1

and let A be a related anticode with maximum distance D. The code C is a

D-diameter perfect code and A is a maximum size anticode if and only if

each translate of A in V contains exactly one codeword of C.

Proof. Assume first that A is a maximum size anticode with diameter D
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and C is a D-diameter perfect code for which |C| · |A| = |V|. Define

S � {(c, x ◦ A) : c ∈ C, x ∈ V, c ∈ x ◦ A} . (2.5)

Given a point v ∈ V , v can be associated with each point of A and hence

it is contained in |A| distinct translates of A. Since each point in V is

contained in |A| distinct translates of A, it follows that the same is true for

each codeword c ∈ C and hence |S| = |C| · |A|, which immediately implies

that |S| = |V|.
Since A has diameter D and d(C) = D+1, it follows that each translate

of A in V contains at most one codeword from C. The balanced point

of A can coincide with each point of V and hence the number of distinct

translates of A in V is |V|. Since each such translate of A can contain at

most one codeword of C, it follows that each translate of A is contained

in at most one pair of S. Furthermore, |S| = |V| implies that S contains

exactly |V| pairs and hence it follows that each translate of A in V contains

exactly one codeword of C.
Assume now that each translate of the anticode A in V contains exactly

one codeword from C. Define again S as in (2.5). Since each translate of A
in V contains exactly one codeword and there are exactly |V| translates
of A in V, it follows that |S| = |V|. Since each codeword of C is contained

in exactly |A| translates of A in V, it follows that |S| = |C| · |A|. Thus,

|C| · |A| = |V|, i.e., C is a D-diameter perfect code and A is a maximum size

anticode with diameter D + 1.

The concept of an e-perfect code is associated with the computation of a

ball with radius e. Finding the size of such a ball is not always simple and it

depends on the space V and the metric d, but fortunately it is rather simple

in the most metrics discussed in this book, i.e., the Hamming metric, the

Johnson metric, and the Lee metric. It is slightly more difficult in metrics

such as the Grassmann metric. The concept of a D-diameter perfect code

is related to the computation of the largest anticode with diameter D. This

computation is much more difficult than the computation of the size of the

related ball. This computation of the maximum size anticode is related

to computation of a maximum t-intersecting family, which is a set S of

elements from a space V, where each two elements S have an intersection

whose size is at least t. The size of the largest anticode will be discussed

throughout the book for the various metrics.

The result of Corollary 2.15 can be strengthened with the following

consequence from the local inequality lemma.
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Corollary 2.18. Assume that for a metric d on a space V, the set of

possible distances in V is Δ. Assume further that the conditions of the

local inequality lemma on D, CD, A, and C′D are satisfied, and also (2.2) is

satisfied. If A is a set with distances taken from a set D and C is a set with

distances taken from the set Δ \ D, then
|C| · |A| ≤ |V| .

The result of Corollary 2.18 implies another generalization for the con-

cept of a perfect code. This new concept is also a generalization of a

diameter perfect code. A pair [C,A] in a space V with a metric d is called

a perfect set if |C| · |A| = |V| and the set of distances between distinct el-

ements in A is disjoint from the set of distances between distinct elements

in C. Clearly, a diameter perfect code is a perfect set, but a perfect set does

not have to be a diameter perfect code.

Problem 2.1. Develop a theory for perfect sets with various metrics. Dis-

tinguish between perfect sets and diameter perfect codes.

In the discussion on perfect codes we have to consider elements that

cover other elements. Recall that a codeword c in an e-perfect code C
covers the word v ∈ V if d(c, x) ≤ e. When no code is specified, we

say that an element x covers (contains) an element y if y ⊂ x, when the

elements can be represented as subsets. Clearly, such a cover when we

consider subsets is also a cover with respect to the codewords represented

by these subsets, but not the converse (this means that a codeword c in an e-

perfect code C can cover x, i.e., d(c, x) ≤ e, but c does not cover (contain) x

when c and x are considered as subsets). When the word “cover” is used,

the related meaning should be understood from the context.

Finally, a perfect code is related to the concept of tiling mentioned

before. This concept can be generalized as follows. A tiling (of a finite

space V) is a set

T � {S1, S2, . . . , Sm}
such that Si ∩ Sj = ∅ for 1 ≤ i < j ≤ m, and V =

⋃m
i=1 Si. Such a tiling

can also be used in the direct product construction and the general product

construction. This definition will be further generalized in Chapter 11 for

the infinite space V = Z
n. If C is an e-perfect code, then the set

{Be(c) : c ∈ C},
i.e., the balls with radius e around the codewords of C form a partition

of V, i.e., form a tiling of V. Do we have similar tilings for diameter perfect
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codes? This question will be discussed during our exposition on anticodes

and diameter perfect codes in various metrics.

2.5 Notes

Definitions for finite fields, linear codes, and nonlinear codes can be found

in all the books on coding theory mentioned in Section 1.1.

Section 2.1. Theorem 2.1 is credited to [Singleton (1964)] who called

those codes that meet the bound MDS codes. The bound, however, was

published at the same time in [Golomb and Posner (1964)]. The latter

obtained their results a couple of years earlier and presented them in tech-

nical reports. MDS code will be used throughout the book, as designs in

Chapter 3, as diameter perfect codes in Chapter 4, and as building blocks

for nonbinary diameter constant-weight codes in Chapter 9. The Singleton

bound will be adapted to nonbinary constant-weight codes in Chapter 9,

to rank-metric codes and to subspace codes in Chapter 10, and to burst-

correcting codes in Chapter 13. Related names will be given to codes which

meet the corresponding bounds.

The concept of tiling is strongly related to perfect codes. A perfect code

defines a tiling and some tilings with specified properties can be constructed

from perfect codes with related properties. These tilings in binary spaces

were considered in [Cohen, Litsyn, Vardy, and Zémor (1996)] and further

investigated in [Etzion and Vardy (1998); Österg̊ard and Vardy (2004)].

The two product constructions have appeared with many variants in

many papers throughout the years. They will be used in many chapters

throughout the book. Their use in coding theory and especially for per-

fect codes can be attributed for example to [Phelps (1983, 1984b)] who also

gave a general construction for codes that are not necessarily perfect [Phelps

(1984a)]. Direct product constructions were given for error-correcting codes

and for covering codes. We will present a combined construction for error-

correcting codes and for covering codes in Chapter 6. Finally, the two im-

portant Johnson bounds were proved for the first time by [Johnson (1972)].

Section 2.2. For finite field, the reader can consult the excellent book

by [Lidl and Niederreiter (1997)].

Section 2.4. There are a few surveys on perfect codes and we mention

the ones of [van Lint (1975)] and [Heden (2008)]. The concept of perfect

codes in graphs was introduced in [Biggs (1973)]. His work was mainly
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presented for distance-transitive graphs. Many other related results on

perfect codes in graphs were subsequently published: [Biggs (1974); Heden

(1974); Hammond and Smith (1975); Hammond (1976); Cameron, Thas,

and Payne (1976); Thas (1977); Smith (1980); Kratochvil (1985, 1986);

Etienne (1987); Kratochvil (1988); Mollard (2011)].

It should be noted that perfect codes in graphs are also connected to

algebraic graph theory for which there are two excellent books [Biggs (1993)]

and [Godsil and Royle (2001)].

The concept of diameter perfect codes was introduced in [Ahlswede, Ay-

dinian, and Khachatrian (2001)], where they first proved the local inequality

lemma for the Johnson scheme. Their proof will be presented in Section 8.8.

They claimed that the proof can be generalized for each metric whose graph

admits a transitive group of automorphisms, but no proof was given in the

paper. The proof that we give for this lemma (Lemma 2.14), which can also

be applied to other different metrics, is different and does not depend on the

structure of the graph (e.g., a distance-regular graph). It depends only on

the basic properties of the metric (right invariant or left invariant, a binary

operation ◦ with an inverse for each element of V, etc.). Our proof does

not hold for all metrics (even not for all metrics based on distance-regular

graphs) and hence different alternative proofs should be generated and will

be given for some metrics, discussed in this book. The code-anticode bound

(Corollary 2.15) was first proved in the seminal work of [Delsarte (1973)]

for metrics defined by distance-regular graphs that are related to associa-

tion schemes (see Section 3.5). The proofs given in [Ahlswede, Aydinian,

and Khachatrian (2001)] and in this chapter are simpler and more general

than the one presented in [Delsarte (1973)]. Another interesting variant

of the lemma was introduced in [Krotov, Österg̊ard, and Pottonen (2016)].

The variant of the proof given for Lemma 2.14 is similar to the ones pre-

sented in [Etzion (2011); Buzaglo and Etzion (2015)]. The metric discussed

in [Buzaglo and Etzion (2015)] is the Kendall τ -metric on the set of all

permutation on n elements. Another proof for the code-anticode bound

when the space is the set of permutations and the metric is the L∞ was

given by [Tamo and Schwartz (2010)]. For these two metrics, the binary

operation is a multiplication of permutations. This operation in these met-

rics form examples of right distance invariant metrics which are not left

distance invariant. These are examples of metrics which have some impor-

tant applications from a practical point of view and some interesting and

not standard properties from a theoretical point of view. It will not be

discussed in our book, but the exposition in [Tamo and Schwartz (2010);
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Schwartz and Tamo (2011); Buzaglo and Etzion (2015)] suggests that there

are many interesting questions related to these metrics and perfect codes.

The search for maximum size anticodes is an interesting topic in it-

self. As was pointed out in [Ahlswede, Aydinian, and Khachatrian (2001)],

it is related to finding the maximum size of intersecting families. Some

relevant references for each metric will be cited in the related chapters.

Anticodes have some other applications in coding theory, e.g., to construct

some codes that attain some bounds in coding theory (see Section 3.4).

They also have an important role in associative memories [Yaakobi and

Bruck (2019)]. They are considered also in some important space metrics

which are not discussed in our book. For example, when the space is the set

of permutations on n elements Sn there are many metrics defined on this

set. Anticodes for the L∞ metric were considered in [Schwartz and Tamo

(2011)] and anticodes for the Kendall τ -metric were discussed in [Buzaglo

and Etzion (2015)]. Other coding problems on anticodes in the Euclidian

space were considered, for example, in [Blackburn, Etzion, Martin, and

Paterson (2010)].
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Combinatorial Designs and Bounds

This chapter is devoted to combinatorial designs and bounds on the sizes

of codes. Combinatorial designs are highly related to perfect codes and will

be considered throughout the book. The bounds which will be considered

are for parameters where perfect codes cannot exist. The bounds which

will be presented will be attained by combinatorial designs and anticodes

and hence the topics of this chapter are tied together. This chapter is a

relatively short introduction for these topics.

Combinatorial designs form a branch in combinatoric with an extensive

theory, many applications in variety of areas, such as cryptography, designs

of experiments, software testing, group testing, biostatistics, and, of course,

coding theory and, especially, perfect codes in various metrics. Some of

these designs resemble perfect codes and indeed some are diameter perfect

codes. Other are embedded in perfect codes or used as building blocks

for perfect codes. The first part of this chapter is devoted to some basic

definitions and results on combinatorial designs that will be used in the

chapters that follow. The bounds that are attained by the different types

of perfect codes (the sphere-packing bound or the code-anticode bound)

cannot be attained for most parameters for different reasons. There are

bounds that improve on these two bounds and they are the topic of the

second part of this chapter.

Section 3.1 will be devoted to Steiner systems that are used in many

chapters and will be proved to be diameter perfect codes in Chapter 8.

Orthogonal designs presented in Section 3.2. They form diameter perfect

codes as will be discussed in Section 4.3. Section 3.3 will be devoted to

projective geometries that are very useful in construction of block designs

and codes and also in techniques to obtain upper bounds on the sizes of

codes. Section 3.4 is devoted to some upper bounds on codes size, which

47
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are important in our context. These bounds include codes for which the

distance is very large compared to their length, and a generalization of the

Singleton bound in the binary case. Structures such as Hadamard matrices

and anticodes can be used to meet these bounds and they will also be

discussed. Section 3.5 offers a brief introduction to association schemes,

which can be used in coding theory as foundations to find bounds on the

largest possible size of codes in some metrics.

3.1 Steiner Systems and Generalized Steiner Systems

Block designs form the main structures in combinatorial designs. They

appear in this book in various connections to perfect codes. Some of them

will form diameter perfect codes, some of them will be embedded in perfect

codes, and some will be used to form codes that meet certain bounds.

Nonexistence results based on block designs will also be presented. The

most celebrated family of block designs with respect to perfect codes are

Steiner systems.

Definition 3.1. A Steiner system S(t, k, n) is a pair (Q,B), where Q is

an n-set, whose elements are called points, andB is a collection of k-subsets

of Q, called blocks, such that each t-subset of Q is contained in exactly

one block of B.

There are a few trivial necessary conditions for the existence of Steiner

systems.

Lemma 3.1. The number of blocks in a Steiner system S(t, k, n) is
(
n
t

)
/
(
k
t

)
.

Proof. The number of distinct t-subsets in a block (a k-subset) is
(
k
t

)
. The

total number of distinct t-subsets in an n-set is
(
n
t

)
. Since each t-subset is

contained in exactly one block, it follows that the number of blocks in a

Steiner system S(t, k, n) is
(
n
t

)
/
(
k
t

)
.

Using characteristic vectors, sets are transferred into vectors and sets of

blocks into codes. For a Steiner system, this implies the following result.

Proposition 3.1. The characteristic vectors of the blocks in a Steiner sys-

tem S(t, k, n) form a binary (n, 2(k − t + 1), k) constant-weight code with(
n
t

)
/
(
k
t

)
codewords. This code meets a trivial packing bound and also meets

a trivial covering bound for constant-weight codes (packing and covering of

t-subsets by k-subsets of an n-set).
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Steiner systems by their definition behave like perfect codes as we will

see later on in the book. When we consider a transmission of the character-

istic vectors of a Steiner system S(t, k, n) and exactly k − t errors, of ones

that were changed to zeroes, occurred, then we receive a word of length n

and weight t. Any such word of length n and weight t can be uniquely

decoded into the original characteristic vector of length n and weight k.

Therefore, these (Steiner systems) are constant-weight codes that correct

asymmetric errors. They form perfect codes in the sense that any word of

weight t can be received, when exactly k−t errors occurred. Any such word

of weight t can be received after transmission and it is uniquely decoded

into a codeword of weight k.

The next result can be compared with the Johnson bound of Lemma 2.4.

Lemma 3.2. If there exists a Steiner system S(t, k, n), t > 1, then there

exists a Steiner system S(t− 1, k − 1, n− 1).

Proof. Let S = (Q,B) be a Steiner system S(t, k, n), where t > 1

and Q = {1, 2, . . . , n}. Define the system S ′ = (Q′, B′), where

Q′ = {1, 2, . . . , n− 1} and

B′ � {X ∩Q′ : X ∈ B, n ∈ X} .

One can easily verify that S ′ is a Steiner system S(t− 1, k − 1, n− 1).

Corollary 3.1. A necessary condition that a Steiner system S(t, k, n) exists

is that all the numbers
(n−i
t−i)
(k−i
t−i)

, 0 ≤ i ≤ t− 1, are integers.

Given a Steiner system S(t, k, n), the Steiner system S(t−1, k−1, n−1)

is called the derived system .

We are interested in parameters for which Steiner systems exist. As

in perfect codes, there are trivial Steiner systems S(t, k, k) and S(k, k, n).

The next question is whether the necessary conditions of Corollary 3.1

are also sufficient? There are parameters for which these necessary con-

ditions are also sufficient. For example, if k divides n, then it is easy to

construct a Steiner system S(1, k, n), and Lemma 3.1 and Corollary 3.1

imply that such a system exists only if k divides n. Let us now consider

the existence of a Steiner system S(t, k, n) when k = t + 1. When t = 2

and k = 3, Corollary 3.1 implies that 3 divides
(
n
2

)
and 2 divides n− 1.

This immediately implies that n is odd and 6 divides (n − 1)n. Clearly,

it follows that n ≡ 1 or 3 (mod 6). Such systems are relatively easily con-

structed. If t = 3, k = 4, then a Steiner system S(3, 4, n) exists if and
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only if n ≡ 2 or 4 (mod 6). The necessary conditions are derived eas-

ily from Corollary 3.1, while constructions for all parameters are slightly

more difficult. Similarly, a Steiner system S(2, 4, n) exists if and only if

n ≡ 1 or 4 (mod 12). There are many constructions for infinite families of

Steiner systems S(2, k, n), k > 4 and except for a finite number of excep-

tions, the necessary conditions are also sufficient.

There are a few families of Steiner systems that are based on finite

geometries. These geometries are discussed in Section 3.3. Such systems

are the Steiner systems S(2, q, qn) (affine geometries), S(3, q + 1, qn + 1)

(spherical geometries), S(2, q+ 1, (qn − 1)/(q− 1)) (projective geometries),

S(2, q + 1, q3 + 1) (unitals), for each prime power q and n ≥ 2.

For t ≥ 5, only 12 nontrivial Steiner systems were constructed un-

til 2021. These systems are the Steiner systems S(5, 6, 12), S(5, 6, 24),

S(5, 8, 24), S(5, 7, 28), S(5, 6, 36), S(5, 6, 48), S(5, 6, 72), S(5, 6, 84),

S(5, 6, 108), S(5, 6, 132), S(5, 6, 168), S(5, 6, 244). For t = 4, there are no

new systems, except for the related derived systems.

Problem 3.1. Present new constructions for Steiner systems S(t, k, n),

where t > 3.

Problem 3.2. Present a construction for an infinite family of Steiner sys-

tems S(t, k, n), where t > 3.

Of special interest is the Steiner system S(5, 6, 12) for which there are

many different constructions. The reader is encouraged to find some con-

structions for this system. The following method is a construction for this

system, but as it has a random step there is no proof that this system is

always generated. This interesting construction that seems to work is the

following one. Let Γ = (V, E) be the graph whose set of vertices V consists

of the
(
12
6

)
= 924 vertices represented by the 6-subsets of a 12-set. Let

E � {{x, y} : x, y ∈ V, |x ∩ y| = 5}. Apply the following simple algo-

rithm. At each step we have a set of vertices U and a set of 6-subsets S,

where initially U � V and S � ∅. At the general step of the algorithm

search for a vertex u ∈ U whose degree in the subgraph of Γ induced by U

is minimal (if a few such vertices exist, then choose one of them in random).

Set S := S ∪ {u} and U := U \ ({u} ∪ {x : {x, u} ∈ E}). The algorithm

terminates when U is an empty set.

Problem 3.3. Prove that when the algorithm terminates, the set S is a

Steiner system S(5, 6, 12) or show an instance of the algorithm where S is

not a Steiner system.
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It is interesting to note that when a similar algorithm is applied on the

5-subsets of an 11-set, the outcome is not necessarily the Steiner system

S(4, 5, 11).

Based on probabilistic arguments, it was proved that for any given

pair (t, k), for large enough n, the necessary conditions of Corollary 3.1

are also sufficient. Unfortunately, this n is an astronomic integer, beyond

our imagination, and cannot be of any help for any practical use. Never-

theless, this probabilistic proof has closed a previous debate on whether

the necessary conditions of Corollary 3.1 are sufficient and infinitely many

Steiner systems S(t, k, n) exist for any given pair (t, k), where t < k.

Steiner systems form a small subfamily of a larger family of designs

called block designs. A block design Sλ(t, k, n) is a pair (Q,B), where

Q is an n-set whose elements are called points and B is a collection of

k-subsets, called blocks, of Q, such that each t-subset of Q is contained in

exactly λ blocks of B. The questions about the block designs, with λ > 1,

which are embedded in codes have always been interesting for all codes,

but we will not discuss them.

It should be noted that any block design Sλ(t, k, n) can be described

by a matrix called the incidence matrix of the design. This incidence

matrix A has n rows indexed by the points Q and λ
(
n
t

)
/
(
k
t

)
columns indexed

by the blocks of B. The matrix A is a (0, 1) matrix, where Ai,j = 1 if and

only if the i-th point of Q is contained in the j-th block of B. This incidence

matrix and its transpose have many interesting properties that also depend

on the design, but we will not go further in this direction, except for one

more definition.

Let S = (Q,B) be a block design Sλ(t, k, n) with an incidence matrix A.

The dual design is the design defined by the incidence matrix Atr.

Steiner systems have a role in perfect codes since they are embedded

in many such codes as we will see in the following chapters. General block

designs that are not Steiner systems are of less importance in our context.

If a Steiner system behaves like a perfect code (and it is a diameter

perfect code as will be proved in Section 8.8), it is natural and important

to ask whether such systems have the space tiling property. For this we

have the following definition. A large set of Steiner systems S(t, k, n) is

a set of pairwise disjoint Steiner systems S(t, k, n) such that their union is

the set of all
(
n
k

)
k-subsets of the n-set Q. Do such large sets exist? The

answer is yes, for at least some parameters. A simple example is a large set

of Steiner systems S(1, 2, n), n even, known also as a one-factorization

of the complete undirected graph Kn on n vertices. For even n, let Zn be
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the vertices of Kn and let {{x, y} : 0 ≤ x < y < n} be the set of edges.

Define

F � {F0,F1, . . . ,Fn−2},

where for 0 ≤ i ≤ n− 2,

Fi � {{x, y} : 0 ≤ x < y < n− 1, x+ y ≡ i (mod n− 1)}

∪{{i/2 (mod n− 1), n− 1}} .

It is readily verified that F is a large set of Steiner systems S(1, 2, n).

Steiner systems are associated with binary constant-weight codes as

implied by Proposition 3.1. There is a similar definition for nonbinary

constant-weight codes.

Definition 3.2. A generalized Steiner system GS(t, k, n, q) is a

constant-weight code C, over an alphabet Q of size q, whose length is n

and weight k for each codeword, such that:

(1) The minimum Hamming distance of C is 2(k − t) + 1.

(2) Each word v of length n and weight t over Q is covered by exactly one

codeword c ∈ C, i.e., d(v, c) = k − t.

The two required properties of Definition 3.2 form a generalization for

the Steiner systems in terms of exact covering and minimum Hamming

distance as implied by Proposition 3.1. Note that the minimum distance

2(k − t) + 1, which is required by the first property, is the largest possible

distance if q > 2. The reason is that if we consider two words of length n

and weight t that differ in exactly one coordinate, which is possible since

q > 2, then two different codewords c1 and c2 should cover them. The

Hamming distance between two such words c1 and c2, of weight k, is at

most 1 + 2(k − t), since they share at least t coordinates with nonzero

symbols from which exactly t− 1 have the same symbols.

What are the necessary conditions for the existence of such systems?

For which parameters do they exist? We start by generalizing the necessary

conditions of Corollary 3.1 for the existence of a Steiner system. The proofs

are similar to the ones for a Steiner system and are left as an exercise for

the reader.

Lemma 3.3. The number of blocks in a generalized Steiner system

GS(t, k, n, q) is
(nt)
(kt)

(q − 1)t.
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Lemma 3.4. If there exists a generalized Steiner system GS(t, k, n, q),

t > 1, then there exists a generalized Steiner system GS(t−1, k−1, n−1, q).

Corollary 3.2. A necessary condition for a generalized Steiner system

GS(t, k, n, q) to exist is that all the numbers
(n−i
t−i)
(k−i
t−i)

(q − 1)t−i, 0 ≤ i ≤ t− 1,

are integers.

To consider a more specific case, let t = 1 which is a trivial case for

Steiner systems, but it is not as trivial for generalized Steiner system. In

this case we will consider a simple lower bound and a simple upper bound

on n, given w and q, for a generalized Steiner system GS(1, w, n, q).

Theorem 3.1. If there exists a generalized Steiner system GS(1, w, n, q),

then n ≤ wA(n,2w−2,w)
q−1 and n ≥ 1 + (w − 1)(q − 1).

Proof. Since the minimum Hamming distance of a generalized Steiner sys-

tem GS(1, w, n, q) is 2w−1, it follows that two codewords can share at most

one coordinate with a (distinct) nonzero symbol and hence the supports of

the codewords form a binary constant-weight code of weight w and min-

imum distance 2w − 2. Hence, the size of a generalized Steiner system

GS(1, w, n, q) is at most A(n, 2w−2, w), and the number of nonzero entries

in all the codewords is at most wA(n, 2w − 2, w). Since each coordinate

must have exactly one codeword which each of the q − 1 nonzero alphabet

letters we must have n ≤ wA(n,2w−2,w)
q−1 .

Now, there are q − 1 codewords which have a nonzero symbol in the

first coordinate, each one having a different symbol in the first coordi-

nate, and other than the first coordinate they do not share any of the

other w − 1 coordinates with nonzero symbols. Hence, we have that

n ≥ 1 + (w − 1)(q − 1).

If t = 2 and k = 3. If q = 2, then a generalized Steiner system

GS(2, 3, n, 2) is simply a Steiner system S(2, 3, n) and it exists if and only

if n ≡ 1 or 3 (mod 6). When q > 2, the divisibility conditions are slightly

different and also the minimum distance of the code should be taken into

account. The following theorem does not take into account the requirement

of the minimum distance.

Theorem 3.2. A necessary condition for the existence of a generalized

Steiner system GS(2, 3, n, q) is that n ≥ q + 1 and for q �≡ 1 (mod 6) we

have the following requirements.



February 21, 2022 16:26 ws-book9x6 Perfect Codes and Related Structures Perfect˙Codes˙Main page 54

54 Perfect Codes and Related Structures

(c.1) If q ≡ 4 (mod 6), then n ≡ 1 (mod 2).

(c.2) If q ≡ 3 or 5 (mod 6), then n ≡ 0 or 1 (mod 3).

(c.3) If q ≡ 0 or 2 (mod 6), then n ≡ 1 or 3 (mod 6).

If q ≡ 1 (mod 6), then n ≥ q + 1 is a necessary condition for the existence

of GS(2, 3, n, q).

Proof. Let C be a generalized Steiner system GS(2, 3, n, q) and consider

first the set of q − 1 codewords

T � {(1, i, x3, . . . , xn) : i ∈ Z
−
q }.

Since the minimum Hamming distance of C is 3, it follows that the third

nonzero symbol in each codeword of T must be in a different coordinate.

This implies that n− 2 ≥ q − 1, i.e., n ≥ q + 1.

Now note that with the assignment i = 1 in Corollary 3.2, we have that

2 divides (n − 1)(q − 1), i.e., either n or q should be an odd integer. The

assignment i = 0 in Corollary 3.2 implies that 6 divides (n− 1)n(q − 1)2.

If q ≡ 1 (mod 6), then 6 divides q− 1 and hence no more conditions are

required.

If q ≡ 4 (mod 6), then 3 divides q− 1 and hence we should only require

that n be odd and, therefore, (c.1) is proved.

If q ≡ 3 or 5 (mod 6), then 3 does not divide q − 1 and hence it should

divide (n − 1)n, which implies that n ≡ 0 or 1 (mod 3) and, therefore,

(c.2) is proved.

If q ≡ 0 or 2 (mod 6), then n must be odd, since 2 does not divide q−1,

and 6 must divide (n − 1)n, which implies that n ≡ 1 or 3 (mod 6), and,

therefore, (c.3) is proved.

There are many constructions for generalized Steiner systems

GS(t, k, n, q), and especially for generalized Steiner systems GS(2, 3, n, q),

but in contrast to the binary case, in the nonbinary case, there is no com-

plete solution to generalized Steiner systems GS(2, 3, n, q) for all q > 2.

Moreover, for a given pair (t, k), where t < k, there are many associated

open problems. These systems play an important role in nonbinary diam-

eter perfect constant-weight codes as will be discussed in Chapter 9. On

the other hand, the knowledge on these codes is not as much as known on

Steiner system and research in this direction seems to be appealing. The

following problems represent a small sample of such open problems (more

problems appear in Chapter 9).

Problem 3.4. Prove that the necessary conditions for the existence of gen-

eralized Steiner systems GS(2, 3, n, q) are also sufficient for any given q, with
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a possible small number of exceptions. Can these exceptions be specified?

The necessary conditions by Corollary 3.2 for the existence of a gener-

alized Steiner system GS(3, 4, n, 3) implies that n ≡ 1 or 2 (mod 3). There

are known constructions for generalized Steiner systems GS(3, 4, n, 3) only

when n ≡ 2 or 4 (mod 6). Moreover, GS(3, 4, n, q), where q > 3, has not

been considered yet as of 2021.

Problem 3.5. Are the necessary conditions for the existence of a general-

ized Steiner system GS(3, 4, n, 3), where n ≡ 1 or 2 (mod 3), also sufficient?

Present constructions for generalized Steiner systems GS(3, 4, n, 3), to cover

the case when n ≡ 1 or 5 (mod 6).

Problem 3.6. Consider the existence question of generalized Steiner sys-

tems GS(3, 4, n, q), where q > 3.

When t > 3 we do not have any construction for generalized Steiner

systems GS(t, k, n, q). This leads to the following problems.

Problem 3.7. Analyze the necessary conditions of Corollary 3.2 for the

existence of generalized Steiner systems GS(t, k, n, q) and present them in

a simpler way as was done in Theorem 3.2.

Problem 3.8. Construct generalized Steiner systems GS(t, k, n, q), for

4 ≤ t < k < n and q > 2.

Another problem which was not touched as it looks to be very difficult

is whether there exist large sets of generalized Steiner systems. This prob-

lem might be not so difficult for some parameters and hence we have the

following research problem.

Problem 3.9. Construct large sets of generalized Steiner systems and es-

pecially large sets of generalized Steiner systems GS(1, k, n, q), for some k,

n, and q, and large sets of generalized Steiner systems GS(2, 3, n, q), for

some n and q.

Finally, Steiner systems have found applications in many problems re-

lated to coding theory and cryptography. We would like to see similar

applications for generalized Steiner system.

Problem 3.10. Find problems in coding theory where generalized Steiner

systems can be applied. Find nonbinary codes used in coding theory where

generalized Steiner systems are embedded. Find applications of generalized

Steiner systems in cryptography.
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3.2 Orthogonal Designs

Another family of combinatorial designs are the orthogonal designs. There

are a few types of orthogonal designs, some of which are of interest in the

context of perfect codes and other related codes.

An orthogonal array OAλ(t, n, q) is a (λq
t)×nmatrix A with elements

taken from a q-set Q such that each projection of t columns from A contains

each t-tuple with elements from Q exactly λ times. When λ = 1, the

orthogonal array is denoted by OA(t, n, q) and is called an orthogonal

array of index unity . It is easy to verify that the rows of such an

orthogonal array form a (n, qt, n − t + 1)q code. These orthogonal arrays

will be our main interest among all orthogonal arrays. The parameters of

these codes meet the Singleton bound of Theorem 2.1. This is summarized

in the following theorem.

Theorem 3.3. An orthogonal array OA(t, n, q) is equivalent to an

(n, qt, n− t+ 1)q code that meets the Singleton bound with equality.

Since by Theorem 3.3 an orthogonal array OA(t, n, q) is equivalent to

an (n, qt, n− t+ 1)q code, it follows that shortening can be applied on

orthogonal arrays. Therefore, by Lemma 2.2 we have the following two

consequences.

Corollary 3.3. If there exists an OA(t, n, q), then there exists an

OA(t− 1, n− 1, q).

Corollary 3.4. If there is no OA(t, n, q), then there is no OA(t+δ, n+δ, q)

for each δ ≥ 0.

A Latin square of order n is an n × n matrix with entries from an

n-set Q, such that each row and each column of the matrix is a permutation

of Q. A pair of n× n squares A and B with entries from Q are said to be

orthogonal if the set of ordered pairs {(A(i, j), B(i, j)) : 1 ≤ i, j ≤ n}
contains all the n2 possible ordered pairs of Q.

Lemma 3.5. The number of pairwise orthogonal Latin squares of order n

is at most n− 1.

Proof. Assume that there exists a set of k pairwise orthogonal Latin

squares of order n. W.l.o.g. assume that the first row of each square is

(1, 2, . . . , n). Note that in the second row, the first entry cannot be a one.

Moreover, since the pair (i, i), 1 ≤ i ≤ n, appears in the pairs associated
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with the first row of each two squares, it follows that two distinct squares

cannot have the same element in the first entry of the second row. There-

fore, there are n− 1 possible assignments for this entry, i.e., k ≤ n− 1.

Theorem 3.4. A set of k pairwise orthogonal n×n Latin squares exists if

and only if there exists an orthogonal array OA(2, k + 2, n).

Proof. Given k pairwise orthogonal Latin squares of order n, let A be the

n2 × (k + 2) matrix constructed as follows. The rows of A are indexed by

(i, j), 1 ≤ i, j ≤ n. The last two entries of the (i, j)-th row are (i, j). The

entry in the (i, j)-th row of the r-th column of A, 1 ≤ r ≤ k, will be the

(i, j)-th entry of the r-th Latin square. It is easy to verify that the array

A is an orthogonal array OA(2, k + 2, n).

Let A be an orthogonal array OA(2, k+2, n). A set of k pairwise disjoint

Latin squares is constructed in reverse order. The last two columns of A

have all the pairs (i, j), where 1 ≤ i, j ≤ n and hence we can order the rows

of A such that in the (i, j)-th row of A the pair (i, j) will be in the last two

columns. The (i, j)-th entry in the r-th Latin square, 1 ≤ r ≤ k, is defined

by the entry of the (i, j)-th row of the r-th column in A.

Corollary 3.5. If there exists an OA(2, n, q), then n− 1 ≤ q.

Applying also Corollary 3.3 we have the following consequence.

Corollary 3.6. If there exists an OA(3, n, 2), then n ≤ 4.

Example 3.1. The following 8× 4 array is an OA(3, 4, 2).

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

.

Corollary 3.6 is generalized with the following lemma.

Lemma 3.6. Assume there exists an OA(3, n, q), where q ≥ 2.

(1) If q is even, then n ≤ q + 2.

(2) If q is odd, then n ≤ q + 1.
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Proof. Note first that if there exists an OA(3, q + δ, q), where δ ≥ 3, then

there exists an OA(3, q + 3, q). Assume the contrary, that there exists an

OA(3, n, q), where n = q+3. This implies by Corollary 3.3 that there exists

an OA(2, q+2, q). Hence, by Theorem 3.4, there exists a set of q orthogonal

Latin squares of order q, contradicting Lemma 3.5 and therefore n ≤ q+2.

Assume now that there exists an OA(3, q + 2, q). Let A be such an

orthogonal array. Clearly, each symbol appears exactly q2 times in each

column of A, each pair of symbols is contained exactly q times in any

projection of an ordered pair of columns of A, and each ordered triple of

symbols is contained exactly once in the projection of three columns of A.

Clearly, a permutation on the symbols in a column of A yield an equiva-

lent OA(3, q+2, q). Hence, w.l.o.g. the first row of A consists only of zeroes.

This implies that each other row of A contains at most two zeroes. The

number of pairs of columns is
(
q+2
2

)
and each pair of zeroes must appear

in another q − 1 rows (in addition to the first row) in each projection of

a pair of columns. Hence, the total number of other rows that contain a

pair of zeroes is (q − 1)
(
q+2
2

)
. Each of the q + 2 columns contains q2 zeroes

and hence all the rows, except for the first row of zeroes, contain exactly

(q+2)(q2 − 1) zeroes. Since 2(q− 1)
(
q+2
2

)
= (q+2)(q2 − 1), it follows that

each row of A, other than the first row, either contains two zeroes or con-

tains no zeroes. Hence, there are q3− 1− (q− 1)
(
q+2
2

)
rows with no zeroes.

Since q3 − 1− (q− 1)
(
q+2
2

)
> 0, it follows that we can assume w.l.o.g. that

the second row of A has no zeroes and that all the symbols in this row are

ones (since the symbols in each column can be permuted independently

of the other columns). Two ones in the first two columns should appear

with a zero, in any given column, exactly in one row. Since each such row

contains exactly two zeroes, it follows that the number of columns, q + 2,

is divisible by 2, i.e., q is even. Thus, the claim of the lemma follows.

Lemma 3.6 is generalized with the following theorem.

Theorem 3.5. Assume there exists an OA(t, n, q), where 3 ≤ t ≤ q.

(1) If q is even, then n ≤ q + t− 1;

(2) If q is odd, then n ≤ q + t− 2.

Proof. By applying Corollary 3.3 on OA(t, n, q) t − 3 times yields an

OA(3, n − t + 3, q). By Lemma 3.6, this implies that if q is even, then

n− t+3 ≤ q+2, i.e., n ≤ q+ t− 1; and if q is odd, then n− t+3 ≤ q+1,

i.e., n ≤ q + t− 2.
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For t = 2, the result of Theorem 3.5 does not hold since the proof is

obtained by shortening the orthogonal array t − 3 times. The required

bound for t = 2 is given in Corollary 3.5. In Theorem 3.5 the cutoff point

is for t ≤ q. In the next two theorems the cutoff point is q ≤ t.

Theorem 3.6. If there exists an OA(t, n, q), where q ≤ t, then n ≤ t+ 1.

Proof. Assume the contrary, that q ≤ t, A is an OA(t, t + 2, q), and dis-

tinguish between three cases, depending on whether q = 2, q = 3, or q > 3.

To prove the theorem it suffices to find a contradiction in each case.

Case 1. q = 2.

By applying Corollary 3.3 t − 2 times on OA(t, t + 2, q) we obtain an

OA(2, 4, 2), contradicting Corollary 3.5.

Case 2. q = 3.

W.l.o.g. assume that the first 15 rows of the 3t × (t+ 2) array A are as

follows:

0 · · · 0 0 0 0 0 0

0 · · · 0 0 0 1 1 1

0 · · · 0 0 0 2 2 2

0 · · · 0 0 1 0 • •
0 · · · 0 0 1 • 0 •
0 · · · 0 0 1 • • 0
0 · · · 0 0 2 0 • •
0 · · · 0 0 2 • 0 •
0 · · · 0 0 2 • • 0
0 · · · 0 1 0 0 • •
0 · · · 0 1 0 • 0 •
0 · · · 0 1 0 • • 0
0 · · · 0 2 0 0 • •
0 · · · 0 2 0 • 0 •
0 · · · 0 2 0 • • 0

,

where the • stands for either 1 or 2. For a given pair (a, b), where

a, b ∈ {0, 1, 2}, and a or b is a zero, there are five words of the form

(

t−1 times︷ ︸︸ ︷
0 · · · · · · 0, a, b). Consider now the four rows with two •’s and a zero in

the last entry. These four rows share t − 2 identical coordinates (the first

t − 3 coordinates and the last one with zeroes) and hence their bullets

should be assigned the four distinct options of ones and twos. Two of these

four assignments (11 and 22), however, will create in two of these four
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rows the same projection of t columns with the second or the third row, a

contradiction.

The arguments hold for t ≥ 5 and to complete the proof we have to

show that there is no OA(3, 5, 3) and no OA(4, 6, 3). The nonexistence of

OA(3, 5, 3) is implied by Lemma 3.6 and hence by Corollary 3.4 it implies

that there is no OA(4, 6, 3). This also implies that there is no OA(t, t+2, q),

but the longer proof will serve us as introduction to the more complicated

case when q > 3.

Case 3. q > 3.

As in Case 2, we analyze the rows of the qt × (t+ 2) array A. Consider

all the rows of A with at least t−2 zeroes in the first t−1 columns. W.l.o.g.

assume that the first q rows of this form are in the set

A1 � {(
t−1 times︷ ︸︸ ︷
0 · · · · · · 0, i, i, i) : 0 ≤ i ≤ q − 1} .

For the other rows of A, there are t− 1 different possible positions for the

only nonzero symbol in the first t − 1 columns. This nonzero symbol can

be any one of the q− 1 nonzero symbols. Therefore, there are (q− 1)(t− 1)

distinct possible vectors formed from the first t − 1 positions in the rows

whose projection on their first t−1 columns has weight t−2. For each such

vector v, of length t − 1, each of the alphabet symbols can appear as the

last symbol in the row associated with v (whose prefix of length t− 1 is v).

Therefore, there are q(q− 1)(t− 1) rows in A whose projection on the first

t− 1 columns has weight t− 2. This set of q(q− 1)(t− 1) rows in A will be

denoted by A2. Thus, there are q + q(q − 1)(t− 1) rows in A with at least

t− 2 zeroes in the first t− 1 columns and these rows form the set A1 ∪A2.

Consider now the set A3 of 3(q− 1)(t− 1) rows of A2 with a zero in one

of the last three columns (note that each such row cannot have more than

one zero symbol in these three columns since this would form a projection

with t zeroes, which already appear in the all-zero row of A1).

Consider now the set A′3 of the other (q−3)(q−1)(t−1) rows of A2, i.e.,

A′3 � A2 \ A3. Let α be the nonzero symbol that appears most frequently

in the last column of A′3. Since each of the q − 1 nonzero symbols occurs

exactly once in each of the last three columns in each set of q rows having

the same (t − 1)-tuple in the first t − 1 columns, it follows that α (which

occurs most frequently) occurs at least (q − 3)(t − 1) times in these rows

of the set A′3 (note that there is no symbol β that can occur twice in the

last three entries of a row from A2, since A1 contains any projection of

t− 2 zeroes in the first t− 1 columns and the same symbol β in two of the

last three columns.).
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There are (q−2)2 pairs of symbols that do not contain a zero and an α.

To prevent a repeat of two identical t-tuples in A′3, distinct pair of symbols

((β, β) should be avoided) should be assigned before α in the rows of A′3
whose last entry is α. Note also that there is no zero in the last three entries

of these rows. Hence, the (q−2)2 pairs are assigned to q−2 rows of A1 (the

pairs (β, β) were assigned to q − 2 rows of A1) and the (q − 3)(t− 1) rows

of A′3 whose last entry is α. This implies that (q−2)+(q−3)(t−1) ≤ (q−2)2,
which is equivalent to 0 ≤ (q − 3)(q − t− 1). Since q > 3, this implies that

0 ≤ q − t− 1, i.e., t+ 1 ≤ q, a contradiction.

Theorem 3.7. There exists a set of n−1 pairwise orthogonal Latin squares

of order n if and only if there exists a Steiner system S(2, n+1, n2+n+1).

Proof. Assume first that there exists a set of n − 1 pairwise orthogonal

Latin squares of order n over the alphabet [n]. Add two more n × n

squares that are not Latin squares. The first one has the i-th symbol

in all the entries of the i-th row and the second one has the i-th sym-

bol in all the entries of the i-th column, where 1 ≤ i ≤ n. Clearly, the

n + 1 squares are pairwise orthogonal. We form a system S = (Q,B),

where Q = {(i, j) : 1 ≤ i, j ≤ n} ∪ [n + 1]. Enumerating the squares by

A1, A2, . . . , An+1, we form a set of n2 + n blocks, n blocks per square, as

follows. The �-th block, 1 ≤ � ≤ n, for the i-th square Ai is

{i} ∪ {(j,m) : Ai(j,m) = �}.

To these n2 + n blocks we add the block [n+ 1]. It is readily verified now

that these n2 + n+ 1 blocks form a Steiner system S(2, n+ 1, n2 + n+ 1).

For example, if in contrast, there exists two blocks that contain the

pairs {(j1,m1), (j2,m2)}, then there exist two squares Ai1 , Ai2 , where

1 ≤ i1 < i2 ≤ n+ 1, for which Ai1(j1,m1) = Ai1(j2,m2) = �1 and

Ai2(j1,m1) = Ai2(j2,m2) = �2, a contradiction to the orthogonality of Ai1

and Ai2 , which completes the first direction of the proof.

Assume now that there exists a Steiner system S(2, n + 1, n2 + n + 1),

S = (Q,B), where Q = {(i, j) : 1 ≤ i, j ≤ n} ∪ [n + 1] and w.l.o.g. we

assume that [n+1] is one of the blocks. This implies that each other block

contains at most one point from [n+1]. Each point of [n+1] must be paired

with each one of the points of Q exactly in one block and hence each point

of [n+ 1] is contained in exactly n blocks in addition to the block [n+ 1].

Consider the n such block which contain the point n + 1. The other n2

points in these blocks are the n2 distinct pairs of Q×Q. Therefore, we can
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permute the points in Q such that B will contain the n blocks

{n+ 1, (i, 1), (i, 2), . . . , (i, n)}, 1 ≤ i ≤ n. (3.1)

Now, consider the n blocks, different from [n + 1], which contain the

point n. For a given j, 1 ≤ j ≤ n, there is no block which contains the

pair of points {(j,m1), (j,m2)}, where 1 ≤ m1 < m2 ≤ n, since this pair

of points is contained in the blocks defined in (3.1). Therefore, we can

permute again the points of Q such that B will contain the same blocks as

in (3.1) and also n blocks

{n, (1, j), (2, j), . . . , (n, j)}, 1 ≤ j ≤ n. (3.2)

Define now n × n squares from the blocks of S in reverse order to the

blocks defined from n+1 pairwise orthogonal squares, from which n−1 are

Latin squares, which form a Steiner system S(2, n + 1, n2 + n + 1) in the

first part of the proof. The 2n blocks defined in (3.1) and in (3.2) will be

associated with two squares, one in which all the entries of the i-th row

contain the i-th symbol and a second in which all the entries of the i-th

column contain the i-th symbol for each 1 ≤ i ≤ n. The remaining n2 − n

blocks of B, excluding [n+1], define n−1 pairs of orthogonal Latin squares.

The 2n blocks defined in (3.1) and in (3.2) implies that these squares are

Latin squares and the fact that each pair of points is contained in exactly

one block of S implies that any two such squares are orthogonal. Note also

that the symbol j ∈ [n + 1], which is not in a pair, defines the index of

the square. Thus, n − 1 pairwise orthogonal Latin square of order n were

formed and the proof was completed.

Corollary 3.7. There exists an orthogonal array OA(2, n + 1, n) if and

only if there exists a Steiner system S(2, n+ 1, n2 + n+ 1).

Let S = (Q,B) be a Steiner system S(2, n+ 1, n2 + n+ 1) and A be its

incidence matrix. The transpose of A, Atr, is also an incidence matrix for a

design. By Lemma 3.1, The number of blocks in S is
(n

2+n+1
2 )

(n+1
2 )

= n2+n+1

and each point of Q is contained in n2+n
n = n + 1 blocks of B. Moreover,

by the definition of a Steiner system S(2, n + 1, n2 + n + 1), two distinct

blocks cannot contain the same pair of points. Hence, two distinct points

cannot be in the intersection of the same pair of blocks. This implies the

following important result.

Theorem 3.8. The dual design of a Steiner system S(2, n+ 1, n2 + n+ 1)

is also a Steiner system S(2, n+ 1, n2 + n+ 1).
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Does there exist a set of n − 1 pairwise orthogonal Latin squares of

order n? Such a set exists whenever n is a power of a prime. This set

is not always unique and one such set can be constructed as follows. Let

Q be the set of one-subspaces of F3
q, where q is a power of a prime, i.e.,

each one-subspace is a point. Let B be the set of blocks, where each block

contains the one-subspaces contained in a distinct two-subspace of F3
q, i.e.,

each two-subspace form a block. We claim that S = (Q,B) is a Steiner

system S(2, q + 1, q2 + q + 1). A one-subspace of F3
q contains q − 1 nonzero

elements of F3
q and hence there are q3−1

q−1 = q2+q+1 one-subspaces in F
3
q, i.e.,

|Q| = q2+q+1. A two-subspace contains q2−1 nonzero elements of F3
q and

hence it contains q2−1
q−1 = q+1 one-subspaces. Therefore, each block contains

exactly q + 1 points of Q. Each two distinct one-subspaces define a unique

two-subspace and hence each two points of Q are contained in a unique

block of B, which implies that S is a Steiner system S(2, q + 1, q2 + q + 1).

This implies the following theorem.

Theorem 3.9. If q is a power of a prime, then there exists a Steiner system

S(2, q + 1, q2 + q + 1).

By Theorem 3.7, a Steiner system S(2, q + 1, q2 + q + 1) exists if and

only if there exists a set with q − 1 pairwise orthogonal Latin squares of

order q. Moreover, the proof of Theorem 3.7 describes how to form this

set of Latin squares from a Steiner system S(2, q + 1, q2 + q + 1). This

construction and Theorems 3.3 and 3.4, tie together the relations between

Latin squares, Steiner systems, orthogonal arrays, and some codes that

meet the Singleton bound.

A related concept is the strength of a code of length n over an alpha-

bet with q letters. The strength of a code over an alphabet of size q, is

the largest t such that each projection of t columns contains each of the

qt possible t-tuples in the same number of rows. Clearly, such a code with

M codewords is an orthogonal array OAλ(t, n, q), where λ = M
qt .

Recall that by Theorem 2.1 an MDS code is an [n, k, d]q code C for

which k = n − d + 1, i.e., the code C attains the Singleton bound of The-

orem 2.1 with equality. In such a code C, any set of k columns in the

generator matrix are linearly independent and hence they form a set of

systematic coordinates. This implies that in each projection of k columns,

each k-tuple over Fq is contained exactly once. Thus, such an [n, k, d]q code

is an OA(k, n, q).
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Theorem 3.10. If C is an [n, k, d] code, then the following properties are

equivalent:

(1) the code C is an [n, k, n− k + 1] MDS code;

(2) every k columns of a generator matrix G of C are linearly independent;

(3) every n− k columns of a parity-check matrix H of C are linearly inde-

pendent;

(4) the dual code C⊥ is an [n, n− k, k + 1] MDS code.

Proof. We will prove that (1) ⇒ (2), (2) ⇒ (3), (3) ⇒ (4), and (4) ⇒ (1).

Assume that C is an [n, k, n − k + 1] code and let G be a generator

matrix of C. Let S be any set of k columns of C. If these k columns are

linearly dependent, then the k× k matrix of G defined by the projection of

the columns of S on G is a singular matrix. Hence, there exists a nontrivial

linear combination of the rows of G in which the k entries of S are zeroes.

Therefore, there exists a nonzero codeword c ∈ C, with zeroes in these

entries, i.e., the weight of c is at most n−k, which contradicts the minimum

distance of C. Thus, every k columns of a generator matrix G of C are

linearly independent. Hence, (1) ⇒ (2).

Assume now that every k columns of a generator matrix G are linearly

independent. Recall that the structure of the generator matrix G and the

parity-check matrix H of the code can be taken as

G = [ Ik | A ] ,

and

H =
[
−Atr | In−k

]
.

In other words, if S is a set of k columns indices, in G, which are linearly

independent, then the columns whose indices are [n] \ S, in H are also

linearly independent since we can always write an equivalent generator

matrix whose projection on the columns of S is an identity matrix. Thus,

since every k columns of G are linearly independent, it follows that every

n− k columns of H are linearly independent. Therefore, (2) ⇒ (3).

Assume now that every n− k columns of a parity-check matrix H of C
are linearly independent. Let C⊥ be that dual code of C. Similarly to the

previous part of the proof, it follows that in G, which is the parity-check

matrix of C⊥, each k columns are linearly independent. Therefore, the

minimum number of linearly dependent columns in G is k + 1. Thus, by

Corollary 2.11, C⊥ is an [n, n − k, k + 1] MDS code. This implies that

(3) ⇒ (4).



February 21, 2022 16:26 ws-book9x6 Perfect Codes and Related Structures Perfect˙Codes˙Main page 65

Combinatorial Designs and Bounds 65

Now assume that C⊥ is an [n, n− k, k + 1] MDS code. By the previous

parts of the proof, this implies that every n − k columns of the generator

matrix of C⊥ are linearly independent. Therefore, every n − k columns of

the parity-check matrix of C are linearly independent, i.e., the minimum

number of dependent columns in the parity-check matrix of C is n− k+ 1.

Thus, C is an [n, k, n− k + 1] MDS code. As a consequence (4) ⇒ (1).

Thus, all four properties laid out in the theorem are equivalent.

Note that the only distinction between the concepts of MDS codes and

orthogonal arrays is that orthogonal arrays do not have to be linear sub-

space. The following conjecture is known as the MDS conjecture .

Conjecture 3.1. If d ≥ 3, then for a prime power q there exists an [n, k, d]q
MDS code if and only if n ≤ q + 1 and 2 ≤ k ≤ q − 1, unless q is even and

k ∈ {3, q − 1}, in which case n ≤ q + 2.

The last family of orthogonal designs that we define is Hadamard ma-

trices, which are n × n matrices over the set of real numbers having the

largest possible determinants, nn/2, among all n× n matrices with real en-

tries between −1 and 1. The equivalent definition for these matrices is the

one required in our exposition.

Definition 3.3. A Hadamard matrix of order n is an n × n binary

matrix H over {−1,+1} such that HtrH = nIn.

A normalized Hadamard matrix is a Hadamard matrix in which

the first row and the first column have only +1’s. One can readily verify

that each Hadamard matrix can be made a normalized Hadamard matrix

by multiplying each row and column starting with a −1 by −1.

Theorem 3.11. If a Hadamard matrix of order n exists, then n is 1, 2, or

a multiple of 4.

Proof. Clearly, Hadamard matrices of orders 1 and 2 exist. It is also

easy to verify that a Hadamard matrix of order 3 does not exist. If

n > 3 and a Hadamerd matrix H of order n exists, w.l.o.g. assume

that H is a normalized Hadamard matrix and consider the first three rows

of A. The triples, generated by the columns, in these three rows can be

(+1,+1,+1)tr, (+1,+1,−1)tr, (+1,−1,+1)tr, or (+1,−1,−1)tr. Assume

that there are i1 triples of the form (+1,+1,+1)tr, i2 triples of the form

(+1,+1,−1)tr, i3 triples of the form (+1,−1,+1)tr, and i4 triples of the



February 21, 2022 16:26 ws-book9x6 Perfect Codes and Related Structures Perfect˙Codes˙Main page 66

66 Perfect Codes and Related Structures

form (+1,−1,−1)tr. Since HtrH = nIn implies that each two distinct rows

are orthogonal, i.e., their inner product is equal to zero, it follows that

i1 + i2 − i3 − i4 = 0, from the first row and second row,

i1 − i2 + i3 − i4 = 0, from the first row and third row,

i1 − i2 − i3 + i4 = 0, from the second row and third row.

The solution for this set of three equations implies that i1 = i2 = i3 = i4,

i.e., n is divisible by 4.

There are many constructions for Hadamard matrices and it is conjec-

tured that for each n divisible by 4, there exists such a matrix. There are

many applications for Hadamard matrices in coding theory as well as in

other areas.

The most celebrated construction of Hadamard matrices is Sylvester’s

construction, which is a simple doubling construction. Let H be any n× n

Hadamard matrix. The following matrix[
H H

H −H

]
is a (2n)× (2n) Hadamard matrix.

This construction immediately yields a Hadamard matrix for each power

of 2 order, but it is also applied to other orders for which Hadamard matrices

are known to exist.

The Sylvester’s construction can be generalized as follows. Let A by

an n × n Hadamard matrix and B be an m ×m Hadamerd matrix. The

Kronecker product of A and B defined by⎡
⎢⎢⎢⎣
a11B a12B · · · a1nB
a21B a22B · · · a2nB
...

...
. . .

...

an1B an2B · · · annB

⎤
⎥⎥⎥⎦

is an (nm) × (nm) Hadamard matrix. It generalizes the Sylvester’s con-

struction by taking the 2× 2 Hadamard matrix

A =

[
1 1

1 −1

]
in the Kronecker product.
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Let Hn be a normalized Hadamard matrix of order n and let An be

the code obtained from the matrix Hn by replacing each +1 by a zero

and each −1 by a one, where the rows of the matrix are the codewords

of An. The matrix An is called a binary Hadamard matrix and its

first row and first column contain only zeroes. Since any two distinct rows

of Hn are orthogonal, it follows that they agree in n
2 coordinates and do not

agree in n
2 coordinates. Hence, we have that An forms a binary (n, n, n

2 )

code. The code An is just one of a few codes that can be derived from a

Hadamard matrix. The most obvious codes are the following four codes,

called Hadamard codes, and which are obtained from the normalized

Hadamard matrix Hn and its associated binary Hadamard matrix An.

(1) The code Λn consists of the rows of An and their complements.

(2) The code Υn is the punctured code, obtained from the rows of An, with

respect to the first coordinate.

(3) The code Ψn is the punctured code of Λn, with respect to the first

coordinate, i.e., it is constructed from the codewords of Υn and their

complements.

(4) The code Φn is the shortened code of Υn, with respect to any coordi-

nate.

One can easily verify the parameters of the Hadamard codes given in

the following theorem.

Theorem 3.12. Assume Hn is an n× n normalized Hadamard matrix.

(1) Λn is a binary (n, 2n, n
2 ) code.

(2) Υn is a binary (n− 1, n, n
2 ) code.

(3) Ψn is a binary (n− 1, 2n, n
2 − 1) code.

(4) Φn is a binary (n− 2, n
2 ,

n
2 ) code.

Hadamard codes will play a pivotal role in constructing codes which

meet the Plotkin bound presented in Section 3.4.

3.3 Projective Geometries

Projective geometries were already mentioned in the connection of some

infinite families of Steiner systems. These geometries are also very im-

portant in connection to other families of codes. One example are codes

that meet the bound of Theorem 2.1 and also meet the bound implied by
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Conjecture 3.1 for all parameters. In other words, the work on the MDS

conjecture can be explained in terms of projective geometry.

Definition 3.4. A finite projective geometry consists of a set of points

and a set of lines with the following four axioms:

• Every line contains at least three points.

• Every two distinct points are contained in exactly one line.

• If p, q, r, are distinct points on a line L1 and s, t, and r are distinct

points on another line L2, then the line L3, which contains the points

p and s, and the line L4, which contains the points q and t, contain a

common point.

• Given a line L, there are two points not on L, and, for each point p,

there are two lines that do not contain p.

A subspace in the projective geometry P is a set S of points, where

all the points on a line L that contains two distinct points p and q of S,

are contained in S. In other words, if a line L contains two points of S,

then S contains all the points of L. A hyperplane H is a subspace, where

the only subspace that contains H and does not equal to H is the set of

all points in P. A set of points S is called independent if each point

x ∈ S is not contained in the smallest subspace that contains S \ {x}. The
dimension of a subspace S is m, where m+1 is the size of the largest set

of independent points in S.

The most important example of a finite projective geometry is the pro-

jective geometry PG(m, q), where q is a power of a prime and m ≥ 2.

The points of PG(m, q) are (m+1)-tuples (a0, a1, . . . , am), ai ∈ Fq, where

(a0, a1, . . . , am) is considered to be the same point as (λa0, λa1, . . . , λam),

for any λ ∈ F
−
q . A line through the two distinct points (a0, a1, . . . , am) and

(b0, b1, . . . , bm) consists of the points (λa0+μb0, λa1+μb1, . . . , λam+μbm),

where λ, μ ∈ Fq and λ �= 0 or μ �= 0. A hyperplane in PG(m, q) is an

(m− 1)-subspace that consists of all the points (a0, a1, . . . , am) that satisfy

a homogeneous linear equation

λ0a0 + λ1a1 + · · ·+ λmam = 0, λi ∈ Fq ,

for some choice of λ0, λ1, . . . , λm, where at least one of λi’s is not zero.

This hyperplane is isomorphic to a PG(m − 1, q) and is denoted by

[λ0, λ1, . . . , λm]. Clearly, the hyperplane [λ0, λ1, . . . , λm] is the same hy-

perplane as the hyperplane [μλ0, μλ1, . . . , μλm], for each μ ∈ F
−
q .
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We will make now a connection between MDS codes and the projec-

tive geometries PG(m, q). The following concept is defined in projective

geometry.

Definition 3.5. An n-arc in PG(k−1, q) is a set of n points, where every k

of them are (linearly) independent, i.e., no k points lie in a hyperplane

PG(k−2, q), where 3 ≤ k ≤ n. An n-arc in PG(k−1, q) is called complete

if and only if it is not contained in an (n+1)-arc of PG(k− 1, q). If k = 3,

then an n-arc is called an n-cap.

The following two results, which are proved directly from Definition 3.5

and Theorem 3.10.

Theorem 3.13. The set K = {g1, g2, . . . , gn} is an n-arc in PG(k − 1, q),

where gi is a column vector of length k, if and only if the k × n matrix

G = [g1 g2 · · · gn] is a generator matrix of an [n, k, n− k+1]q MDS code.

Theorem 3.14. If K = {g1, g2, . . . , gn} is an n-arc in PG(k−1, q), defining
the [n, k, n− k+1]q MDS code C with generator matrix G = [g1 g2 · · · gn],
then there exists an n-arc K̃ = {h1, h2, . . . , hn} in PG(n − k − 1, q) such

that K̃ defines the dual [n, n− k, k + 1]q MDS code C⊥ via the parity-check

matrix H = [h1 h2 · · · hn] of C, i.e., the generator matrix of C⊥.

Theorem 3.5 considers bounds on the parameters of OA(t, n, q), which

imply the following bounds on the parameters of projective geometries.

Theorem 3.15. If C is a nontrivial [n, k, n − k + 1]q MDS code, where

k ≥ 3 and q is odd, then n ≤ q + k − 2. In other words, for any n-arc in

PG(k − 1, q), q odd, we have that n ≤ q + k − 2.

If C is a nontrivial [n, k, n − k + 1]q MDS code, where q is even, then

n ≤ q + k − 1. In other words, for any n-arc in PG(k − 1, q), q even, we

have that n ≤ q + k − 1.

We continue with the concept of a projective plane that is a finite pro-

jective geometry of dimension 2, but can be defined independently.

Definition 3.6. A projective plane consists of a set of points and a set

of lines with the following four axioms.

• There is a line with at least three points.

• Every two distinct points are contained in exactly one line.

• Every two distinct lines intersect at exactly one point.
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• There are four points for which no three are collinear (i.e., no three

points are on the same line).

Example 3.2. On the left side of Fig. 3.2 we have a structure that satisfies

the first three axioms of a projective plane, but does not satisfy the last

axiom. On the right side of Fig. 3.2 we have the well-known Fano plane ,

which is a PG(2, 2). The Fano plane has seven points and seven lines (the

circle is also a line).

Fig. 3.1 A non-projective plane and the Fano plane PG(2, 2).

Lemma 3.7. The number of points in a projective plane is n2 + n+1 and

the number of lines in a projective plane is also n2 +n+1, where each line

contains n+ 1 points and each point is contained in n+ 1 lines.

Proof. Consider a point p, and a line L that does not contain p. Any two

points are contained in exactly one line and, hence, each point on L and the

point p are contained in a unique line. Moreover, every two lines intersect

at exactly one point. This implies that the number of lines that contain p

equals the number of points on L. Hence, if n + 1 is the number of lines

that contain p, then L contains n+ 1 points.

Since each point q, q �= p, and p are contained in a line, it follows that

this set of n+ 1 lines containing p contains all the points of the projective

plane. Moreover, since the number of lines that contain p is n+ 1 and the

same arguments hold for any line like L, which does not contain p, it follows

that each line which does not contain p, contains n+ 1 points.

Assume q is another point not on L (it exists since each line, which con-

tains p, contains at least three points). Since p is contained in n+ 1 lines

and each such line contains at least three points, it follows by simple enu-

meration that there exists another point not on L and not on the line
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containing p and q and, hence, by the same arguments, the line containing

p and q also contains of n+1 points. Thus, each line contains n+1 points.

To summarize, there are n+ 1 lines that contains p, each of which con-

tains n distinct points (excluding p). Thus, the total number of points in the

projective plane is (n+1)n+1 = n2+n+1. Since each pair of points defines

a distinct line, it follows that the number of lines is
(n

2+n+1
2 )

(n+1
2 )

= n2 + n+ 1.

This also implies that each line contains n+ 1 points (as was proved) and

each point is contained in n+ 1 lines.

A projective plane with n2 + n+ 1 lines and n2 + n+ 1 points, where each

line contains n + 1 points and each point is contained in n + 1 lines, is a

projective plane of order n.

Theorem 3.16. A projective plane of order n ≥ 2 exists if and only if

there exists a Steiner system S(2, n+ 1, n2 + n+ 1).

Proof. Given a projective plane P of order n with point set Q, we construct

the following system S = (Q,B), where the set of points is Q and the points

of each line in P define a block in B. By Lemma 3.7 each such block contains

n + 1 points. Clearly, by the axiom of Definition 3.6, that in a projective

plane, every two distinct points are contained in exactly one line, such a

system S is a Steiner system S(2, n+ 1, n2 + n+ 1).

Assume now that S = (Q,B) is a Steiner system S(2, n+1, n2 +n+1),

n ≥ 2, and define a system P with points and lines. Let Q be the set points,

in P, and the points of each block in B defines a line in P. To prove that P is

a projective plane, it suffices to show that the four axioms of a projective

plane, presented in Definition 3.6, are satisfied.

Clearly, each line contains at least three points, since n ≥ 2, and there-

fore the first axiom is satisfied.

By the definition of a Steiner system, every two points Q are contained

in exactly one block of B and hence each two points of P are contained in

a unique line of P and hence the second axiom is satisfied.

Two lines cannot intersect at more than one point since this implies

that a pair of points are contained in two blocks of S. Since each block

has size n + 1 and each given point p is paired with any other point q in

exactly one block, it follows that the number of blocks (lines) that contain

a given point p is n2+n
n = n+ 1. Each of the other points is contained in

exactly one of these blocks (lines). A block (line) L that does not contain

the point p has an intersection size at most one with each of these blocks
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(lines). Since L has exactly n + 1 points, it follows that it must intersect

each of them in one point. Therefore, L intersects each of the lines of P.

Since L can be taken arbitrarily, it follows that every two lines intersect at

exactly one point. This implies that the third axiom of Definition 3.6 is

satisfied.

Let L1 and L2 be two lines that contain the point p. Let a1, a2 be

two other distinct points on L1 and a3, a4 be two other distinct points

on L2. Clearly, a1, a2, a3, a4 are four distinct points for which no three are

collinear. Hence, the last axiom of Definition 3.6 is satisfied.

Thus, a projective plane of order n ≥ 2 exists if and only if there exists

a Steiner system S(2, n+ 1, n2 + n+ 1).

The third axiom in the proof of Theorem 3.16 can be proved in many

different ways. For example, one can use the dual design of the Steiner

system S(2, n+ 1, n2 + n+ 1). By Theorem 3.8, the dual design is also a

Steiner system S(2, n + 1, n2 + n + 1), and hence the arguments used for

the points are also true for the lines and vice versa.

A related concept to projective geometry is the affine geometry. An

affine geometry of order n is obtained from a projective geometry P of

order n by deleting the points of any fixed hyperplane H, which will be

called hyperplane of infinity , from all the subspaces of P. The obtained

sets from the subspaces of the projective geometry are the subspaces of the

affine geometry. The affine geometry obtained from PG(m, q) is denoted by

EG(m, q). It is most convenient to delete from PG(m, q) the hyperplane H

whose points starts with a0 = 0. It implies that EG(m, q) will consist of

the set of qm points {(1, a1, a2, . . . , am) : ai ∈ Fq, 1 ≤ i ≤ m}.
An affine plane is obtained in this way from a projective plane P,

by deleting any line L of P, and all the points of L from all the lines

of P. Since a projective plane of order n is equivalent to a Steiner system

S(2, n+1, n2+n+1), if follows that an affine plane of order n is equivalent

to a Steiner system S(2, n, n2) as will be proved in the next theorem.

Theorem 3.17. A Steiner system S(2, n+1, n2 +n+1) exists if and only

if a Steiner system S(2, n, n2) exists.

Proof. Let S be a Steiner system S(2, n + 1, n2 + n + 1). The number of

blocks in this system, S, is

(
n2+n+1

2

)(
n+1
2

) = n2 + n+ 1 .
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Let B = {x1, x2, . . . , xn+1} be a block in S. The point xi, 1 ≤ i ≤ n+1, is

paired with each one of the other n2 + n points in exactly one block. Since

two blocks intersect in at most one point (as otherwise there will be a pair

of points contained in two distinct blocks), it follows that xi is contained

in exactly n2+n
n = n+ 1 blocks. Let B�, 1 ≤ � ≤ n+ 1, be the set of n+ 1

blocks which contain x�. The pair {xr, xj}, 1 ≤ r < j ≤ n+ 1 is contained

in exactly one block which is B (since no pair is contained in more than

one block). Hence, Br ∩ Bj = {B} and points from x1, x2, . . . , xn+1 are

contained in exactly (n + 1)n = n2 + n blocks in addition to B (since the

additional n blocks of each one are different and the B�’s intersect only

in B). Since the number of blocks in the system is n2 + n + 1, it follows

that these n2 + n blocks, which contain points from {x1, x2, . . . , xn+1} and
intersect B in one point, are all the blocks in S in addition to B. Since all

these n2 + n blocks intersect B in one point and B was taken arbitrarily,

it follows that any two blocks in S have a nonempty intersection. Now,

let S ′ be the system constructed from S by removing the block B and the

points x1, x2, . . . , xn+1 from all the blocks in S. Since, all the blocks of S,
except for B, contain exactly one of the xr’s, 1 ≤ r ≤ n+ 1, it follows that

in S ′ the size of each block now is n. Since, S has n2 + n + 1 points and

n+1 points were removed from S to form S ′, it follows that in S ′ there are
exactly n2 points. Since each pair of elements appears in exactly one block

of S and only the xi’s, and the block B which contains only these points,

were removed from the system, it follows that each pair of the n2 points

appears in exactly one block of S ′ as in S.
Thus, S ′ is a Steiner system S(2, n, n2).

Now, let S be a Steiner system S(2, n, n2). The number of blocks in this

system, S, is

(
n2

2

)(
n
2

) = n2 + n .

Ļet B = {x1, x2, . . . , xn} be a block in S. The point xi, 1 ≤ i ≤ n, is

also paired with any one of the other n2 − n points, not in B, in a block

of S. Since two blocks intersect in at most one point, it follows that xi is

contained in exactly n2−1
n−1 = n + 1 blocks. Let B�, 1 ≤ � ≤ n, be the set

of blocks which contain x�. The pair {xr, xj}, 1 ≤ r < j ≤ n, is contained

in exactly one block which is B (since no pair appears in more than one

block). Hence, B� ∩ Bj = {B} and x1, x2, . . . , xn are contained in exactly

n ·n = n2 blocks in addition to B (since any two such blocks which contain
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two different xis are different). Therefore, there are n
2+n−(n2+1) = n−1

blocks in S which do not intersect B.

Let Q be the set of points of S. Since each point of Q \ {x1, x2, . . . , xn}
is contained with each point of {x1, x2, . . . , xn} in exactly one block of S, it
follows that each point of Q\{x1, x2, . . . , xn} is contained the same number

of times in the set {B′ : B′ ∈ B�, 1 ≤ � ≤ n}. In S, each point ofQ appears

in the same number of blocks and hence the n − 1 blocks which do not

intersect B, and contain the n2 − n distinct points of Q \ {x1, x2, . . . , xn},
contain each point of Q \ {x1, x2, . . . , xn} exactly once. This implies that

these n− 1 blocks are pairwise disjoint.

Let P1 be the set of blocks which consists of the block B and the

n− 1 pairwise disjoint blocks which do not intersect it. Since B was taken

arbitrarily, it follows that S can be partitioned into n+1 pairwise noninter-

secting sets Pi, 1 ≤ i ≤ n+1, such that each set contains n pairwise disjoint

blocks of S. Note, that each block of Pi cannot participate in another such

set since this set is unique for each block as for B.

Define the system S ′ with the points Q ∪ {1, 2, . . . , n+ 1},

{{i} ∪B′ : 1 ≤ i ≤ n+ 1, B′ ∈ Pi} ∪ {1, 2, . . . , n+ 1} .

Since each Pi, 1 ≤ i ≤ n+1, contains each of the n2 points of Q in exactly

one block, it follows that each pair of points containing exactly one point

from {1, 2, . . . , n + 1} appears exactly once in S ′. The pairs from [n + 1]

appear in the block {1, 2, . . . , n+ 1}. The other pairs are exactly the ones

which were in S. Hence, S ′ is a Steiner system S(2, n+ 1, n2 + n+ 1).

Theorem 3.3, Corollary 3.7, Theorems 3.7, 3.16, and 3.17 imply the

following consequence.

Corollary 3.8. The following structures are equivalent:

(1) A projective plane of order n.

(2) An affine plane of order n.

(3) A set of n− 1 pairwise orthogonal Latin squares of order n.

(4) A Steiner system S(2, n+ 1, n2 + n+ 1).

(5) A Steiner system S(2, n, n2).

(6) An orthogonal array OA(2, n+ 1, n).

(7) An (n+ 1, n2, n)n code.

The most simple projective plane of order q is PG(2, q), whose construc-

tion is implied by Theorem 3.9 and Theorem 3.16. For each prime p only
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one projective plane of order p is known, although there might be other non-

isomorphic ones. There are orders, for higher powers of primes, for which

there exist other nonisomorphic projective planes. This is in contrast to

the finite projective geometry of dimension m ≥ 3, where PG(m, q) is the

unique finite projective geometry of dimension m. Moreover, there are no

known projective planes of orders that are not powers of primes, and, for

infinitely many values of such orders, their nonexistence was proved. Since

n divides n2 + n and
(
n+1
2

)
divides

(
n2+n+1

2

)
, it follows that the necessary

conditions of Corollary 3.1 are satisfied for the existence of a Steiner system

S(2, n+1, n2+n+1). Thus, for such an order n where the existence of a pro-

jective plane was ruled out, there is no Steiner system S(2, n+1, n2+n+1).

This implies that the necessary conditions of Corollary 3.1 for the existence

of Steiner systems S(2, k′, n′) are not sufficient in infinitely many cases.

To conclude we present the two main open problems concerning projective

planes.

Problem 3.11. Are there projective planes of order n, where n is not a

power of a prime?

Problem 3.12. Are there nonisomorphic projective planes of order p,

where p is a prime?

3.4 The Plotkin Bound and the Griesmer Bound

The sphere-packing bound and the code-anticode bound are two bounds

on the size of codes that are attained by perfect codes and diameter per-

fect codes, respectively. The code-anticode bound is a generalization of

the sphere-packing bound. Moreover, it will be shown in Section 4.3 that

the code-anticode bound is also important in the context of the Singleton

bound (Theorem 2.1). There are other important bounds on the size of

codes that involve some of the already mentioned structures (e.g., anti-

codes and Hadamard matrices). Two such bounds, the Plotkin bound and

the Griesmer bound, are discussed below.

The Plotkin Bound

By its nature, the sphere-packing bound is attained with equality for

nontrivial perfect codes whose minimum distance is smaller than half of

the possible maximum distance in the space with the given metric. For

the Hamming metric, if the distance is larger than half of the length, then
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another bound is designed and it is attained by using codes from a con-

struction whose main ingredients are Hadamard matrices.

Theorem 3.18. If there exists a binary (n,M, d) code C for which n < 2d,

then

M ≤ 2

⌊
d

2d− n

⌋
.

Proof. Calculate the sum ∑
x∈C

∑
y∈C

d(x, y) (3.3)

in two ways. First, since d(x, y) ≥ d if x �= y, the sum is equal to at least

M(M − 1)d. On the other hand, let A be the M × n matrix whose rows

are the codewords. Suppose the i-th column of A contains ηi zeroes and

M − ηi ones. This column contributes 2ηi(M − ηi) to the sum in (3.3), so

that the sum equals
n∑

i=1

2ηi(M − ηi) . (3.4)

If M is even, this expression is maximized if for each i, ηi = M/2, and

with this assignment, the sum in (3.4) equals nM2

2 . Thus, the sum in (3.3)

equals at most nM2

2 and we have

M(M − 1)d ≤ nM2

2
,

which is equivalent to

M ≤ 2d

2d− n
. (3.5)

But since M is even, it follows that

M ≤ 2

⌊
d

2d− n

⌋
.

On the other hand, if M is odd, the expression in (3.4) is maximized if

ηi = (M − 1)/2 or ηi = (M + 1)/2, and the sum in (3.3) equals at most
n(M2−1)

2 and, instead of (3.5), we have that

M ≤ n

2d− n
=

2d

2d− n
− 1 .

Since �2x� ≤ 2�x�+ 1, this implies that

M ≤
⌊

2d

2d− n

⌋
− 1 ≤ 2

⌊
d

2d− n

⌋
.
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The consequence of Theorem 3.18 is the Plotkin bound for all possible sets

of parameters.

Corollary 3.9. If d is even and 2d > n, then

A(n, d) ≤ 2

⌊
d

2d− n

⌋
, (3.6)

and

A(2d, d) ≤ 4d . (3.7)

If d is odd and 2d+ 1 > n, then

A(n, d) ≤ 2

⌊
d+ 1

2d+ 1− n

⌋
, (3.8)

and

A(2d+ 1, d) ≤ 4d+ 4 . (3.9)

Proof. Equation (3.6) is proved in Theorem 3.18.

By Theorems 2.4 and 3.18, we have that

A(2d, d) ≤ 2A(2d− 1, d) ≤ 2

⌊
d

2d− (2d− 1)

⌋
= 4d

and (3.7) is proved.

If d is odd, then by Theorems 2.3 and 3.18, we have that

A(n, d) = A(n+ 1, d+ 1) ≤ 2

⌊
d+ 1

2(d+ 1)− (n+ 1)

⌋
=

⌊
d+ 1

2d+ 1− n

⌋
and (3.8) is proved.

Finally, Theorem 2.3 and (3.7) imply that

A(4δ + 3, 2δ + 1) = A(4δ + 4, 2δ + 2) ≤ 8δ + 8

and (3.9) is proved.

Let C1 be a binary (n1,M1, d1) code and let C2 be a binary (n2,M2, d2)

code. Assume further that the M1 codewords of C1 are ordered by

α1, α2, . . . , αM1
and the M2 codewords of C2 are ordered by β1, β2, . . . , βM2

.

The (s, t)-concatenated code C, of C1 and C2, denoted by sC1� tC2, is
defined as follows

sC1�tC2 � {(
s times︷ ︸︸ ︷
αi · · ·αi

t times︷ ︸︸ ︷
βi · · ·βi) : αi ∈ C1, βi ∈ C2, 1 ≤ i ≤ min{M1,M2}}.
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With the same notation the s-concatenated code of C1, denoted by sC1,
is defined by

sC1 � {(
s times︷ ︸︸ ︷

αiαi · · ·αi) : αi ∈ C1, 1 ≤ i ≤M1}.
Similarly, we can define a concatenation of more than two codes, where

each one is concatenated a few times.

It is easy to verify the parameters of the (s, t)-concatenated code

sC1 � tC2, presented in the following result.

Lemma 3.8. The (s, t)-concatenated code sC1 � tC2 is a code of length

s ·n1+ t ·n2, minimum Hamming distance s · d1+ t · d2, with min{M1,M2}
codewords, i.e., it is an (s · n1 + t · n2,min{M1,M2}, s · d1 + t · d2) code.

Theorem 3.19. Provided that enough Hadamard matrices exist, there are

codes that attain the Plotkin bound with equality, i.e., meet the bounds in

Corollary 3.9.

Proof. If d is even and d ≤ n < 2d, define κ =
⌊

d
2d−n

⌋
, and

s = d(2κ+ 1)− n(κ+ 1), t = κn− d(2κ− 1). (3.10)

Clearly, s and t are nonnegative integers and

n = (2κ− 1)s+ (2κ+ 1)t, d = κs+ (κ+ 1)t .

If n is even, then by (3.10), s and t are also even. If n is odd and κ is even,

then t is even. If n is odd and κ is odd, then s is even. Let

C � s

2
Φ4κ �

t

2
Φ4κ+4, if n is even

C � sΥ2κ �
t

2
Φ4κ+4, if n is odd, and κ is even

C � s

2
Φ4κ � tΥ2κ+2, if n is odd, and κ is odd.

By Lemma 3.8, we have that C has length n, minimum distance d, and

C contains 2κ = 2
⌊

d
2d−n

⌋
codewords, and, hence, C attains (3.6) with equal-

ity.

The Hadamard code Λ2n is a (2n, 4n, n) code that attains (3.7) with

equality.

Finally, codes that attain (3.8) and (3.9), respectively, for odd d, are

derived by any puncturing of the codes, with distance d + 1, which at-

tain (3.6) and (3.7), respectively, with equality. For this part of the proof

Theorem 2.3 has to be used.
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Note that to have codes that attain the Plotkin bound with equality

for all parameters, certain Hadamard matrices are required. For (3.7),

a Hadamard matrix of order 2d is required. To attain (3.6), Hadamard

matrices of orders 4κ and 4κ+ 4, as defined in the proof of Theorem 3.19,

are required. Moreover, to attain (3.6), a Hadamard matrix of order 2κ is

also required if κ is even, and a Hadamard matrix of order 2κ + 2 is also

required if κ is odd. These Hadamard matrices are taken from the sets of

such matrices which were constructed during the years.

The Griesmer Bound

Lemma 3.6 and Theorems 3.5 and 3.6 imply that an [n, k, n − k + 1]q
MDS code, which obviously meets the Singleton bound, can exist only if n

is relatively very small compared to q. If Conjecture 3.1 is true, then n is

at most q + 2 in the best case. Hence, it is desirable to find better bounds

on n, especially for a small alphabet size. The next bound resolves this

problem for binary linear codes. Let N(k, d) be the length of the shortest

binary linear code of dimension k and minimum Hamming distance d.

Theorem 3.20.

N(k, d) ≥ d+N

(
k − 1,

⌈
d

2

⌉)
.

Proof. Let C be an [N(k, d), k, d] code, with a k ×N(k, d) generator ma-

trix G. W.l.o.g.

G =

⎡
⎢⎢⎣
0 · · · 0 1 · · · 1

G1 X

⎤
⎥⎥⎦ ,

where the first row of G has weight d. Consider the (k− 1)× (N(k, d)− d)

matrix G1. We claim that the rank of G1 is k − 1. Assume the contrary,

that the rank of G1 is less than k − 1. This implies that by using a linear

combination of the last k − 1 rows of G, we can form another generator

matrix G′ for C with the same first row as in G and whose second row

starts with N(k, d) − d zeroes. Adding the first two rows of G′ implies a

codeword of weight less than d, a contradiction. Therefore, G1 is a generator

matrix of an [N(k, d)− d, k − 1, d1] code. Let (x, y) ∈ C, where wt(x) = d1
and y ∈ F

d
2. Clearly, by adding (x, y) to the first row of G we have that

(x, ȳ) ∈ C, and hence

d1 +wt(y) ≥ d,
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d1 + d− wt(y) ≥ d.

Adding these two equations implies that 2d1 ≥ d, i.e., d1 ≥ �d/2�. There-

fore,

N(k − 1, �d/2�) ≤ N(k, d)− d ,

which completes the proof.

Theorem 3.21.

N(k, d) ≥
k−1∑
i=0

⌈
d

2i

⌉
.

Proof. By applying Theorem 3.20 iteratively, we have after the second

iteration that

N(k, d) ≥ d+N

(
k − 1,

⌈
d

2

⌉)
≥ d+

⌈
d

2

⌉
+N

(
k − 2,

⌈
d

4

⌉)
.

After k iterations, we have that

N(k, d) ≥
k−2∑
i=0

⌈
d

2i

⌉
+N

(
1,

⌈
d

2k−1

⌉)
=

k−1∑
i=0

⌈
d

2i

⌉
.

Let Sk be the code whose k× (2k − 1) generator matrix G(Sk) consists

of all nonzero binary column vectors of length k.

Theorem 3.22. For each k ≥ 2, the code Sk is a [2k − 1, k, 2k−1] code.

Proof. The columns of G(Sk) consist of all nonzero binary k-tuples and

hence each row has weight 2k−1. Any set of k nontrivial linear combinations

of rows from G(Sk), which are linearly independent, also contains each

nonzero binary k-tuple as a column of a related k × (2k − 1) generator

matrix. Hence, the weight of each such row is also 2k−1. Thus, the weight

of a nonzero codeword of Sk is 2k−1 and hence Sk is a [2k − 1, k, 2k−1]

code.

The code Sk is called the simplex code of order k. By appending a zero

to each codeword of Sk, the resulting codewords form a binary Hadamard

matrix of order 2k, which is isomorphic to the one obtained by applying

iteratively the Sylvester construction from the Hadamard matrix of order 1.

Let G(Sk, r) be the generator matrix of the code obtained by concatenating

horizontally r copies of G(Sk), i.e., generator matrix of the r-concatenated
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code rSk. Using the same arguments as in Lemma 3.8, the following pa-

rameters of the code, obtained from G(Sk, r), are derived.

Theorem 3.23. The code C, whose generator matrix is G(Sk, r), is an

[r(2k − 1), k, r · 2k−1] code.

Theorem 3.24. For each r ≥ 1, the [r(2k − 1), k, r · 2k−1] code obtained

from the generator matrix G(Sk, r) meets the Griesmer bound.

Proof. By Theorem 3.21 we have that

N(k, r · 2k−1) ≥
k−1∑
i=0

r · 2k−1

2i
=

k−1∑
i=0

(r · 2k−i−1) = r

k−1∑
i=0

2i = r(2k − 1) ,

which completes the proof.

Let G(A) be a binary k×m generator matrix of an anticode A. Assume

further that G(A) can have linearly dependent rows, i.e., the dimension of

the anticode can be less than k. All the 2k linear combinations of the

k rows of G(A) form a linear anticode of length m whose diameter δ is the

maximum weight of an anticodeword in A. If the dimension of the code

is less than k some words are contained more than once as anticodewords

in A. If rank G(A) = ρ ≤ k, then each anticodeword of A is contained

2k−ρ times in A. If rank G(A) = k, then clearly all the 2k anticodewords

of A are distinct.

Lemma 3.9. Let G(Sk) be the generator matrix of the simplex code Sk and

G(A) be the k ×m generator matrix, with m distinct columns, of an anti-

code A whose diameter is δ. By removing the columns of the matrix G(A)
from the columns of the matrix G(Sk), we obtain a k×(2k−1−m) generator

matrix of a [2k − 1−m,κ, 2k−1 − δ] code C, where κ ≤ k.

Proof. The length and dimension of C are readily verified from its defi-

nition. As for the minimum distance of the code, note that as mentioned

before, each nonzero codeword of Sk has weight 2k−1. From at least one

of these codewords, say c, δ ones are contained in the columns projected

by A. The codeword c is replaced by c′ in C after the coordinates projected

by A are removed and hence c′ has weight 2k−1 − δ. If C has a codeword

whose weight is smaller than 2k−1− δ, then it implies that A must have an

anticodeword whose weight is larger than δ, a contradiction to the diameter

of A. This completes the proof.
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The construction of the code C in Lemma 3.9 can be generalized for the

[r(2k − 1), k, r · 2k−1] code of Theorem 3.23. The parameters of the con-

structed code are given in the following lemma whose proof is a combination

of the proofs in Lemma 3.9 and Theorem 3.23.

Lemma 3.10. Let G(A) be the k ×m generator matrix of an anticode A,
where each k-tuple appears at most r times as a column in G(A). Assume

further that the diameter of A is δ. By removing the columns of G(A) from
the columns of G(Sk, r) (a column vector v which appears in G(A) ρ times,

where ρ < r, is removed from ρ arbitrary entries of G(Sk, r) that contain

the column vector v), we obtain a k × (2k − 1−m) generator matrix of an

[r(2k − 1)−m,κ, r · 2k−1 − δ] code C, where κ ≤ k.

We continue with a specific family of anticodes to be used in

Lemma 3.10. Let A(k,m) be a [
∑m

j=1(2
�j − 1), k,

∑m
j=1 2

�j−1] code (used

as an anticode), where 1 ≤ �j < �j+1 < k, 1 ≤ j ≤ m − 1, whose gen-

erator matrix is G(k,m). Such a generator matrix G(k,m) of A(k,m) is

formed by a concatenation of m generator matrices of simplex codes of m

distinct orders, �1, �2, . . . , �m. Since each one of these m simplex codes has

a dimension less than k, it follows that there are repeated anticodewords in

A(k,m), where redundant rows are added to have k rows in each generator

matrix. Note that G(k,m) is not unique for a given choice of �1, �2, . . . , �m,

since the order of the rows in each one of the m distinct generator matri-

ces of the distinct simplex codes might be different and also the redundant

rows can be taken in different ways. This concatenation is represented by a

k×
∑m

j=1(2
�j −1) matrix, where no vector column, of length k, is contained

more than s times in G(k,m). It is obvious now that the concatenation of

the m generator matrices can yield different anticodes. Note further that

if �j < k, then each row is contained exactly 2k−�j times in the generator

matrix of the related simplex code S�j . Nevertheless, this does not imply

the same property for A(k,m).

Theorem 3.25. Let C be the code whose generator matrix is G(Sk, r) from

which a generator matrix G(k,m) of A(k,m) was removed. If r ≥ 2, then

C is an [r(2k − 1) −
∑m

j=1(2
�j − 1), k, r · 2k−1 −

∑m
j=1 2

�j−1] code, which

meets the Griesmer bound.

Proof. The length of C and its minimum distance are trivial observa-

tions from the definition of C as in Lemma 3.10. Now, note that since

1 ≤ �j < �j+1 for 1 ≤ j ≤ m − 1, it follows that m < k. Since all the �j ’s

are distinct and less than k < m, it follows that
∑m

j=1(2
�j − 1) ≤ 2k − 1.
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Moreover, it also implies that from one copy of G(Sk) at least 2
k−1 distinct

columns remain in the generator matrix of C, and hence the dimension of C
is equal to the dimension of Sk, i.e., to k. To complete the proof, it is

sufficient to show that C meets the Griesmer bound. By Theorem 3.21, we

have that

N(k, r · 2k−1 −
m∑
j=1

2�j−1) ≥
k−1∑
i=0

⌈
r · 2k−1 −

∑m
j=1 2

�j−1

2i

⌉

=

k−1∑
i=0

(r · 2k−i−1)−
m∑
j=1

�j−1∑
i=0

2�j−i−1 = r(2k − 1)−
m∑
j=1

(2�j − 1) ,

where one should note in the computation that if �j − 1 < i for 1 ≤ j ≤ η

and all the �j ’s are distinct, then⌈
β · 2ν −

∑η
j=1 2

�j−1

2i

⌉
= β · 2ν−i ,

where β is a positive integer and ν ≥ i.

Example 3.3. Let k = 4, r = 4, m = 3, �1 = 1, �2 = 2, and �3 = 3, be the

parameters in Theorem 3.25.

The anticode with these parameters is not unique. Let two such

anticodes be A1(4, 3) and A2(4, 3) generated by the generator matrices

G(A1(4, 3)) and G(A2(4, 3)), respectively.

G(A1(4, 3)) =

⎡
⎢⎢⎣
1 0 1 1 0 0 0 1 1 1 1

0 1 0 1 0 1 1 0 0 1 1

0 1 1 0 1 0 1 0 1 0 1

1 0 0 0 1 0 1 0 1 0 1

⎤
⎥⎥⎦

and

G(A2(4, 3)) =

⎡
⎢⎢⎣
1 0 1 1 0 0 0 1 1 1 1

0 1 0 1 0 1 1 0 0 1 1

0 0 1 1 1 0 1 0 1 0 1

0 1 0 1 1 1 0 1 0 0 1

⎤
⎥⎥⎦ .

When we remove the columns of G(A1(4, 3)) from the columns of the 4×60

generator matrix G(S4, 4), we obtain the following 4× 49 generator matrix

of a [49, 4, 25] code:
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⎡
⎢⎢⎣
0001100000001111111000000011111111000000011111111

0011100011110000111000111100001111000111100001111

0100101100110011011011001100110011011001100110011

1011010101010101101101010101010101101010101010101

⎤
⎥⎥⎦ .

When we delete the columns of G(A2(4, 3)) from the columns of the 4× 60

generator matrix G(S4, 4), we obtain the following 4× 49 generator matrix

of a [49, 4, 25] code:

⎡
⎢⎢⎣
0000111000000111111000000011111111000000011111111

0011011000111000111000111100001111000111100001111

0101101011011001001011001100110011011001100110011

1001110101001011010101010101010101101010101010101

⎤
⎥⎥⎦ .

It should be noted that the construction implied by Theorem 3.25 can

be further generalized in many different ways to obtain many more families

of codes that meet the Griesmer bound.

3.5 Association Schemes

A (V,R) association scheme with n classes consists of a finite set V
with t points, and a set R with n + 1 relations, R = {R0,R1, . . . ,Rn},
defined on V. These relations satisfy the following properties:

• Each Ri is symmetric, i.e., (x, y) ∈ Ri implies (y, x) ∈ Ri.

• For every x, y ∈ V, (x, y) ∈ Ri for exactly one i.

• R0 = {(x, x) : x ∈ V} is the identity relation.

• If (x, y) ∈ Rk, then the number of elements z ∈ V such that (x, z) ∈ Ri

and (y, z) ∈ Rj is a constant pki,j (called the intersection number)

that depends on i, j, k but not on the particular choice of x and y.

Let Γ be a connected graph with v vertices, with no loops or multiple

edges, and let V be the set of vertices in Γ. The maximum distance, say n,

between any two vertices in Γ is called the diameter of the graph. The

graph Γ is called distance-regular (or metrically-regular or perfectly-

regular) if, for any x, y ∈ V with d(x, y) = k, the number of vertices z ∈ V
such that d(x, z) = i and d(y, z) = j is a constant pki,j independent of

the choice of x and y. Clearly, from such a distance-regular graph whose

diameter is n, we obtain an association scheme with n classes. This scheme

is called a metric (association) scheme .
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We also denote p0i,i = ti and |V| = t; ti is called the valency of Ri

and it is the number of vertices (points) in V at distance i from any point

x ∈ V. The degree of a vertex in the graph Γ is t1. It is easy to verify, that

for any association scheme, the following conditions hold:

pii,0 = 1, pji,0 = 0 and p0i,j = 0 for i �= j.

n∑
j=0

pki,j = ti and pki,jtk = pik,jti.

Let (V,R) be a metric association scheme with a distance function d de-

fined on a set V, and a setR with n+1 relations, i.e.,R = {R0,R1, . . . ,Rn},
where Ri = {(x, y) : x, y ∈ V, d(x, y) = i}. By the triangle inequality, we

have that

pki,j = 0, if i+ j < k or i+ k < j or j + k < i.

The most important scheme is the Hamming scheme. Other important

schemes are the Johnson scheme, the Grassmann scheme, and the bilinear

forms scheme. These four schemes will be considered in our exposition. In

all schemes, the relations are defined by the distance d, i.e.,

Ri � {(x, y) : x, y ∈ V, d(x, y) = i} .

In the following chapters we will discuss perfect codes in the Hamming

scheme Hq(n), which consists of vectors of length n over the finite field Fq.

The scheme can be further generalized to Hm(n), for any integer m ≥ 2,

which consists of vectors of length n over an alphabet with m symbols. The

metric used in this scheme is the Hamming distance. One can easily verify

that Hm(n) with the Hamming distance is indeed an association scheme.

When j ≥ i and m = 2, if i+ j−k is odd, then we have that pki,j = 0; when

j ≥ i and m = 2, if i+ j − k is even, then

pki,j =

(
k

(i+ j − k)/2

)(
n− k

(j − i+ k)/2

)
.

When m > 2, the computation of the intersection numbers are left as

an exercise. These numbers are important and sometimes are used to prove

some properties of perfect codes and to prove bounds on the sizes of codes,

but this will be beyond our discussions in this book. As for other metrics,

the question whether they form an association scheme will be discussed in

the related chapters.



February 21, 2022 16:26 ws-book9x6 Perfect Codes and Related Structures Perfect˙Codes˙Main page 86

86 Perfect Codes and Related Structures

3.6 Notes

Block designs and Steiner systems are covered in many books. We men-

tion only two such books. The first is [Beth, Jungkickel, and Lenz (1999)]

and the second important good reference, is the Handbook of Combinato-

rial Designs [Colbourn and Dinitz (2007)]. The latter covers all types of

combinatorial designs as well as orthogonal designs.

Section 3.1. It was proved by [Keevash (2014)] that for fixed (t, k),

0 < t < k, if n is large enough, the necessary conditions of Corollary 3.1

for the existence of a Steiner system S(t, k, n) are also sufficient. Unfor-

tunately, this n is extremely large and it is beyond our imagination. The

proof is based on probabilistic arguments and it is not easy to follow. An-

other (simpler) probabilistic proof, but still quite complicated, was provided

by [Glock, Kühn, Lo, and Osthus (2016)].

Problem 3.13. Give a simpler proof for the existence of S(t, k, n) for any

given pair (t, k), 0 < t < k, if n is large enough and the necessary conditions

of Corollary 3.1 are satisfied. Give a proof for the existence of S(t, k, n) for

any given pair (t, k), 0 < t < k, if n is large enough and the necessary

conditions of Corollary 3.1 are satisfied, but n is smaller than in the known

proofs.

The proof for the existence of Steiner quadruple systems S(3, 4, n) if

and only if n ≡ 2 or 4 (mod 6) was provided in [Hanani (1960)]. The

necessary conditions for S(2, k, n) and their existence with a finite number

of exceptions for each k were proved in [Wilson (1972a,b, 1975)].

For large sets, a reference book on one-factorizations is [Wallis (1997)].

Large sets for S(1, k, n), whenever k divides n are equivalent to one-

factorizations of the complete k-uniform hypergraph. The existence of such

one-factorizations was proved in [Baranyai (1975)]. Most existence proofs

for large sets of Steiner triple systems, S(2, 3, n) were worked out by [Lu

(1983, 1984)], with the last six cases proved in [Teirlinck (1991)]. A shorter

proof for this existence problem was provided by [Ji (2005)]. A partition

of the 4-subsets of a 13-set into disjoint Steiner system S(2, 4, 13) was done

in [Chouinard (1983)]. It was proved in [Keevash (2018)] that if n is large

enough, then the necessary conditions of Corollary 3.1 for the existence of

a Steiner system S(t, k, n) are also sufficient for the existence of a large

set of S(t, k, n), for any given pair (t, k), 0 < t < k. As expected, this

large n is much larger than the one required for the existence of the related
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Steiner system, and hence the proof is useless for any practical purpose.

Finally, [Etzion and Hartman (1991)] provide a construction of 2m − 5

pairwise disjoint Steiner quadruple systems S(3, 4, 2m), where 2m − 4 such

Steiner systems imply the existence of a large set. A set of distinct Steiner

systems S(3, 4, 2m), m ≥ 3, in which each quadruple is contained in exactly

two of the systems was constructed in [Etzion (1996b)]. Generalization for

this result was presented in [Etzion and Zhou (2021)]. An improvement for

these results implies a solution to the following open problem.

Problem 3.14. Construct a large set of Steiner systems S(3, 4, n) for some

values of n.

Generalized Steiner systems were introduced in [Etzion (1997)] who gave

the first construction of such designs. The necessary conditions for the

existence of generalized Steiner systems GS(2, 3, n, 3) are identical to the

necessary conditions for the existence of group divisible designs [Hanani

(1975)]. The distinction between the two structures is that in group divis-

ible designs there is no requirement for a minimum distance. Therefore,

these two structures differ in their constructions. More precisely, any con-

struction for generalized Steiner systems GS(2, 3, n, 3) is also a construction

for a group divisible design, but not the reverse. For example it was proved

in [Etzion (1997)] that the generalized Steiner system GS(2, 3, n, 3) exists

if and only if n ≡ 0 or 1 (mod 3), where n ≥ 4. This work has motivated

lot of further research, e.g., [Phelps and Yin (1997); Svanström (1999a);

Chen, Ge, and Zhu (1999); Wilson and Phelps (1999); Chen, Ge, and Zhu

(2000); Ge (2000); Wu, Ge and Zhu (2001); Wu and Zhu (2001); Ge (2002);

Ji, Wu and Zhu (2005); Cao, Ji, and Zhu (2007); Chee and Ling (2007);

Chee, Dau, Ling, and Ling (2008); Wu and Fan (2009); Zhang, Zhang and

Ge (2012); Zhang and Ge (2013); Chee, Ge, Zhang and Zhang (2015)]. As

an example, in [Chee, Dau, Ling, and Ling (2010)] the following theorem

was proved.

Theorem 3.26. For all sufficiently large n satisfying that w divides

n(q − 1), there exists a generalized Steiner system GS(1, k, n, q).

Steiner system have an important role in analyzing binary constant-

weight codes which are discussed in Chapter 8. Generalized Steiner system

have similar role in nonbinary constant-weight codes which are discussed

in Chapter 9.

Section 3.2. A good book for all orthogonal designs including Hadamard
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matrices is [Geramita and Seberry (1979)]. Orthogonal arrays and their

applications are covered in another book [Hedayat, Sloane, and Stufken

(1999)]. Latin squares and their applications can be found in [Keedwell

and Dénes (2015)] and another important book on orthogonal designs

is [Raghavarao (1971)].

It is conjectured that except for a set of n − 1 pairwise orthogonal

Latin squares for a prime power n, whose construction was presented in

this section of the chapter, there are no other values for which such a set

exists. [Euler (1782)] conjectured that when n ≡ 2 (mod 4), there are no

such pairs of orthogonal Latin squares of order n. The conjecture has been

proven to be true for n = 6 by [Tarry (1900, 1901)] while a shorter proof

was given by [Stinson (1984)], i.e.,

Theorem 3.27. There is no pair of orthogonal Latin squares of order 6.

Nevertheless, the conjecture was found to be false for any other order dif-

ferent from 6 [Bose, Shrikhande, and Parker (1960)]. The most remark-

able result in this direction is the Bruck-Ryser Theorem [Bruck and Ryser

(1949)].

Theorem 3.28. If n ≡ 1 or 2 (mod 4), then a necessary condition for the

existence of a set with n − 1 pairwise orthogonal Latin squares of order n

is that there exist two integers x and y such that n = x2 + y2.

Theorem 3.28 excludes many values, e.g., there is no set with n−1 pairwise

orthogonal Latin squares of order n, for n = 14, 21, 22, 30, 33, 38, 42, 46,

and so on.

Lemma 3.6, Theorem 3.5, and Theorem 3.6 were proved in [Bush

(1952)]. The MDS conjecture (Conjecture 3.1) was stated in [Segre (1955)]

has been considered in many papers. Some remarkable results in this direc-

tion that were obtained in [Ball (2012)] and in [Ball and de Beule (2012)].

For example [Ball (2012)] proved that the conjecture holds for q which is a

prime number. Linear codes (MDS codes) that meet the bounds given in

the conjecture were constructed for all parameters. They can be found in

most books on coding theory mentioned above. In other words, we have

the following theorem.

Theorem 3.29. If d ≥ 3, then there exists an [n, k, d]q MDS code when

n ≤ q + 1 for all prime power q and 2 ≤ k ≤ q− 1. If q is a power of 2 and

k ∈ {3, q − 1}, then there exists an [n, k, d]q MDS code when n ≤ q + 2.
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Parameters of known orthogonal arrays for an alphabet that is not a

power of a prime can be found in the books on orthogonal arrays [Geramita

and Seberry (1979); Hedayat, Sloane, and Stufken (1999); Raghavarao

(1971)]. The nonexistence results by [Ball (2012); Ball and de Beule (2012)]

were obtained using projective geometry, and are applied only for linear

codes. There are no related results for nonlinear orthogonal arrays of index

unity.

Problem 3.15. Find techniques to prove the nonexistence of orthogonal

arrays of index unity where the alphabet size is not a power of a prime. In

particular, find techniques to prove the nonexistence of orthogonal arrays of

index unity for the same parameters where the nonexistence proof of MDS

codes was presented by techniques from projective geometry.

Hadamard matrices were defined in [Hadamard (1893)], where it was

proved that any real n×n matrix A, with real entries between −1 and +1,

satisfies |detA| ≤ nn/2. Hadamard matrices meet this bound. These ma-

trices have many applications in various areas of communication, informa-

tion theory, and computer science. They are part of a family of matrices

called weighing matrices. Coding with Hadamard matrices and related

weighing matrices were done, for example, by [Etzion, Vardy, and Yaakobi

(2013)]. The current order, which is divisible by 4 (as of 2021), for which

no Hadamard matrix is known, is 668 after the previous order of 428 was

constructed in [Kharaghani and Tayfeh-Rezaie (2004)].

Problem 3.16. Prove that for every positive integern divisible by 4 there

exists a Hadamard matrix of order n.

Hadamard matrices can be connected to other types of designs. For

example, we can present the family of difference sets.

An (n, k, λ) difference set , D = {d1, d2, . . . , dk}, is a collection

of k residues modulo the positive integer n such that for each residue

α �≡ 0 (mod n), the equation

dj − di ≡ α (mod n)

has exactly λ solutions. If λ = 1, one can use the cyclic shifts of D to form

a cyclic Steiner system S(2, k, n). The following theorem is proved by using

observations from the definition and some algebraic manipulations.

Theorem 3.30. If D is an (n, k, λ) difference set, then we have that

4m− 1 ≤ n ≤ m2 +m+ 1, where m = k − λ.
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The two extremes in the bounds of Theorem 3.30 are related to some

important difference sets. If n = m2 + m + 1, then the difference set is

equivalent to a cyclic Steiner system S(2,m+1,m2 +m+1), i.e., a projec-

tive plane of order m. If n = 4m − 1, then the difference set is sometimes

called a Hadamard difference set (there are other difference sets called

Hadamard differences sets (see [Jungnickel (1992)]). This family of differ-

ence sets has parameters (4m− 1, 2m− 1,m− 1) and there are three types

of such difference sets.

(1) n = 2t − 1 and this type is related to M-sequences.

(2) n = 4t− 1 is a prime and this type is related to quadratic residues.

(3) n = p(p+ 2), where p and p+ 2 are primes and this type is related to

twin primes.

Given such a difference set, it is quite straightforward to generate a

related binary Hadamard matrix by taking the cyclic shifts of all the char-

acteristic vectors of the difference set, and adding a parity-check symbol

to each such characteristic vector. To these rows in the matrix we add

the all-zero vector. The obtained matrix is a binary Hadamard matrix

over the alphabet {0, 1} from which a Hadamard matrix over {−1,+1} is

easily obtained. M-sequences of length 2t − 1 are very important in com-

munication and coding as well as in other areas. The collection of the

cyclic shifts of one such sequence with the all-zero word form an isomor-

phic structure to the finite field F2t . Moreover, these 2t − 1 cyclic shifts

together with the all-zero sequence form the simplex code St. An excellent

book on these sequences and related shift-register sequences is [Golomb

(2017)]. Shift-register sequences and digital sequences are highly impor-

tant in many modern communications applications. In particular, auto-

correlation and cross-correlation properties of sequences are related to dif-

ference sets. The Hadamard matrices constructed via difference sets can be

used in the Sylvester’s construction and in the Kronecker product construc-

tion to form Hadamard matrices for many infinite families of parameters.

For more information on difference sets we direct the reader to the survey

in [Jungnickel (1992)] and the books of [Baumert (1971)] and [Ding (2014)].

The concept of difference sets was generalized to difference families,

where there are several sets D1, D2, . . ., each of size k, where each residue

modulo n occurs as a difference in exactly λ of these sets. If λ = 1, then

such a difference family forms a cyclic Steiner system S(2, k, n). Construc-

tions and bounds for such family of designs can be found, for example,
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in [Wilson (1972c); Buratti (1993); Bitan and Etzion (1995)]. This fam-

ily of designs is also related to a family of codes called optical orthogonal

codes or constant-weight cyclically permutable codes [Chung, Salehi, and

Wei (1989); A, Gyorfi, and Massey (1992); Chung and Kumar (1990); Bitan

and Etzion (1995); Moreno, Zhang, Kumar, and Zionviev (1995)].

Section 3.3. There are many books on projective geometries, most no-

table are [Albert and Sandler (1968); Dembowski (1968); Hughes and Piper

(1973); Hirschfeld (1998)]. Projective geometries are highly related to cod-

ing theory and in particular to MDS codes and to the area of network coding

which was developed at the start of the 21st century. A survey on these ge-

ometries and their connection with coding theory and network coding can

be found in [Etzion and Storme (2016)]. The projective geometry PG(m, q),

where m > 2 is unique, but for m = 2 there might be many nonisomor-

phic projective planes. The projective planes of order n = 2, 3, 4, 5, 7, 8 are

unique, while there are four nonisomorphic projective planes of order 9, at

least 22 of order 16, at least 193 of order 25, and more than 500,000 of

order 49. For more information on nonisomorphic projective planes and

other related properties of projective planes we refer the readers to [Bruck

and Ryser (1949); Albert and Sandler (1968); Hughes and Piper (1973);

Hiramine (1989); Lam, Thiel, and Swiercz (1989); Assmus and Key (1990);

Lam, Kolesova, and Thiel (1991); Czerwinski and Oakden (1992); Demp-

wolff (1994)].

Section 3.4. The Plotkin bound (Theorem 3.18 and Corollary 3.9) was

proved in [Plotkin (1960)]. The construction with Hadamard matrices that

meet the bound is contained in the work of [Levenshtein (1961)].

The Griesmer bound was introduced in [Griesmer (1960)]. Codes meet-

ing the bound have been developed for years. The ideas presented in

this section and summarized in Theorem 3.25 are based on the results

of [Solomon and Stiffler (1965); Belov, Logachev, and Sandimirov (1974);

Alltop (1976)]. More codes meeting the Griesmer bound can be found, for

example, in [Helleseth (1981); Helleseth and van Tilborg (1981); Helleseth

(1983)]. The Griesmer bound is easily generalized for [n, k, d]q codes, where

it takes the form

n ≥
k−1∑
i=0

⌈
d

qi

⌉
.

Codes attaining this bound were considered, for example, in [Hamada,

Helleseth, and Ytrehus (1993)].
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Section 3.5. The area of association schemes started with the work

of [Bose and Nair (1939)], but the name of the concept was only coined

later in [Bose and Shimamoto (1952)]. Their work was based on block

designs. It was extended in [Bose and Mesner (1959)] into its algebraic

structure and introduced as the Bose-Mesner algebra. The most important

contribution to the theory of association schemes, in the context of coding

theory, however, was presented by Delsarte in his seminal work [Delsarte

(1973)]. Delsarte made the connection between the theory of association

schemes, design theory, and coding theory. The representation in this sec-

tion was taken from [Mounits, Etzion and Litsyn (2007)] who used it to

obtain upper bounds on the sizes of codes. An excellent presentation of

association schemes for coding theory is given in [MacWilliams and Sloane

(1977)].

Finally, distance-regular graphs are the topic of the book by [Brouwer,

Cohen, and Neumaier (1989)]. A later survey on the connection between

association schemes and coding theory was done in [Delsarte and Leven-

shtein (1998)]. The work on graphs that represent metrics in the connection

of association schemes is highly connected to algebraic graph theory and

the books of [Biggs (1993); Godsil and Royle (2001)] can be used for the

related results.
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Chapter 4

Linear Perfect Codes

In this chapter we discuss the known linear perfect codes in the Hamming

scheme. There are two families of nontrivial linear perfect codes. The

first family of codes, the Hamming codes, is an infinite family over any

power of a prime q and the second family consists of two codes that are

the binary and ternary Golay codes. In Section 4.1 we concentrate on

the Hamming codes and the extended Hamming codes. We start with the

binary codes and discuss some of their properties. Many of these properties

are generalized to Fq, q > 2, but the proofs of these properties are slightly

more complicated for q > 2. In Section 4.2 the two Golay codes and their

extended codes are presented. Since these codes are two isolated codes,

their presentation will be short and we direct the readers to appropriate

literature on these interesting codes. Finally, Section 4.3 is devoted to

diameter perfect codes in the Hamming scheme, which are MDS codes in

the linear case and orthogonal arrays in the nonlinear case. Before starting

the exposition it should be mentioned that in addition to the usual trivial

perfect codes, the binary code of length n = 2e + 1 which contains the

all-zero codeword and the all-one codeword, is also a trivial e-perfect code.

4.1 Hamming Codes

The most celebrated perfect codes are the Hamming codes and, es-

pecially, the binary Hamming codes. The binary [2r − 1, 2r − r − 1, 3]

Hamming code , H(r), has a very simple parity-check matrix[
h0 h1 h2 · · · · · · · · · h2r−2

]
consisting of the 2r − 1 distinct nonzero col-

umn vectors of length r. This implies that all the 2r − 1 syndromes related

to the 2r − 1 possible errors are distinct. Clearly, there is no other way to

choose 2r − 1 distinct column vectors, to obtain a 1-perfect code. Hence,

93
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the linear 1-perfect code of length 2r − 1 is unique. The parity-check ma-

trix of H(r) is the generator matrix of the simplex code Sr and hence the

Hamming code of length 2r − 1 is the dual code of the simplex code of

length 2r − 1. The first property of these codes is derived from the follow-

ing general property of all possible perfect codes (linear or nonlinear) in

the binary Hamming scheme.

Theorem 4.1. The nonzero codewords of minimum weight in a binary

perfect (n,M, 2e + 1) code, which contains the all-zero codeword, form a

Steiner system S(e+ 1, 2e+ 1, n).

Proof. If the all-zero word is a codeword in a binary e-perfect (n,M, 2e+1)

code C, then it covers all the words of weight at most e and hence the

minimum weight codewords have weight 2e + 1. These codewords must

cover all the words of weight e+ 1 and each of these words of weight e+ 1

must be covered exactly once. Hence, these codewords of weight 2e+1 in C
form a Steiner system S(e+ 1, 2e+ 1, n).

Corollary 4.1. The codewords of weight three in H(r) form a Steiner sys-

tem S(2, 3, 2r − 1).

A triple {i, j, k} in the Steiner system S(2, 3, 2r−1) of H(r) is associated

with a codeword of weight three in H(r), and with three columns of the

parity-check matrix hi, hj , hk, such that hi + hj + hk = 0. Hence, we have

that the set {0, hi, hj , hk} is a two-dimensional subspace of Fr
2. Therefore,

for the linear code, this Steiner system is defined by the nonzero vectors of

the two-dimensional subspaces of Fr
2, which are the one-dimensional sub-

spaces of PG(r − 1, 2).

The following definition generalizes Definition 2.5 which was given for

binary codes.

Definition 4.1. Let C be an (n,M, d)q code. The code C∗ defined from C
by adding another symbol to the end of each codeword of C is called the

extended code of C if C∗ is an (n+ 1,M, d+ 1)q code.

For any binary perfect code C with minimum distance 2e + 1, the ex-

tended code C∗ is a code whose minimum distance is 2e+2 and this code

is defined by adding a parity bit to all the codewords of C. Therefore, all

codewords in an extended binary perfect code have even weight.

The binary [2r, 2r − r − 1, 4] extended Hamming code , H∗(r), is

obtained from H(r) by adding a parity bit at the end of each codeword.
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The parity-check matrix for H∗(r) is[
h0 h1 h2 · · · · · · · · · h2r−2 0

1 1 1 · · · · · · · · · 1 1

]
,

where
[
h0 h1 h2 · · · · · · · · · h2r−2

]
is a parity-check matrix of H(r).

Are there linear codes with the same parameters, which are not isomor-

phic to H∗(r)? The answer is clearly no. By Lemma 2.1, puncturing H∗(r)
on any coordinate yields a code with the parameters of H(r). It can be

extended in a unique way (adding a parity bit). This implies that since

H(r) is unique, also H∗(r) is unique.
The 2r+1 cosets of H∗(r) are formed from coset leaders. These coset

leaders have weight 0 (the code itself), weight one, and weight two. There

are 2r cosets with a coset leader of weight one and hence 2r− 1 cosets with

a coset leader of weight two. The words in the cosets with a coset leader of

weight one have odd weights and hence they are called odd cosets. The

code itself and the cosets with a coset leader of weight two have only words

with even weight and hence they are called even cosets . Clearly, there

are 2r even cosets that contain all the 22
r−1 inary words of length 2r and

even weight, and 2r odd cosets that contain all the 22
r−1 binary words

of length 2r and odd weight. The same arguments will hold also for the

translates of any extended binary nonlinear 1-perfect code.

Theorem 4.2. The nonzero codewords of minimum weight in an

(n,M, 2e+2) extended binary perfect code containing the all-zero codeword

form a Steiner system S(e+ 2, 2e+ 2, n).

Proof. Let C∗ be an (n,M, 2e + 2) extended binary perfect code and

C be its punctured code. Clearly, C is an e-perfect code and hence, by

Theorem 4.1, its codewords with weight 2e + 1 form a Steiner system

S(e+ 1, 2e+ 1, n− 1) whose size is
(
n−1
e+1

)
/
(
2e+1
e+1

)
. Therefore, there are(

n−1
e+1

)
/
(
2e+1
e+1

)
codewords in C with weight 2e+ 1. The related codewords of

weight 2e+2 in C∗ cover (contain) all the words of weight e+2 with a one

in the punctured coordinate. Each codeword of C with weight 2e + 1 also

covers
(
2e+1
e+2

)
words of length n− 1 with weight e+ 2. Hence, it remains to

cover by C (
n− 1

e+ 2

)
−
(
n−1
e+1

)(
2e+1
e+1

)(2e+ 1

e+ 2

)
words of length n − 1 and weight e + 2. Since C is an e-perfect code, it

follows that each of these words is covered exactly once by the codewords
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of weight 2e+2 in C (which are also codewords of C∗ of weight 2e+2 with

a zero in the punctured coordinate of C∗). Hence, each word of length n

and weight e+ 2 is covered exactly once by a codeword of weight 2e+ 2

in C∗. Thus, the codewords of C∗ with weight 2e+ 2 form a Steiner system

S(e+ 2, 2e+ 2, n).

Corollary 4.2. The codewords of weight four in H∗(r) form a Steiner

system S(3, 4, 2r).

Another important way to representH(r) is to use a parity-check matrix

that yields a cyclic code. Let α be a primitive element of F2r and let H be

the following parity-check matrix

H =
[
α0 α1 α2 · · · · · · · · · α2r−2

]
where αi is represented by a column vector of length r based on the binary

representation of αi in F2r . Clearly, H contains each nonzero column vector

of length r exactly once and hence it is a parity-check matrix of H(r).

Moreover, this representation yields a cyclic code because if x is a codeword,

i.e., H · xtr = 0 and y is a cyclic shift (by one position to the right) of x,

then H · ytr = α(H · xtr) = 0.

By Corollary 4.2, the codewords of weight four in H∗(r) form a Steiner

system S(3, 4, 2r). This Steiner system is a Steiner quadruple system called

a boolean Steiner quadruple system and will be denoted now by B0.

It can also be defined as follows.

B0 � {{x, y, z, w} : x, y, z, w ∈ F
r
2, x+ y+ z+w = 0, |{x, y, z, w}| = 4} .

There are other types of boolean Steiner quadruple systems and the

systems of these types are related to the even cosets of H∗(r). There are

2r − 1 such cosets (excluding the code itself) and each is associated with

one such system. Given a nonzero vector v of length r, its system Bv is the

union of the following two sets

{{x, y, z, w} : x+ y + z + w = v, |{x, y, z, w}| = 4, x, y, z, w ∈ F
r
2}

{{x, y, z, w} : x+ y = z + w = v, |{x, y, z, w}| = 4, x, y, z, w ∈ F
r
2}.

The following proposition can be easily verified.

Proposition 4.1. Each quadruple {x, y, z, w} of F
r
2 is contained in at

least one of the Bv’s. If x + y + z + w = v, where x, y, z, w ∈ F
r
2

and |{x, y, z, w}| = 4, then the quadruple is contained only in Bv. If

x + y + z + w = 0, where x, y, z, w ∈ F
r
2 and |{x, y, z, w}| = 4, then the

quadruple is contained in exactly four of the Bv’s, B0, Bi, Bj, and Bk,

where i = x+ y, j = x+ z, and k = x+ w.
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These 2r boolean Steiner quadruple systems are very important in con-

structions of sets with pairwise disjoint Steiner quadruple systems. They

are also highly related to the following two observations.

Lemma 4.1. In any coset of H∗(r), whose coset leader has weight two,

there are exactly 2r−1 words of weight two.

Proof. Assume {i, j} is a coset leader of and even coset of H∗(r). Since by
Corollary 4.2 the codewords of weight four in H∗(r) form a Steiner system

S(3, 4, 2r), it follows that H∗(r) contains exactly 2r−1− 1 codewords of the

form {i, j, α, β} (this is also implied since each α ∈ F
r
2 \ {i, j} is contained

in exactly one such codeword). For each such codeword {i, j, α, β}, {α, β}
is clearly a word in the coset {i, j}+H∗(r). Thus, {i, j} and the 2r−1 − 1

words implied from codewords of the form {i, j, α, β} yield 2r−1 words of

weight two in the coset. There are no more words of weight two in the

coset since any other word of weight two intersects two of these 2r−1 words

in exactly one coordinate and their addition implies a word of weight two

in H∗(r), which contradicts the minimum distance of H∗(r).

Lemma 4.2. Each word x ∈ F
2r

2 satisfies one of the following three condi-

tions:

• x is a codeword in H∗(r);
• there exists exactly one codeword in H∗(r) with distance one from x;

• there exist exactly 2r−1 codewords in H∗(r) with distance two from x.

Proof. We distinguish between a word x of odd weight and a word x of

even weight.

If x has odd weight, then it is contained in an odd coset x+H∗(r) and
hence its distance is one from exactly one codeword c of H∗(r), such that

ei = c + x, for some 1 ≤ i ≤ 2r, is the coset leader of weight one in the

coset x+H∗(r).
If x has even weight, then either x is a codeword of H∗(r) or x is not a

codeword of H∗(r). If x is not a codeword of H∗(r), then it is contained in

the coset x+H∗(r). By Lemma 4.1 this coset contains 2r−1 words of weight

two x1, x2, . . . , x2r−1 , and by Lemma 2.9 for each i, x + xi is a codeword

of H∗(r) with distance two from x. There are no other codewords in H∗(r)
at distance two from x since such a codeword would imply more words of

weight two in the coset x+H∗(r), contradicting Lemma 4.1.
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Corollary 4.3. Each word x ∈ F
2r−1
2 satisfies one of the following two

conditions:

• x is a codeword in H(r);

• there exists a codeword in H(r) with distance one from x, and exactly

2r−1 − 1 codewords in H(r) with distance two from x.

The q-ary Hamming code is a [(qr−1)/(q−1), (qr−1)/(q−1)−r, 3] code

over Fq. It generalizes the binary Hamming code. Some of the properties

mentioned for the binary Hamming codes can also be generalized.

The parity-check matrix H of the code has (qr − 1)/(q − 1) columns,

which are the (qr−1)/(q−1) points of the projective geometry PG(r − 1, q).

This is also a straightforward generalization from the binary case. In other

words, H contains one representative from each q − 1 nonzero column vec-

tors of length r, from which each two are linearly dependent. There is a

wide range of such possible representatives, each of which may serve to

prove different properties of the code and could also be used for different

constructions. This leads to the following theorem.

Theorem 4.3. For each r > 1, there exists a 1-perfect Hamming code

over Fq. This code has length (qr−1)/(q−1), redundancy r, and minimum

Hamming distance 3.

Similarly to the binary case, we can represent the parity-check matrix

of the code in a cyclic way, where the columns represent the elements

α0, α1, α2, . . . , α�−1, � = qr−1
q−1 and α is a primitive element in Fqr . The

vector representation of these qr−1
q−1 elements coincides with the points of

PG(r − 1, q).

Unfortunately, some properties of the binary case do not generalize to

the q-ary case. The most important such property is that for most pa-

rameters, there is no extended q-ary Hamming code. The only exception

is when q = 2�, � > 1, where the only extended q-ary Hamming code is a

[q + 2, q − 1, 4] code.

Theorem 4.4. If α is a primitive element in Fq, q = 2�, then the following

matrix

H =

⎡
⎣ 1 1 1 · · · 1 1 0 0

α0 α1 α2 · · · αq−2 0 1 0

α0 α2 α4 · · · α2q−4 0 0 1

⎤
⎦ (4.1)

is a parity-check matrix of a [q + 2, q − 1, 4] code.
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Proof. The length of the code and its dimension are immediate results

from the definition of the parity-check matrix H. To complete the proof

of the claim, it suffices to show that each two columns of H or each three

columns of H are linearly independent. This will imply, by Corollary 2.11,

that the minimum distance of the code is at least four. This can be done in

the most naive way as follows. It is readily verified that each two columns

of H are linearly independent. Clearly, the last three columns are linearly

independent. Moreover, it is readily verified that taking any two of the last

three columns with one of the first q − 1 columns results in a set of three

linearly independent column vectors.

Consider now three columns from the first q − 1 columns. Assume

that there exist three nonzero elements β1, β2, β3 ∈ F
−
q and integers

0 ≤ i < j < k ≤ q − 2 such that

β1

⎛
⎝ 1

αi

α2i

⎞
⎠+ β2

⎛
⎝ 1

αj

α2j

⎞
⎠+ β3

⎛
⎝ 1

αk

α2k

⎞
⎠ =

⎛
⎝0

0

0

⎞
⎠ . (4.2)

This implies that

β1 + β2 + β3 = 0,

β1α
i + β2α

j + β3α
k = 0,

β1α
2i + β2α

2j + β3α
2k = 0.

The first of these three equations implies that β3 = −(β1+β2) and plugging

this into the other two equations yields

β1(α
i − αk) = β2(α

k − αj),

β1(α
2i − α2k) = β2(α

2k − α2j).

Plugging the solution for β1 in the first equation into the second equation

implies that

β2
α2i − α2k

αi − αk
= β2

α2k − α2j

αk − αj

and since i �= k and j �= k, this is equivalent to

αi + αk = αk + αj ,

i.e., i = j and since there is symmetry for i, j, and k, in (4.2), it follows

that i = j = k, a contradiction.
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It remains to consider only the case of one column from the last three

columns and two columns from the first q − 1 columns. We distinguish

between three cases depending on the unique column taken from the last

three columns.

Case 1. This column is

⎛
⎝ 1

0

0

⎞
⎠.

In this case it suffices to show that there is no nontrivial linear combi-

nation

β1

(
αi

α2i

)
+ β2

(
αj

α2j

)
=

(
0

0

)
,

where 0 ≤ i < j ≤ q−2. The existence of such a nontrivial linear combina-

tion implies that β2 = −β1α
i−j and β2 = −β1α

2i−2j and, as a consequence,

i = j, a contradiction.

Case 2. This column is

⎛
⎝ 0

0

1

⎞
⎠.

In this case we have to show that there is no nontrivial linear combina-

tion

β1

(
1

αi

)
+ β2

(
1

αj

)
=

(
0

0

)
,

where 0 ≤ i < j ≤ q − 2. The existence of such a nontrivial linear com-

bination implies that β2 = −β1 and β2 = −β1α
i−j and, as a consequence,

i = j, a contradiction.

Case 3. This column is

⎛
⎝ 0

1

0

⎞
⎠.

In this case we have to show that there is no nontrivial linear combina-

tion

β1

(
1

α2i

)
+ β2

(
1

α2j

)
=

(
0

0

)
,

where 0 ≤ i < j ≤ q − 2. The existence of such a nontrivial linear combi-

nation implies that, β2 = −β1 and β2 = −β1α
2i−2j and, as a consequence,

α2i = α2j . Since q is even, it follows that this is possible only if j = i, a

contradiction.

Thus, the minimum number of linearly dependent column vectors ofH is

four and hence the minimum Hamming distance of the code, whose parity-

check matrix is H, is 4.
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If q is not a power of two, i.e., q is odd, then the following three column

vectors (which are column vectors of H) in (4.1)⎛
⎝ 1

α0

α0

⎞
⎠ ,

⎛
⎝ 1

α(q−1)/2

αq−1

⎞
⎠ =

⎛
⎝ 1

α(q−1)/2

α0

⎞
⎠ ,

⎛
⎝0

1

0

⎞
⎠

are clearly linearly dependent and the matrix in (4.1) is not a parity-check

matrix of a code whose minimum distance is 4.

Does there exist a system like a Steiner system formed by the words of

minimum weight from a nonbinary perfect codes? The answer is yes, if we

use generalized Steiner systems instead of Steiner systems. The following

theorem is a straightforward generalization of Theorem 4.1.

Theorem 4.5. The nonzero codewords of minimum weight in an e-perfect

(n,M, 2e+1)q code which containing the all-zero codeword form a general-

ized Steiner system GS(e+ 1, 2e+ 1, n, q).

4.2 Golay Codes

Except for the Hamming code, there are only two other nontrivial linear

perfect codes in the Hamming scheme Hq(n), q a prime power, called the

Golay codes. The binary Golay code will be denoted by G23 and its

extended code by G24. The ternary Golay code will be denoted by G11 and

its extended code is G12. The nonexistence of other perfect codes will be

discussed in Section 5.8.

The binary extended Golay code denoted by G24 has the following 12×24
generator matrix

G24 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 1 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 1

1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 0 0 0

1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 0 0

1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 0

1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1

1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 1 0 1 1

1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 1 1 0 1

1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 1 0 1 1 0

1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 1 0 1 1

1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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The binary extended Golay code has 4096 codewords and hence all its

properties can be verified easily by a computer search. Nevertheless, below

we present proofs for some properties of the codes.

By replacing each zero by a +1 and each one by a −1, the last twelve

columns of G24 form a 12×12 Hadamard matrix. This immediately implies,

by the structure of G24, that the inner product of any two rows of G24 is

equal to zero, i.e., any two rows are orthogonal. Hence, the parity-check

matrix H24 of G24 is G24, i.e., H24 = G24 and, therefore, G24 is a self-

dual code. It is also a self-complement code since the sum of all the rows

of G24 is the all-ones word. Given two binary codewords whose weight is

divisible by 4, to be orthogonal they should share ones in an even number of

coordinates. Hence, the addition of these two codewords is also a codeword

whose weight is divisible by 4. Therefore, since all the rows of G24 have

weights divisible by 4 and the code is self-dual, it follows that all codewords

of G24 have weights divisible by 4.

Lemma 4.3. The extended Golay code G24 is invariant under the following

permutation π of the 24 coordinates

π � (1, 13)(2, 14)(3, 24)(4, 23)(5, 22) · · · (10, 17)(11, 16)(12, 15)

Proof. The permutation π sends the first row of G24 into the word

010100011101110000000000,

which is the sum of rows 1, 3, 7, 8, 9, 11, 12 of G24. Due to the cyclic

structure of the two halves of G24, excluding the 1-st and 13-th columns,

the same arguments, on the sum of rows and the permutation π, hold for

the first eleven rows. The permutation π applied on the last row of G24 is

the complement of the last row of G24, which completes the proof.

Corollary 4.4. The word (x, y), where x = (x1, x2, . . . , x12),

y = (y1, y2, . . . , y12) is a codeword in G24 if and only if (x′, y′) ∈ G24, where
x′ = (y1, y2, y12, y11, . . . , y3) and y′ = (x1, x2, x12, x11, . . . , x3).

Lemma 4.4. The extended Golay code G24 does not contain a codeword of

weight 4.

Proof. By Corollary 4.4 and the structure ofG24, if there exists a codeword

of weight 4 in G24, then we can consider only a codeword of the form (x, y),

x, y ∈ F
12
2 , and either wt(x) = 0, wt(y) = 4 or wt(x) = wt(y) = 2. Clearly,

by the structure of G24, we cannot have wt(x) = 0, wt(y) = 4 (the last

row of G24 implies that if wt(x) = 0, then either wt(y) = 0 or wt(y) = 12).



February 21, 2022 16:26 ws-book9x6 Perfect Codes and Related Structures Perfect˙Codes˙Main page 103

Linear Perfect Codes 103

Any codeword (x, y) for which wt(x) = 2 is obtained by adding one or two

of the first eleven rows of G24 and possibly also the last row. Hence, the

weight of y can only be six (again as a consequence of the structure of these

rows in G24).

Corollary 4.5. The codewords of G24 have weights 0, 8, 12, 16, and 24.

The Golay code G23 is a [23, 12] code obtained from G24 by puncturing

any column of G24.

Corollary 4.6. The minimum Hamming distance of the [24, 12] binary

extended Golay code, G24, is 8 and the minimum Hamming distance of the

[23, 12] Golay code, G23, is 7.

The size of a ball with radius 3 for a binary word of length 23 is

1 +

(
23

1

)
+

(
23

2

)
+

(
23

3

)
= 211

and since by Corollary 4.6, the Golay code G23 is a [23, 12, 7] code, it follows

by the sphere-packing bound that G23 is a 3-perfect code.

By Theorem 4.1, the codewords of weight seven in G23 form a Steiner

system S(4, 7, 23) and, by Theorem 4.2, the codewords of weight eight in G24
form a Steiner system S(5, 8, 24). Let Ai be the number of codewords of

weight i in G23. By considering either that G23 is a perfect code or the

Steiner systems S(4, 7, 23) and S(5, 8, 24), respectively, embedded in G23
and in G24, respectively, and the fact that the codes are self-complements,

we have that for G23
A0 = A23 = 1, A7 = A16 = 253, A8 = A15 = 506, A11 = A12 = 1288,

and, for each other i, we have that Ai = 0. The weight distribution of G24
is easily derived from the weight distribution of G23.

Consider now any codeword of weight eight in G24 and permute the

columns of G24 such that all the ones of this codeword are in the first eight

coordinates. Since H24 = G24, it follows that the first seven columns of

the related new parity-check matrix (and also the generator matrix) are

linearly independent since otherwise, by Corollary 2.11, the code will have

a codeword of weight at most seven. Therefore, the 8-th column of G24
(also of each codeword in G24 and of each row in G24) is the sum of the first

seven columns. Partitioning the codewords by the value of the first seven

coordinates yields 27 = 128 sets, each with 25 = 32 codewords (by simple

enumeration since no such sub-code can have more than 32 codewords by
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the Plotkin bound for a code of length 16 and minimum distance 8, as

implied by (3.7)). Consider now the 7 · 32 = 224 codewords of weight two

with a one in the first coordinate and the 32 codewords that start with eight

zeroes. By puncturing the first eight coordinates in these 256 codewords,

we obtain a code of length 16, whose minimum Hamming distance is 6,

with 256 codewords. This code is called the Nordstorm–Robinson code or

the Preparata code of length 16. This code will be discussed in Chapter 6.

We continue with the next code, the ternary Golay code G11. The

generator matrix of the ternary [12, 6, 6] extended Golay code G12 is⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 1 1 1 1 1

0 1 0 0 0 0 1 0 1 2 2 1

0 0 1 0 0 0 1 1 0 1 2 2

0 0 0 1 0 0 1 2 1 0 1 2

0 0 0 0 1 0 1 2 2 1 0 1

0 0 0 0 0 1 1 1 2 2 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

Similarly to the binary Golay code, one can analyze this generator ma-

trix and obtain the properties of this code, the ternary extended Golay

code G12 and its punctured code G11. One property is that the supports of

the codewords of weight six in G12 form a Steiner system S(5, 6, 12), while

the supports of the codewords of weight five in G11 form a Steiner sys-

tem S(4, 5, 11). By Theorem 4.5, these codewords also form a generalized

Steiner system GS(3, 5, 11, 3).

4.3 Diameter Perfect Codes

We continue and consider diameter perfect codes (linear and nonlinear) in

the Hamming scheme. Let Aq(n,D) be the largest anticode with diam-

eter D in the Hamming scheme Hq(n). Note that q can be any integer

greater than one. The following theorem, which is given without a proof,

determines the size of the largest possible anticode.

Theorem 4.6. For q ≥ 2 and D < n we have that

|Aq(n,D)| = |Be(n−D + 2e)| · qD−2e

where

e =

⎧⎨
⎩
⌊
D
2

⌋
if (D + 1)q ≤ 2n⌊

n−D+1
q−2

⌋
if (D + 1)q > 2n

. (4.3)

Theorem 4.7. An OA(t, k, q) is a (k − t)-diameter perfect code.
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Proof. By Theorem 3.3, an OA(t, k, q) is a (k, qt, k − t+ 1)q code C. Define

A � {(a1, a2, . . . , ak) : ai = 0, 1 ≤ i ≤ t, ai ∈ Zq, t+ 1 ≤ i ≤ k}.
Clearly, |A| = qk−t, and the maximum distance in A is k − t, i.e., A is an

anticode of length k and diameter k − t over Zq. This implies that

|C| · |A| = qtqk−t = qk .

Therefore, an OA(t, k, q) and the anticode A satisfy the code-anticode

bound ( (2.3) in Corollary 2.15). Thus, an OA(t, k, q) is a (k− t)-diameter

perfect code.

Corollary 4.7. An [n, k, n− k+1] MDS code is a linear (n− k)-diameter

perfect code.

Theorem 4.8. If C is a D-diameter perfect code in Hq(n), then its extended

code C∗ is a (D + 1)-diameter perfect code in Hq(n+ 1).

Proof. Let C be a D-diameter perfect code, in Hq(n), and let A be an

associated maximum size anticode with diameter D, over Zn
q . Define

A∗ � {(a, α) : a ∈ A, α ∈ Zq}.
Since the diameter of A is D, it follows that the diameter of A∗ is D + 1

and, clearly, |A∗| = q|A|. Since C is a D-diameter perfect code and A is its

related maximum size anticode, it follows by the code-anticode bound that

|C| · |A| = qn. Moreover, clearly |C∗| = |C| and hence |C∗| · |A∗| = qn+1.

Since C∗ is the extended code of C, it follows by Definition 4.1 that

d(C∗) = d(C) + 1 = D + 2. Thus, by the code-anticode bound, C∗ is a

(D + 1)-diameter perfect code.

Our discussion in Section 4.1 and Section 4.2 (and also regarding Theo-

rem 4.10 and Theorem 5.13 presented in Chapter 5) implies that parameters

of extended perfect codes in Hq(n), q being a prime power, are as in the

following linear codes.

(1) The binary [2r, 2r − r − 1, 4] extended Hamming code, where r ≥ 2.

(2) The binary [24, 12, 8] extended Golay code.

(3) The ternary [12, 6, 6] extended Golay code.

(4) The [q + 2, q − 1, 4] extended Hamming code over Fq, q = 2m, m ≥ 2.

Theorem 4.9. In Hq(n), q a prime power, there are no diameter perfect

codes except for the codes with the parameters of the Hamming codes, the

extended Hamming codes, the Golay codes, the extended Golay codes, and

the MDS codes.
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Proof. Let C be a D-diameter perfect (n,M,D + 1) code and let e be

the parameter (as in (4.3)) of the anticode A with diameter D denoted by

Aq(n,D). Assume that C is not an MDS code and C is not a perfect code,

i.e., e > 0 and D > 2e. By the code-anticode bound of Corollary 2.15 and

since C is a D-diameter perfect code, it follows that

M =
qn

|Aq(n,D)| ,

and, in view of Theorem 4.6, we have that

|Aq(n,D)| = |Be(n−D + 2e)| · qD−2e.

Puncturing C in any coordinate, yields by Lemma 2.1 an (n − 1,M,D)

code C′. The code C′ is a (D − 1)-diameter perfect code since, by Theo-

rem 4.6, there exists an anticode A in Hq(n − 1) of diameter D − 1 and

size |Be(n−D + 2e)| · qD−2e−1. This anticode and the code C′ meet the

code-anticode bound of Corollary 2.15 since

|C′| · |A| = M · |Be(n−D + 2e)| · qD−2e−1 = qn−1 .

Continuing this argument iteratively yields a (2e)-diameter perfect code

whose length is η = n−D+2e and whose minimum distance is δ = 2e+1.

This is an e-perfect code with the parameters of the Hamming code or the

Golay codes, where for length η+1 we have the associated extended codes.

Clearly, there are no doubly extended perfect codes (extended codes for the

extended perfect codes), which completes the proof.

Note, that while an extended code cannot be extended, it is possible to

extend many diameter perfect codes (MDS codes and orthogonal arrays) a

few times. Another interesting fact is that [q+1, q− 1, 3]q code is an MDS

code and also a 1-perfect code over Fq. Finally, Theorem 4.9 and Theo-

rem 5.13 (presented in the Chapter 5 which follows) imply that we know

all the parameters of perfect codes in Hq(n), where q is a prime power. We

probably know all the parameters of MDS codes too (see Conjecture 3.1).

There is still a lot about nonlinear codes, i.e., orthogonal arrays, that we do

not know. Moreover, over an alphabet that is not a prime power, there are

some parameters where it has yet to be proven that perfect codes cannot

exist.

4.4 Notes

Section 4.1. Binary Hamming codes were introduced by Hamming

[Hamming (1950)]. The codes over nonbinary alphabets were introduced

in [Shapiro and Slotnick (1959)].
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As we easily proved, both the [2r − 1, 2r − r − 1, 3] Hamming code

and its [2r, 2r − r − 1, 4] extended code are unique. But, what about their

shortened codes? It is not difficult to prove that these codes are also unique.

Moreover, the question can be generalized further. It is easy to verify that

the largest dimension k of a [2r − 1− �, k, 3] code, where 0 ≤ � ≤ 2r−1 − 1,

is k = 2r−1− r− �, and to obtain a code with these parameters one has to

shorten the [2r−1, 2r−r−1, 3] Hamming code � times. All these codes can

also be obtained by removing any � columns from the parity-check matrix

of the Hamming code. Depending on the � deleted columns, different codes,

which are not necessarily isomorphic, are generated. The same question can

be asked about the [2r, 2r−r−1, 4] extended Hamming code, where it is also

important in the context of codes for semiconductor memories [Davydov

and Tombak (1991)]. It is easily verified that the largest dimension k of a

[2r−�, k, 4] code, where 0 ≤ � ≤ 2r−1−1, is k = 2r−1−r−�, and to obtain a

code with these parameters one has to shorten the [2r, 2r−r−1, 4] extended

Hamming code � times. Nevertheless, there are also other codes with some

of these parameters that cannot be generated by deleting columns from

the parity-check matrix of the [2r, 2r − r− 1, 4] binary extended Hamming

code. Note that this is a distinction between the Hamming code and the

extended Hamming code. It is also easy to verify that the covering radius of

the extended Hamming code is 2 since the covering radius of the Hamming

code is 1. It was proved in [Davydov and Tombak (1989a)] that there are

exactly three families of codes with these parameters that also have covering

radius 2. These families are the [2r, 2r−r−1, 4] extended Hamming code; a

[5 ·2r−4, 5 ·2r−4−r−1, 4] code, where r ≥ 7; and a [9 ·2r−5, 9 ·2r−5−r−1, 4]

code, where r ≥ 9.

Each binary Hamming code has an extended code. For nonbinary Ham-

ming codes, there is only one small family of extended codes. This is stated

in the following theorem.

Theorem 4.10. An extended Hamming code over Fq, q > 2, exists only

when q is a power of two and the extended code is a [q + 2, q − 1, 4] code.

Theorem 4.10 was proved in [Hill (1978)] by using techniques from projec-

tive geometry. A [q+2, q− 1, 4] code when q is a power of 2 was presented

in Theorem 4.4. It should be noted that a [q + 2, q − 1, 4] code is also an

MDS code.

The boolean Steiner quadruple systems were defined and used in [Etzion

and Hartman (1991)] to form a set with a very large number of disjoint

Steiner quadruple systems.
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Section 4.2. The Golay codes were introduced by [Golay (1949)]. It

should be mentioned that the code was found earlier in the context of

football pools. In football pools there are n games of football with three

possible results for each game, the first team wins, the second team wins, or

a draw. A Finnish football pools specialist, Juhani Virtakallio, published in

issue 27/1947 of the Finnish magazine Veikkaaja (Veikkaus-Lotto), on Au-

gust 1, 1947, a system for the football pools which comprising the 729 code-

words of the ternary Golay codes. These codewords form the smallest num-

ber of guesses required to guess at least nine outcomes of eleven football

games correctly.

Many properties of the binary Golay code including its weight distri-

bution, designs embedded in the code, and the Nordstorm–Robinson code

embedded in the code, were found by [Goethals (1971)]. More properties

were observed in [Goldberg (1986)]. There are also other ways to construct

the code, e.g., the ones in [Pasquier (1980); Peng and Farrell (2006)]. The

uniqueness of the linear Golay codes were proved in a sequence of papers

by [Pless (1968, 1992)]. The proof that there are no nonlinear codes with the

parameters of the Golay code was done in [Delsarte and Goethals (1975)].

Another simpler approach to prove the uniqueness of the ternary Golay

code was given in [Drápal (2002)]. The Golay codes are, without doubts,

the most researched codes, taking into account all specific codes. Decoding

of the Golay codes was considered by many authors, e.g., [Pless (1986);

Conway and Sloane (1986); Snyders and Be’ery (1989); Vardy and Be’ery

(1991); Amrani, Be’ery, Vardy, Sun, and van Tilborg (1994)]. The proof

that G24 is unique is based on the fact that the Steiner system S(5, 8, 24)

embedded in the code is unique [Pless (1968)]. The supports of the code-

words of weight 6 in G12 form a Steiner system S(5, 6, 12). The uniqueness

of this system implies the uniqueness of G12 [Pless (1968)]. Some sub-codes

of G24 are also unique as was proved in [Dodunekov and Encheva (1993)].

Finally, the Nordstrom–Robinson was found by [Nordstrom and Robinson

(1967)] and independently later by [Semakov and Zinoviev (1969)].

Section 4.3. The analysis on diameter perfect codes which was done

in [Ahlswede, Aydinian, and Khachatrian (2001)]. The size of a maximum

anticode was proved in [Ahlswede, and Khachatrian (1998)].
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Nonlinear Perfect Codes

The only infinite family of perfect codes in the Hamming scheme is the

family of 1-perfect codes. Therefore, during the years the main research in

this direction was on constructions of other nonlinear 1-perfect codes with

the same parameters having some desired properties. This is the topic of

Chapter 5. In Section 5.1 three constructions for binary 1-perfect codes and

one construction for a nonbinary alphabet, which is also useful for other

metrics, are presented. In Section 5.7 we present a construction that yields

a large number of nonequivalent 1-perfect codes. The construction is for the

nonbinary case, but it can be also implemented for binary codes. Moreover,

the ideas of this construction for binary codes are presented in all the other

sections. The number of binary codes known in other constructions is at

most slightly larger than the number of codes generated by this construc-

tion presented in Section 5.7. Since the difference in the number is very

small, the simpler construction was chosen for Section 5.7. The presented

construction is based of a switching method that is also useful when examin-

ing the intersection numbers, the ranks, and the kernels of 1-perfect codes,

which are discussed in Sections 5.3, 5.5, and 5.6, respectively. Section 5.4

is devoted to the intersection numbers of linear codes.

In Section 5.2 the weight distribution and the distance distribution of

1-perfect codes are considered. It is shown that all 1-perfect codes have the

same distance distribution and weight distribution (depending on whether

the all-zero word is in the code). In Section 5.8 we discuss the nonexistence

of perfect codes with other parameters.

In Section 5.9 we present an application of 1-perfect codes to the well-

known mathematical game of hat guessing. We emphasize again that most

of the results presented in this chapter are for binary codes, but they can

be generalized for any finite field Fq. In particular, the topics of Section 5.2

109
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through Section 5.6 are presented only for the binary alphabet.

5.1 Constructions of Nonlinear Perfect Codes

The first known construction of nonlinear 1-perfect codes is defined as fol-

lows. Let Cn be a 1-perfect code of length n = 2r−1. Let f : Cn → {0, 1} be
an arbitrary mapping such that f(0) = 0 and f(c1)+f(c2) �= f(c1+ c2) for

some c1, c2, c1 + c2 ∈ Cn. This last condition is given to obtain a nonlinear

code if Cn is a linear code.

Theorem 5.1. The code C2n+1, defined by

C2n+1 � {(v, v + c, p(v) + f(c)) : v ∈ F
n
2 , c ∈ Cn},

is a binary 1-perfect code.

Proof. Clearly, C2n+1 is a code of length 2n + 1 = 2r+1 − 1 and

|C2n+1| = 2n|Cn| = 22
r−122

r−1−r = 22
r+1−2−r, which is the required num-

ber of codewords. Hence, to complete the proof, it suffices to show

that the minimum Hamming distance of the code is 3. Assume that

c′1 = (v1, v1 + c1, p(v1) + f(c1)) and c′2 = (v2, v2+ c2, p(v2)+ f(c2)) are two

distinct codewords of C2n+1. We distinguish between four cases, depending

on the value of d(v1, v2).

Case 1. d(v1, v2) = 0.

Clearly, v1 = v2 and hence c1 �= c2, i.e., d(c1, c2) ≥ 3, which implies

that d(v1 + c1, v2 + c2) = d(c1, c2) ≥ 3 and, therefore, d(c′1, c
′
2) ≥ 3.

Case 2. d(v1, v2) = 1.

This implies that v1 and v2 have different parity, i.e., p(v1) �= p(v2).

If c1 = c2, then d(v1 + c1, v2 + c2) = d(v1, v2) = 1, d(p(v1) + f(c1), p(v2) +

f(c2)) = d(p(v1), p(v2)) = 1, and, therefore, d(c′1, c
′
2) = 3. If c1 �= c2,

then d(c1, c2) ≥ 3, which implies that d(v1 + c1, v2 + c2) ≥ 2 and hence

d(c′1, c
′
2) ≥ 3.

Case 3. d(v1, v2) = 2.

Assume first that c1 = c2, which implies that d(v1 + c1, v2 + c2) =

d(v1, v2) = 2 and hence d(c′1, c
′
2) ≥ 4. If c1 �= c2, then d(c1, c2) ≥ 3, which

implies that d(v1 + c1, v2 + c2) ≥ 1 and, therefore, d(c′1, c
′
2) ≥ 3.

Case 4. d(v1, v2) ≥ 3

This immediately implies that d(c′1, c
′
2) ≥ 3.

Let C∗(r) be an extended 1-perfect code of length 2r, and let
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C∗1 , C∗2 , . . . , C∗2r be the even translates of C∗(r). The next construction is

based on the direct product construction.

Theorem 5.2. If (i1, i2, . . . , i2r ) is a permutation of [2r], then the code

defined by

Ĉ � {(x, y) : x ∈ C∗j , y ∈ C∗ij , 1 ≤ j ≤ 2r}.
is an extended 1-perfect code of length 2r+1.

Proof. Clearly, Ĉ is a code of length 2r+1 and
∣∣∣Ĉ∣∣∣ = 2r |C∗(r)|2 =

2r22
r−1−r22

r−1−r = 22
r+1−2−r, which is the required number of codewords.

Hence, to complete the proof, it suffices to show that the minimum Ham-

ming distance of the code is 4. Assume that c1 = (x1, y1) and c2 = (x2, y2)

are two distinct codewords of Ĉ and distinguish between two cases, de-

pending on whether x1 and x2 are codewords of the same translate C∗j or

not.

Case 1. x1 and x2 are codewords of the same translate C∗j .
If x1 �= x2, then since x1 and x2 are words of the same tanslate, it follows

that d(x1, x2) ≥ 4, which implies that d(c1, c2) ≥ 4. If x1 = x2, then y1
and y2 are two distinct words in the tanslate C∗ij and hence d(y1, y2) ≥ 4,

which implies that d(c1, c2) ≥ 4.

Case 2. x1 and x2 are words of two distinct tanslates C∗j and C∗� , where
j �= �.

This implies that also y1 and y2 are words in two distinct tanslates

of C∗(r). Therefore, d(x1, x2) ≥ 2 and d(y1, y2) ≥ 2, and hence d(c1, c2) ≥ 4.

The next two constructions are variants of the general product construc-

tion. For the next construction, let C∗(r) be an extended 1-perfect code of

length n = 2r for some r ≥ 2. For each b ∈ C∗(r), let Qb be a code of length

n = 2r, minimum distance 2, over an alphabet with m + 1 = 2� symbols.

An example of such a code is

Qb �
{
(x1, . . . , xn) : xi ∈ Zm+1, 1 ≤ i ≤ n, xn ≡

n−1∑
i=1

xi (mod m+ 1)

}
,

where clearly |Qb| = (m+1)n−1. Let C01 , C02 , . . . , C0m+1 be the even tanslates

of an extended 1-perfect code C∗ of length m + 1 = 2�, where C01 = C∗.
Let C11 , C12 , . . . , C1m+1 be the odd tanslates of an extended 1-perfect code of

length m+ 1.

Theorem 5.3. The code defined by

Ĉ � {(c1, . . . , cn) : b = (b1, . . . , bn) ∈ C∗(r), (j1, . . . , jn) ∈ Qb, ci ∈ Cbiji }
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is an extended 1-perfect code of length n(m+ 1) = 2r+�.

Proof. Since n = 2r is the length of C∗(r) and m+ 1 = 2� is the length of

the extended 1-perfect code C∗, i.e., it follows that the length of the code Ĉ
is n(m+ 1) = 2r+�. The number of codewords in Ĉ is

|C∗(r)| · |Qb| · |C∗|n = 22
r−1−r(2�)n−1(22

�−1−�)n = 22
r+�−1−(r+�),

which is the required number of codewords. Hence, to complete the proof,

it suffices to show that the minimum Hamming distance of the code is 4.

Let c = (c1, c2, . . . , cn) and c′ = (c′1, c
′
2, . . . , c

′
n) be two distinct code-

words of Ĉ. These two codewords were constructed based on the two code-

words b = (b1, b2, . . . , bn) and b′ = (b′1, b
′
2, . . . , b

′
n) of C∗(r), respectively, and

the two codewords j = (j1, j2, . . . , jn) and j′ = (j′1, j
′
2, . . . , j

′
n), respectively,

of Qb and Qb′ , respectively.

We distinguish now between two cases, depending on whether b = b′

or b �= b′.
Case 1. b = b′.

If j = j′, then for some i, 1 ≤ i ≤ n, we have that ci �= c′i, where

ci, c
′
i ∈ Cbiji , and since d(Cbiji ) = 4, it follows that d(ci, c

′
i) ≥ 4, which implies

that d(c, c′) ≥ 4.

If j �= j′, then since d(Qb) = 2, it follows that j and j′ differ in at least

two coordinates i and s, where ci ∈ Cbiji , c
′
i ∈ Cbij′i , cs ∈ C

bs
js
, c′s ∈ Cbsj′s , and

hence d(ci, c
′
i) ≥ 2, d(cs, c

′
s) ≥ 2, which implies that d(c, c′) ≥ 4.

Case 2. b �= b′.
Since b, b′ ∈ C∗(r), it follows that d(b, b′) ≥ 4, i.e., b and b′ differ in

at least four coordinates i, k, s, and t. The corresponding pairs of sub-

codewords (ci, c
′
i), (ck, c

′
k), (cs, c

′
s), and (ct, c

′
t), where each of these eight

sub-codewords is of length m + 1, are associated with different odd and

even tanslates of C∗. Each pair differs in at least one coordinate and hence

d(c, c′) ≥ 4.

Thus, d(Ĉ) ≥ 4 and the proof is completed.

The last construction that will be presented is for any alphabet and

not just a binary one. This simple construction, for 1-perfect codes in the

Hamming scheme, is also very effective, for example, in constructions of

perfect codes in the Lee metric (see Section 11.3). For this construction,

two 1-perfect codes in the Hamming scheme will be used. The first code C1
is a 1-perfect code of length n = qr−1

q−1 over an alphabet with q symbols,

which has a total of qr translates, including C1 itself. The second code C2
is a 1-perfect code of length � = qrs−1

qr−1 over an alphabet with qr symbols.
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Let C1i , 1 ≤ i ≤ qr, be the i-th translate of C1, where C11 = C1. Define the

following code Ĉ:

Ĉ � {(xi1 , xi2 , . . . , xi�) : (i1, i2, . . . , i�) ∈ C2, xit ∈ C1it} .

Theorem 5.4. The code Ĉ is a q-ary 1-perfect code of length qrs−1
q−1 .

Proof. Clearly, the length of the codewords from Ĉ is

n� = qr−1
q−1

qrs−1
qr−1 = qrs−1

q−1 . By the sphere-packing bound, the size of C1 is
qn

1+(q−1)n = qn−r and the size of C2 is qr�

1+(qr−1)� = qr�−rs. Hence,

∣∣∣Ĉ∣∣∣ = ∣∣C2∣∣ · ∣∣C1∣∣� = qr�−rsq(n−r)� = qn�−rs =
qn�

1 + (q − 1)n�
,

which is the required number of codewords. Therefore, to complete the

proof, it suffices to show that the minimum Hamming distance of the code Ĉ
is three.

Let (xi1 , xi2 , . . . , xi�) and (yj1 , yj2 , . . . , yj�) be two distinct codewords

of Ĉ. We distinguish now between two cases depending on whether

(i1, . . . , i�) �= (j1, . . . , j�) or (i1, . . . , i�) = (j1, . . . , j�).

Case 1. (i1, . . . , i�) �= (j1, . . . , j�).

Since (i1, . . . , i�), (j1, . . . , j�) ∈ C2 and d(C2) = 3, it follows that

d((i1, . . . , i�), (j1, . . . , j�)) ≥ 3. W.l.o.g., we can assume that i1 �= j1,

i2 �= j2, and i3 �= j3, and hence xi1 �= yj1 , xi2 �= yj2 , and xi3 �= yj3 ,

which imply that d((xi1 , . . . , xi�), (yj1 , . . . , yj�)) ≥ 3.

Case 2. (i1, . . . , i�) = (j1, . . . , j�)

This implies that there exists a t, 1 ≤ t ≤ �, such that xit �= yjt and

since it = jt (i.e., C1it = C1jt), xit , yjt ∈ C1it and d(C1it) = 3, it follows that

d(xit , yjt) ≥ 3 and, therefore, d((xi1 , . . . , xi�), (yj1 , . . . , yj�)) ≥ 3.

Case 1 and Case 2 imply that d(Ĉ) ≥ 3 and thus we have that Ĉ is a

q-ary 1-perfect code of length qrs−1
q−1 .

There are many other constructions for 1-perfect codes, besides the four

above-presented ones. In particular, in Section 5.7, a construction for many

nonequivalent 1-perfect codes will be presented. The construction is based

on one of the most simple and effective ways to construct 1-perfect codes,

known as the switching method. The construction will work on any finite

field Fq and it will be demonstrated in its most general way. The idea

behind this construction in the binary case will be also demonstrated in

most of the following sections of this chapter.
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5.2 Weight and Distance Distribution

It should be noted first that all the q-ary 1-perfect codes have the same

weight distribution. This is an obvious observation from the following defi-

nitions and observations presented for binary codes. Let Ai be the number

of codewords of weight i in a binary 1-perfect code C of length n = 2ν + 1.

Counting the covered words of weight i in F
n
2 , by codewords of C, yields

(n− i+ 1)Ai−1 +Ai + (i+ 1)Ai+1 =

(
n

i

)
. (5.1)

Obviously, if 0 ∈ C, then A0 = 1 and A1 = 0, whereas if 0 �∈ C, then A0 = 0

and A1 = 1. This implies that all binary 1-perfect codes have one of two

possible weight distributions. Assume 0 ∈ C and let Bi be the number

words of weight i in a tanslate x+ C, where x �∈ C. Then

Ai + nBi =

(
n

i

)
. (5.2)

If Δi = Ai−Bi, then applying (5.1) for both C and x+ C, we have that for
0 ≤ i ≤ 2ν

iΔi = −Δi−1 − (n− i+ 2)Δi−2 , (5.3)

where Δ0 = 1 and Δ1 = −1. There is a unique solution for the recurrence

in (5.3) with these initial conditions:

Δi =

{(
ν

�i/2�
)

i ≡ 0, 3 (mod 4)

−
(

ν
�i/2�

)
i ≡ 1, 2 (mod 4)

. (5.4)

Equations (5.2) and (5.4) imply and explicit expression for Ai and Bi.

Proposition 5.1. The weight distribution of a 1-perfect code C of length n

is given by

Ai =

(
n
i

)
+ nΔi

n+ 1
.

The weight distribution of a translate x+ C, x �∈ C is given by

Bi =

(
n
i

)
−Δi

n+ 1
,

where 0 ≤ i ≤ n.

Corollary 5.1. If the all-zero word is a codeword of the 1-perfect code C,
then the all-one word is also a codeword in C.
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The analysis of binary 1-perfect codes can be generalized for all q-ary

1-perfect codes. This analysis is a good exercise for the reader. We end

this section with the distance distribution of a 1-perfect code.

Theorem 5.5. The distance distribution and the weight distribution of a

1-perfect code (over any alphabet) coincide. In other words, for each i,

0 ≤ i ≤ n, Di = Ai, where Ai is the distance distribution of a 1-perfect

code containing the all-ones word.

Proof. Let C be a 1-perfect code for which 0 ∈ C, let c ∈ C be any code-

word, and let Di(c) be the number of codewords at distance i from c.

Clearly, 0 ∈ c+ C and hence by Corollary 5.1, 1 ∈ c+ C which implies that

the translate 1 + c + C is a 1-perfect code for which 0 ∈ 1 + c + C, and
therefore its weight distribution is the same as the weight distribution of C.
Moreover, Di(c) is equal to Ai in c+ C. Since this analysis is the same for

each codeword c in C, it follows that the distance distribution of C coincides

with the weight distribution of C.

The same arguments as in Theorem 5.5 hold for all perfect codes in the

Hamming scheme. Unfortunately, as already mentioned, there are no such

codes except for codes with the parameters of the Hamming codes and the

Golay codes.

5.3 Intersection Numbers

Let C1 and C2 be two distinct binary 1-perfect codes of length n = 2r − 1.

What is the maximum possible cardinality of their intersection C1 ∩ C2?
For a positive integer n = 2ν+1, let U be a nonempty subset of Fn

2 such

that there exist two disjoint perfect coverings of U with balls of radius one.

Namely, let A and B be two distinct sub-codes of U , such that any vector

of U is within distance one from a unique codeword of A and a unique

codeword of B and all the words within radius one from A and from B are

contained in U . Each such sub-code is said to perfectly cover U .

Lemma 5.1.

|U| ≥ (ν + 1)2ν+1 .

Proof. W.l.o.g. assume that 0 ∈ A. Assume also that A ∩ B = ∅, since

otherwise U is not minimal. Hence, 0 /∈ B and B contains a unique codeword

of weight one. Let Ai and Bi denote the number of codewords of weight i
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in A and B, respectively. Counting the number of words of weight i in U ,
we have for 1 ≤ i ≤ 2ν,

(n−i+1)Ai−1+Ai+(i+1)Ai+1 = (n−i+1)Bi−1+Bi+(i+1)Bi+1 . (5.5)

If Δi = Ai −Bi, then (5.5) implies the following recurrence

iΔi = −Δi−1 − (n− i+ 2)Δi−2 . (5.6)

We have already established that A0 = 1, A1 = 0 and B0 = 0, B1 = 1, and

hence, Δ0 = 1 and Δ1 = −1. The unique solution of the recurrence (5.6)

with these initial conditions is provided in (5.4). Obviously,

|U| = (1 + n) |A| = (1 + n)

n∑
i=0

Ai .

Hence

|U|
1 + n

=
n∑

i=0
i≡0,3 (mod 4)

Ai +

n∑
i=0

i≡1,2 (mod 4)

Ai ≥
n∑

i=0
i≡0,3 (mod 4)

Ai

=

n∑
i=0

i≡0,3 (mod 4)

(Δi +Bi) ≥
n∑

i=0
i≡0,3 (mod 4)

Δi =

n∑
i=0

i≡0,3 (mod 4)

(
ν

�i/2�

)
.

Substituting j = �i/2� in this inequality yields

|U| ≥ (1 + n)

ν∑
j=0

(
ν

j

)
= (ν + 1)2ν+1 .

Corollary 5.2. Let C1 and C2 be two distinct 1-perfect codes of length

n = 2r − 1. Then

|C1 ∩ C2| ≤ 2n−r − 2ν ,

where ν = (n− 1)/2.

Proof. For distinct 1-perfect codes C1 and C2 we may always take

A = C1 \ C2 and B = C2 \ C1, to be codes that perfectly cover the same

subset U of F
n
2 . Therefore, the upper bound follows immediately by

Lemma 5.1.
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We now construct two codes C1 and C2, such that the cardinality of

C1∩C2 attains the upper bound of Corollary 5.2. Let H(r) be the Hamming

code of length n = 2ν + 1 = 2r − 1, and let H be its parity-check matrix.

Further, assume that the columns of H, i.e., h1, h2, . . . , hn, are arranged

such that for some column vector z = hn,

hi + hi+ν = z for all i = 1, 2, . . . , ν . (5.7)

Let C1 be a coset of H(r) such that the syndrome S(c) = Hctr = z for all

c ∈ C1. Define

A � {(x, x, p(x)) : x ∈ F
ν
2}, B � {(x, x, p(x) + 1) : x ∈ F

ν
2} . (5.8)

Let C2 = (C1 \ B) ∪ A; this removal of B and its replacement by A is the

basic operation in the switching method.

Proposition 5.2. The code C2 is a 1-perfect code.

Proof. Obviously A ⊂ H(r), and B ⊂ C1, where B is a coset of A, which
is disjoint to H(r). Hence, |C2| = |C1| − |B| + |A| = 2n−r. Indeed,

d(A) = mina1,a2∈A d(a1, a2) = 3 and d(C1 \ B) = 3. Now, let v = a + c,

where a ∈ A and c ∈ C1. Clearly, since A ⊂ H(r), it follows that for the

syndrome of a, S(a), we have S(a) = 0, and for the syndrome of v, S(v),
we have S(v) = S(a) + S(c) = S(c) = z. Hence, if wt(v) ≤ 2, then either

v = (0,0, 1) or v = (u, u, 0) where 0, u ∈ F
ν
2 and u is a vector of weight

one; but, then c = a + v is either (x, x, p(x) + 1) or (x + u, x + u, p(x)),

for some x ∈ F
ν
2 . Since p(x) = p(x + u) + 1, it follows that, in both cases,

c ∈ B. Thus, d(A, C1 \ B) � mina∈A,c∈C1\B d(a, c) ≥ 3, and, therefore, C2 is

a 1-perfect code.

By the construction, |C1 ∩ C2| = |C1| − |B| = 2n−r − 2ν . Thus, Propo-

sition 5.2 shows that the upper bound of Corollary 5.2 is attainable for

all n. Another consequence of Proposition 5.2 is very important in all our

discussions of 1-perfect codes.

Corollary 5.3. The sets A and B defined in (5.8) perfectly cover the same

subset of Fn
2 .

Proof. This follows immediately from the fact that both (C1 \ B) ∪A and

(C1 \ B) ∪ B are perfect.

The method implied by Proposition 5.2 is called the switching

method . Since the set A defined in (5.8) is a linear sub-code of H(r),
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it follows that H(r) can be partitioned into cosets of A, i.e., H(r) is a

union of disjoint cosets of A. Each such coset x + A can be replaced by

x + B to obtain another 1-perfect code. This idea will be generalized and

used in Section 5.7 to construct many inequivalent 1-perfect codes over Fq.

There are many other such isomorphic sub-codes of the Hamming code

that are isomorphic to A. Furthermore, we will show that there are many

sub-codes that are disjoint. This will enable us to construct many 1-perfect

codes with desired properties.

Having settled the largest possible intersection question, we now con-

sider its natural counterpart: What is the minimum possible cardi-

nality of the (nonempty) intersection of two 1-perfect codes? Clearly,

|C2 ∩H(r)| = |A| = 2ν ; however, the intersection of these two codes is not

the smallest possible. We presently construct a 1-perfect code C′2, such that

the cardinality of C2 ∩ C′2 is less than 2ν .

Let W be a subspace of Fr
2 of dimension r − 1, such that z �∈W . Then

one way to arrange the columns of H so that (5.7) is satisfied is to take

{h1, h2, . . . , hν} = W \ {0},

{hν+1, hν+2, . . . , hn} = z +W. (5.9)

If (5.9) is employed, then the order of all columns in H is determined by

the order in which the nonzero elements of W are listed in {h1, h2, . . . , hn}.
The latter is, however, completely arbitrary. We may further restrict the

order of columns in H as follows. Set z′ = hν and arrange the columns

h1, h2, . . . , hν−1 such that

hi + hi+ν′ = z′ for all i = 1, 2, . . . , ν′ , (5.10)

where ν′ = (ν − 1)/2. It follows from (5.7) and (5.10) that we also have

hi+ν + hi+ν+ν′ = (z + hi) + (z + hi+ν′) = z′, for all i = 1, 2, . . . , ν′. Fur-

thermore, hn−1 + hn = z′, in view of (5.7). Hence define

A′ � {(x, x, p(x+ y) + α, y, y, α, α) : x, y ∈ F
ν′
2 , α ∈ F2}.

B′ � {(x, x, p(x+ y) + α+ 1, y, y, α, α) : x, y ∈ F
ν′
2 , α ∈ F2}. (5.11)

By the construction, A′ ⊂ H(r). Let C′1 be a coset of H(r), such that the

syndrome of all the vectors in C′1 is z′. Then, obviously, B′ ⊂ C′1. Denote

C′2 = (C′1 \ B′) ∪A′. To see that C′2 is a 1-perfect code, note that A′ and B′
are isomorphic to A and B, and hence perfectly cover the same subset of Fn

2

by Corollary 5.3.

Proposition 5.3. |C2 ∩ C′2| = 2ν
′+1.
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Proof. Clearly, H(r), C1, and C′1 are disjoint. Thus, C2∩C′2 = A∩A′. Note

that both A and A′ are linear, and hence so is A ∩ A′. The word a0 ∈ F
n
2

of weight 3 with nonzero elements at positions ν, n − 1, n is in A ∩ A′.
For i = 1, 2, . . . , ν′, let ai ∈ F

n
2 be a word of weight 4 with nonzeroes at

positions 1, i + ν′, i + ν, i + ν′ + ν. This implies again that ai ∈ A ∩A′.
Since the words a0, a1, . . . , aν′ have disjoint supports, it follows that they

are linearly independent. Furthermore, it may be readily verified that these

vectors generate A ∩A′.

Proposition 5.3 establishes the intersection of cardinality 2ν
′+1. This is not

the minimum possible intersection for most parameters. For n = 7 it is easy

to find two isomorphic 1-perfect codes for which the intersection is {0,1}.
For larger n, we find a smaller intersection.

It is obvious that the intersection problem, in general, has the same

answer for 1-perfect codes and for extended 1-perfect codes. We will use

this simple fact later. This is stated formally in the following lemma.

Lemma 5.2. Two 1-perfect codes of length 2r − 1 with intersection num-

ber η exist if and only if there exist two extended 1-perfect codes of length 2r

with intersection number η.

We now use a combination of the directed product construction in The-

orem 5.2 and the switching method to construct two extended 1-perfect

codes with intersection number 2. Let H∗(r) be an extended Hamming

code of length 2r, and let Ĥ∗0(r), Ĥ∗1(r), . . . , Ĥ∗2r−1(r) be the even cosets of

H∗(r) in E
2r

2 . Thus, Ĥ∗0(r), Ĥ∗1(r), . . . , Ĥ∗2r−1(r) is a partition of E2r

2 into

extended 1-perfect codes. Hence, the code

C∗ � {(x, y) : x, y ∈ Ĥ∗i (r) for some i = 0, 1, . . . , 2r − 1} (5.12)

is an extended 1-perfect code of length 2r+1 obtained by the direct product

construction presented in Theorem 5.2, with π being the identity permu-

tation. Furthermore, it can easily be verified that C∗ is a linear code, and

hence it must be H∗(r + 1). W.l.o.g., assume that the parity-check matrix

of C∗ is given by

Hr+1 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 · · · 1 1
...
...
...
...
. . .

...
...

0 0 1 1 · · · 1 1

0 1 0 1 · · · 0 1

1 1 1 1 · · · 1 1

⎤
⎥⎥⎥⎥⎥⎦ .
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That is, the columns of Hr+1 are all the (r+1)-tuples that end with a one,

ordered lexicographically. Indeed, it is easy to see that

Hr+1 =

[
0 · · · 0 1 · · · 1
Hr Hr

]
,

where Hr is the parity-check matrix for H∗(r) = Ĥ∗0(r). Thus, the code

defined by the parity-check matrix Hr+1 is consistent with the parity-check

matrix for the code C∗ defined in (5.12). Notice that all the words in a

given coset of H∗(r) have the same syndrome with respect to Hr. That is,

for all i = 0, 1, . . . , 2r − 1, we have

si � S(x) = Hrx
tr for all x ∈ Ĥ∗i (r), (5.13)

and we say that si is the syndrome of Ĥ∗i (r).
We now modify the extended Hamming code C in (5.12) in an appro-

priate manner by using the switching method. Let

A∗ � {(x, x) : x ∈ Ĥ∗i (r) for some i = 0, 1, . . . , 2r − 1} . (5.14)

Comparing (5.12) and (5.14), we see that A∗ is a sub-code of C∗. Further-
more, since the codes Ĥ∗0(r), Ĥ∗1(r), Ĥ∗2(r), . . . , Ĥ∗2r−1(r) form a partition

of E2r

2 , we can write

A∗ = {(x, x) : x ∈ E
2r

2 },

which implies that A∗ is just an extended code of A in (5.8). Pick a fixed

integer j in the range 1 ≤ j ≤ 2r, and let B∗ = (ej , ej) + A∗. Then B∗ is

the extended code of B in (5.8). By the switching method, this implies that

the code

C∗1 = (C∗ \ A∗) ∪ B∗

is also an extended 1-perfect code. Note that C∗1 does not contain the all-

zero word; however, the translate C∗2 = (ej , ej) + C∗1 does. This translate is

an extended 1-perfect code, which can be written as C∗2 = A∗ ∪ D∗, where

D∗ = {(x+ej , y+ej) : x, y ∈ Ĥ∗i (r), and x �= y, for some i = 0, 1, . . . , 2r−1}.

Now, let π be the permutation that fixes the last 2r coordinates of C∗2
and affects the cyclic shift by one position on the first 2r coordinates. If

C∗3 � π(C∗2 ), then, obviously, C∗3 is also an extended 1-perfect code and we

have the following.

Theorem 5.6. The intersection number of C∗2 and C∗3 is η(C∗2 , C∗3 ) = 2.
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Proof. Consider the structure of a word (x, y) ∈ C∗2 , for some x, y ∈ F
2r

2 .

Clearly, wt(x) ≡ wt(y) ≡ 0 (mod 2) if and only if x = y and (x, y) ∈ A∗,
while wt(x) ≡ wt(y) ≡ 1 (mod 2) if and only if (x, y) ∈ D∗. Since the

permutation π preserves the weight of x and y, we have

C∗2 ∩ C∗3 = (A∗ ∩ π(A∗)) ∪ (D∗ ∩ π(D∗)). (5.15)

A vector x ∈ F
2r

2 is equal to its own cyclic shift by one position if and only if

x ∈ {0,1}. Hence, A∗∩π(A∗) = {0,1}. We now show that D∗∩π(D∗) = ∅.

First, notice that for each (x, y) ∈ D∗, we have

Hrx
tr = Hry

tr = si +Hr(ej)
tr (5.16)

for some i = 0, 1, . . . , 2r − 1, where si is taken from (5.13). On the other

hand, it can be shown that if (x, y) ∈ π(D∗), then Hrx
tr �= Hry

tr. Indeed,

let (x′, y′) ∈ D∗ be the pre-image of (x, y) under π. That is, y = y′ and x

is the cyclic shift of x′ by one position. Then Hry
tr = Hr(y

′)tr = Hr(x
′)tr

by (5.16). Now, both x′ and its cyclic shift x have odd weight, and, there-

fore,

(0101 · · · 01)(x′)tr �= (0101 · · · 01)xtr .
Since (0101 · · · 01) is a row of Hr, it follows that Hrx

tr �= Hr(x
′)tr = Hry

tr.

Comparing this with (5.16), we conclude that D∗ ∩ π(D∗) = ∅. In con-

junction with (5.15), this implies that C∗2 ∩C∗3 = A∗ ∩ π(A∗) = {0,1}, and,
therefore, η(C∗2 , C∗3 ) = 2.

It follows from Theorem 5.6 and Corollary 5.2 that the intersection

number of any two distinct 1-perfect codes C2, C3 of length n = 2r − 1 is in

the range

2 ≤ η(C2, C3) ≤ 22
r−r−1 − 22

r−1−1 (5.17)

and both the lower biund and the upper bound are achievable for all r ≥ 3.

Since binary 1-perfect codes are self-complement, their intersection numbers

must be even. Thus, a natural question is which even integers in the range

of (5.17) are intersection numbers of 1-perfect codes of length 2r−1? Since

the code A in (5.8) is a linear sub-code of the Hamming code, using the

switching method technique iteratively and using a similar proof to the one

in the proof of Proposition 5.2, we obtain intersection numbers of the form

κ22
r−1−1 for all κ = 1, 2, . . . , 22

r−1−r − 1 .

The same technique is also used iteratively in Section 5.7 to obtain

nonequivalent 1-perfect codes over Fq. Furthermore, using Theorem 5.2

and the switching method, we can obtain many more intersection numbers.
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5.4 Intersection Numbers of Linear Codes

A variant of the intersection problem asks for all the intersection numbers

of linear 1-perfect codes, namely, the Hamming codes of length 2r − 1. In

what follows, we provide a complete solution to this problem.

Let H1(r), H2(r) be two Hamming codes of length n = 2r − 1. Since

Hamming codes are unique, H1(r) and H2(r) are necessarily isomorphic.

Since both codes are linear, their intersection number is necessarily a power

of 2. For r = 3 and n = 7, it is easy to find specific permutations such that

η(H1(r),H2(r)) = 2, 4 or 8. For example, let H1(r) be the code defined by

the parity-check matrix whose columns are ordered lexicographically, and

let H2(r) be a code defined by the parity-check matrix⎡
⎣ 0 0 1 1 0 1 1

0 1 1 0 1 1 0

1 0 0 0 1 1 1

⎤
⎦ or

⎡
⎣ 0 0 1 1 0 1 1

0 1 1 0 1 0 1

1 0 0 0 1 1 1

⎤
⎦ or

⎡
⎣ 0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 1 0 0 1 0 1

⎤
⎦ , (5.18)

respectively. We will show that a similar situation occurs for all r ≥ 3;

namely, all the powers of 2 in the range 2n−2r, 2n−2r+1, . . . , 2n−r−1 are

attainable as intersection numbers of distinct Hamming codes of length

n = 2r − 1. Note that a smaller intersection between distinct Hamming

codes is not possible.

Let H1, H2 be parity-check matrices of the Hamming codes of length

n = 2r − 1, H1(r) and H2(r), respectively. Then C = H1(r) ∩ H2(r) is a

linear code, whose parity-check matrix is given by

H =

[
H1

H2

]
. (5.19)

For the sake of brevity, we henceforth write H = H1||H2 to denote the

structure of (5.19). It is obvious that rank H ≤ 2r, since H1 and H2 each

have r rows and, therefore,

η(H1(r),H2(r)) = |C| = 2n−rank H ≥ 2n−2r.

It is also obvious that η(H1(r),H2(r)) ≤ 2n−r−1 if the codes H1(r) and

H2(r) are distinct.

Lemma 5.3. For each r ≥ 3, there exist two Hamming codes H1(r), H2(r)

of length n = 2r − 1 such that η(H1(r),H2(r)) = 2n−2r.

Proof. As η(H1(r),H2(r)) = 2n−rank H , we need to construct parity-

check matrices H1 and H2 for the codes H1(r) and H2(r) such that

rank (H1||H2) = 2r. We first show that there exists a (2r) × (2r) binary
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matrix Ar = A1||A2, where A1, A2 are two r× (2r) binary matrices whose

columns are distinct and nonzero, such that rank Ar = 2r. For r = 3, such

a matrix is given by

A3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 1 1

0 1 0 1 0 1

0 0 1 1 1 0

1 0 0 1 0 1

0 1 0 1 1 1

0 0 1 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

For r ≥ 4, we can construct Ar recursively as follows. Suppose that

Ar−1 = A′1||A′2, and take

Ar =

[
A1

A2

]
=

⎡
⎢⎢⎢⎣
1 0 · · · 0 0

0 A′1 x

1 A′2 0

1 0 · · · 0 1

⎤
⎥⎥⎥⎦ , (5.20)

where x is any nonzero (r − 1)-tuple that does not appear as a column

of A′1. It is easy to see from (5.20) that if Ar−1 is a nonsingular matrix

of rank 2(r − 1), then Ar is a nonsingular matrix of rank 2r. Now, since

the columns of A1 and A2 are nonzero and distinct, it follows that these

matrices can be extended, in an arbitrary manner, to parity-check matrices

H1 and H2, respectively, of two Hamming codes of length 2r − 1. By this

construction, we have that rank (H1||H2) = rank (A1||A2) = 2r.

Theorem 5.7. For each r ≥ 3, there exist two Hamming codes H1(r),

H2(r) of length n = 2r − 1, such that

η(H1(r),H2(r)) = 2n−t for t = r + 1, r + 2, . . . , 2r .

Proof. The proof is by induction of r. The induction basis for r = 3 is

established in (5.18). Assume that, for each t = r, r+1, . . . , 2(r− 1), there

exist parity-check matrices H ′
1 and H ′

2 of two Hamming codes of length

2r−1 − 1, such that rank (H ′
1||H ′

2) = t. Take

H1 =

[
0 · · · 0 1 1 · · · 1
H ′

1 0 H ′
1

]
, H2 =

[
0 · · · 0 1 1 · · · 1
H ′

2 0 H ′
2

]
.

It is easy to see that H1, H2 are parity-check matrices of isomorphic Ham-

ming codes of length 2r − 1, and that

rank (H1||H2) = rank (H ′
1||H ′

2) + 1 = t+ 1.

Thus, all ranks in the range t+ 1 = r + 1, r + 2, . . . , 2r − 1 are attainable.

Finally, the rank of 2r is also attainable by Lemma 5.3, which completes

the induction step.
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5.5 Full-Rank Perfect Codes

A code C ∈ F
n
2 is of full rank if rank C = n, or equivalently 〈C〉 = F

n
2 ,

where 〈C〉 is the linear span of the words in C. Does there exist a full-

rank 1-perfect code? In this section such codes will be constructed. The

constructed method will imply that there exist 1-perfect codes of length

n = 2r − 1 and any rank in the range between 2r − r − 1 and 2r − 1.

Let h1, h2, . . . , hn be the columns of H, the parity-check matrix of the

Hamming codeH(r) of length n = 2r−1, n = 2ν+1, arranged in some fixed

order. Let z be any nonzero vector in F
r
2. Obviously, there is a unique � ∈ [n]

such that z = h�. We denote this index � by ϕ(z). Further, the vector z

induces a partition of the columns h1, h2, . . . , hϕ(z)−1, hϕ(z)+1, . . . , hn into

ν pairs (hi, hj), such that hi + hj = z (let j = φz(i) and i = φz(j)).

Requiring, in addition to the above, that i < j makes the partition unique.

More precisely, there is a unique set Iz ⊂ [n] \ {ϕ(z)} of cardinality ν, such

that hi+hφz(i) = z and i < φz(i) for all i ∈ Iz. With this notation we may

define for each z ∈ F
r
2 \ {0}, the sets A(z) and B(z) as follows,

A(z) �
{
(x1, x2, . . . , xn) ∈ F

n
2 : ∀i ∈ Iz, xi = xφz(i) and xϕ(z) =

∑
i∈I

xi

}
,

B(z) �
{
(x1, . . . , xn) ∈ F

n
2 : ∀i ∈ Iz, xi = xφz(i) and xϕ(z) = 1 +

∑
i∈I

xi

}
,

where the summation determining xϕ(z) is performed modulo 2. By the con-

struction, A(z) ⊂ H(r) for all z. One can easily verify that A(z1) and B(z1)
are isomorphic to A(z2) and B(z2), respectively, for all z1, z2 ∈ F

r
2. They

are also isomorphic to the sets A and B, respectively, defined in (5.8). By

Corollary 5.3, for all z, A(z) and B(z) perfectly cover the same subset of Fn
2 .

We are now in a position to describe the method for the construction of

full-rank 1-perfect codes. We shall construct these codes from the Hamming

codeH(r) by the a “cut and paste” method. That is, some r disjoint subsets

of H(r), isomorphic to the code A(z), are removed from H(r). Then cosets

of these subsets are pasted in their place so that the resulting code is perfect

and has full rank.

Let r ≥ 4, and for a positive integer k ≤ r, let z1, z2, . . . , zk be some

k linearly independent vectors in F
r
2. Since a word of B(z) differs from some

codeword of H(r) only in coordinate ϕ(z) and d(H(r)) = 3, it follows that

B(z1) ∩ B(z2) = ∅ (5.21)
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for any z1 �= z2. Nevertheless, it follows from the proof of Proposition 5.3

that |A(z1) ∩ A(z2)| = 20.5(ν+1) for all z1 �= z2. Thus, the first task is

to find k codewords c1, c2, . . . , ck in H(r), such that the sets c1 + A(z1),
c2 +A(z2),...,ck +A(zk) are disjoint.

Lemma 5.4. There exist c1, c2, . . . , ck ∈ H(r), such that

(ci +A(zi)) ∩ (cj +A(zj)) = ∅,

for any distinct i, j ∈ [k].

Proof. Define a mapping ξ from the nonzero vectors of Fr
2 onto the vectors

of weight one in F
n
2 as follows:

∀z ∈ F
r
2 \ {0}, ξ(z) = (x1, x2, . . . , xn), where xi =

{
1 i = ϕ(z)

0 i �= ϕ(z)
.

Using this notation, set

c1 = ξ(z1) + ξ(z1 + z2 + z3) + ξ(z1 + z2 + z4) + ξ(z1 + z3 + z4),

c2 = ξ(z1) + ξ(z2) + ξ(z1 + z3 + z4) + ξ(z2 + z3 + z4), (5.22)

c4 = ξ(z1) + ξ(z2) + ξ(z3) + ξ(z4) + ξ(z1 + z2 + z3)

+ξ(z1 + z2 + z4) + ξ(z1 + z3 + z4) + ξ(z2 + z3 + z4).

If k < 4, then to obtain the vectors c1 and c2, we can complete z1, z2, . . . , zk
with some zk+1, zk+2, . . . , z4 such that z1, z2, z3, z4 are linearly independent.

Henceforth, let j ∈ [k] \ {1, 2, 4}. If j is odd, define

cj �
j∑

i=1

ξ(zi) + ξ(z1 + z2 + · · ·+ zj). (5.23)

Otherwise, for even j set

cj �
j∑

i=1

ξ(zi)+ξ(z1+z2+ · · ·+zj/2)+ξ(zj/2+1+zj/2+2+ · · ·+zj). (5.24)

Note that S(ξ(z)) = H · ξ(z)tr = z. Thus, one can readily verify that

S(cj) = 0 for all j, and the vectors c1, c2, . . . , ck are indeed in H(r). As

z1, z2, . . . , zk are linearly independent, the weight of cj is just the number

of summands in (5.22), (5.23), and (5.24). Counting these shows that

c1, c2, . . . , ck are all of even weight.
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Now assume, for contradiction, that (ci + A(zi)) ∩ (cj + A(zj)) �= ∅.

Then ci + x = cj + y for some x = (x1, x2, . . . , xn) ∈ A(zi) and

y = (y1, y2, . . . , yn) ∈ A(zj). The parity of x+ y is given by

p(x+ y) =

n∑
i=1

xi +
n∑

i=1

yi = xϕ(zi) + yϕ(zj), (5.25)

where all summations are performed modulo 2, and the second equality

follows from the definitions of A(z). W.l.o.g. assume that i < j and let

ci = (a1, a2, . . . , an), cj = (a′1, a
′
2, . . . , a

′
n). It follows from (5.22), (5.23),

and (5.24) that

aϕ(zi) = a′ϕ(zi)
= 1, aϕ(zj) = 0, a′ϕ(zj)

= 1, aϕ(zi+zj) = a′ϕ(zi+zj)
= 0.

Hence, we have that

xϕ(zi) = yϕ(zi), xϕ(zj) = 1 + yϕ(zj), xϕ(zi+zj) = yϕ(zi+zj). (5.26)

Substituting (5.26) into (5.25) yields p(x + y) = xϕ(zi) + xϕ(zj) + 1. Since

φzi(ϕ(zj)) = ϕ(zi + zj), it folllows that xϕ(zj) = xϕ(zi+zj) = yϕ(zi+zj),

where the first equality follows from the definition of A(z) and the second

from (5.26). Thus, p(x + y) = xϕ(zi) + yϕ(zj) = xϕ(zi) + xϕ(zj) + 1 =

xϕ(zi) + yϕ(zi+zj) + 1. Similarly, since φzj (ϕ(zi)) = ϕ(zi + zj), it follows

that yϕ(zi+zj) = yϕ(zi) = xϕ(zi) and, therefore, p(x+y) = 1. Since, however,

both ci and cj are of even weight, it follows that p(x+ y) = p(ci + cj) = 0,

which is a contradiction. Thus, (ci +A(zi)) ∩ (cj +A(zj)) = ∅.

Define

Ã �
k⋃

j=1

(cj +A(zj)) ,

B̃ �
k⋃

j=1

(cj + B(zj)) ,

and

C � (H(r) \ Ã) ∪ B̃ .

Let VÃ, respectively VB̃, be the set of all words in F
n
2 within distance

one from some codeword of Ã, respectively B̃. By Corollary 5.3 we have

VÃ = VB̃. Since H(r) is linear, c1, c2, . . . , ck ∈ H(r), and A(zi) ⊂ H(r)

for each 1 ≤ i ≤ k, it follows that Ã ⊂ H(r) and, therefore, Fn
2 \ VÃ is

perfectly covered by H(r) \ Ã. Thus, any x ∈ F
n
2 is within distance one



February 21, 2022 16:26 ws-book9x6 Perfect Codes and Related Structures Perfect˙Codes˙Main page 127

Nonlinear Perfect Codes 127

from some codeword of C. It follows from (5.21) that |B̃| = k2ν . Hence, if

c1, c2, . . . , ck are such that c1+A(z1), c2+A(z2), . . . , ck+A(zk) are disjoint,
then |Ã| = |B̃|. Thus, |C| = |H(r)| − |Ã|+ |B̃| = 2n−r and C is perfect.

Proposition 5.4. rank C = n− r + k.

Proof. Since
∣∣∣H(r) \ Ã

∣∣∣ = 2n−r − k2ν > 2n−r−1, it follows that more than

half the codewords of H(r) are contained in C. Hence, H(r) ⊂ 〈C〉. Let

v1, v2, vn−r be a basis for H(r). Since B(z) = ξ(z) + A(z), it follows that

using 〈v1, v2, . . . , vn−r〉 and 〈cj + B(zj)〉 we can generate ξ(zj). Thus, the

vectors v1, v2, . . . , vn−r, ξ(z1), ξ(z2), . . . , ξ(zk) are in 〈C〉. To see that these

vectors are linearly independent, assume to the contrary that

x =

n−r∑
i=1

αivi +
k∑

i=1

βiξ(zi) = 0

for some α1, α2, . . . , αn−r, β1, β2, . . . , βk ∈ F2. The syndrome, however, is

then

S(x) =
n−r∑
i=1

αis(vi) +
k∑

i=1

βis((ξ(zi)) =
k∑

i=1

βizi = 0,

which contradicts the fact that z1, z2, . . . , zk are linearly independent. To

see that 〈C〉 is generated by v1, v2, . . . , vn−r, ξ(z1), ξ(z2), . . . , ξ(zk), note that

v1, v2, . . . , vn−r and ξ(zj) generate all the vectors in cj + B(zj).

Setting k = r in the foregoing construction produces a binary 1-perfect

code of full rank. Hence, we have the following result.

Corollary 5.4. For any r ≥ 4, there exists a full-rank 1-perfect code of

length 2r − 1.

5.6 Kernels of Perfect Codes

The kernel of a code C ⊆ F
n
2 , denoted by ker C, is the set K ∈ F

n
2 such

that any vector in K leaves C invariant under translation. In other words,

x is an element of the kernel of C if and only if x+C = C. In this section we

examine the possible dimensions of kernels of binary 1-perfect codes. The

techniques used in this section are similar to the ones used in Section 5.5,

but some concepts will be introduced in a slightly different, but equivalent,

way.

Lemma 5.5. If C is a code of size 2k, K = ker C, and 0 ∈ C, then
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(1) The kernel K is a linear sub-code of the code C.
(2) The code C is the union of cosets of the kernel K.
(3) If C is linear, then K = C; otherwise, dimK ≤ k − 2.

Proof.

(1) Since 0+ C = C, it follows that 0 ∈ K. Assume now that x, y ∈ K and

c ∈ C. Since y ∈ K and c ∈ C, it follows that y + c ∈ C. Since x ∈ K
and y+ c ∈ C, it follows that x+y+ c ∈ C. This implies that x+y ∈ K
and hence K is a linear code.

(2) If c ∈ C and c /∈ K, then c + K ⊂ C and since K is a linear code, it

follows that c+K is a coset of K and hence (c+K)∩K = ∅. Moreover,

since c + K is a coset of K in C, it follows that for c1, c2 ∈ C, either
c1 +K = c2 +K or (c1 +K)∩ (c2 +K) = ∅. This implies that C is the

union of cosets of K.
(3) If C is linear, then for each two codewords c1, c2 ∈ C, we have that

c1+c2 ∈ C, which implies that K = C. If C is not linear, then dimK < k.

If we assume, on the contrary, that dimK = k − 1, then since C is a

union of cosets of K, it follows that C = K∪ (x+K) for some x ∈ C \K.
This implies that C is a linear code and hence K = C, a contradiction.

Thus, dimK < k − 1.

Lemma 5.6. If C is a nonlinear 1-perfect code of length 2r − 1, and

K = ker C, then dimK ∈ {1, 2, . . . , 2r − r − 3}.

Proof. If C is a linear 1-perfect code, then dimK = dim C = 2r − r − 1.

Hence, if C is a nonlinear 1-perfect code, then by Lemma 5.5 we have that

dimK ≤ 2r − r − 3. By Corollary 5.1, we have that 1 ∈ C, and hence

dimK ≥ 1.

Recall that for a subset C ⊆ F
n
2 , with odd minimum distance d(C),

C∗ denote the set of Fn+1
2 obtained by adding a parity symbol for all the

words of C.

Lemma 5.7. If K is the kernel of a code C, then K∗ is the kernel of C∗.

Proof. If x ∈ K, then x+ c ∈ C for all c ∈ C. Clearly,

(x, p(x)) + (c, p(c)) = (x+ c, p(x) + p(c)) = (x+ c, p(x+ c)) ∈ C∗
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and hence (x, p(x)) ∈ K∗. Obviously, if x /∈ K, then (x, b) /∈ K∗, for b ∈ F2.

Thus, the kernel of C∗ is K∗.

Lemma 5.8. Let C1, C2 be two 1-perfect codes of length n with kernels K1

and K2, respectively, where k1 = dimK1 < n−1
2 and k2 = dimK2. If

C � (C1 × C∗2 ) ∪
n⋃

i=1

((ei + C1)× (ei + C2)∗) ,

then the kernel of C is K1 ×K∗2 and its dimension is k1 + k2.

Proof. Let K be the kernel of C. By the definition of the kernel, it can be

immediately verified that K1 × K∗2 is contained in K. It is also clear that

the dimension of K1 × K∗2 is k1 + k2. Therefore, to complete the proof it

suffices to show that there is no other word in the kernel of C.
Let (x, y∗) ∈ K, where x ∈ F

n
2 , and assume, on the contrary that x /∈ K1.

Therefore, x+ C1 = ei + C1 for some i, i.e., ei + x+ C1 = C1. This implies

that ei+x ∈ K1. In general, for each j, ej +x+C1 = ej +ei+C1 = ek+C1
for some k /∈ {i, j}, 1 ≤ k ≤ k. Hence, ei+ej +ek+C1 = C1, which implies

that ei+ej+ek ∈ K1 and hence ei+ej+ek is a codeword of C1 with weight

three for each i �= j. Therefore, all n−1
2 the codewords of weight three in C

that contain a one in the i-th coordinate must be in K1. This implies that

the dimension of K1 is at least n−1
2 . This contradicts the assumption that

k1 = dimK1 < n−1
2 and, therefore, x ∈ K1. Since x ∈ K1, it follows that

(x, y∗) + (C1 × C∗2 ) = C1 × C∗2 , which implies that y∗ must be in the kernel

of C∗2 . Thus, (x, y∗) ∈ K1 ×K∗2 and the proof is completed.

We will use the Hamming code as one of the codes in Lemma 5.8 and

we also assume that there exist 1-perfect codes of length 15 and kernels

of dimensions 1, 2, 3, 4, 5, 6, and 7, and also a 1-perfect code of length

2r − 1, r ≥ 4, with kernel of dimension 1. The existence of such codes will

be proved later in this section. We infer the following result by applying

Lemma 5.8 iteratively.

Corollary 5.5. For each n = 2r − 1, r ≥ 4, there exists a 1-perfect code

with kernel of dimension k, for any given integer k in the range between 2

and n−1
2 .

Recall the definition of the linear sub-code A(z) of H(r) from Sec-

tion 5.5. By abuse of notation, we will also use A(2i) instead of A(z) if z is

the binary representation of the integer 2i. Recall also that by Theorem 4.1,

the codewords of weight three in a 1-perfect code of length n = 2r− 1 form
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a Steiner system S(2, 3, n). Let b(�) denote the binary representation of the

integer �. A codeword of weight three ei + ej + es will also be denoted by

{i, j, s} or {b(i), b(j), b(s)}.
By Corollary 4.1, the codewords of weight three in a H(r) form a Steiner

system S(2, 3, 2r−1). Clearly, for any set S of points in PG(r−1, 2) whose

rank is k, the linear span of S has 2k−1 points whose triples in H(r) define

a Steiner system S(2, 3, 2k − 1). A set S of k points in PG(r − 1, 2) will be

called independent if the smallest system of triples, which forms a Steiner

system, and contains the k points of S, has 2k − 1 points.

Theorem 5.8. For any r ≥ 2 independent points z1, z2, . . . , zr in

PG(r − 1, 2), the subspace A(z1) ∩ A(z2) ∩ · · · ∩ A(zr) has dimension 1.

Proof. The proof is given by induction on r. The basis of the induction,

r = 2, is trivial and assumes that the claim holds for r − 1 independent

points in PG(r−2, 2), where r ≥ 3. Since the dimension of the intersection

is one, it follows that the two codewords in the intersection are 0 and 1.

For the induction step, consider all the points of PG(r − 1, 2) as in-

tegers between 1 and 2r − 1. It can be assumed w.l.o.g. that the r in-

dependent points in PG(r − 1, 2) are represented by the r distinct vec-

tors of length r and weight one. This r independent points form the

set {b(2i) : 0 ≤ i ≤ r − 1}. For each �, 0 ≤ � ≤ r − 1, the triples

that are contained in the generator matrix of A(2�) are of the form

{b(2�), b(m), b(m + 2�)}, where m ∈ [2r − 1] \ {2�} and m is taken mod-

ulo 2�+1 in the range [0, 2� − 1]. Since all the generator matrices of the

sub-codes A(2i), 0 ≤ i ≤ r − 1 have codewords of weight three, it follows

that any codeword c ∈ H(r) in the subspace

A(1) ∩ A(2) ∩ A(4) ∩ · · · ∩ A(2r−2) ∩ A(2r−1)

is a linear combination of the same number of rows for each sub-code A(2i),
0 ≤ i ≤ r − 1. Let c = (c′, c′′), where c′ ∈ F

2r−1−1
2 , c′′ ∈ F

2r−1

2 . We

distinguish now between two cases, depending on whether the number of

rows in the linear combination of c is even or odd.

Case 1. The number of rows in the linear combination is even.

This implies that the weight of c is even, wt(c′′) = wt(c′), and c′′ = 0c′.
This also implies that the entries of c in the positions of {2i : 0 ≤ i ≤ r−1}
are zeroes since, in these positions, there are ones in all rows of the as-

sociated generator matrices of the related A(2i), 0 ≤ i ≤ r − 1. Since

c = (c′, c′′) = c′0c′, it follows that c′ is formed from linear combinations

with the same number of codewords in each of the generator matrices
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of A(1),A(2), . . . ,A(2r−2). By the induction hypothesis, it follows that

c′ ∈ {0,1}. Since c′′ = 0c′ and there is no codeword with weight 2r − 1, it

follows that c′′ is the all-zero codeword.

Case 2. The number of rows in the linear combination is odd.

This implies that the weight of c′ is odd, wt(c′′) = wt(c′) + 1, and

c′′ = 1c′. Using the same arguments as in Case 1, we have that this also

implies that the entries of c in the positions of {2i : 0 ≤ i ≤ r − 1} are

ones. Since c = (c′, c′′) = c′1c′, it follows that c′ is formed from linear

combinations with the same number of codewords in each of the generator

matrices of A(1),A(2), . . . ,A(2r−2). By the induction hypothesis, it follows

that c′ ∈ {0,1}. Since c′′ = 1c′ and there is no codeword with weight one,

it follows that c′′ is the all-ones codeword.

The conclusions of Case 1 and Case 2 complete the induction step and

hence the subspace A(z1) ∩ A(z2) ∩ · · · ∩ A(zr) has dimension 1.

We continue and define the r codewords c1, c2, . . . , cr from H(r) as in Sec-

tion 5.5, where z1, z2, . . . , zr are independent points in PG(r − 1, 2).

Theorem 5.9. If r ≥ 4, and

C �
(
H(r) \

(
r⋃

i=1

(ci +A(zi)
))⋃(

r⋃
i=1

(ei + ci +A(zi)
)

,

where ci ∈ H(r), then ker C =
⋂r

i=1A(zi) and dimker C = 1.

Proof. Recall first that by Lemma 5.5, ker C is a linear sub-code of C.
Let y ∈ ker C and distinguish between the cases depending on whether

y ∈ H(r) \
⋃r

i=1(ci +A(zi)) or y ∈
⋃r

i=1(ei + ci +A(zi).
Case 1. y ∈ H(r) \

⋃r
i=1(ci +A(zi)).

Since y ∈ ker C, it follows that for each i, 1 ≤ i ≤ r, we have that

y + (ei + ci +A(zi)) ⊆ C. Since y ∈ H(r), H(r) is a linear code, and A(zi)
is a linear sub-code of H(r), it follows that y + ci + A(zi) ⊆ H(r). This

implies that ei + ci + y + A(zi) ⊆ ei + H(r). Furthermore, for each j,

(C ∩ (ej +H(r))) ∩ H(r) = ∅ and since ci +A(zi) ⊂ H(r), it follows that

C ∩ (ei + H(r)) = ei + ci + A(zi), for each i = 1, 2, . . . , r. Therefore, for

each i = 1, 2, . . . , r, we have that ei+ci+y+A(zi) = ei+ci+A(zi), which
implies that y ∈ A(zi) and thus y ∈

⋂r
i=1A(zi).

Case 2. y ∈
⋃r

i=1(ei + ci +A(zi).
Assume that y ∈ ej + cj + A(zj) for some 1 ≤ j ≤ r and since A(zj)

is a linear sub-code of H(r), it follows that y ∈ ej + H(r). Hence, since

ei+ci+A(zi) ⊆ ei+H(r), it follows that ei+ci+y+A(zi) ⊆ ei+y+H(r) =
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ei + ej +H(r). Since y ∈ ker C, it follows that y+ ei + ci +A(zi) ⊆ C and

hence C∩(ei+ej+H(r)) �= ∅, which implies that ei+ej+H(r) is one of the

cosets es+H(r). Therefore, ei+ej +H(r) = es+H(r), which implies that

ei+ej+es+H(r) = H(r), i.e., {i, j, s} is a triple in H(r), contradicting the

fact that zi, zj , and zs, are independent points of PG(r − 1, 2). Therefore,

there is no y ∈ ker C such that y ∈
⋃r

i=1(ei + ci +A(zi).
From these two cases we have that y ∈

⋂r
i=1A(zi), which implies, by

Theorem 5.8, that dimker C = 1.

Corollary 5.6. Let K be a subspace of H(r) such that A(zi) ⊆ K ⊆ H(r),

for some i, and dimK ≤ (dimH(r))− 2 and let c ∈ H(r) \ K. Then

C � (H(r) \ (c+K)) ∪ (ei + c+K)

is a 1-perfect code with kernel K.

Proof. The code K is a union of cosets of A(zi) and hence K and ei + K
are two disjoint perfect coverings with radius one of the same set U . Hence,
c+K and ei + c+K are also two disjoint perfect coverings with radius one

of the same set c + U . Therefore, C is a 1-perfect code. To complete the

proof it is suffices to show that K = ker C.
Let x ∈ K and let c′ ∈ C and consider the word x+ c′. If c′ ∈ ei+ c+K,

i.e., c′ = ei+c+κ, where κ ∈ K, then x+c′ = x+ei+c+κ ∈ ei+c+K ⊂ C.
If c′ ∈ H(r) \ (c + K), i.e., c′ /∈ c + K, then since x ∈ K ⊂ H(r), it follows

that x+ c′ ∈ H(r). Since x ∈ K and c′ /∈ c+K, it follow that x+ c′ /∈ c+K
and therefore x+ c′ ∈ C. This implies that K ⊆ ker C.

To complete the proof we have to show that ker C ⊆ K. For this we

will show that a word x ∈ ker C is also a word in K. Since by Lemma 5.5

ker C is a linear sub-code of C, if follows that we can distinguish between

two cases depending on whether x ∈ H(r) \ (c+K) or x ∈ ei + c+K.
Case 1. x ∈ H(r) \ (c+K).

Since c, x ∈ H(r) and K ⊂ H(r), it follows that ei+x+c+K ⊂ ei+H(r).

Nevertheless, C ∩ (ei+H(r)) = ei+ c+K since ei+H(r) is a coset of H(r)

and K ⊂ H(r). Therefore, ei + c+ x+K = ei + c+K, i.e., x+K = K and

hence x ∈ K.
Case 2. x ∈ ei + c+K, i.e. x = ei + c+ κ1, where κ1 ∈ K.

Since dimK ≤ (dimH(r) − 2) and K is a subspace of H(r), it follows

that there exists a c′ ∈ H(r), c′ /∈ K, such that c′ + K ⊆ H(r) \ (c + K)
and c′ + K �= K. Since c′ /∈ K, it follows that 0 /∈ c′ + K and hence

x /∈ x+ c′ +K which implies that x+ c′ +K �= ei + c+K, i.e., x+ c′ +K
and ei + c+K are two disjoint cosets of K. Therefore, x+ c′ /∈ ei + c+K.
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Moreover, x+ c′ = ei + c+ κ1 + c′ and Since c, c′, κ ∈ H(r), it follow that

x + c′ = ei + c′′, where c′′ ∈ H(r) and hence x + c′ /∈ H(r) \ (c + K).
Therefore, x /∈ ker C (implying that if x ∈ ker C, then x ∈ H(r) \ (c+K).

These two cases imply that if x ∈ ker C, then x ∈ K. Thus, K is the

kernel of C.

Corollary 5.7. There exists a 1-perfect code C of length n = 2r − 1

having kernel K, where the dimension of K is any chosen integer in the

set {2r−1 − 1, 2r−1, . . . , 2r − r − 3}.

Proof. Since dimA(zi) = 2r−1− 1 = n−1
2 , one can choose any subspace K

of H(r), where A(zi) ⊆ K and dimK ∈ {2r−1 − 1, 2r−1, . . . , 2r − r − 3}.
Furthermore, let c ∈ H(r) \ K and define

C � (H(r) \ (c+K)) ∪ (ei + c+K) .

As a consequence, the claim follows immediately from Corollary 5.6.

We now want to establish all the possible dimensions of kernels in nonlin-

ear 1-prefect codes of length n = 15. A kernel of dimension one is obtained

via Theorem 5.9. A computer search shows that there are 177 codes with

kernels of dimension 2 and three codes with kernels of dimension 9.

Consider the Hamming code H(4) of length 15 whose parity-check ma-

trix is the following 4× 15 matrix

H =

⎡
⎢⎢⎢⎢⎢⎣
z0 z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13 z14
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

1 1 1 1 0 0 0 0 1 1 1 1 0 0 0

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦ .

Based on the code obtained from H, we present 1-perfect codes of

length 15 with dimensions 3, 4, 5, 6, 7, and 8. These are only a small

number of many such examples. In both examples, the switching method

is applied and the switches made in each row are added to the switches

made in the previous rows.

i coset to switch codeword ci kernel dimension

1 e1 + c1 +A(z1) 110000000000110 7

2 e2 + c2 +A(z2) 111111000000110 4

3 e2 + c3 +A(z2) 000100101101111 5

4 e3 + c4 +A(z3) 100001000010000 3
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i coset to switch codeword ci kernel dimension

1 e1 + c1 +A(z1) 111101011010000 7

2 e1 + c2 +A(z1) 110000000000110 8

3 e2 + c3 +A(z2) 111101101010110 5

4 e2 + c4 +A(z2) 011001010000001 6

Theorem 5.10. For each r ≥ 4, there exists a nonlinear 1-perfect code of

length n = 2r−1, having a kernel of dimension Δ for each Δ ∈ [2r−r−3].

Proof. We have already established the proof for n = 15 and Δ ≥ 2. By

Theorem 5.9, we have a code of length n = 2r − 1, r ≥ 4, containing the

kernel of dimension one. By Corollary 5.7, we can find codes containing

kernels of all dimensions from n−1
2 up through 2r − r − 3, r ≥ 5. The

Hamming code of length 2r − 1 has dimension 2r − r − 1 and since it is

a linear code and its kernel is the code itself, it follows that dimension

2r − r − 1 for the kernel is also attained. By Corollary 5.5, we also have

codes with dimensions 2 up through n−1
2 for n = 2r − 1, r ≥ 5.

5.7 Enumeration of Nonequivalent Codes

The parity-check matrix of the q-ary Hamming code, with redundancy r,

and length nr = qr−1
q−1 = qr−1 + qr−1 + · · · + q + 1 consists of nr pairwise

linearly independent column vectors of length r over Fq. The nr column

vectors, which we choose, will be of the form (

r−1−� times︷ ︸︸ ︷
0 · · · · · · 0 1x1 . . . x�)

tr for all

0 ≤ � ≤ r − 1, where for xi ∈ Fq, 1 ≤ i ≤ �. Let α be a primitive element

in Fq. The 2× (q+1) parity-check matrix of the q-ary Hamming code with

redundancy 2, for the construction, is

H2 =

[
0 1 1 1 . . . 1

1 0 α0 α1 . . . αq−2

]
(5.27)

and its (q − 1)× (q + 1) generator matrix has the form

G2 =

⎡
⎢⎢⎢⎣
1 αq−1 −αq−1 0 . . . 0

1 αq−2 0 −αq−2 . . . 0
...

...
...

...
...

...

1 α 0 0 . . . −α

⎤
⎥⎥⎥⎦ =

⎡
⎢⎣
1
... X
1

⎤
⎥⎦ (5.28)

whereX is a (q − 1)× q matrix.
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Assume that the Hamming code of length nr = qr−1
q−1 = qr−1+ · · ·+q+1

with r ≥ 2 has the r × nr parity-check matrix Hr of the form

Hr =

⎡
⎢⎢⎢⎣
0
... S1 S2 . . . Snr−1

0

1

⎤
⎥⎥⎥⎦ ,

where the Si’s are column vectors of length r.

Assume also that the (nr − r)× nr generator matrix Gr has the form

Gr =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
... X 0 · · · · · · · · · 0
1

1
... 0 X · · · · · · · · · 0
1
...

...
... · · · · · · · · ·

...
...

...
... · · · · · · · · ·

...
...

...
... · · · · · · · · ·

...

1
... 0 0 · · · · · · · · · X
1

F

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

whereF is a t×nr matrix with t = (nr− r)− (q− 1)nr−1
q = nr−1− r+1.

Now, we generate the following (r + 1) × (nrq + 1) parity-check ma-

trix Hr+1.

Hr+1 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0
... S1 S1 · · · S1 · · · Snr−1 Snr−1 · · · Snr−1

...
... · · ·

...

0 0 0 · · · 0

0 1 1 · · · 1

1 0 α0 · · · αq−2 · · · 0 α0 · · · αq−2 0 α0 · · · αq−2

⎤
⎥⎥⎥⎥⎥⎦ .

Lemma 5.9. Hr+1 is a parity-check matrix of the Hamming code of

length nrq + 1.
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Proof. Assume that Hr contains all the column vectors of length r of the

form (0 · · · 01x1 · · ·x�)
tr for all �, 0 ≤ � ≤ r − 1, where xi ∈ Fq, 1 ≤ i ≤ �.

By induction, starting from the parity-check matrix H2 as a basis, we can

easily prove that Hr+1 is a parity-check matrix of the q-ary Hamming code

of length nr+1.

Now, let Gr+1 be the following (nrq − r)× (nrq + 1) matrix.

Gr+1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
... X 0 · · · · · · · · · 0
1

1
... 0 X · · · · · · · · · 0
1
...

...
... · · · · · · · · ·

...
...

...
... · · · · · · · · ·

...
...

...
... · · · · · · · · ·

...

1
... 0 0 · · · · · · · · · X
1

F ′

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.29)

where F ′ is some t′ × (nrq + 1) matrix for which t′ = nr − r.

Lemma 5.10. The generator matrix of the Hamming code with parity-

check matrix Hr+1 has the form of Gr+1.

Proof. From the form ofH2 andG2 given in (5.27) and (5.28), respectively,

it follows that any matrix of the form⎡
⎢⎢⎢⎣
0
... S S S . . . S

0

1 0 α0 α1 . . . αq−2

⎤
⎥⎥⎥⎦

is orthogonal to G2 for any column vector S. These sub-matrices are the

building blocks of the matrices Gr+1 and Hr+1. Note now that this imme-

diately implies the claim of the lemma.
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We say that a word v covers the set U if for any u ∈ U we have that

d(v, u) ≤ 1. A code C covers a set U if for every element u ∈ U there exists

a codeword c ∈ C such that d(c, u) ≤ 1.

Lemma 5.11. If G1
r+1 is the generator matrix consisting of the

first nr(q − 1) rows of Gr+1 defined in (5.29), then C(G1
r+1) and

(αj , 0 · · · 0) + C(G1
r+1), j ≥ 0, perfectly cover the same subset of

F
nrq+1
q = F

nr+1
q .

Proof. Since G2 = G1
2 and C(G2) is a 1-perfect code, it follows that

its coset (αj , 0 · · · 0) + C(G2) is also a 1-perfect code and thus C(G1
2)

and (αj , 0 · · · 0) + C(G1
2) perfectly cover the same subset of F

q+1
q . Let

v = (γ, u1, . . . , unr
) ∈ C(G1

r+1), where (δi, ui) ∈ C(G2), ui ∈ F
q
q, δi ∈ Fq,

and γ =
∑nr

i=1 δi. This is the form of the codewords from C(G1
r+1) as follows

from the form of G2 and G1
r+1. We will show that every word that is covered

by v is also covered by a codeword of (αj , 0 · · · 0) + C(G1
r+1). Obviously,

v+(β, 0 · · · 0), β ∈ Fq, is covered by v+(αj , 0 · · · 0) ∈ (αj , 0 · · · 0)+C(G1
r+1).

Accordingly, we only have to show that any word of the form

(γ, u1 · · ·ui−1u
′
iui+1 · · ·unr

), where ui and u′i differ in exactly one po-

sition, is covered by a codeword of (αj , 0 · · · 0) + C(G1
r+1). We know

that the word (δi, u
′
i) is covered by a codeword v′i ∈ (αj , 0 · · · 0) +

C(G2) because (αj , 0 · · · 0) + C(G2) is a 1-perfect code. Since (δi, ui) ∈
C(G2) and the minimum distance of C(G2) is 3, it follows that any

word of the form (ξ, u′i), where ξ ∈ Fq, is not in C(G2) and hence

also not in (αj , 0 · · · 0) + C(G2). Therefore, v′i = (δi, u
′′
i ), where u′′i

differs in exactly one position from u′i and in exactly two positions

from ui. Since (δi, u
′′
i ) ∈ (αj , 0 · · · 0) + C(G2), it follows that (δi −

αj , u′′i ) ∈ C(G2) and hence (γ − αj , u1 · · ·ui−1u
′′
i ui+1 · · ·unr

) ∈ C(G1
r+1).

This implies that the word (γ, u1 · · ·ui−1u
′
iui+1 · · ·unr

) is covered by

(γ, u1 · · ·ui−1u
′′
i ui+1 · · ·unr

) ∈ (αj , 0 · · · 0) + C(G1
r+1).

Thus, every word that is covered by C(G1
r+1) is also covered by

(αj , 0 · · · 0) + C(G1
r+1) and since C(G1

r+1) and (αj , 0 · · · 0) + C(G1
r+1) have

the same size, the claim in the lemma follows.

We now write Gr as

Gr =

⎡
⎢⎣G1

r

F

⎤
⎥⎦ , where F =

⎡
⎢⎣
f1
...

ft

⎤
⎥⎦ ,

and fi is a 1× nr matrix. Let cj , 1 ≤ j ≤ qt, be the qt codewords formed

from F , where F is considered as a generator matrix. By Lemma 5.11,
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we have that cj + C(G1
r) and (αj , 0 · · · 0) + cj + C(G1

r) perfectly cover the

same subset of Fnr
q .

Lemma 5.12. Given the vector (g1, g2, . . . , gqt), gi ∈ Fq, 1 ≤ i ≤ qt, the

code

C �
qt⋃
i=1

((gi, 0 · · · 0) + ci + C(G1
r))

forms a q-ary 1-perfect code.

Proof. If gi = 0 for all i, then C is the Hamming code. The lemma follows

from the fact that ci + C(G1
r) and (gi, 0 · · · 0) + ci + C(G1

r) perfectly cover

the same subset of Fnr
q .

Let Ω(nr) be the set of 1-perfect codes constructed in Lemma 5.12. Ob-

viously, |Ω(nr)| = qq
t

= qq
nr−1+1−r

= qq
nr−1

q
+1−logq(nr(q−1)+1)

. We say that

two codes C1, C2 in F
n
q are equivalent if there exists a word v ∈ F

n
q and a

permutation π on [n] such that C2 = {v+π(c) : c ∈ C1}. Given a 1-perfect

code C of length nr, there are at most qnrnr! ≤ qnrqnr logq nr = qnr(1+logq nr)

different 1-perfect codes equivalent to C. Hence we have the following the-

orem.

Theorem 5.11. The set Ω(nr) of codes, constructed in Lemma 5.12, con-

tains at least qq
nr−1

q
+1−logq(nr(q−1)+1)−nr(1+logq nr) nonequivalent 1-perfect

codes over Fq.

A more precise enumeration will improve the result of Theorem 5.11.

But this improvement is very minor. Finally, we would like to mention

that given a 1-perfect code C, one might permute symbols independently

in each position to obtain another 1-perfect code. If we also consider these

1-perfect codes as equivalent, we will have that there are at most nr!(q!)
nr

different 1-perfect codes equivalent to C. This not, however, dramatically

different from the asymptotic result of Theorem 5.11.

5.8 On the Nonexistence of Perfect Codes

Are there more nontrivial perfect codes in the Hamming scheme Hq(n)?

This problem was completely solved for any prime power q and was almost

completely solved for other q’s. Two types of polynomials are involved in
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the solution for this problem when q is a prime power. The first polynomial

is the Krawtchouk polynomial Pn
e (x), which is defined by

Pn
e (x) �

e∑
i=0

(−1)i
(
x

i

)(
n− x

e− i

)
(q − 1)e−i .

The polynomials from which nonexistence results for perfect codes were

obtained are called Lloyd polynomials and such a polynomial Ln
e (x) is an

instant of the Krawtchouk polynomial defined as follows.

Ln
e (x) �

e∑
i=0

Pn
i (x) = Pn−1

e (x− 1) =

e∑
i=0

(−1)i(q− 1)e−i

(
x− 1

i

)(
n− x

e− i

)
.

The following theorem is known as the Lloyd’s theorem.

Theorem 5.12. If there exists an e-perfect code of length n over Fq, then

the Lloyd polynomial Ln
e (x) has e integer zeroes x1, x2, . . . , xe such that

0 < x1 < x2 < · · · < xe ≤ n.

The following theorem was obtained in the nineteen seventies of the

20th century.

Theorem 5.13. Any nontrivial perfect code over Fq in the Hamming

scheme has the same parameters as the q-ary Hamming codes, or the binary

Golay code, or the ternary Golay code.

The proof of Theorem 5.13 is complicated and in the following lines the

first steps in the proof are presented. An e-perfect code C must attain the

sphere-packing bound with equality, i.e.,

|C| ·
e∑

i=0

(
n

i

)
(q − 1)i = qn.

Since q is a prime power, i.e., q = pr, where p is a prime, it follows that

both |C| and
∑e

i=0

(
n
i

)
(q − 1)i are powers of p. Hence, we have that for

some j,

e∑
i=1

(
n

i

)
(q − 1)i = pj − 1.

Since q− 1 = pr− 1, this implies that pr− 1 divides pj − 1, i.e., r divides j.

Hence, there is an integer t = j
r such that

e∑
i=0

(
n

i

)
(q − 1)i = pj = prt = qt . (5.30)
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This is the starting point for the first few nonexistence results. For example,

using a computer search and (5.30) one can verify that there is no perfect

code for many sets of parameters having large radius and/or large alphabet

size, and/or large length. Let Le(x) =
∑e

i=0 �ix
i. Combining (5.30) with

Lloyd’s theorem implies that

�0 = Le(0) =
e∑

i=0

(
n

i

)
(q − 1)i = qt .

Therefore, the coefficient �e of xe in Le(x) shows that the product of the

zeroes x1, x2, . . . , xe of Le(x) has the form
e∏

i=1

xi =
(−1)e�0

�e
=

e!

qe

e∑
i=0

(
n

i

)
= e!qt−e . (5.31)

By adding
e∑

i=1

xi =
−�e−1

�e
=

e(n− e)(q − 1)

q
+

e(e+ 1)

2
,

to (5.31), many new nonexistence results can be obtained.

The following theorem cannot be proved with Lloyd’s polynomials. To

prove the claim of the theorem we will use a completely different method

based on orthogonal arrays.

Theorem 5.14. A 1-perfect code of length 7 over Z6 does not exist.

Proof. Assume the contrary, that there exists such a code C. By the

sphere-packing bound, the code C contains 65 = 67

1+7·5 codewords. Let A be

a 65 × 7 matrix whose rows are the codewords of C. Since the minimum

distance of C is 3, it follows from Theorem 3.3 that the matrix A is an

OA(5, 7, 6). Let (x, y, z) ∈ Z
3
6 be a fixed 3-tuple. Since A is an OA(5, 7, 6), it

follows that (x, y, z) is contained in the projection of the first three columns

of A in exactly 62 = 36 codewords. Let B be the 36 × 4 matrix obtained

from the projection of the last four columns, of A, on these 36 codewords.

The matrix B is an OA(2, 4, 6), which is equivalent by Theorem 3.4 to a

pair of orthogonal Latin squares of order 6. Nevertheless, by Theorem 3.27,

such a pair does not exist, and hence such a code C does not exist. Thus,

there is no 1-perfect code of length 7 over Z6.

5.9 Playing Games of Hats

One interesting application of 1-perfect codes is with a variant of the well-

known combinatorial game of hats. The guessing game of hats is a game
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that received lot of attention by mathematicians and computer scientists.

The game has a number of versions and some of the solutions involve beau-

tiful concepts of mathematics. The version presented in this section has

a beautiful solution based on perfect codes. There are n players receiving

n hats with two colors “red” and “blue”. Each player can see the color

of the hat of each of the other n − 1 players, but has no idea about the

color of his own hat. The colors on the hats are distributed randomly and

uniformly to the n players. Each player must guess the color of the hat on

his head and all the players must simultaneously announce their guess or

say “pass”. The players win the game if one of them guesses the right color

of his hat and no one guesses a wrong color. The target is to design a strat-

egy that maximizes the probability of winning the game. During the game,

the players cannot consult each other, but before the game they can decide

on a strategy. For example, if there are three players, their strategy can

be that a player who sees that the other two players’ hats are of different

colors will say “pass” while a player who sees that both players’ hats have

the same color will say the opposite color. It is easy to verify that the only

case in which the players will lose is when the three hats have the same

color. These are two configurations out of the eight possible distributions

of the hats and hence the probability of success is 3/4. It is interesting to

note that in the two losing configurations, all the players will make a wrong

guess and, in the winning configurations, exactly one player will make the

correct guess.

A perfect strategy in the hat guessing game is a strategy for which in

a winning configuration exactly one player makes the right guess, while in

a losing configuration all the players make a wrong guess.

Theorem 5.15. If there exists a binary 1-perfect binary code of length n

in the Hamming scheme, then there exists a perfect strategy for the hat

guessing game with probability of n
n+1 for success.

Proof. Given a binary 1-perfect code C of length n, each player is associ-

ated with one of the coordinates. Let zero be associated with “red” and one

be associated with “blue”. A player who sees the other colors, translates

the configuration into a binary word of length n, where in his position he

decides on an assignment of zero or one if one of the two leads to a code-

word in C. If no such assignment exists, then his guess is “pass”. If such an

assignment exists, then his guess is the opposite one to the color associated

with this assignment, i.e., for a zero assignment he guesses “blue” and for

a one assignment he guesses “red”. Distinguish now between two cases:
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(1) If the configuration of the hats is associated with a codeword c ∈ C,
then each player will be able to have an assignment that will lead to c.

But, since he will make the opposite guess to the one associated with

the codeword, it follows that each of the n players will make a wrong

guess.

(2) If the configuration of the hats is associated with a word x that is not

a codeword of C, then since the code is a 1-perfect code, there exists

exactly one codeword c ∈ C for which d(x, c) = 1. If x and c differ in

the i-th coordinate, then only the i-th player will make the right guess.

Each other player will “pass” since any assignment on its coordinate

will not lead to a codeword.

This implies that this strategy is perfect.

Since all the codewords are associated with the losing configurations and

the other words are the winning configuration, it follows that the probability

of winning in this strategy is n
n+1 .

5.10 Notes

Lot of research on nonlinear 1-perfect codes has been done since their intro-

duction in coding theory. As a consequence of the results in Section 5.7, we

know that their number is very large. For different applications or different

combinatorial and algebraic properties, different codes have to be found.

In this chapter we considered only a small fraction of the research done on

these codes. For completeness we will now mention some more research,

but not all the research, on other topics considered in the literature.

Two papers [Österg̊ard and Pottonen (2009); Österg̊ard, Pottonen, and

Phelps (2010)] have classified the 1-perfect codes of length 15. In the first

paper, Österg̊ard and Pottonen gave the complete classification and the

automorphism groups of these codes. There are 5983 such nonequivalent

1-perfect codes and 2165 such extended 1-perfect codes of length 15 and

length 16, respectively. There are 38408 inequivalent shortened codes of

length 14. In the follow-up work, Österg̊ard, Pottonen, and Phelps clas-

sified these codes, studied them in great detail, and tabulated their main

properties. The results include the fact that 33 of the nonisomorphic 80

Steiner triple systems of order 15 occur in such codes. Further understand-

ing is gained on full-rank codes via the switching method, as it turns out

that all but two full-rank 1-perfect codes can be obtained through a series

of such transformations (switches) from the Hamming code. Other topics
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studied in this paper include nonsystematic codes and embedded one-error-

correcting codes as well as other topics.

It was established by [Best and Brouwer (1977)] that triply shortened

1-perfect codes of length 2r−1 are optimal. That is, A(2r−2, 3) = 22
r−r−2,

A(2r − 3, 3) = 22
r−r−3, and A(2r − 4, 3) = 22

r−r−4. Referring to tables of

the best known codes suggests that shortening any 1-perfect code of length

2r−1 up to 2r−2−1 times is likely to produce optimal codes for r ≤ 9. The

result of [Kabatiansky and Panchenko (1988)] however, shows that this is

not true in general for large r. Thus we have the following problem.

Problem 5.1. What is the largest integer sr such that each shortening of

a 1-perfect code of length 2r − 1, up to sr times, produces optimal codes,

i.e., A(2r − 1− sr, 3) = 22
r−r−1−sr?

Problem 5.1 is about the optimality of a shortened 1-perfect code.

A related question is on the uniqueness of the shortening. Assume

A(2r − 1− j, 3) = 22
r−r−1−j for some j, 1 ≤ j < 2r−2 and let C be a

code that attains this bound. Can C be completed to a 1-perfect code of

length 2r − 1? The answer to this question is positive for j = 1 as was

proved in [Blackmore (1999)]. Nevertheless, it was proved in [Österg̊ard

and Pottonen (2011)] that if j = 2, then the answer to the question is nega-

tive, for r = 4. This result was generalized for r > 4 by [Krotov, Österg̊ard,

and Pottonen (2011)].

Section 5.1. Constructions of nonequivalent 1-perfect codes have been

suggested since the introduction of the first codes in [Hamming (1950)].

Theorem 5.1 was presented first in [Vasil’ev (1962)]. To yield a large num-

ber of perfect codes, the construction of this theorem depends on previously

obtained perfect codes since it is a recursive construction. Nonetheless, its

recursive implementation will yield asymptotically similar number of per-

fect codes as other direct constructions. Its importance is also in being

the first one for nonlinear 1-perfect codes. This construction was general-

ized in [Mollard (1986)]. The construction in Theorem 5.2 was presented

in [Solovieva (1981)] and also independently by [Phelps (1983)]. They have

both analyzed the codes obtained and introduced some variants of the con-

struction. The construction was generalized to any field Fq by [Romanov

(2019)]. The construction can be viewed as a variant of the more general

and complicated construction introduced in [Heden (1977)]. The general

product construction of Theorem 5.3 was introduced in [Phelps (1984a)],

which was further generalized in [Phelps (1984b)]. The last general prod-
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uct construction in Theorem 5.4 was presented in [Etzion (2011)]. Other

constructions can be found, for example, in [Solovieva (1981, 1989, 1994)].

Section 5.2. The weight distribution of 1-perfect codes, introduced in this

section, was obtained in [Etzion and Vardy (1994)].

Section 5.3. The maximum intersection between two 1-perfect codes was

obtained in [Etzion and Vardy (1994)] and the minimum intersection was

presented in [Etzion and Vardy (1998)]. It was proved in [Avgustinovich,

Heden, and Solovieva (2006)] that for each even integer η in the interval

0 ≤ η ≤ 2n+1−2 log2(n+1), there are two 1-perfect codes C1 and C2 of length

n = 2r − 1, r ≥ 4, for which |C1 ∩ C2| = η. A general method to find

the possible intersection numbers of isomorphic linear codes was presented

in [Bar-Yahalom and Etzion (1997)].

Section 5.4. The intersection numbers between Hamming codes, presented

in this section, were found by [Etzion and Vardy (1998)].

Section 5.5. The construction for full-rank 1-perfect codes was presented

in [Etzion and Vardy (1994)]. Generalization of the construction for a

nonbinary alphabet was done in [Phelps and Villanueva (2002a)]. Full-rank

1-perfect codes play an important role in full-rank tiling [Cohen, Litsyn,

Vardy, and Zémor (1996)], where a tiling (A,B) of F
n
q is of full-rank if

rank A = rank B = n.

The set of sub-codes, A(z), z ∈ F
r
2, plays an important role in various

constructions such as 1-perfect codes with various ranks and kernels. One

problem in this context is to find the size of the intersection between such

various sub-codes and their cosets. The most fundamental problem is to

find the size of the intersection of two such sub-codes. This was considered,

for example, in [Etzion and Vardy (1994); Phelps and Levan (1995)]. The

following lemma is an immediate consequence from Proposition 5.3.

Lemma 5.13. If n = 2r − 1 and C is a 1-perfect code of length n, then for

each i �= j

|A(zi) ∩ A(zj)| = 22
r−2

.

Corollary 5.8. Each coset xi +A(zi) has a nonempty intersection with at

most 22
r−2−1 cosets (in the Hamming code) of A(zj), where i �= j.

Proof. If xi + A(zi) and xj + A(zj), are two distinct cosets, and

y ∈ A(zi) ∩ A(zj), then
xi +A(zi) = y +A(zi) and xj +A(zj) = y +A(zj) .
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But, (y+A(zi))∩ (y+A(zj)) = y+ (A(zi)∩A(zj)) . Therefore, any coset

of A(zj) is either disjoint from xi + A(zi) or intersects it in 22
r−2

words.

Since the cosets of A(zj) are either equal or disjoint and xi + A(zi) has

22
r−1−1 codewords, the claim follows.

Section 5.6. The proof for the possible kernels of 1-perfect codes and the

related constructions were presented in [Phelps and Levan (1995)]. Theo-

rem 5.8 in that paper was proved in a completely different way from the

proof that we gave for this theorem. The theorem in [Phelps and Levan

(1995)] is more general and it is stated as follows.

Theorem 5.16. For k ≥ 2 independent points in the projective space asso-

ciated with the words of weight three in the Hamming code of length 2r − 1,

the subspace A(z1) ∩ A(z2) ∩ · · · ∩ A(zk) has dimension 2r−k.

Theorem 5.16 is also a generalization of Lemma 5.13 (derived from

Proposition 5.3) for which we provided a different proof from the one

in [Phelps and Levan (1995)]. A tradeoff between the ranks and the kernels

of binary 1-perfect codes was obtained in [Phelps and Villanueva (2002b)].

The results were generalized for nonbinary alphabets in [Phelps, Rifà, and

Villanueva (2005)].

Another interesting question that was considered is the existence of non-

systematic 1-perfect codes. Nonsystematic 1-perfect codes were considered

and constructed in [Avgustinovich and Solovieva (1996a,b)]. Their results

were improved later by [Phelps and Levan (1999)], where the switching

method was used to construct such codes. They used a construction similar

to the one that they used in [Phelps and Levan (1995)] for the construc-

tion of 1-perfect codes with different kernels. This means that again the

switching method has an important role in the construction of 1-perfect

codes with required properties. The problem was considered later also

by [Malyugin (2010)]. An interesting connection between systematic and

nonsystematic 1-perfect codes on one side and superimposed codes used for

group testing and multiple access communication on the other side can be

found in [Ericson and Levenshtein (1994)].

Section 5.7. The switching method that was described and used to obtain

a lower bound on the number of nonequivalent q-ary 1-perfect codes is taken

from [Etzion (1996c)]. Asymptotically, there are no dramatic improvements

on the number of codes obtained by this construction, but slight improve-

ments can be obtained and they are increased as the alphabet size q get

larger. For example, the constructions mentioned in Section 5.1 can be also
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used to construct many nonequivalent codes. Analysis of the various con-

structions can be found in [Cohen, Honkala, Litsyn, and Lobstein (1997),

pp. 296–310].

Section 5.8. The final steps in the nonexistence results were proved

by [Tietäväinen (1970); Zinoviev and Leontiev (1973); Tietäväinen (1974)]

after an extensive work in [van Lint (1970a,b, 1971a,b, 1974)]. van Lint

also surveyed all the known results in [van Lint (1975)]. Other results

were proved in [Tietäväinen and Perko (1971)]. The results were further

generalized to cover non-prime power alphabets in [Best (1983)], where an

outline for the proof that there are no nontrivial e-perfect codes with pos-

sible exceptions for e ∈ {1, 2, 6, 8}, was presented. More detailed proofs

and information appear in his Ph.D. thesis [Best (1982)]. It was proved

in [Lenstra (1972)] that if there exists a 1-perfect code in Hq(n), then

n = kq+1 for some k. Further nonexistence results for 1-perfect codes over

non-prime alphabet can be found in [Heden and Roos (2011)], e.g., where

the results implied that there is no 1-perfect code in H6(19). The proof of

Theorem 5.14 for the nonexistence of a 1-perfect code in H6(7) is due to

Block and Hall and appeared in [Golomb and Posner (1964)].

As noted before, an extended 1-perfect code in Hq(q + 2), where q > 1

is any integer, is also an OA(q−1, q+2, q). The nonexistence result of [Hill

(1978)] (see Theorem 4.10) for the nonexistence of extended 1-perfect codes

is only applied for linear codes. For nonlinear codes it was proved in [Gi-

jswijt, Schrijver, and Tanaka (2006)] that there is no extended 1-perfect

code in H3(14). A more substantial result was given in [Bespalov (2020)]

who proved that there is no 1-perfect code in Hq(q + 2), where q is an

odd integer, which also implies that there are no OA(q − 1, q + 2, q) if q is

odd. It was also proved in [Bespalov (2020)] that if q is a power of an odd

prime, then there is no extended 1-perfect code of length qr+q−2
q−1 when r

is an even integer. It was further proved that if n > q + 2, then there is

no extended 1-perfect code in Hq(n) when q ∈ {3, 4}. Finally, there is no

extended 1-perfect code in Hq(n) if n is odd for any integer q.

Section 5.9. The version of the hat guessing game introduced in this

section is that of [Lenstra and Seroussi (2002)]. There was a lot of research

about hat guessing games before and after this paper and a sample of papers

includes [Aravamuthan and Lodha (2006); Guo, Kasala, Rao, and Tucker

(2007); Butler, Hajiaghayi, Kleinberg, and Leighton (2009); Paterson and

Stinson (2010); Feige (2010); Gadouleau and Georgiou (2015); Gadouleau

(2018); Alon, Ben-Eliezer, Shangguan, and Tamo (2020)].
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Density and Quasi-Perfect Codes

As we have seen, there are only two families of parameters with nontrivial

perfect codes in the Hamming scheme. The Hamming codes over Fq have

length qr−1
q−1 and redundancy r, for each r ≥ 2. The binary Golay code

is a [23, 12, 7] code and the ternary Golay code is a [11, 6, 5] code. This

lack of perfect codes has motivated the search for codes that are “almost”

perfect. In this chapter we consider such codes only for the binary alphabet.

What is an “almost” perfect code whose minimum distance is 2e+1? One

answer can be that in such a code C, beyond the packing radius e, there

are only a few words whose distance from the code is e+ 1 (and none that

are further apart) and C is the largest code with these parameters. Such a

code belongs to a family of codes called quasi-perfect codes and codes from

An upper bound which improves on the sphere-packing bound is developed

in Section 6.2. This bound on the size of e-codes takes into account the

uncovered words at distance e + 1 from the code. Codes which meet this

bound are called nearly-perfect codes. All prefect codes are nearly perfect

and also shortened 1-perfect codes are nearly perfect. The other family

of nearly-perfect codes are the punctured Preparata codes, which will be

presented in Section 6.3. The punctured Preparata codes are quasi-perfect

codes. In a perfect code C, each word in the space is within distance e

from exactly one codeword of C. Hence, in a code C with similar properties

to a perfect code, the requirements are that most words will be within

distance e from exactly one codeword of C and only a small fraction of

the words in the space will not be at distance e from some codeword of C.
This is a property from a point of view of the packing radius. A similar

definition can be given from the point of view of the covering radius. From

a point of view of the covering radius it is required that each word in the

space is within distance e from exactly one codeword, but there are a small

147
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number of words in the space which are within distance e from more than

one codeword. These requirements lead to the definition of the density of

codes, which will be discussed in Section 6.1.

For packing we would like to have dense codes for which most words are

covered by the code and for covering we would like to have sparse codes

for which most words are covered exactly once by the code. Dense codes

with packing radius one or two are the Hamming codes and the Preparata

codes, respectively. Hamming codes are also sparse codes with covering

radius one. Nearly-perfect codes are dense codes from the packing radius

point of view. By the description of nearly-perfect codes, it is clear that

if the packing radius of such code is e, then its covering radius is e + 1.

A code with packing radius e and covering radius e + 1 is called a quasi-

perfect code. Such codes are discussed in Section 6.4. Are quasi-perfect

codes similar to perfect codes? The answer is yes if we examine only the

packing radius and the covering radius of these codes. Apparently, however,

this is not the most important property of perfect codes and quasi-perfect

codes are usually not as dense as perfect codes (as packing codes) for most

parameters. Moreover, they are usually not as sparse as perfect codes (as

covering codes) for most parameters. Sparse codes with covering radius 2,

which are said to be asymptotically perfect, are presented in Section 6.5 and

sparse codes with covering radius 3 are presented in Section 6.6. Finally,

we remind that in this chapter only binary codes will be considered.

6.1 Density of Codes

Recall that by the sphere-packing bound, a binary code C of length n with

minimum Hamming distance 2e+ 1, is e-perfect if

|C| · |Be(n)|
2n

= 1 .

What about a code for which this fraction is close to 1? Such a code is

clearly very dense, i.e., the balls of radius e around codewords are disjoint,

and the number of points in the space Fn
2 that are not covered by any ball is

very small. To make these observations more formal, we define the notion

of density. We distinguish between packing density and covering density.

The packing density of a code C of length n with packing radius e is

defined by

μp(C) �
|C| · |Be(n)|

2n
.
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The covering density of a code C of length n with covering radius R

is defined by

μc(C) �
|C| · |BR(n)|

2n
.

Let {Ci}∞i=1 be an infinite family of (ni,Mi, d) codes with packing radius

e =
⌊
d−1
2

⌋
, where ni < ni+1 for each i ≥ 1. The packing density of this

family is defined by

μp({Ci}) � lim
i→∞

μp(Ci),

if the limit exists.

Similarly, let {Ci}∞i=1 be an infinite family of (ni,Mi, di) codes, where

each code has covering radius R and ni < ni+1 for each i ≥ 1. The covering

density of this family is defined by

μc({Ci}) � lim
i→∞

μc(Ci),

if the limit exists.

A family for which the packing (covering) density is 1 is called asymp-

totically perfect . Clearly, the packing density and the covering density of

a perfect code is 1, and if the code is not perfect, then its packing density

is smaller than 1 and its covering density is larger than 1. Therefore, we

will omit perfect codes in our discussion on the density. Are there other

families of codes that are asymptotically perfect? In the following sections

such asymptotically perfect codes will be presented both for packing and

covering.

Let K(n,R) be the minimum number of codewords in a code of length n

with covering radius R, and define the covering density, μc(n,R) with re-

spect to length n and covering radius R by

μc(n,R) � K(n,R) · |BR(n)|
2n

.

The maximum asymptotic covering density with respect to covering

radius R, μ∗(R), and the minimum asymptotic covering density with

respect to covering radius R, μ∗(R), are defined by

μ∗(R) � lim
n→∞ supμc(n,R)

and

μ∗(R) � lim
n→∞ inf μc(n,R) .

Similarly, we define the maximum asymptotic packing density and the

minimum asymptotic packing density using A(n, d) instead of K(n,R). For
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example, the packing density, μp(n, e) with respect to length n and packing

radius e is defined by

μp(n, e) �
A(n, 2e+ 1) · |Be(n)|

2n
.

These definitions can be further specialized using similar definitions for

linear codes. We will not give the other formal definitions, since we will

not distinguish between linear codes and nonlinear codes in our exposition.

There are many interesting questions related to all these definitions for the

density of codes and the density of packing (covering, respectively) with

respect to a certain packing radius (covering radius, respectively). Our

main concern are those parameters where the density is 1, i.e., the codes are

asymptotically perfect, and we also concentrate on the most dense families

with small packing radius and the most sparse families with small covering

radius. Finally, one can easily verify that unless C is a perfect code, the

code C can be either dense, with respect to its packing radius, or sparse,

with respect to its covering radius, but not both.

6.2 The Johnson Bound

The Johnson bound is an improvement on the sphere-packing bound. It

takes into account the words that cannot be covered by the e-balls of the

codewords and are at distance e+ 1 from the code. The theorem is proved

by considering the words in the balls of radius e around the codewords of

a code C that attains A(n, 2e+ 1) and the words that are at distance e+ 1

from C that are not covered by C.

Theorem 6.1.

A(n, 2e+1)

⎛
⎝ e∑

i=0

(
n

i

)
+

(
n

e+1

)
−
(
2e+1

e

)
A(n, 2e+ 2, 2e+ 1)⌊

n
e+1

⌋
⎞
⎠ ≤ 2n. (6.1)

Proof. Let C be an (n,M, d) binary code with d = 2e + 1, where

M = A(n, d), and 0 ∈ C. Let D0 = C and Di, i ≥ 1, be the set of words at

distance exactly i from C, i.e.,
Di � {x ∈ F

n
2 : Bi−1(x) ∩ C = ∅, Bi(x) ∩ C �= ∅} .

Clearly, Di ∩ Dj = ∅ for i �= j, Dd = ∅ since any word at a distance at

least d from C can be added to C without reducing the minimum distance

of C. Hence, Fn
2 =

⋃d−1
i=0 Di. The next step is to estimate De+1, which is

the set of words in the first sphere outside the balls with radius e around
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the codewords of C. Pick any codeword c ∈ C and move it to the origin.

Note also that codewords of weight 2e+1 form a constant weight code with

minimum distance 2e+2, i.e., their number is at most A(n, 2e+2, 2e+1).
Let We+1 be the set of words in F

n
2 whose weight is e + 1. Any word

in We+1 is contained in either De or De+1. With respect to each codeword
c′ ∈ C of weight 2e+1, there are

(
2e+1

e

)
words of weight e+1 at distance e

from c′. These words are contained in We+1 ∩De and they are all distinct.
Therefore,

|We+1 ∩ De+1| = |We+1|−|We+1 ∩ De| ≥
(

n

e+ 1

)
−
(
2e+ 1

e

)
A(n, 2e+2, 2e+1).

A word x in We+1 ∩ De+1 is at distance e + 1 from at most
⌊

n
e+1

⌋
codewords. This can be observed by moving the origin to x and computing

the number of codewords that can be at distance e + 1 from x and are at

mutual distance d+ 1 = 2e+ 2. Such codewords have disjoint sets of ones

and hence their number is at most
⌊

n
e+1

⌋
. This implies that

A(n, 2e+ 1)

⎛
⎝(

n
e+1

)
−
(
2e+1

e

)
A(n, 2e+ 2, 2e+ 1)⌊

n
e+1

⌋
⎞
⎠ ≤ |De+1| .

Now let c be computed over all the codewords and count the words in⋃e+1
i=0 Di, where∣∣∣∣∣

e+1⋃
i=0

Di

∣∣∣∣∣ = A(n, 2e+ 1)
e⋃

i=0

(
n

i

)
+A(n, 2e+ 1) |De+1| ,

to obtain the claim of the Theorem.

Corollary 6.1.

A(n, 2e+ 1)

⎛
⎝ e∑

i=0

(
n

i

)
+

(
n
e

) (
n−e
e+1 −

⌊
n−e
e+1

⌋)
⌊

n
e+1

⌋
⎞
⎠ ≤ 2n .

Proof. Iterating (2.1) yields

A(n, 2e+ 2, 2e+ 1) ≤
⌊

n

2e+ 1

⌊
n− 1

2e
· · ·

⌊
n− e

e+ 1

⌋
· · ·

⌋⌋

≤ n(n− 1) · · · (n− e+ 1)

(2e+ 1)2e · · · (e+ 2)

⌊
n− e

e+ 1

⌋
.

This equation is substituted in (6.1) to prove the claim.
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The bound of Theorem 6.1 and also the one of Corollary 6.1 is called the

Johnson bound. Codes that attain the bound of Corollary 6.1 are called

nearly-perfect codes. Perfect codes and shortened 1-perfect codes are

nearly-perfect. The other family of nearly-perfect codes are the punctured

Preparata codes, which will be discussed in Section 6.3. The bound of

Theorem 6.1 can be improved in a few ways. One such way, which considers

words at distance e+ 1 or e+ 2 from the code, is presented now.

Let C be an (n,M, 2e + 1) code, for which M = A(n, 2e + 1), where

0 ∈ C, and let C∗ be the extended (n + 1,M, 2e + 2) code. The number

of codewords of weight i in C is denoted by Ai. A word h ∈ F
m
2 , where

m = n or m = n + 1, is called a hole if d(h,C) > e, where C is C or C∗,
repectively. The number of holes of weight i, with respect to C, will be

denoted by NHi(C). Let NH(C) be the total number of holes with respect

to C. Finally, we define NH(c, C, δ) to be the number of holes at distance δ

from a codeword c ∈ C, NC(h,C, δ) to be the number of codewords of C

at distance δ from a hole h, and NH(C, δ) to be the number of holes at

distance δ from C.

Lemma 6.1. NHe+1(C) =
(

n
e+1

)
−
(
2e+1
e+1

)
A2e+1.

Proof. The total number of words of weight e + 1 in F
n
2 is

(
n

e+1

)
. Words

of weight e + 1 can be e-covered only by codewords of weight 2e + 1 of C.
A codeword of weight 2e+1 e-covers

(
2e+1
e+1

)
words of weight e+1. Finally,

two codewords c1, c2 ∈ C cannot e-cover the same word and hence

NHe+1(C) =
(

n

e+ 1

)
−
(
2e+ 1

e+ 1

)
A2e+1.

Lemma 6.2. NHe+2(C) =
(

n
e+2

)
−
(
2e+1
δ+2

)
A2e+1 −

(
2e+2
e+2

)
A2e+2.

Proof. The total number of words of weight e + 2 in F
n
2 is

(
n

e+2

)
. Words

of weight e+ 2 can be covered either by codewords of weight 2e+ 2 or by

codewords of weight 2e + 1. A codeword of weight 2e + 2 covers
(
2e+2
e+2

)
words of weight e+ 2. A codeword of weight 2e+ 1 e-covers

(
2e+1
e+2

)
words

of weight e+ 2. Finally, two codewords c1, c2 ∈ C cannot e-cover the same

word and hence

NHe+2(C) =
(

n

e+ 2

)
−
(
2e+ 1

e+ 2

)
A2e+1 −

(
2e+ 2

e+ 2

)
A2e+2.
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Lemma 6.3. NHe+2(C∗) = NHe+1(C) +NHe+2(C).

Proof. If h1 is a hole of weight e+1 with respect to C, then, clearly, h11 is

a hole of weight e+ 2 with respect to C∗ and if h2 is a hole of weight e+ 2

with respect to C, then h20 is a hole of weight e + 2 with respect to C∗.
Therefore,

NHe+2(C∗) ≥ NHe+1(C) +NHe+2(C) . (6.2)

Let hb be a hole of weight e + 2 with respect to C∗, where h ∈ F
n
2 and

b ∈ F2, i.e., d(hb, C∗) > e. Therefore, d(h, C) ≥ e. We claim that h is a hole

with respect to C. Assume the contrary, that h is not a hole and distinguish

between two cases depending on whether the value of b is 0 or 1.

Case 1. b = 0.

This implies that wt(h) = e+2. If h is not a hole, with respect to C, then
there exists a codeword c ∈ C such that d(c, h) = e, and since d(C) = 2e+1

and wt(h) = e + 2, it follows that wt(c) = 2e + 2. Therefore, c0 ∈ C∗,
d(c0, hb) = e and hb is not a hole with respect to C∗, a contradiction.

Case 2. b = 1.

This implies that wt(h) = e+1. If h is not a hole, with respect to C, then
there exists a codeword c ∈ C such that d(c, h) = e, and since d(C) = 2e+1

it follows that wt(c) = 2e + 1. Therefore, c1 ∈ C∗, d(c1, hb) = e and hb is

not a hole with respect to C∗, a contradiction.

Both cases imply that h is a hole, with respect to C, and hence

NHe+2(C∗) ≤ NHe+1(C) +NHe+2(C). (6.3)

Equations (6.2) and (6.3) imply that

NHe+2(C∗) = NHe+1(C) +NHe+2(C).

Lemma 6.4. NHe+2(C∗) ≥
(
n+1
e+2

)
−
(
2e+2
e+2

)
A(n+ 1, 2e+ 2, 2e+ 2).

Proof. By Lemmas 6.1, 6.2, and 6.3,

NHe+2(C∗) = NHe+1(C) +NHe+2(C)

=

(
n

e+ 1

)
−
(
2e+ 1

e+ 1

)
A2e+1+

(
n

e+ 2

)
−
(
2e+ 1

e+ 2

)
A2e+1−

(
2e+ 2

e+ 2

)
A2e+2
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and hence

NHe+2(C∗) =
(
n+ 1

e+ 2

)
−
(
2e+ 2

e+ 2

)
(A2e+1 +A2e+2) . (6.4)

It is easily verified that

A2e+1 +A2e+2 ≤ A(n+ 1, 2e+ 2, 2e+ 2), (6.5)

and, therefore, by (6.4) and (6.5), we have that

NHe+2(C∗) ≥
(
n+ 1

e+ 2

)
−
(
2e+ 2

e+ 2

)
A(n+ 1, 2e+ 2, 2e+ 2).

Corollary 6.2. If c ∈ C∗, then

NH(c, C∗, e+ 2) ≥
(
n+ 1

e+ 2

)
−
(
2e+ 2

e+ 2

)
A(n+ 1, 2e+ 2, 2e+ 2).

Proof. This is an immediate consequence from Lemma 6.4 by considering

the translate c+ C∗.

Lemma 6.5. If for a hole h with respect to C∗ there exists a codeword

c1 ∈ C∗ such that d(h, c1) = e+ 2, then d(h, C∗) = e+ 2.

Proof. Clearly d(h, C∗) ≤ e+2. To complete the proof it is suffices to show

that d(h, C∗) �= e + 1. Assume the contrary, i.e., there exists a codeword

c2 ∈ C∗ such that d(h, c2) = e+1. This, then, implies that d(c1, c2) is odd,

a contradiction since all codewords of C∗ have even weights.

Lemma 6.6.

NH(C∗, e+ 2) ≤ 2n −M

e∑
i=0

(
n

i

)
.

Proof. Recall that M = A(n, 2e+ 1) and, clearly,

NH(C) = 2n −M
e∑

i=0

(
n

i

)
.

By Lemma 6.3, each hole of the form hb, where h ∈ F
n
2 and b ∈ F2,

with respect to C∗, for which d(hb, c) = e+ 2, for some c ∈ C∗, is obtained
from a hole h of C. To complete the proof it is sufficient to show that if

hb is a hole for which d(hb, c) = e + 2, for some c ∈ C∗, then hb̄, is not a

hole for which d(hb̄, c′) = e + 2, for some c′ ∈ C∗. Assume the contrary,

i.e., there exist two codewords c1, c2 ∈ C∗ such that d(hb, c1) = e + 2 and
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d(hb̄, c2) = e + 2. This implies that d(c1, c2) is odd, a contradiction since

all codewords of C∗ have even weights. Thus,

NH(C∗, e+ 2) ≤ NH(C) = 2n −M

δ∑
i=0

(
n

i

)
.

Theorem 6.2.

A(n, 2e+ 1)

(
e∑

i=0

(
n

i

)
+

(
n+1
e+2

)
−
(
2e+2
e+2

)
A(n+ 1, 2e+ 2, 2e+ 2)

A(n+ 1, 2e+ 2, e+ 2)

)
≤ 2n.

Proof. By Corollary 6.2, we have∑
c∈C∗

NH(c, C∗, e+2) ≥M

((
n+ 1

e+ 2

)
−
(
2e+ 2

e+ 2

)
A(n+ 1, 2e+ 2, 2e+ 2)

)
.

(6.6)

For each hole h with respect to C∗, we have that

NC(h, C∗, e+ 2) ≤ A(n+ 1, 2e+ 2, e+ 2) . (6.7)

By Lemma 6.5, Lemma 6.6, and (6.7), we have that

∑
h, d(h,C∗)=e+2

NC(h, C∗, e+2) ≤
(
2n −M

e∑
i=0

(
n

i

))
A(n+1, 2e+2, e+2).

(6.8)

Moreover, ∑
c∈C∗

NH(c, C∗, e+ 2) =
∑

h,d(h,C∗)=e+2

NC(h, C∗, e+ 2) (6.9)

since each pair (c, h), where c ∈ C∗, and d(h, C∗) = e+2, is counted exactly

once on each side of (6.9).

We substitute (6.6) and (6.8) into (6.9) and use the initial assumption

that M = A(n, 2e+ 1) to obtain

A(n, 2e+ 1)

((
n+ 1

e+ 2

)
−
(
2e+ 2

e+ 2

)
A(n+ 1, 2e+ 2, 2e+ 2)

)

≤
(
2n −A(n, 2e+ 1)

e∑
i=0

(
n

i

))
A(n+ 1, 2e+ 2, e+ 2)

which implies the claim of the theorem.
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It is not difficult to show that the bound of Theorem 6.2 is always better

or the same as the bound of Theorem 6.1. One can also verify that for some

small values of n and related minimum distance, the new bound coincides

with the Plotkin bound, but we still have the following general problem.

Problem 6.1. Characterize all the codes that meet the bound of

Theorem 6.2.

The known upper bounds on the sizes of covering code are not as good

as the Johnson bound or the bound implied by Theorem 6.2.

Problem 6.2. Is their a bound similar to the Johnson bound for covering

codes? Are their codes which attain such a bound with equality?

6.3 The Preparata Code

The Preparata code C has length 2m, where m is even and greater

than 3. It has a minimum Hamming distance 6 and its number of code-

words is 22
m−2m. The union of 2m−1 disjoint translates of the code forms

the extended Hamming code H∗(m). This family of codes is one of the

most interesting family of nonlinear codes in coding theory. This section

is devoted to the construction of many such codes and analysis of their

properties.

In this section, r ≥ 3 is an odd integer and n = 2r − 1. Let x �→ xσ

be an automorphism of F2r , which implies that σ is a power of 2. As-

sume also that x �→ xσ−1 and x �→ xσ+1 are one-to-one mappings, i.e.,

gcd(σ ± 1, 2r − 1) = 1.

For the admissible values of σ, a code P(σ) of length 2n+2 = 2r+1 is de-

fined. The codewords will be described by pairs (X,Y ), where X,Y ⊂ F2r

will be interpreted as binary words of length 2r, which are the characteristic

vectors of X and Y . The zero element of F2r corresponds to the first posi-

tion in the X-part. For this representation of the codewords by subsets, the

addition of codewords X and Y represented by subsets, will be performed

by their symmetric difference X�Y , defined by

X�Y � (X \ Y ) ∪ (Y \X) .

Definition 6.1. The Preparata code P(σ) of length 2r+1 consists of the

codewords described by all the pairs (X,Y ) satisfying the following three

conditions:

|X| and |Y | are even integers (6.10)
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∑
x∈X

x =
∑
y∈Y

y, (6.11)

∑
x∈X

xσ+1 +

(∑
x∈X

x

)σ+1

=
∑
y∈Y

yσ+1. (6.12)

The punctured Preparata code P ′(σ) is obtained by deleting the first

coordinate of P(σ). For the computations in this section note that

(a+ b)σ+1 = aσ+1 + aσb+ abσ + bσ+1 . (6.13)

Theorem 6.3. The code P(σ) is distance invariant.

Proof. We compare a codeword (X0, Y0) with (∅,∅) = 0. Let

α =
∑

x∈X0
x. The mapping (X,Y ) �→ (U, V ), where U = (X�X0) + α

and V = Y�Y0, is clearly an one-to-one mapping. We claim that (X,Y ) is

codeword if and only if (U, V ) is a codeword. To verify this claim we have

to show that the conditions defined in Definition 6.1 are satisfied. The first

two conditions are trivial. For the third condition,

∑
x∈U

xσ+1 +

(∑
x∈U

x

)σ+1

=
∑

x∈X�X0

(x+ α)σ+1 +

⎛
⎝ ∑

x∈X�X0

(x+ α)

⎞
⎠σ+1

=
∑
x∈X

(x+ α)σ+1 +
∑
x∈X0

(x+ α)σ+1 +

(
α+

∑
x∈X

x

)σ+1

=
∑
x∈X

xσ+1 +
∑
x∈X0

xσ+1 +

(∑
x∈X

x

)σ+1

+ ασ+1

=
∑
y∈Y

yσ+1 +
∑
y∈Y0

yσ+1 =
∑
y∈V

yσ+1.

The proofs of the main properties of these codes become simpler if we

find some automorphisms of the codes.

Theorem 6.4. The group Aut P(σ) contains the permutations

• (X,Y ) �→ (c+X, c+ Y ), c ∈ F2r ,

• (X,Y ) �→ (Y,X),

• (X,Y ) �→ (αX,αY ), α ∈ F
−
2r ,

• (X,Y ) �→ (Xϕ, Y ϕ), ϕ ∈ Aut F2r .



February 21, 2022 16:26 ws-book9x6 Perfect Codes and Related Structures Perfect˙Codes˙Main page 158

158 Perfect Codes and Related Structures

Proof. The first permutation is derived from the third condition of Defi-

nition 6.1 using (6.13). The other permutations are readily verified.

The first two sets of permutations in Theorem 6.4 generate all the trans-

lations of the (r + 1)-dimensional vector space V = F2r × F2.

Theorem 6.5. The code P(σ) has a minimum distance of 6.

Proof. By Theorem 6.3 it is sufficient to show that the minimum weight

of a codeword in P(σ) is 6. There are obviously no codewords of weight 2.

Hence, we just have to show that there are no codewords of weight 4.

Assume the contrary, that a codeword (X,Y ) in P(σ) has weight 4, and

distinguish between three cases depending on the weights of X and Y .

Case 1. |X| = |Y | = 2.

If ({x1, x2}, {y1, y2}) is a codeword, then we may assume that x1 = 0

by Theorem 6.4. This implies, by condition (6.12) of Definition 6.1, that

yσ+1
1 + yσ+1

2 = 0,

and then the condition on σ implies that y1 = y2, a contradiction.

Case 2. |X| = 4 and |Y | = 0.

We can assume that X = {0, a, b, c} and hence by Definition 6.1 we have

a+ b+ c = 0,

aσ+1 + bσ+1 + cσ+1 = 0.

Substituting the first equation into the second, using (6.13), yields

ab(aσ−1 + bσ−1) = 0, i.e., a = b, a contradiction (using the fact that

x �→ xσ−1 is one-to-one). Finally, we show that there are indeed codewords

of weight 6. Given distinct a, b, c, define y by yσ+1 = aσ+1 + bσ+1 + cσ+1

and let x � a+ b+ c+ y. Then, ({0, x}, {a, b, c, y}) is a codeword.

Case 3. |X| = 0 and |Y | = 4.

This case is symmetric to Case 2.

The three cases imply that the minimum distance of the code P(σ)
is 6.

Corollary 6.3. The code P ′(σ) has a minimum distance of 5.

Theorem 6.6. The size of P(σ) is 2k, where k = 2r+1 − 2r − 2.

Proof. By Definition 6.1, we can choose the setX in 2n, n = 2r−1, distinct
ways such that the requirement that the size of X and Y be even is satisfied.

We count how many sets Y ⊂ F
−
2r satisfy the two other conditions of the
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definition and add the zero element to each such set, if necessary to satisfy

the condition that the size ofX and Y be even. Let α be a primitive element

of F2r and mi(x) the minimal polynomial of αi. The conditions (6.11)

and (6.12) of Definition 6.1, for the element y, form equations over F2r .

Considering F2r as an r-dimensional space over F2, these become 2r linear

equations over F2. We claim that these equations are independent. The

reason is that gcd(σ + 1, n) = 1 and hence mσ+1(x) has degree r, i.e., the

cyclic code over F2 of length n and generator m1(x)mσ+1(x) has dimension

n − 2r. This implies that for each choice of X, the last two equations in

Definition 6.1 have 2n−2r solutions for Y , where Y ⊂ F
−
2r . Therefore, we

have that

|P(σ)| = 2n · 2n−2r = 22
r−1 · 22r−1−r = 22

r+1−2r−2 .

This completes the proof of the theorem.

We define the translates of P(σ) as follows. Let C0 � P(σ) and if

α ∈ F
−
2r , then let Cα be the code obtained by adding the word corresponding

to ({0, α}, {0, α}) to the codewords of P(σ)

Lemma 6.7. The code Cα has minimum weight 4.

Proof. By Theorems 6.3 and 6.5, we only have to show that Cα does not

have a codeword with weight 2. A codeword with weight 2 is possible only

if P(σ) contains a codeword of the form ({0, α}, {0, α, β, γ}). By the second

condition of Definition 6.1 this is not possible.

By Theorem 6.5, the codes Cα, where α ∈ F2r (note that C0 = P(σ)),
are pairwise disjoint. We define

H �
⋃

α∈F2r

Cα .

By Theorem 6.6, we have that |H| = 2r |P(σ)| = 22n−r which is the cardi-

nality of H∗(r + 1) whose of length is 2n+ 2 = 2r+1.

Lemma 6.8. The code H is a linear code.

Proof. Let (X1, Y1) and (X2, Y2) be codewords in P(σ) and let α, β ∈ F2r .

Define si =
∑

x∈Xi
x, where i = 1, 2. For some γ ∈ F2r , define X and Y by

X�{0, γ} = X1�X2�{α, β},

Y�{0, γ} = Y1�Y2�{α, β}.
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We must show that there is a choice for γ such that (X,Y ) ∈ P(σ). For

each choice of γ, the sets X and Y satisfy conditions (6.10) and (6.11) of

Definition 6.1. Substitution in the condition (6.12) of the definition yields

the equation

(s1 + s2 + α+ β + γ)σ+1 = sσ+1
1 + sσ+1

2 ,

which has a unique solution γ.

Corollary 6.4. The code H is the extended Hamming code H∗(r + 1).

Theorem 6.7. The punctured Preparata code P ′(σ) is a nearly-perfect

code.

Proof. By Corollary 6.1,

A(n, 2e+ 1)

⎛
⎝ e∑

i=0

(
n

i

)
+

(
n
e

) (
n−e
e+1 −

⌊
n−e
e+1

⌋)
⌊

n
e+1

⌋
⎞
⎠ ≤ 2n.

When n = 2r − 1, r even, r ≥ 4, and e = 2, by this equation we have

that A(2r − 1, 5) ≤ 22
r−2r and this bound is attained with equality by a

punctured Preparata code of length 2r − 1. Thus, P ′(σ) is a nearly-perfect

code.

Corollary 6.5. The covering radius of P ′(σ) is 3.

Proof. By the proof of Theorem 6.1, in a nearly-perfect code the difference

between the covering radius and packing radius is at most one. Since P ′(σ)
is a nearly-perfect code, but not a perfect code, and its packing radius is 2,

it follows that its covering radius is 3.

Corollary 6.6. The covering radius of P(σ) is 4.

Theorem 6.8. The family of the punctured Preparata codes is asymptoti-

cally 2-perfect (with respect to the packing radius).

Proof. Recall that the length of P ′(σ) is 2r − 1 for even r, r ≥ 4, its size

is 22
r−2r, and its packing radius is 2. The size of a ball with radius 2 is(

2r − 1

0

)
+

(
2r − 1

1

)
+

(
2r − 1

2

)
= 22r−1 − 2r−1 + 1.

Hence, the density of the punctured Preparata code P ′(σ) is
22

r−2r(22r−1 − 2r−1 + 1)

22r−1
= 1− 2r−1 − 1

22r−1

and hence it is an asymptotically 2-perfect packing code.
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Note that for length 15, the punctured Preparata code has packing

density 1 − 7
27 , which is already very close to one. This code is equivalent

to the punctured Nordstorm-Robinson code whose length is 15 and it was

constructed in Section 4.2.

Henceforth, we will not distinguish between the various Preparata codes

of the same length and only consider the code with the basic properties that

have been proved. This is summarized in the following definition.

Definition 6.2. The Preparata code of order m, P(m) (or P0(m)),

m an even integer, where m ≥ 4, is a binary (2m, 22
m−2m, 6) code whose

covering radius is 4. There exist 2m−1 translates of P0(m) whose union is

the extended Hamming code H∗(m) (or H∗0(m)). Let

{Pi(m) : 0 ≤ i ≤ 2m−1 − 1}

be the family of codes that consists of these 2m−1 translates. Let

{Pi(m) : 0 ≤ i ≤ 22m−1 − 1} be the family that consists of the 22m−1

translates of the Preparata code, whose union is E2m

2 . Denote

H∗j (m) =

(j+1)2m−1−1⋃
i=j2m−1

Pi(m)

for each j, 0 ≤ j ≤ 2m − 1.

Definition 6.3. The punctured Preparata code of order m, P ′(m) (or

P ′0(m)), m an even integer, where m ≥ 4, is a binary (2m − 1, 22
m−2m, 5)

code whose covering radius is 3, which is obtained from P0(m) by deleting

any coordinate. There exist 2m−1 translates of P ′0(m) whose union is the

Hamming code H(m) (or H0(m)). Let

{P ′i(m) : 0 ≤ i ≤ 2m−1 − 1}

be the family of codes that consists of these 2m−1 translates. Let

{P ′i(m) : 0 ≤ i ≤ 22m−1 − 1} be the family that consists of the 22m−1

translates, of the punctured Preparata code, obtained by deleting the last

coordinate in each translate of {Pi(m) : 0 ≤ i ≤ 22m−1 − 1}. Let

Hj(m) =

(j+1)2m−1−1⋃
i=j2m−1

P ′i(m)

for each j, 0 ≤ j ≤ 2m − 1.
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Definitions 6.2 and 6.3 will be used for further constructions, especially in

the next section.

Henceforth, we denote the family {Pi(m) : 0 ≤ i ≤ 2m−1−1} by P(m)

and the family {P ′i(m) : 0 ≤ i ≤ 2m−1 − 1} by P
′(m).

Lemma 6.9. Each word x ∈ F
2m−1
2 , m even, has one of the following two

properties:

• x is a word in P ′i(m) for some 0 ≤ i ≤ 2m−1 − 1.

• x is at distance at most two from P ′i(m) for all 0 ≤ i ≤ 2m−1 − 1 and

at distance one from exactly one P ′j(m), for some 0 ≤ j ≤ 2m−1 − 1.

Proof. By Corollary 4.3, x is either a codeword of the Hamming code of

length 2m− 1, H0(m), or at distance one from exactly one of its codewords

and at distance two from exactly 2m−1 − 1 of its codewords.

If x is a codeword of the Hamming code, then by Definition 6.3 x is a

codeword of H0(m) =
⋃2m−1−1

i=0 P ′i(m) and hence x is a codeword in P ′j(m)

for some 0 ≤ j ≤ 2m−1 − 1. If x is at distance at most two from exactly

2m−1 codewords of H0(m), then these codewords are in different translates

of P ′0(m) since otherwise one such translate will contain two of these code-

words and its minimum distance will be at most 4, a contradiction. This

completes the proof of the claim in the lemma.

Corollary 6.7. Each word x ∈ F
2m

2 , m even, has one of the following three

properties:

• x is a word in Pi(m) for some 0 ≤ i ≤ 2m−1 − 1.

• x is at distance two from Pi(m) for all 0 ≤ i ≤ 2m−1 − 1.

• x is at distance three from Pi(m) for all 0 ≤ i ≤ 2m−1 − 1, except for

exactly one Pj(m), for some 0 ≤ j ≤ 2m−1 − 1, where its distance is

one.

6.4 Quasi-Perfect Codes

A code C is called quasi-perfect if its packing radius is e and its covering

radius is e+1. By the definition of nearly-perfect codes (based on the proof

of Theorem 6.1), we have that any nearly-perfect code is also a quasi-perfect

code. Unfortunately, there are not many known packing radius parameters

with nontrivial quasi-perfect codes, and infinite families of such codes are

known only for packing radius 1 and packing radius 2. Nevertheless, for
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these small number of known radius parameters, there are many interesting

open problems.

Problem 6.3. Construct quasi-perfect codes for all possible lengths for a

given covering radius and minimum distance.

Problem 6.4. What is the most dense (and the most sparse, respectively)

quasi-perfect code for a given length and packing radius (covering radius,

respectively)?

Problem 6.5. For a given redundancy, packing radius or covering radius,

what is the longest and the shortest quasi-perfect code?

Clearly, however, the most important problem is how to construct quasi-

perfect codes with a large radius.

Problem 6.6. Construct a (possibly infinite) family of quasi-perfect codes

with packing radius at least 3 for each code in the family.

The length of the shortest code with covering radius R, minimum dis-

tance d, and redundancy r, will be denoted by �∗(R, d, r). The length of

the longest code with covering radius R, minimum distance d, and redun-

dancy r, will be denoted by n∗(R, d, r). The code that attains n∗(R, d, r)

with equality is the most dense one, and the code that attains �∗(R, d, r)

with equality is the most sparse one for the given R, d, and r. It should be

noted that while we are given a packing radius e, we would like to consider

minimum distance 2e+1 when the goal is to find a code with a large pack-

ing density. If the packing radius is e and the covering radius is e + 1, we

would like to consider distance 2e+ 2 when the goal is to find a code with

a small covering density.

Definition 6.4. A family of codes {C1, C2, . . . , C�}, where Ci ⊆ F
n
2 ,

1 ≤ i ≤ �, has subnorm t if

min
1≤i≤�

d(x, Ci) + max
1≤i≤�

d(x, Ci) ≤ t

holds for all x ∈ F
n
2 .

Remark 6.1. In the family of codes in Definition 6.4 all the codes have

the same length. In contrast, in the definition of density of family of codes

as done in Section 6.1, the codes in the family have different lengths.

Lemma 6.10. The subnorm of the family P
′(m) is 3 and the subnorm of

the family P(m) is 4.
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Proof. Let x ∈ F
2m−1
2 , where m is even and m ≥ 4, and distinguish

between two cases depending on whether x is a codeword of the Hamming

code, i.e., x is contained in one of the translates of the punctured Preparata

code, or x is not contained in the Hamming code.

Case 1. x ∈ H(m), i.e., x ∈ P ′i(m) for some i.

This implies that d(x,P ′i(m)) = 0. Since by Corollary 6.5 the cover-

ing radius of P ′0(m) is 3, it follows that for each j, 0 ≤ j ≤ 2m−1 − 1,

d(x,P ′j(m) ≤ 3. Therefore,

min
1≤j≤m

d(x, Cj) + max
1≤j≤m

d(x, Cj) ≤ 3.

Case 2. x /∈ H(m), i.e., x /∈ P ′i(m) for each 0 ≤ i ≤ 2m−1 − 1.

This implies by Lemma 6.9 that there exists one i such that

d(x,P ′i(m)) = 1 and for each j �= i, 0 ≤ j ≤ 2m−1 − 1, d(x,P ′i(m)) = 2.

Hence,

min
1≤j≤m

d(x, Cj) + max
1≤j≤m

d(x, Cj) ≤ 3.

Thus, the subnorm of the family P
′(m) is 3.

The proof that the subnorm of the family P(m) is 4 is done similarly.

Consider x ∈ F
2m

2 , where m is even. If x ∈ Pi(m) for some i, then we

continue as in Case 1. If x /∈ Pi(m) for each 0 ≤ i ≤ 2m−1 − 1, then

distinguish between the cases when the weight of x is even and when it is

odd. If the weight of x is even, then by Corollary 6.7 it is at distance two

from all the cosets in the family P(m) and the claim follows. Finally, if

the weight of x is odd, then the proof follows from the third property of

Corollary 6.7.

Lemma 6.11. Let H∗i (m), 0 ≤ i ≤ 2m+1 − 1, be the 2m+1 distinct cosets

of H∗(m) and let Ĥ∗i (m), 0 ≤ i ≤ 2m − 1, be the 2m distinct even cosets of

H∗(m) = Ĥ∗(m). The subnorm of H∗(m) � {H∗i (m) : 0 ≤ i ≤ 2m+1 − 1}
is 2 and the subnorm of Ĥ∗(m) � {Ĥ∗i (m) : 0 ≤ i ≤ 2m − 1} is also 2.

Proof. Consider first the family H
∗(m) and let x ∈ F

2m

2 . Since the union of

the cosets of H∗(m), in this family, is F2m

2 , it follows that d(x,H∗i (m)) = 0

for some i. Since the covering radius of H∗(m) is 2 (an immediate

consequence of the covering radius of H(m) which is 1), it follows that

for every j, d(x,H∗j (m)) ≤ 2. Thus, the subnorm of this family is 2.

Consider now the family Ĥ
∗(m), let x ∈ F

2m

2 , and distinguish between

two cases depending on whether x has even weight or odd weight.

Case 1. x has even weight.
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Since the union of the cosets of H∗(m), in this family, is E2m

2 , it follows

that d(x, Ĥ∗i (m)) = 0 for some i. Since the covering radius of the extended

Hamming code is 2, it follows that for each j, 1 ≤ j ≤ 2m, we have that

d(x, Ĥ∗j (m)) ≤ 2.

Case 2. x has odd weight.

Since all the words in a coset have even weight and the covering radius

of the extended Hamming code is 2, it follows that for each j, 1 ≤ j ≤ 2m,

we have that d(x, Ĥ∗j (m)) = 1.

Thus, the arguments and their consequences in these two cases imply

that the subnorm of this family is also 2.

The Blockwise Direct Sum (BDS) Construction

Suppose we are given four codes: an (n1,M1, d1) code C1 whose covering
radius is R1, an (n1,M2 = �M1, d2) code C2 whose covering radius is R2, an

(n3,M3, d3) code C3 whose covering radius is R3, and an (n3,M4 = �M3, d4)

code C4 whose covering radius is R4. Assume further that these codes have

the following properties:

• The code C2 is a union of the � disjoint codes C1i , 1 ≤ i ≤ �, with the

parameters of C1, i.e.,

C2 =

�⋃
i=1

C1i .

• The code C4 is a union of the � disjoint codes C3i , 1 ≤ i ≤ �, with the

parameters of C3, i.e.,

C4 =

�⋃
i=1

C3i .

• The family C
2 = {C11 , C12 , . . . , C1� } has subnorm t1.

• The family C
4 = {C31 , C32 , . . . , C3� } has subnorm t3.

Accordingly, the BDS of C2 and C4 is the following code C obtained by the

direct product construction, i.e.,

C � C
2 ⊗ C

4 �
�⋃

i=1

C1i × C3i .

Theorem 6.9. The code C obtained by the BDS construction is an (n,M, d)

with covering radius R and the following parameters:

n = n1 + n3, M = �M1M3, d ≥ min{d1, d3, d2 + d4}, R ≤ (t1 + t3)/2 .
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Proof. The length of C and its size can be readily verified from the defini-

tion of C.
We continue to compute the minimum distance d of the code C.
Let c1 = (x1, y1), c2 = (x2, y2) be two distinct codewords of C and

distinguish between three cases related to the relations between x1 and x2.

Case 1. x1 = x2 ∈ C1i for some i.

This implies that y1, y2 ∈ C3i and y1 �= y2 and since d(C3) = d3, it follows

that d(y1, y2) ≥ d3 and hence d(c1, c2) ≥ d3.

Case 2. x1 �= x2 and x1, x2 ∈ C1i for some i.

Since d(C1) = d1, it follows that d(x1, x2) ≥ d1 and hence d(c1, c2) ≥ d1.

Case 3. x1 ∈ C1i and x2 ∈ C1j for j �= i.

This implies that y1 ∈ C3i and y2 ∈ C3j . Hence, x1, x2 are two distinct

codewords in C2 and y1, y2 are two distinct codewords in C4. Therefore,

d(x1, x2) ≥ d2 and d(y1, y2) ≥ d4, which implies that d(c1, c2) ≥ d2 + d4.

Thus, d ≥ min{d1, d3, d2 + d4}.
Finally, we have to compute the covering radius R of the code C.
Let (x, y) be a word in F

n1+n2
2 , where x ∈ F

n1
2 and y ∈ F

n2
2 , and assume

that

d(x, C1α) = min
i

d(x, C1i ) and d(x, C3β) = min
i

d(x, C3i ).

Since the family C
2 = {C11 , C12 , . . . , C1� } has subnorm t1 and

d(x, C1α) = mini d(x, C1i ), it follows that d(x, C1i ) ≤ t1 − d(x, C1α) for all i,

1 ≤ i ≤ �. Similarly, d(x, C3i ) ≤ t3 − d(x, C3β) for each i, 1 ≤ i ≤ �, since the

family C
4 = {C31 , C32 , . . . , C3� } has subnorm t3. Therefore,

2d((x, y), C) ≤ d((x, y), C1α × C3α) + d((x, y), C1β × C3β)

= d(x, C1α) + d(y, C3α) + d(x, C1β) + d(y, C3β)

≤ d(x, C1α) + (t3 − d(y, C3β)) + (t1 − d(x, C1α))) + d(y, C3β) = t1 + t3.

Thus, we have R ≤ t1+t3
2 .

This completes the proofs of the claims in the theorem.

If R = 2 and d = 4, then n∗(2, 4, r) = 2r−1. This value is attained by

the extended Hamming codes. Next, we give an upper bound on �∗(2, 4, r).

Construction 6.1. If r ≡ 0 (mod 4), where r = 2m and m is an even

integer, then consider the following code obtained by the BDS construction:

C1 = P ′0(m), C2 =

2m−1−1⋃
i=0

P ′i(m) = H0(m),
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C3 = Ĥ∗0(m− 1), C4 =

2m−1−1⋃
i=0

Ĥ∗i (m− 1) = E
2m−1

2 .

The obtained code by the BDS construction will be denoted by Ψ(m).

Theorem 6.10. The code Ψ(m), obtained in Construction 6.1, is a

(3 · 2m−1 − 1, 23·2
m−1−1−2m, 4) code with covering radius 2 and covering

density 9
8 −

3·2m−2−1
22m .

Proof. The parameters of the codes C1 and C2 are given in Definition 6.3

and the subnorm of the related family of codes is proved in Lemma 6.10.

The parameters of the codes C3 and C4 are readily verified and the subnorm

of the related family of codes is proved in Lemma 6.11. Now, the parameter

of the code Ψ(m) are implied by the BDS construction and Theorem 6.9.

The size of a ball with radius 2 is(
3 · 2m−1 − 1

0

)
+

(
3 · 2m−1 − 1

1

)
+

(
3 · 2m−1 − 1

2

)
= 9·22m−3−3·2m−2+1 .

Hence, the covering density of the code Ψ(m) is

23·2
m−1−1−2m(9 · 22m−3 − 3 · 2m−2 + 1)

23·2m−1−1
=

9

8
− 3 · 2m−2 − 1

22m
.

Corollary 6.8. The family of codes {Ψ(m) : m = 2k ≥ 4} has covering

density 9
8 .

Corollary 6.9. If r ≡ 0 (mod 4), where r = 2m and m is an even integer,

then �∗(2, 4, 2m) ≤ 3 · 2m−1 − 1.

Construction 6.2. If r ≡ 1 (mod 4), where r = 2m + 1, m is an even

integer, and m ≥ 4, then consider the following code obtained by the BDS

construction. Let

Ψj(m) =

2m−1−1⋃
i=0

P ′i(m)× Ĥ∗i+j(m− 1), 0 ≤ j ≤ 2m−1 − 1,

Ψ2m−1+j(m) = (103·2
m−1−31) + Ψj(m), 0 ≤ j ≤ 2m−1 − 1,

where the subscript i+ j is taken modulo 2m−1.
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The codes that are used in the BDS construction are

C1 = Ψ0(m), C2 =

2m−1⋃
i=0

Ψi(m),

C3 = Ĥ∗0(m), C4 =

2m−1⋃
i=0

Ĥ∗i (m) = E
2m

2 .

The code obtained by the BDS construction will be denoted by Υ(m).

To analyze the code Υ(m) obtained in Construction 6.2, the following

two lemmas are required.

Lemma 6.12. The following code (which is C2 in Construction 6.2)

C �
2m−1⋃
i=0

Ψi(m)

is a (3 · 2m−1 − 1, 23·2
m−1−1−m, 2) code with covering radius one.

Proof. We start be considering the minimum distance of the code C.
Let c1 = (x1, y1), c2 = (x2, y2), where x1, x2 ∈ F

2m−1
2 and

y1, y2 ∈ F
2m−1

2 , be two distinct codewords of C. We distinguish between

three cases depending on the relations between x1, x2, y1, and y2.

Case 1. x1 = x2.

Since c1, c2 ∈ C, it follows that x1 is contained either in some P ′i(m) or

in some translate (102
m−2)+P ′i(m), where 0 ≤ i ≤ 2m−1−1. If x1 ∈ P ′i(m),

then y1 and y2 are two distinct words in two even cosets (not necessarily

distinct) of the extended Hamming code. This implies that d(y1, y2) ≥ 2,

i.e., d(c1, c2) ≥ 2. If x1 ∈ (102
m−2)+P ′i(m), then y1 and y2 are two distinct

words in two odd cosets of the extended Hamming code. This implies that

d(y1, y2) ≥ 2, i.e., d(c1, c2) ≥ 2.

Case 2. y1 = y2.

Since c1, c2 ∈ C, it follows that y1 is contained either in some Ĥ∗j (m−1)

or in some (02
m−1−11) + Ĥ∗j (m − 1), where 0 ≤ j ≤ 2m−1 − 1. If

y1 ∈ Ĥ∗j (m− 1), then x1 and x2 are two distinct words in P ′i1(m) and

P ′i2(m), respectively, where 0 ≤ i1, i2 ≤ 2m−1−1. Hence, x1 and x2 are two

distinct codewords in the Hamming code. This implies that d(x1, x2) ≥ 3,

i.e., d(c1, c2) ≥ 3. The same arguments hold if y1 ∈ (02
m−1−11)+Ĥ∗j (m−1).

Case 3. x1 �= x2 and y1 �= y2.

This implies that d(x1, x2) ≥ 1 and d(y1, y2) ≥ 1 and hence d(c1, c2) ≥ 2.
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Thus, these three cases imply that the minimum distance of C is 2.

We continue to consider the covering radius of the code C. Assume

now that (x, y) ∈ F
3·2m−1−1
2 , where x ∈ F

2m−1
2 and y ∈ F

2m−1

2 . We again

distinguish between three cases depending on whether x is a codeword of

the Hamming code or in the coset of the Hamming code that contains the

word (102
m−2). If x is not in the Hamming code or in this identified coset

which contains the word (102
m−2), then we distinguish between the case

where y is of even weight and the case where y is of odd weight.

Case 1. Assume first that x ∈ P ′i(m) or x ∈ (102
m−2) + P ′i(m), for some

0 ≤ i ≤ 2m−1 − 1 (this implies that x ∈ H(m) or x ∈ (102
m−2) +H(m)).

If wt(y) is even, then there exists some j, 0 ≤ j ≤ 2m−1 − 1, such

that y ∈ Ĥ∗i+j(m − 1). Therefore, (x, y) ∈ P ′i(m) × Ĥ∗i+j(m − 1), i.e.,

(x, y) ∈ Ψj(m) ⊂ C. If wt(y) is odd, then using the fact that in each

even coset of the extended Hamming code H∗(m − 1) there exists a

word z such that d(y, z) = 1. Clearly, (x, z) ∈ P ′i(m) × H∗(m) ⊂ C
and therefore d((x, y), C) ≤ 1 in this case. The same arguments hold if

x ∈ (102
m−2) + P ′i(m)

Case 2. x /∈ P ′i(m), x /∈ (102
m−2) + P ′i(m), for all 0 ≤ i ≤ 2m−1 − 1, and

wt(y) is even.

By Lemma 6.9, we have that x is at distance one from exactly one

translate P ′i(m). Moreover, there exists a j, 0 ≤ j ≤ 2m−1 − 1, such that

y ∈ Ĥ∗i+j(m − 1). Therefore, d((x, y),P ′i(m) × Ĥ∗i+j(m − 1)) = 1, i.e.,

d((x, y), C) = 1.

Case 3. x /∈ P ′i(m), x /∈ (102
m−2) + P ′i(m), for all 0 ≤ i ≤ 2m−1 − 1, and

wt(y) is odd.

By Lemma 6.9 we have that x is at distance one from exactly one

(102
m−2) +P ′i(m). Moreover, there exists a j, 0 ≤ j ≤ 2m−1− 1, such that

y ∈ (02
m−1−11) + Ĥ∗i+j(m− 1). Therefore,

d((x, y), ((102
m−2) + P ′i(m))× ((02

m−1−11) + Ĥ∗i+j(m− 1))) = 1,

i.e., d((x, y), C) = 1.

This implies that the covering radius of C is one.

Lemma 6.13. The family of codes {Ψi(m) : 0 ≤ i ≤ 2m − 1} has sub-

norm 3.

Proof. Let (x, y) ∈ F
3·2m−1−1
2 , where x ∈ F

2m−1
2 , y ∈ F

2m−1

2 . Assume

first that wt(y) is even and distinguish between three cases depending on

whether x is a codeword in the Hamming code or which coset of the Ham-

ming code contains x.
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Case 1. x is a codeword ofH(m), i.e., x ∈ P ′i(m) for some 0 ≤ i ≤ 2m−1−1.
Since wt(y) is even, it follows that there exists a j such that

0 ≤ j ≤ 2m−1 − 1 and y ∈ Ĥ∗i+j(m − 1), which implies that (x, y) is a

codeword in
⋃2m−1−1

i=0 Ψi(m). To complete the proof in this case, it suf-

fices to show that d((x, y),Ψj(m)) ≤ 3, for each 0 ≤ j ≤ 2m − 1. For

0 ≤ j ≤ 2m−1 − 1, this follows immediately from the fact that, by Corol-

lary 6.5, the covering radius of P ′j(m) is 3. For 2m−1 ≤ j ≤ 2m − 1,

this follows from the fact that x is not a word in (102
m−2) + H(m) and

hence, by Lemma 6.9, we have that x is at distance at most two from each

P ′j−2m−1(m). Moreover, note that for 2m−1 ≤ j ≤ 2m − 1, Ψj(m) is con-

structed from the odd cosets of H∗(m− 1) instead of the even cosets used

when 0 ≤ j ≤ 2m−1 − 1. Now, since wt(y) is even, it follows that y is at

distance one from each odd coset of H∗(m− 1), which completes the proof

in this case.

Case 2. x is a word in (102
m−2) +H(m).

Since wt(y) is even and the covering radius of any coset of the extended

Hamming code is two, it follows that the distance between y and any odd

coset of the extended Hamming code is one. This implies that for each i,

2m−1 ≤ i ≤ 2m − 1, we have that d((x, y),Ψi(m)) = 1. To complete the

proof in this case, it suffices to show that d((x, y),Ψj(m)) ≤ 2, for each

0 ≤ j ≤ 2m−1 − 1. By using similar arguments again, we have that since

x is a word in (102
m−2) + H(m), it follows by Lemma 6.9 that x is at

distance at most two from each P ′j(m) and hence d((x, y),Ψj(m)) ≤ 2 for

each 0 ≤ j ≤ 2m−1 − 1.

Case 3. x is not a codeword in H(m) and not a word in (102
m−2)+H(m).

We apply similar arguments to the ones in Case 2.

These three cases complete the analysis when the weight of y is even.

Similar arguments are applied when wt(y) is odd.

Thus, the subnorm of the family {Ψi(m) : 0 ≤ i ≤ 2m − 1} is 3.

Theorem 6.11. The code Υ(m) is a (5 · 2m−1 − 1, 25·2
m−1−2−2m, 4) code

with covering radius 2 and covering density 25
16 −

5·2m−2−1
22m+1 .

Proof. The parameters of the codes C1 and C2 are derived in Theorem 6.10

and Lemma 6.12, and the subnorm of the family of codes is derived in

Lemma 6.13. The parameters of the codes C3 and C4 are readily verified,

and the subnorm of the family of codes is obtained in Lemma 6.11. This im-

plies, by using the BDS construction and Theorem 6.9, that the parameters

of the code Υ(m) are exactly as specified by the claim of the theorem.
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The size of a ball with radius 2 is

(
5 · 2m−1 − 1

0

)
+

(
5 · 2m−1 − 1

1

)
+

(
5 · 2m−1 − 1

2

)
= 25·22m−3−5·2m−2+1.

Hence, the covering density of the code Υ(m) is

25·2
m−1−2−2m(25 · 22m−3 − 5 · 2m−2 + 1)

25·2m−1−1
=

25

16
− 5 · 2m−2 − 1

22m+1
.

Corollary 6.10. The family of codes {Υ(m) : m = 2k ≥ 4} has covering

density 25
16 .

Corollary 6.11. If r ≡ 1 (mod 4), where r = 2m+1, m is an even integer,

and m ≥ 4, then �∗(2, 4, 2m+ 1) ≤ 5 · 2m−1 − 1.

Using arguments similar to the ones used in the previous results, one

can verify the following simple lemma.

Lemma 6.14. If S1 is partitioned into k subsets A0, A1, . . . , Ak−1 and S2 is

partitioned into t subsets B0, B1, . . . , Bt−1, then for any 0 ≤ j ≤ t− 1, the

code

k−1⋃
i=0

Ai ×Bi+j

has the space tiling property with respect to the space S1 × S2.

Proof. Clearly,

S1 × S2 =

k−1⋃
i=0

t−1⋃
j=0

Ai ×Bj =

k−1⋃
i=0

t−1⋃
j=0

Ai ×Bi+j ,

where i+ j is taken modulo t. Moreover, for 0 ≤ j1, j2 ≤ t−1 we have that(
k−1⋃
i=0

Ai ×Bi+j1

)⋂(
k−1⋃
i=0

Ai ×Bi+j2

)
= ∅ if and only if j1 �= j2,

from which the claim of the lemma follows.

Lemma 6.15. The code Υ(m) has the space tiling property.
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Proof. By Lemma 6.14 and the properties of the code in the family of

{Υ(m) : m = 2k ≥ 4}, we have that the set

2m−1⋃
i=0

Ψi(m)× E
2m

2 can be

partitioned into codes with the parameters of Υ(m), where

S1 �
2m−1⋃
i=0

Ψi(m) and S2 � E
2m

2 =
2m−1⋃
i=0

Ĥ∗i (m)

are the related sets in Lemma 6.14. Since for some j �= 0,

2m−1⋃
i=0

Ψi(m) =
(
H0(m)× E

2m−1

2

)⋃(
Hj(m)× ((102

m−1−1) + E
2m−1

2 )
)
,

it is easy to verify that F
5·2m−1−1
2 can be partitioned into codes with the

parameters of

2m−1⋃
i=0

Ψi(m)× E
2m

2 . Hence, Υ(m) has the space tiling prop-

erty.

6.5 Asymptotically 2-Perfect Covering Codes

Recall that by Theorem 6.8, each code in the family of the punctured

Preparata codes has packing radius 2 and the packing density of this fam-

ily is 1, i.e., it is asymptotically perfect. The same is true if we shorten

this code a constant number of times (and even slightly more), i.e., the

shortened Preparata codes are asymptotically perfect codes with packing

radius 2. No other such family of codes is known. Moreover, no other

family whose packing density is greater than 1/2 is known. After the dis-

cussion on codes with packing radius 2, the next step is to discuss codes

with covering radius 2. In this section we consider a family of codes with

covering radius 2 that has a covering density 1, i.e., this family of codes is

asymptotically perfect.

Construction 6.3. Let r ≡ 3 (mod 4), where r = t · 2k − 1, t is odd, and

k ≥ 2. Let �(t, k), t odd, k ≥ 1, (t, k) �= (1, 1), be the length of the shortest

code C with minimum distance 4, covering radius 2, and redundancy r,

which has the space tiling property. We claim that for k ≥ 2

�(t, k) ≤
k−1∑
i=0

2t·2
i − k + �2t−2�.
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The BDS construction is used to obtain a code C(t, k), where

C1 = P ′(t · 2k−1), C2 =

2t·2
k−1−1−1⋃
i=0

P ′i(t · 2k−1) = H(t · 2k−1),

C3 is a code with the space tiling property that meets the value of �(t, k−1)

and C4 = F
�(t,k−1)
2 .

By Lemma 6.14, we can partition H(t ·2k−1)×F
�(t,k−1)
2 into codes which

have the parameters of the code C(t, k). The code C(t, k−1) has redundancy
t · 2k−1 − 1 and the code H(t · 2k−1) has redundancy t · 2k−1. Hence, the

code C(t, k) obtained by the BDS construction has redundancy t · 2k − 1

and the space tiling property. Therefore, for k ≥ 2 we obtain

�(t, k) ≤ 2t·2
k−1 − 1 + �(t, k − 1)

with the initial conditions �(1, 2) = 4 (which is attained by the extended

Hamming code of length 4) and �(t, 1) = 5 · 2t−2 − 1 for t ≥ 3 (which is

obtained by Υ(t−1) whose redundancy is 2t−1, Lemma 6.15, and because

�(3, 1) = 9, a value attained by a linear code, which as any linear code has

the linear space tiling property).

It is now easy to verify that

�(t, k) ≤
k−1∑
i=0

2t·2
i − k + �2t−2�

and hence

�∗(2, 4, t · 2k − 1) ≤ �(t, k) ≤
k−1∑
i=0

2t·2
i − k + �2t−2�,

where t is odd and k ≥ 2. Therefore, this is a(
k−1∑
i=0

2t·2
i − k + �2t−2�, 2

∑k−1
i=0 2t·2

i−k+�2t−2�−t·2k+1, 4

)

code with covering radius 2.

Theorem 6.12. The family of codes

{C(t, k) : k ≥ 1, t odd, t ≥ 1, (t, k) �= (1, 1)}

has covering density 1 and hence this family is an asymptotic 2-perfect

covering family.
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Proof. Define n(t, k) =
∑k−1

i=0 2t·2
i − k+ �2t−2�, which is the length of the

code C(t, k). This implies that

μc{C(t, k)} = lim
k→∞
t→∞

2n(t,k)−t·2k+1(1 + n(t, k) +
(
n(t,k)

2

)
)

2n(t,k)

= lim
k→∞
t→∞

(
2t·2

k−1

2

)
2t·2k−1

= 1.

6.6 Dense Covering Codes with Radius Three

In this section our goal is to present a family of codes with covering radius 3

and small covering density, as close to 1 as possible. Our search is for a

family of codes with small asymptotic covering density. The best known

such family is constructed by the BDS construction.

Construction 6.4. Let P0(m),P1(m), . . . ,P2m−1−1(m) be the 2m−1 trans-

lates of the Preparata code of length 2m, m ≥ 4, whose union forms H∗(m).

Let C(m) be the code over F2m

2 × F
2m−1
2 defined by

C(m) � {(x, y) : x ∈ Pi(m), y ∈ P ′i(m), 0 ≤ i ≤ 2m−1 − 1} .

Theorem 6.13. The code C(m) is a binary (2m+1−1, 22
m+1−3m−1, 5) code

with covering radius 3 and covering density 4
3 −

1
22m .

Proof. Recall that by Lemma 6.10, the subnorm of the family P(m) is 4

and the subnorm of the family P
′(m) is 3. The length of the code C(m), its

size, minimum distance, and covering radius are immediate consequences

of Theorem 6.9, the parameters of the Preparata code, and the number of

translates of the Preparata code and the punctured Preparata code, which

are used in the BDS construction.

The size of a ball with radius 3 is(
2m+1 − 1

0

)
+

(
2m+1 − 1

1

)
+

(
2m+1 − 1

2

)
+

(
2m+1 − 1

3

)
=

23m+2 − 3 · 2m
3

.

Hence, the covering density of the code C(m) is

22
m+1−3m−1(23m+2 − 3 · 2m)

3 · 22m+1−1
=

4

3
− 1

22m
,

which completes the proof.
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Corollary 6.12. The family of codes {C(m)}m=2k≥4 has covering den-

sity 4
3 .

Note that for length 31, the code C(4) has covering density
4
3 −

1
256 = 1023

768 , which is already very close to 4/3.

6.7 Notes

Section 6.1. When discussing a “good” error-correcting code C of length n

over Fq, the first measure to be considered is the rate of the code C that

is defined as
logq|C|

n . The goal is to obtain codes whose rate is close to 1.

Having obtained such codes with a rate close to 1, the next goal is to have

a code with small redundancy r, where r = n − logq |C|. The smallest

redundancy that we can obtain implies the highest density of a code, which

is the motivation for the various definitions on the density. A remarkable

result by [Kabatiansky and Panchenko (1988)] is that μ∗(1) = 1 for both

packing and covering. The reader can refer to a comprehensive analysis of

the density in the excellent book of [Cohen, Honkala, Litsyn, and Lobstein

(1997)].

Section 6.2. Theorem 6.1 and Corollary 6.1 are contained in the work

of [Johnson (1962)]. Codes that attain this bound are nearly-perfect codes

and they were first studied by [Goethals and Snover (1972)]. The im-

provement of Theorem 6.2 and a comparison between the bounds was done

in [Mounits, Etzion, and Litsyn (2002)]. All these bounds including the

sphere-packing bound can be proved for other metrics that form associa-

tion schemes as was proved in [Mounits, Etzion and Litsyn (2007)]. Other

improvements for Theorem 6.1 can be found in [MacWilliams and Sloane

(1977)].

Section 6.3. The Preparata codes were defined in [Preparata (1968)]. The

simple representation given in this section of the chapter from Definition 6.1

to Corollary 6.4 is due to [Baker, van Lint, and Wilson (1983)]. It was

proved in [Kantor (1983)] that P(σ1) and P(σ2) are equivalent if and only

if σ1 = σ2 or σ1σ2 = 2r. In this paper the group of automorphisms,

Aut P(σ), was also found.

The properties of the Preparata code presented in the section and some

other properties are very intriguing. The code is nonlinear, but has many

linear properties (the union of disjoint translates is the linear Hamming

codes and many other properties, some of which were discussed in this
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section). These phenomena were resolved after it was proved in [Hammons,

Kumar, Calderbank, Sloane, and Solé (1994)] that by applying a Gray

mapping which transfers 00 to 0, 01 to 1, 11 to 2, and 10 to 3, on all the

codewords of the Preparata code, the obtained code is a linear code over Z4.

This work motivated an extensive research for codes over rings. For example

see [Dinh and López-Permouth (2004)] and the long list of papers quoting

this work. Codes over rings are related to codes in the Lee metric and codes

in the Manhattan metric which are the topic of Chapters 11 and 12.

The number of codewords in the Preparata code (and also in the punc-

tured Preparata code) is twice as large as the largest linear code with the

same length and minimum distance [Brouwer and Tolhuizen (1993)]. More-

over, in this paper an improvement of the Johnson bound for linear codes is

given and, as a consequence, it was proved that there is no linear code with

the parameters of the shortened Preparata code. The Preparata codes are

also used as building blocks for other interesting codes such as the asymp-

totic 2-perfect covering codes constructed in Section 6.5 or the dense codes

with covering radius 3 constructed in Section 6.6. They will also be used

for construction of 2-perfect mixed codes in Section 7.3.

The following theorem was proved in [Lindström (1975a)].

Theorem 6.14. The only binary nearly-perfect codes are the binary perfect

codes, the [2r−2, 2r−r−2, 3] shortened Hamming codes (and other shortened

1-perfect codes), and the punctured Preparata codes.

Theorem 6.14 was generalized for nonbinary codes in [Lindström (1977)]

who proved that the only nonbinary nearly-perfect codes are the nonbinary

perfect codes.

Section 6.4. The BDS construction is a generalization of the direct

product construction. It was re-introduced along the years, using var-

ious variants, in many papers. The packing version can be attributed

to [Sloane, Reddy, and Chen (1972)] and the covering version can be at-

tributed to [Honkala (1991)].

The punctured Preparata codes are quasi-perfect codes with packing

radius 2 and covering radius 3. These codes are asymptotically 2-perfect

codes, i.e., their asymptotic packing density is 1. The redundancy r of

these codes equals r ≡ 3 (mod 4). What is the longest length n∗(3, 5, r) of
codes with other redundancies? For r ≡ 0 (mod 8), codes with asymptotic

packing density 1/2 for which n∗(3, 5, r) = 2r/2 + 2r/4 − 1 were presented

in [Etzion and Mounits (2005)]. For r ≡ 4 (mod 8), linear codes with asymp-
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totic packing density 1/2 for which n∗(3, 5, r) = 2r/2 + 1 were constructed

by Zetterberg and presented in [Moreno (1983)]. For r ≡ 2 (mod 4), lin-

ear codes with asymptotic packing density 1/2 for which n∗(3, 5, r) = 2r/2

were constructed by Goppa (known as irreducible Goppa codes) and pre-

sented in [Moreno (1983)]. Codes with different parameters and especially

from covering radius points of view can be found in the survey on covering

codes [Cohen, Karpovsky, Mattson, and Schatz (1985)]. It is worth men-

tioning that in [Wagner (1966)], a search for linear quasi-perfect codes with

packing radius 2 was performed. The most notable code that was found is

a [23, 14, 5] code whose packing density is 277
512 . Clearly, there are big gaps

in our knowledge on the parameters of quasi-prefect codes with packing ra-

dius 2 and covering radius 3. This analysis leads to the following research

problem.

Problem 6.7. For each redundancy r, what is the value of n∗(3, 5, r)?

Consider now some smaller parameters. What is the shortest length,

�∗(2, 4, r) of codes with minimum distance 4 and covering radius 2, and what

is the lowest covering density of such a family of codes with a given redun-

dancy r? For r ≡ 0 (mod 4), we constructed the code Ψ(m) whose covering

density is 9/8 (see also [Etzion and Greenberg (1993)]). For r ≡ 1 (mod 4),

we constructed the code Υ(m) whose covering density is 25/16 (see also [Et-

zion and Mounits (2005)]). Linear codes with this redundancy and cover-

ing density 529/256 were constructed in [Gabidulin, Davydov, and Tombak

(1991)]. For r ≡ 2 (mod 4), linear codes with this redundancy and cover-

ing density 225/128 were constructed in [Gabidulin, Davydov, and Tombak

(1991)]. For r ≡ 3 (mod 4), we constructed codes with covering density 1

(asymptotically optimal) in Section 6.5. More work on linear quasi-perfect

codes with covering radius 2 and minimum distance 4 was done in [Davydov

and Tombak (1989a,b)].

Our exposition in this chapter is only on binary codes, but there is some

literature on nonbinary quasi-perfect codes. Work in this direction can

be found in [Giulietti and Pasticci (2007); Danev and Dodunekov (2008);

Danev, Dodunekov, and Radkova (2011); Li and Helleseth (2016)]. In par-

ticular, a quasi-perfect [n, n − r, 4]q code is equivalent to what is called a

complete n-cap in PG(r−1, q). Complete n-caps in PG(r−1, q) were consid-
ered for example in [Hirschfeld and Storme (1998); Giulietti (2000); Bier-

brauer, Marcugini, and Pambianco (2006); Giulietti (2007a,b); Davydov,

Faina, Marcugini, and Pambianco (2009); Davydov, Giulietti, Marcugini,

and Pambianco (2010); Anbar, Bartoli, Giulietti, and Platoni (2014)].
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Section 6.5. The first family of asymptotically 2-perfect covering codes

was obtained in [Struik (1994), Construction 4.24]. The codes presented in

this section were constructed in [Etzion and Mounits (2005)]. For r = 7 and

r = 11, the parameters of the codes presented in this section are the same

as those in [Struik (1994)]. For r ≥ 15, the codes presented in this section

are shorter than the codes in [Struik (1994)]. For example, if r = 15, the

construction in this section produces a code of length 274 whereas the code

obtained in [Struik (1994)] has length 276, and for r ≥ 19, r = t · 2k − 1,

t odd, k ≥ 2, the code of [Struik (1994)] has the following parameters

(2t·2
k−1

+
23

16
2t·2

k−2 − 4, 22
t·2k−1

+ 23
16 2

t·2k−2−3−t·2k , 4)2 .

Section 6.6. The code C(m) was constructed in [Etzion and Greenberg

(1993)]. The analysis given in the section is contained in the work of [Etzion

and Mounits (2005)], where the density of more families of quasi-perfect

codes with packing radius 2 or covering radius 3 are analyzed. The code

for which �(3, 1) = 9 was presented in [Bruladi, Pless, and Wilson (1989)].

For the covering density, one would like to find the shortest length of

such codes, �∗(3, 5, r). For r ≡ 0 (mod 6), codes of length 2(r+3)/3− 1 with

asymptotic covering density 4/3 were constructed in [Etzion and Greenberg

(1993)] and later in [Etzion and Mounits (2005)]. These codes presented

in this section are asymptotically the most sparse family known as of 2021.

It is not known whether a family of linear codes with these parameters ex-

ists (see [Graham and Sloane (1985); Bruladi, Pless, and Wilson (1989)]).

For r ≡ 2 (mod 6), codes of length 5 · 2(r−2)/3 − 1 with asymptotic cover-

ing density 125/24 were constructed in [Etzion and Mounits (2005)]. For

r ≡ 4 (mod 6), codes of length 3 · 2(r−1)/3 − 2 with asymptotic covering

density 9/4 were constructed in [Struik (1994)]. For r ≡ 5 (mod 6), codes of

length 5·2(r+4)/3−2 with asymptotic covering density 8/3 were constructed

in [Etzion and Mounits (2005)]. A comprehensive analysis of quasi-perfect

codes with small radius (packing and covering) is presented in this paper.

Problem 6.8. For each redundancy r, what is the value of �∗(3, 5, r)?

Contrary to dense packing codes with packing radius 2 and covering

radius 3 (where dense linear codes are known), families of linear sparse

codes with these parameters are not known.

Problem 6.9. Construct sparse linear quasi-perfect codes with packing

radius 2 and covering radius 3.
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Chapter 7

Codes with Mixed Alphabets

Before moving on to different metrics and different spaces, we continue

with the Hamming metric, but with a different space. Instead of words of

length n over a finite field Fq (or any finite alphabet of size q), we consider

words of length n, where each coordinate can be taken from an alphabet of

a different size. In other words, the code is of length n and the codewords

are taken from Σ1 × Σ2 × · · · × Σn, where Σi is an alphabet with qi sym-

bols, qi > 1, and qi is not necessarily a power of a prime. For simplicity

and w.l.o.g. Σi will be taken as Zqi or Fqi if qi is a power of a prime,

1 ≤ i ≤ n. The Hamming distance is the metric in this space, but this

space with the Hamming metric is not a scheme (if at least two of the qi’s

are different). To prove this claim, assume w.l.o.g. that q1 �= q2. Consider

the three words x = (000 · · · 0), y = (100 · · · 0), and z = (010 · · · 0).
Clearly, d(x, y) = d(x, z) = 1 and the number of words which satisfy the

equality d(x, u) = d(y, u) = 1 is q1 − 2, where u = (α00 · · · 0), with

α /∈ {0, 1}). On the other hand the number of words in the space such

that d(x, u) = d(z, u) = 1 is q2−2. Since q1 �= q2, it follows that the related

intersection number depends on the chosen words and hence this is not an

association scheme. A perfect code in this space will be called a perfect

mixed code .

In Section 7.1 such perfect codes with radius one will be discussed. The

perfect codes with radius one will be constructed from partitions of the

nonzero elements of a group into subgroups (without the identity). The

codes derived from these partitions are associated with codes organized in

bytes, where the errors are restricted to these bytes. Such partitions and

byte-correcting codes will be discussed in Section 7.2. Throughout most of

this chapter it will be assumed that in a perfect mixed code, at least two of

the coordinates are associated with different alphabet sizes, although most

179
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of the results can also be applied to the case where the symbols of all the

coordinates are taken from an alphabet of the same size. For byte-correcting

codes, there will be no such assumption as all the bytes can also be of the

same size. In other words, for a byte-correcting code, we will also consider

the case where all the bytes are of the same size, which implies that when

it is transferred into a mixed code, all the coordinates are over the same

alphabet (which is just a code in the Hamming scheme). In Section 7.3 we

present one construction for a family of perfect mixed codes with radius

two. This is the only known infinite family of 2-perfect mixed codes with

the Hamming distance. These perfect mixed codes will be also extended

to diameter perfect mixed codes and a general construction for diameter

perfect mixed codes for each possible diameter will be presented. In this

section also several nonexistence results for various radii will be presented.

7.1 Perfect Mixed Codes with Radius One

There are several constructions for 1-perfect mixed codes, but as far as

parameters for such codes, all of them can be obtained with one simple

construction, which is a generalization of the construction for the Hamming

codes. The construction is applied only when the alphabet size in each

coordinate is a power of the same prime p.

Theorem 7.1. Let {S1,S2, . . . ,Sn} be a partition of F
−
qm into n subsets

such that Ti � Si ∪ {0} is a subspace of dimension ki. The code defined by

C �
{
(c1, c2, . . . , cn) : ci ∈ Si ∪ {0},

n∑
i=1

ci = 0

}
,

where the sum is performed in Fqm , is a 1-perfect mixed code over

T1 × T2 × · · · × Tn which is isomorphic to Fqk1 × Fqk2 × · · · × Fqkn .

Proof. If c and c′ are two codewords of C, then clearly c + c′ is also a

codeword in C. This implies that C is a linear code and its minimum

distance is the weight of the codeword of minimum weight in the code. It is

readily verified that there is no codeword of weight one in C. Therefore, if
(x1, x2, . . . , xn) ∈ T1 × T2 × · · · × Tn has weight two, then assume w.l.o.g.

that xi �= 0 and xj �= 0, for some 1 ≤ i < j ≤ n. Since xi ∈ Ti, xj ∈ Tj ,
Ti ∩ Tj = {0}, and Ti, Tj are subspaces of F−qm it follows that xi + xj �= 0

and hence C does not have a codeword of weight two. This implies that the

minimum distance of C is three.
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Now, to prove the claim of the theorem, it suffices to show that for each

word x = (x1, x2, . . . , xn) ∈ T1 × T2 × · · · × Tn, there exists exactly one

codeword c = (c1, c2, . . . , cn) in C such that d(x, c) ≤ 1. Let s =
∑n

i=1 xi.

If s = 0, then, clearly, x is a codeword. If s = α �= 0, then let j be the

unique integer such that α ∈ Sj . Clearly, since Sj ∪ {0} is a subspace

and also xi ∈ Ti, for each 1 ≤ i ≤ n, it follows that xj − α ∈ Sj . Define

c � (c1, c2, . . . , cn), where ci = xi for i �= j and cj = xj − α. This implies

that
n∑

i=1

ci =

n∑
i=1

xi − α = s− α = 0

and hence c ∈ C and d(x, c) = 1.

Assume now that there exists two distinct codewords c, c′ ∈ C such that

d(x, c) ≤ 1 and d(x, c′) ≤ 1. By the trianle equality we have that

d(c, c′) ≤ d(c, x) + d(x, c′) ≤ 2,

a contradiction to the minimum distance of C.
Thus, c is the unique codeword in C such that d(x, c) = 1.

If c, c′ are two codewords of the code C constructed in Theorem 7.1,

then c+ c′ ∈ C. Hence, C is a linear code. If ki = kj for all 1 ≤ i < j ≤ n,

then C is a linear code in the Hamming scheme. The q-ary Hamming code

is a special case of this code, where each Si ∪ {0} is a one-subspace of Fn
q .

Moreover, the theorem can be generalized and stated in terms of a general

group G and not necessarily Fqm as follows.

Theorem 7.2. Let {G−1 ,G−2 , . . . ,G−n } be a partition of G−, where G is an

abelian group, into n nonempty subsets such that Gi = G−i ∪{0} is a subgroup

of G whose size is ki. The code defined by

C �
{
(c1, c2, . . . , cn) : ci ∈ Gi ∪ {0},

n∑
i=1

ci = 0

}
,

where the sum is performed in G, is a 1-perfect mixed code over

G1 × G2 × · · · × Gn.

The proof of Theorem 7.2 is identical to the one for Theorem 7.1. To apply

these theorems, we have to find partitions as required by the theorems. Such

a partition is called a group partition . There are many such partitions

when the group G of Theorem 7.2 is Fqm as in Theorem 7.1. Unfortunately,

only partitions of this type are known. Some of the known partitions will be
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discussed in Section 7.2. There are several differences between linear codes

in the Hamming scheme and linear mixed codes, where at least two of the

coordinates are over alphabets of different sizes. The generator matrix and

the parity-check matrix for such linear mixed code is completely different

from the representation for linear codes in the Hamming scheme. If C is

such a linear code over Fqk1 × Fqk2 × · · · × Fqkn , then one might assume

that it can be represented by a parity-check matrix H = [αi1αi2 · · · αin ],

where α is a primitive element in Fqm . Furthermore, αir , 1 ≤ r ≤ n, is an

element in the subfield Fqkr in the partition of Fqm . In this case a codeword

c ∈ C has the form c = (c1, c2, . . . , cn) = (αj1 , αj2 , . . . , αjn), where cr = αjr

is an element in the subfield Fqkr and
∑n

r=1 α
ir+jr = 0. Unfortunately,

this representation does not lead to a perfect mixed code as in the codes

constructed in Theorem 7.1. The proof of Theorem 7.1 is not correct for

this representation and this observation if left as an exercise. But, the

linear code in Theorem 7.1 has a different representation with a parity-

check matrix and a generator matrix. It is equivalent to byte-correcting

codes as will be discussed in Section 7.2. The parity-check matrices used

for byte-correcting codes will be presented in this section. There are many

intriguing questions which remain unsolved in this direction. Two such

examples are given in the following problems.

Problem 7.1. Are there nonlinear 1-perfect mixed codes with parameters

that cannot be obtained by Theorem 7.2?

Problem 7.2. Are there parameters of 1-perfect codes obtained with The-

orem 7.2 that cannot be obtained by Theorem 7.1?

What about nonlinear 1-perfect mixed codes with parameters that can

also be obtained by Theorem 7.2? Many types of such codes can be ob-

tained with constructions similar to the ones given in Chapter 5. Two such

constructions will be presented. The first construction is a general product

construction.

Let C be a 1-perfect code (mixed or not mixed) over the alphabet

Zq1 × Zq2 × . . .Zqt . Let Ci, 1 ≤ i ≤ t be a 1-perfect code (mixed or not

mixed) of length ni in a space Vi with the space tiling property and qi be

the number of associated translates, where Cij , 1 ≤ j ≤ qi is the j-th trans-

late of the i-th code. In other words, for each 1 ≤ i ≤ t, Cij1 ∩ C
i
j2

= ∅ for

1 ≤ j1 < j2 ≤ qi and ∪qi
j=1Cij = Vi. Define

C1 � {(xi1 , xi2 , . . . , xit) : xi� ∈ C�i� , (i1, i2, . . . , it) ∈ C, 1 ≤ � ≤ t}.
Similarly to the proof of Theorem 5.4, one can prove the following theorem.
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Theorem 7.3. If C and each Ci, 1 ≤ i ≤ t, are 1-perfect (mixed) codes,

then the code C1 is a 1-perfect mixed code of length n =
∑t

i=1 ni and size

|C|
∏t

i=1 |Ci| over V1 × V2 × · · · × Vn.

The second construction can be viewed as a generalization of the one

defined in Theorem 5.1. For this construction, let C1 be a 1-perfect mixed

code of length n1+1 over Zq×Q1, where Q1 = Zq1×Zq2×· · ·×Zqn1
and let

B1
1(n1+1) be the a ball of radius one related to the space Zq×Q1, where the

size of a ball with radius one in Zq×Q1 is
∣∣B1

1(n1 + 1)
∣∣ = q +

∑n1

i=1(qi − 1).

Let C2 be a 1-perfect code of length n2 over Q2 = Zq′1 × Zq′2 × · · · × Zq′n2

and let B2
1(n2) be the a ball of radius one related to the space Q2,

where the size of a ball with radius one in Q2 is q, i.e.,∣∣B2
1(n2)

∣∣ = q = 1 +
∑n2

i=1(q
′
i − 1). Let ϕ be an injective function from Zq

into Q2 such that ϕ(0) = 0 and the weight of ϕ(x) is one for each x ∈ Z
−
q . In

other words, ϕ is an one-to-one function which maps Zq into the ball B2
1(n2),

where ϕ(0) = 0. Define the following set of words of length n = n2 + n1.

C2 � {(c+ ϕ(x), y) : c ∈ C2, (x, y) ∈ C1, x ∈ Zq}.

Theorem 7.4. The code C2 is a 1-perfect mixed code of length n2+n1 over

Q2 ×Q1.

Proof. We start and prove that the minimum Hamming distance of the

code C2 is 3. Let b1 = (c1+ϕ(x1), y1), b2 = (c2+ϕ(x2), y2), be two distinct

codewords of C2. Since x1, x2 ∈ Zq, it follows that d(x1, x2) ∈ {0, 1}. We

distinguish between four cases depending on whether d(y1, y2) equals to 0,

1, 2, or 3.

Case 1. If d(y1, y2) = 0, then y1 = y2, and hence since d(C1) = 3 and

x1, x2 ∈ Zq, it follows that (x1, y1) = (x2, y2), i.e., x1 = x2, and therefore

ϕ(x1) = ϕ(x2). As a consequence, we must have that c1 �= c2, which implies

that d(b1, b2) = d(c1 + ϕ(x1), c2 + ϕ(x2)) = d(c1, c2) ≥ 3.

Case 2. If d(y1, y2) = 1, then since d(x1, x2) ∈ {0, 1}, it follows that

d((x1, y1), (x2, y2)) ≤ 2, contradicting the minimum distance of C1. This

implies that d(y1, y2) �= 1 when (x1, y1) ∈ C1 and (x2, y2) ∈ C1.
Case 3. If d(y1, y2) = 2, then first note that d(c1, c2) = 0 or d(c1, c2) ≥ 3.

As a consequence, since wt(ϕ(x)) ≤ 1 for x ∈ Zq and x1 �= x2 as

(x1, y1), (x2, y2) ∈ C1, it follows that d(ϕ(x1), ϕ(x2)) = 2 and hence

d(c1 + ϕ(x1), c2 + ϕ(x2)) ≥ 1, which implies that d(b1, b2) ≥ 3.

Case 4. If d(y1, y2) ≥ 3, then obviously, d(b1, b2) ≥ 3.

To complete the proof, it suffices to show that the code attains the

sphere-packing bound. An immediate consequence of the definition of C2 is
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that |C2| =
∣∣C1∣∣ · ∣∣C2∣∣. Since C1 and C2 are 1-perfect codes, it follows that∣∣B1

1(n1 + 1)
∣∣ · ∣∣C1∣∣ = |Zq ×Q1| = q |Q1| and

∣∣B2
1(n2)

∣∣ · ∣∣C2∣∣ = |Q2|. Clearly,
the space associated with C2 is Q2 × Q1 whose size it |Q2| · |Q1| and the

size of the associated ball B̂1(n1 + n2) is∣∣∣B̂1(n1 + n2)
∣∣∣ = 1 +

n1∑
i=1

(qi − 1) +

n2∑
i=1

(q′i − 1)

=
∣∣B1

1(n1 + 1)
∣∣+ ∣∣B2

1(n2)
∣∣− q =

∣∣B1
1(n1 + 1)

∣∣ .
Therefore,∣∣∣B̂1(n1 + n2)

∣∣∣ · |C2| =
∣∣B1

1(n1 + 1)
∣∣ · ∣∣C1∣∣ · ∣∣C2∣∣ = q |Q1|

|Q2|
|B2

1(n2)|
= |Q1| · |Q2|

and hence C2 meets the sphere-packing bound and the proof is completed.

7.2 Byte-Correcting Codes and Group Partitions

The construction presented in Theorem 7.1 for 1-perfect mixed codes re-

quires a “partition” of Fqm into subspaces whose intersection is the null

space. This problem is exactly related to perfect byte-correcting codes. In

most memory and storage systems, the information is stored in bytes. In

many of these systems, when an error event occurs it can corrupt a few

positions of the same byte. Hence, when we consider error detection and

correction in such systems, we want to be able to detect and correct all

errors that occur in the same byte. For this purpose, we consider e-byte-

correcting codes for these systems, i.e., codes which correct all errors which

occur in at most e of the bytes. Usually, all bytes are of the same size,

but in various memory systems they can be of different sizes. For 1-perfect

byte-correcting codes, the partition into bytes induces a group partition

and hence linear 1-perfect byte-correcting codes are equivalent to linear 1-

perfect mixed codes. This equivalence holds also for e-perfect mixed codes

and e-perfect byte-correcting codes, where e > 1, but such codes are not

obtained from group partitions.

We distinguish between five types of byte-correcting codes (in other

words, five types of group partitions), depending on the different sizes of

the bytes in the code. Some of these types are of practical use, and some

do not and are provided only for two reasons. First, for their theoretical

and mathematical value and also since they form group partitions which

can be applied to form perfect mixed codes.
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Type 1: All bytes have the same size.

Type 2: One byte is of size b1 and the other bytes are of size b2.

Type 3: Each byte is either of size b1 or of size b2.

Type 4: The size of each byte is a power of 2 (q if the code is over Fq).

Type 5: All the other cases.

Since a byte-correcting code should be able to correct all errors which

occurred within one of its bytes (if all the errors occurred only inside one

byte), it follows that all syndromes generated from one byte must be dis-

tinct. This implies that a byte of size b can be considered as a subspace of

dimension b. All codes considered for this purpose will be linear and will

be analyzed by their parity-check matrices. For simplicity, in this section,

for most cases only binary codes will be discussed, but the results are gen-

eralized in a straightforward way to codes over Fq for any prime power q.

Some of the results will be proved and explained for all alphabets of a finite

field Fq.

Note that a specific byte-correcting code can belong to a few different

types. For all these types of codes, there is a simple necessary condition for

the existence of the corresponding e-perfect byte-correcting codes. Given

a code C of length n, and an integer e, let Be(n) be a ball with radius e

centered at any codeword. Note, that the ball of radius e centered at

a codeword c ∈ C contains the set of words that differ in no more than

e bytes from c. The size of the ball (as well as its structure) does not

depend on the center c. The code C is an e-perfect byte-correcting code if

its minimum distance is 2e+1 (where the distance between two codewords

are the number of bytes in which they differ) and |C| · |Be(n)| = 2n. Assume

that C is a linear code of dimension k. The code C is an e-perfect byte-

correcting code if and only if each syndrome of length r = n−k is produced

by exactly one linear combination of columns from no more than e bytes

of the parity-check matrix of C. Therefore, a necessary condition for the

existence of a linear 1-perfect byte-correcting code with m possible sizes of

bytes, i.e., si bytes of size bi, 1 ≤ i ≤ m, is that

2r − 1 =

m∑
i=1

si(2
bi − 1). (7.1)

The necessary condition of (7.1) implies some other necessary conditions

for the existence of some types of 1-perfect byte-correcting codes.

Lemma 7.1. If C is a 1-perfect byte-correcting code with redundancy r, one
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byte of size b1 and s bytes of size b2, then

s =
2b1(2r−b1 − 1)

2b2 − 1

and b2 divides r − b1.

Proof. By the condition of (7.1), we have that

2r − 1 = 2b1 − 1 + s(2b2 − 1)

and hence,

s =
2b1(2r−b1 − 1)

2b2 − 1
. (7.2)

Therefore, 2b2 − 1 divides 2r−b1 − 1 and hence b2 divides r − b1.

Recall that two linear subspaces are called disjoint if their intersection

is the null space. Is the necessary condition (7.1) also sufficient for the

existence of a 1-perfect byte-correcting code? It is not difficult to realize

that this condition is not sufficient. The condition can be satisfied, but the

sum of the sizes of the two largest bytes can be greater than the redundancy

of the code r. In this case such a code cannot exist since in a space of

dimension r there cannot be two disjoint subspaces of dimensions b1 and b2,

for which b1 + b2 > r. Therefore, a linear 1-perfect byte-correcting code,

with redundancy r and some bytes of size b1 and some bytes of size b2,

must satisfy

b1 + b2 ≤ r .

This condition and the condition of (7.1) are two necessary conditions, but

they are still not sufficient for the existence of 1-perfect byte-correcting

codes of Type 2 as implied by the following theorem.

Theorem 7.5. A 1-perfect byte-correcting code with one byte of size b1 and

all the other bytes of size b2, with b1 < b2, cannot exist.

Proof. Assume the contrary that H is an r × n parity-check matrix of

a 1-perfect byte-correcting code, with one byte of size b1, and s bytes of

size b2, where b1 < b2. The b1 columns of H in the byte of size b1 are lin-

early independent and hence, w.l.o.g. we can assume that the i-th column,

1 ≤ i ≤ b1, is ei. Let H1 be the b1 × n matrix whose rows are the first

b1 rows of H. Since all the 2r − 1 linear combinations of nonempty subsets

of columns from the bytes of H consist of all nonzero binary r-tuples, it fol-

lows that in all such linear combinations of columns from H1, each nonzero
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b1-tuple appears the same number of times, and the all-zero b1-tuple ap-

pears one time less. Each nonzero column vector of length r is obtained in

exactly one linear combination and hence each nonzero prefix of length b1 is

obtained 2r−b1 times and by (7.2) we have that 1 + s(2b2 − 1)/2b1 = 2r−b1 .

Since, the all-zero column vector of length r is the only r-tuple which is

not obtained as such syndrome, it follows that in the linear combinations of

columns from H1 associated with the bytes, the all-zero perfixes of length b1
is obtained s(2b2 − 1)/2b1 = 2r−b1 − 1 times.

Given a b1×b2 matrix A with rankm ≤ b1, there are 2
b2−m−1 nontrivial

linear combinations of nonempty subsets of columns from A, which result

in the all-zero b1-tuple. There are also 2m − 1 distinct nonzero column

vectors of length b1 in the linear combinations of the columns of A. For

each nonzero b1-tuple v in the subspace spanned by the columns of A,

there are exactly 2b2−m distinct linear combinations of nonempty subsets

of columns from A, which result in v. The first b1 rows of H in each byte

of size b2 can be viewed as such matrix A whose rank is m ≤ b1. Since each

nonzero b1-tuple is a result of exactly one linear combination of the byte

of size b1 in H1, it follows that it should be a result in a total of 2r−b1 − 1

linear combinations of columns in all the other bytes. However, this is not

possible since for any m ≤ b1, 2
b2−m is even and greater than 1. Thus,

there is no 1-perfect byte-correcting code with one byte of size b1 and the

other bytes of size b2, with b1 < b2.

Example 7.1. Do we have a 1-perfect byte-correcting code of length

2b1b2+ b1 with 2b1 bytes of size b2 and one byte of size b1 where r = b1+ b2
and b1 < b2? Condition (7.1) is satisfied since

2b1(2b2 − 1) + 2b1 − 1 = 2b1+b2 − 1 = 2r − 1.

Nevertheless, by Theorem 7.5 such a code cannot exists.

The connection between byte-correcting codes and mixed codes is very

simple. First note that each 1-perfect byte-correcting code form a group

partition implied by the subspace spanned by the columns of the parity-

check matrix in each associated byte. Let C be a byte-correcting code

over Fq with m bytes, where the i-th byte has size bi, 1 ≤ i ≤ m (not

necessarily distinct). This code is transformed into a mixed code Ĉ over

Fqb1 × Fqb2 × · · · × Fqbm , where a sub-codeword (c′1, c
′
2, . . . , c

′
bi
), associated

with a byte of size bi, of a codeword (· · · c′1, c
′
2, . . . , c

′
bi
· · · ), is mapped

into the element γ ∈ F
bi
q whose representation as a vector of length bi

in Fq is (c′1, c
′
2, . . . , c

′
bi
). Recall that if (c11, c

1
2, . . . , c

1
bi
) is the representation
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of αj1 ∈ Fq and (c21, c
2
2, . . . , c

2
bi
) is the representation of αj2 ∈ Fq then

(c11 + c21, c
1
2 + c22, . . . , c

1
bi
+ c2bi) is the representation of αj1 + αj2 . Now, one

can verify easily that with this mapping an e-perfect byte-correcting code

is mapped to an e-perfect mixed code. Given a perfect mixed code one

can use a the inverse mapping to obtain a perfect byte-correcting code.

In other words, this mapping transform an e-perfect mixed code into an

e-perfect byte-correcting code and vice versa. It is highly possible, and we

also conjecture that in all e-perfect mixed codes, e ≥ 1, the alphabet in all

coordinates are powers of the same prime, and if this conjecture is correct,

then each mixed code can be translated into a byte-correcting code and the

same is true for the related perfect codes.

The constructions in Section 7.1 can be used as constructions for

1-perfect byte-correcting codes, where all the bytes are of the same size b.

In general, a basic construction is implied by a direct partition of all vec-

tors of Fn
q (or equivalently, Fqn) into pairwise disjoint b-subspaces. Such a

partition is possible if and only if b divides n. There are many nonequiva-

lent such partitions and some of them will be presented in the rest of this

section. We start with one simple construction.

Let α be a primitive element in Fqn , n = ρb, and let s = (qρb−1)/(qb−1).
The element αs is a primitive element in the subfield Fqb whose elements

are

{0, α0, αs, α2s, . . . , α(qb−2)s}.

This subfield is a subspace of dimension b and the elements

α0, αs, α2s, . . . , α(b−1)s form a basis for this subfield. Since we also have

that αi+x + αi+y = αi(αx + αy), it follows that for each i, 0 ≤ i ≤ s − 1,

the qb elements of the set

{0, αi, αi+s, αi+2s, . . . , αi+(qb−2)s},

are closed under addition in Fqρb and αi, αi+s, αi+2s, . . . , αi+(b−1)s are lin-

early independent. Therefore, the matrix

H = [H0 H1 H2 · · · Hs−1],

where s = (qρb − 1)/(qb − 1) and

Hi = [αi, αi+s, αi+2s, . . . , αi+(b−1)s], 0 ≤ i ≤ s− 1,

is a parity-check matrix for a 1-perfect byte-correcting code of length sb,

redundancy ρb, and s bytes of size b. Clearly, the set

{0, αi, αi+s, αi+2s, . . . , αi+(qb−2)s}
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can be further partitioned into disjoint linear subspaces of size qb
′
if and

only if qb
′ − 1 divides qb − 1, i.e., b′ divides b. This result can easily be

generalized to any b-subspace of any n-space. The idea is summarized in

the following results.

Lemma 7.2. Any b-subspace can be partitioned into s = (qb − 1)/(qb
′ − 1)

disjoint b′-subspaces, for which b′ divides b.

Lemma 7.2 and condition (7.1) imply the following result.

Theorem 7.6. Given si bytes of size bi, 1 ≤ i ≤ m, such that bm divides r

and for each i, 1 ≤ i ≤ m − 1, bi divides bi+1, a 1-perfect byte-correcting

code with redundancy r exists if and only if
m∑
i=1

si(2
bi − 1) = 2r − 1. (7.3)

Proof. If a 1-perfect byte-correcting code exists, then (7.3) is implied

by (7.1).

If (7.3) is satisfied, then by Lemma 7.2, we have that F2r can be par-

titioned into s = (2r − 1)/(2bm − 1) subspaces of dimension bm. Con-

sider s − sm of these bm-subspaces. Each one can be partitioned into

(2bm − 1)/(2bm−1 − 1) subspaces of dimension bm−1. This can be further

iterated to obtain the required partition, which is a 1-perfect code since the

partition allows us to take a basis for each part and therefore each syndrome

is generated by exactly one of the bytes.

Theorem 7.6 can be applied in many ways to form 1-perfect byte-

correcting codes using many types of group partitions. Theorem 7.6 also

provides a proof for the fact that the necessary condition (7.1) for the

existence of 1-perfect byte-correcting codes of Type 4 is also sufficient if

the redundancy of the code is also a power of 2. Next, we continue to

consider the case when one byte is of size b1 and the other bytes are of

size b2. We have already proved in Lemma 7.1 and Theorem 7.5 that a

necessary condition for the existence of such a code with redundancy r is

that b2 divides r − b1 and b1 > b2.

Construction 7.1. Let b1 > b2, α be a primitive element in F2ρb2 , β a

primitive element in F2b1 , and s = (2ρb2 − 1)/(2b2 − 1). Let H be the

matrix defined by

H � [A B C],

where
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(1) A is a (ρb2 + b1)× b1 matrix defined by

A �
[
Ib1
0

]
,

where 0 is a ρb2 × b1 all-zero matrix.

(2) B is a (ρb2 + b1)× (sb2) matrix of the form

B � [B0 B1 · · · Bs−1],

where Bi, 0 ≤ i ≤ s− 1, is a (ρb2 + b1)× b2 matrix defined by

Bi �
[
0 0 · · · 0

αi αi+s · · · αi+(b2−1)s

]
,

where 0 is the column vector of length b1.

(3) C is a (ρb2 + b1)× s(2b1 − 1)b2 matrix of the form

C � [C0 C1 · · · Cs(2b1−1)−1],

where Ck, k = js + i, 0 ≤ j ≤ 2b1 − 2, and 0 ≤ i ≤ s − 1, is a

(ρb2 + b1)× b2 matrix defined by

Ck �
[
βj βj+1 · · · βj+b2−1

αi αi+s · · · αi+(b2−1)s

]
.

Theorem 7.7. Construction 7.1 generates a parity-check matrix for a

1-perfect byte-correcting code with redundancy ρb2 + b1, one byte of size b1
and the other bytes of size b2.

Proof. We have to show that each nonzero syndrome of length ρb2 + b1
is produced by exactly one linear combination of columns from one byte

of H. The syndromes produced from A are exactly all those vectors whose

last ρb2 entries are zeros. As described before, the linear span of the Bi’s,

without the zero element, form a partition of F−
2ρb2

. Hence, the syndromes

produced from the linear combinations of the columns inside the bytes

of B are distinct and are exactly all those column vectors with zeros in

the first b1 entries. It remains to show that each syndrome that is nonzero

in the first b1 entries and also nonzero in the last ρb2 entries is produced

by exactly one linear combination of the Ck’s. Let v be such a syndrome,

where vtr = ((β�1)tr, (α�2)tr). There exists a unique i, 0 ≤ i ≤ s− 1, and a

unique linear combination such that

α�2 =

b2−1∑
m=0

cmαi+ms, cm ∈ {0, 1}.



February 21, 2022 16:26 ws-book9x6 Perfect Codes and Related Structures Perfect˙Codes˙Main page 191

Codes with Mixed Alphabets 191

Since b1 > b2, it follows that the set of elements {βm : 0 ≤ m ≤ b2 − 1}
are also linearly independent. Therefore,

γ =

b2−1∑
m=0

cmβm �= 0

is obtained by this unique linear combination of the elements in

{βm : 0 ≤ m ≤ b2 − 1}. Clearly, there exists a unique j, 0 ≤ j ≤ 2b1 − 2,

such that β�1 = βjγ, and hence v is obtained by a unique linear combination

from Cjs+i.

By Lemma 7.1 and Theorems 7.5 and 7.7, we can classify the set of

1-perfect byte-correcting codes of Type 2.

Corollary 7.1. A 1-perfect byte-correcting code with redundancy r, one

byte of size b1 and the other bytes of size b2, exists if and only if

b2 divides r − b1 and b1 > b2.

Construction 7.2. Let H1 be an r × n parity-check matrix of a 1-perfect

byte-correcting code C1 with si bytes of size bi, 1 ≤ i ≤ m. Further, let α

be a primitive element in F2r and bm+1 be a positive integer less than or

equal to r (bm+1 is not necessarily distinct from the other bi’s). We define

a matrix H2 as follows:

H2 �
[
H1 0 A0 A1 · · · A2r−2

0 Ibm+1
Ibm+1

Ibm+1
· · · Ibm+1

]
,

where 0 are all-zeroes matrices of the appropriate sizes and Ai,

0 ≤ i ≤ 2r − 2, is an r × bm+1 matrix defined by

Ai � [αi αi+1 · · · αi+bm+1−1].

The following theorem is proved in very similar way to that done for

Theorem 7.7.

Theorem 7.8. The parity-check matrix of the codes obtained in Construc-

tion 7.2 is an (r + bm+1) × (n + bm+12
r), bm+1 ≤ r, parity-check matrix

for a 1-perfect byte-correcting code with si bytes of size bi, 1 ≤ i ≤ m, and

2r bytes of size bm+1.

Construction 7.2 can be further applied to obtain 1-perfect byte-

correcting codes with various parameters. The parameters of the 1-perfect

byte-correcting codes obtained in Construction 7.1 can also be obtained via

Construction 7.2, but the presentation in Construction 7.1 is simpler and
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can be implemented easily. To obtain more 1-perfect byte-correcting codes,

Lemma 7.2 can be used to replace a byte of size b by (2b−1)/(2b
′−1) bytes

of size b′ for any b′ that divides b. Several other methods in which several

bytes of size b1 are replaced by several bytes of size b2 to obtain 1-perfect

byte-correcting codes with other parameters can be obtained in a similar

way.

We continue to consider nonisomorphic linear 1-perfect byte-correcting

codes. Two linear codes C1 and C2 are isomorphic if there exists a permu-

tation π such that C1 = {π(c) : c ∈ C2}. As mentioned in Chapter 4, the

linear 1-perfect code, i.e., the Hamming code, is a unique code (i.e., any

two such linear 1-perfect codes of the same length are isomorphic). When

1-perfect byte-correcting codes are considered, some slight changes should

be made in the definition of isomorphic codes. Such a permutation π for

isomorphic codes can permute elements only within the same byte and can

also permute between the bytes. For simplicity, we only give the formal

definition for 1-perfect byte-correcting codes with bytes of size b.

Two linear 1-perfect byte-correcting codes C1 and C2 of length mb, with

m bytes of size b, are called isomorphic if there exists such a permutation π

for which C1 = {π(c) : c ∈ C2} and π = (π0, π1, . . . , πmb−1), where for

each i, 0 ≤ i ≤ m− 1,

{πib, πib+1, . . . , πib+b−1} = {jb, jb+ 1, · · · , jb+ b− 1}
for some j, 0 ≤ j ≤ m − 1. For the other types of byte-correcting codes

the exact formal definition is slightly more complicated, but the idea is the

same. We will now present for each redundancy ρb, ρ ≥ 3, b ≥ 2, parity-

check matrices for two nonisomorphic 1-perfect byte-correcting codes C1
and C2 where all the bytes are of size b, and the redundancy of the codes

is ρb.

Construction 7.3. For a primitive element α ∈ F2(ρ−1)b , construct the

following four sets of (ρb)× b matrices.

(1) The first set consists of one ρb× b matrix

A �
[
Ib
0

]
,

where 0 is a (ρ− 1)b× b all-zero matrix.

(2) The second set consists of s = (2(ρ−1)b − 1)/(2b − 1) matrices of the

form

Bi =

[
0 0 · · · 0

αi αi+s · · · αi+(b−1)s

]
, 0 ≤ i ≤ s− 1 ,

where 0 is the all-zero column vector of length b.
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(3) The third set consists of 2(ρ−1)b − 1 matrices of the form

Ck =

⎡
⎢⎢⎢⎢⎢⎣

1 0 · · · 0

0 1 · · · 0
...

...
...

...

0 0 · · · 1

αk αk+1 · · · αk+b−1

⎤
⎥⎥⎥⎥⎥⎦ , 0 ≤ k ≤ 2(ρ−1)b − 2 .

(4) The fourth set consists of 2(ρ−1)b − 1 matrices of the form

Dk =

⎡
⎢⎢⎢⎢⎢⎣

1 0 · · · 0

0 1 · · · 0
...

...
...

...

0 0 · · · 1

αi+js αi+(j+1)s · · · αi+(j+b−1)s

⎤
⎥⎥⎥⎥⎥⎦ ,

where 0 ≤ i ≤ s− 1, 0 ≤ j ≤ 2b − 2, and k = js+ i.

Define C1 as the code whose parity-check matrix is

H1 �
[
A B0 · · · Bs−1 C0 · · · C2(ρ−1)b−1

]
and C2 as the code whose parity-check matrix is

H2 �
[
A B0 · · · Bs−1 D0 · · · D2(ρ−1)b−1

]
,

where each ρb × b matrix defined in H1 and H2 corresponds to a distinct

byte of size b.

Theorem 7.9. The codes C1 and C2 defined in Construction 7.3 are noni-

somorphic 1-perfect byte-correcting codes of length b(2ρb−1)/(2b−1), where

all the bytes are of size b.

We have constructed many types of 1-perfect mixed codes and 1-perfect

byte-correcting codes. If the codes are linear, then e-perfect mixed codes are

equivalent to e-perfect byte-correcting codes for any e ≥ 1. Unfortunately,

we are not aware on any linear e-perfect byte-correcting code, where e > 1

and the size of at least one byte is larger than one.
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7.3 Codes with a Larger Radius and Mixed Steiner Systems

When the radius of the perfect code is larger than one, the only nontrivial

perfect codes over Fq, in the Hamming scheme, are the two Golay codes.

The situation is slightly better for perfect mixed codes with radius larger

than one. One infinite family of perfect codes with radius two is known.

We start this section by describing this family of such perfect mixed codes

whose radius is greater than one.

Recall that the Preparata code P(m) has length 2m, where m is even

and greater than 3. It has a minimum Hamming distance of 6 and its

size is 22
m−2m. We now define a simple direct product construction for a

2-perfect mixed code over F2m

2 × Z2m−1 .

Construction 7.4. Let P0(m),P1(m), . . . ,P2m−1−1(m) be the 2m−1 trans-

lates of the Preparata code of length 2m whose union forms the extended

Hamming code H∗(m) of length 2m (see Definition 6.2). LetM(m) be the

code over F2m

2 × Z2m−1 defined by

M(m) � {(x, i) : x ∈ Pi(m), i ∈ Z2m−1} .

Theorem 7.10. The code M(m) is a 2-perfect mixed code over

F
2m

2 × Z2m−1 .

Proof. We first claim that M(m) has a minimum Hamming distance

of 5. Let (x, i) and (y, j) be two distinct codewords in M(m). If i = j,

then x and y are two distinct words in the same translate Pi(m) of the

Preparata code and hence d((x, i), (y, j)) = d(x, y) ≥ 6. If i �= j, then

x �= y and since both x and y are codewords of H∗(m), it follows that

d((x, i), (y, j)) = d(x, y) + d(i, j) ≥ 4 + 1 = 5. This completes the proof of

the first claim.

Since the number of codewords in H∗(m) is 22
m−m−1, it follows that

also M(m) has 22
m−m−1 codewords.

The size of a ball B2(2
m +1) with radius 2 of a word over F2m

2 ×Z2m−1

is

|B2(2
m + 1)| = 1 + 2m + 2m−1 − 1 +

(
2m

2

)
+ 2m(2m−1 − 1) = 22m .

The number of words in F
2m

2 ×Z2m−1 is 22
m

2m−1 = 22
m+m−1 and hence

|M(m)| · |B2(2
m + 1)| = 22

m−m−1 · 22m = 22
m+m−1 =

∣∣∣F2m

2 × Z2m−1

∣∣∣ ,
i.e., M(m) meets the sphere-packing bound.

Thus, M(m) is a 2-perfect mixed code.
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Are there any other e-perfect mixed codes with radius e > 1? No such

code is known, but there are a few nonexistence results. The following

lemma suggests one necessary condition for the existence of such a code.

and a lower bound on its length.

Lemma 7.3. If C is an e-perfect mixed over Zq1 × Zq2 × · · · × Zqn , where

qn > 2, qi+1 ≥ qi, 1 ≤ i ≤ n− 1, then n ≥ e · qn + 1.

Proof. W.l.o.g. assume that the all-zero word is a codeword. This implies

that the codewords of minimum weight have weight 2e + 1. Consider the

word u = (

e times︷ ︸︸ ︷
1 · · · · · · 1

n−e−1 times︷ ︸︸ ︷
0 · · · · · · 0 α), where α ∈ Zqn . This word of weight e+1

must be covered by a codeword whose weight is 2e + 1 that starts with e

ones and ends with α. The other e nonzero entries of this codeword are in

the middle of the codeword, in positions where u has zeros. Since C is an

e-perfect code, it follows that for the two words (

e times︷ ︸︸ ︷
1 · · · · · · 1

n−e−1 times︷ ︸︸ ︷
0 · · · · · · 0 α1)

and (

e times︷ ︸︸ ︷
1 · · · · · · 1

n−e−1 times︷ ︸︸ ︷
0 · · · · · · 0 α2), where α1, α2 ∈ Zqn , α1 �= α2, which are

covered by two codewords c1 and c2, respectively, these 2e nonzero entries

in the middle (e for each codeword) are in distinct positions. Since the last

position in any word with the structure of u can be chosen in qn−1 distinct

ways, it follows that n− e− 1 ≥ (qn− 1)e and, therefore, n ≥ e · qn+1.

Corollary 7.2. The code M(m) meets the lower bound of Lemma 7.3 on

the length of a perfect mixed code.

Are there more perfect mixed codes that meet the lower bound of

Lemma 7.3 on the length of a perfect mixed code? Consider the follow-

ing code. Let Ĥ∗i (m), 0 ≤ i ≤ 2m − 1, be the even cosets of the extended

Hamming code H∗(m) and define the following code K(m) over F2m

2 ×Z2m .

K(m) � {(x, i) : x ∈ Ĥ∗i (m), i ∈ Z2m} .

Theorem 7.11. The code K(m) is a 1-perfect mixed code over F
2m

2 ×Z2m

whose length is 2m + 1. It meets the lower bound of Lemma 7.3 on the

length of a perfect mixed code.

Proof. We first claim that K(m) has a minimum Hamming distance

of 3. Let (x, i) and (y, j) be two distinct codewords in K(m). If i = j,

then x and y are two distinct words in the same even cosets of H∗(m)

and hence d((x, i), (y, j)) = d(x, y) ≥ 4. If i �= j, then x �= y
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and since both x and y are codewords of even weight, it follows that

d((x, i), (y, j)) = d(x, y) + d(i, j) ≥ 2 + 1 = 3. This completes the proof of

the first claim.

Since the number of words with even weight in F
2m

2 is 22
m−1, it follows

that also K(m) has 22
m−1 codewords.

The size of a ball B1(2
m +1) with radius one of a word over F2m

2 ×Z2m

is

|B1(2
m + 1)| = 1 + 2m + 2m − 1 = 2m+1 .

The number of words in F
2m

2 × Z2m is 22
m

2m = 22
m+m and hence

|K(m)| · |B1(2
m + 1)| = 22

m−1 · 2m+1 = 22
m+m =

∣∣∣F2m

2 × Z2m

∣∣∣ ,
i.e., K(m) meets the sphere-packing bound.

Thus, K(m) is a 1-perfect mixed code. Finally, it is readily verified that

the length of K(m) meets the lower bound of Lemma 7.3.

The code-anticode bound (Corollary 2.15) can be applied to the Ham-

ming metric on words over a mixed alphabet, as it does for the Hamming

scheme, since the metric is distance invariant with addition as the binary

operation. It is not difficult to find D-diameter perfect mixed codes, for

each positive integer D. When increasing the length of a code C, it is

more difficult to construct such codes without considerably increasing the

alphabet size in the new coordinates compared to the alphabet size of the

coordinates in C. We start with a construction for which the alphabet size is

not dramatically increased. It is easily verified that the following extended

code of M(m), M∗(m), over F2m

2 × Z
2
2m−1 ,

M∗(m) � {(x, i, i) : x ∈ Pi(m), i ∈ Z2m−1} ,

has a minimum Hamming distance of 6. Note that B2(2
m + 1), the ball

with radius 2 in F
2m

2 ×Z2m−1 , is also an anticode with diameter 4 and hence

A5(2
m + 2) � {(x, i) : x ∈ B2(2

m + 1), i ∈ Z2m−1}
is an anticode with diameter 5 in F

2m

2 × Z2m−1 × Z2m−1 . Hence, we have

that

|M∗(m)| · |A5(2
m + 2)| = 22

m−m−122m2m−1

= 22
m+2m−2 =

∣∣∣F2m

2 × Z2m−1 × Z2m−1

∣∣∣ .
Thus, by the code-anticode bound, we have the following theorem.

Theorem 7.12. The code M∗(m) is a 5-diameter perfect mixed code over

F
2m

2 × Z2m−1 × Z2m−1 .
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Do other diameter mixed perfect codes similar to M∗(m) whose mini-

mum distance is 4 exist? The answer is that there exists at least one family

of such codes which is the extended code of K(m), i.e.,

K∗(m) � {(x, i, i) : x ∈ Ĥ∗i (m), i ∈ Z2m} .

Theorem 7.13. The code K∗(m) is a 3-diameter perfect mixed code over

F
2m

2 × Z2m × Z2m .

Proof. The proof that K∗(m) has minimum distance 4 is similar to the

proof of Theorem 7.10. Note that B1(2
m + 1), the ball with radius 1 in

F
2m

2 × Z2m , is also an anticode with diameter 2 and hence

A3(2
m + 2) � {(x, i) : x ∈ B1(2

m + 1), i ∈ Z2m}
is an anticode with diameter 3 in F

2m

2 × Z2m × Z2m . Hence, we have that

|K∗(m)| · |A3(2
m + 2)| = 22

m−12m+12m = 22
m+2m =

∣∣∣F2m

2 × Z2m × Z2m

∣∣∣ .
Thus, by the code-anticode bound, the claim in the theorem follows.

The following construction can be used to construct a D-diameter per-

fect mixed code for each positive integer D.

Construction 7.5. Let C be a D-diameter perfect mixed code over

Q = Zq1 × Zq2 × · · · × Zqn , with � distinct codeword c0, c1, . . . , c�−1. De-

fine the following code over Q× Z�:

C∗ � {(ci, i) : ci ∈ C, i ∈ Z�}.

Theorem 7.14. The code C∗ defined in Construction 7.5 is a

(D + 1)-diameter perfect mixed code over Q× Z�.

Proof. Let A be a maximum size anticode over Q whose diameter is D.

Since C is a D-diameter perfect mixed code over Q, it follows that

|C| · |A| = |Q| .
Define A∗ � {(a, i) : a ∈ A, i ∈ Z�}, where � = |C|. This implies that the

diameter of A∗ is D+1 and its size is � · |A|. Since C is a D-diameter perfect

code, it follows that the minimum distance of C is D + 1 and since each

codeword of C was extended with a different symbol of Z� to obtain C∗, it
follows that the minimum distance of C∗ is D + 2. Moreover, |C∗| = |C|,
and hence

|C∗| · |A∗| = |C| · � · |A| = � · |Q| = |Q× Z�| .
Thus, by the code-anticode bound we have that C∗ is a (D + 1)-diameter

perfect mixed code over Q× Z�.
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The idea in the constructions of the codes M∗(m) and K∗(m) can be

used to generalize Construction 7.5. as follows.

Construction 7.6. Let C be a D-diameter perfect mixed code over

Q = Zq1 × Zq2 × · · · × Zqn , with � distinct codeword c0, c1, . . . , c�−1. De-

fine the following code over Q× Z
δ
� , where δ ≥ 1.

Cδ � {(ci,
δ times︷ ︸︸ ︷

i, i, . . . , i) : ci ∈ C, i ∈ Z�}.

Theorem 7.15. The code Cδ which is defined in Construction 7.6 is a

(D + δ)-diameter perfect mixed code over Q× Z
δ
� .

Proof. Let A be a maximum size anticode over Q whose diameter is D.

Since C is a D-diameter perfect mixed code over Q, it follows that

|C| · |A| = |Q| .

Define Aδ � {(a, i1, i2, . . . , iδ) : a ∈ A, ij ∈ Z�, 1 ≤ j ≤ δ}, where

� = |C|. This implies that the diameter of A∗ is D+ δ and its size is �δ · |A|.
Since C is a D-diameter perfect code, it follows that the minimum distance

of C is D + 1 and it is readily verified that the minimum distance of Cδ is

D + 1 + δ. Moreover,
∣∣Cδ∣∣ = |C|, and hence∣∣Cδ∣∣ · ∣∣Aδ
∣∣ = |C| · �δ · |A| = �δ · |Q| =

∣∣Q× Z
δ
�

∣∣ .

Thus, by the code-anticode bound we have that Cδ is a (D + δ)-diameter

perfect mixed code over Q× Z
δ
� .

All the diameter perfect codes that we have constructed are based on

extensions of perfect codes and diameter perfect codes. This leads to the

following research problem.

Problem 7.3. Construct diameter perfect mixed codes, with new param-

eters, which are not based on extensions of perfect codes and diameter

perfect codes.

We continue with some nonexistence theorems for perfect mixed codes.

The first two theorems can be obtained by using a generalization of Lloyd’s

polynomials.

Theorem 7.16. If C is an e-perfect mixed code and the prime p divides

the alphabet size in at least one of the coordinates, then p divides the size

of the ball with radius e.
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Theorem 7.17. If C is an e-perfect mixed code, of length n and the prime

p divides the alphabet size of exactly t of the coordinates, then e > n− t.

Corollary 7.3. If C is a 1-perfect mixed code and the prime p divides the

alphabet size of at least one coordinate, then p divides the alphabet size in

all the coordinates.

Proof. To satisfy the bound e > n − t of Theorem 7.17, t must be equal

to n and the claim follows.

Corollary 7.4. If C is an e-perfect mixed code and the prime p divides the

alphabet size of at least one coordinate, then p divides the alphabet size in

at least n− e+ 1 coordinates.

It is important to note that these results do not have any implications

for the case where all coordinates are of divisible by the same primes. The-

orems 7.16 and 7.17 imply many restrictions on the different alphabet sizes.

For example, if C is a 1-perfect mixed code, then each prime p that divides

the alphabet size on one of the coordinates also divides the alphabet size

on each coordinate. For a 2-perfect mixed code, such a prime p must divide

the size of each coordinate except maybe one. This considerably restricts

the alphabet size for the coordinates in a perfect mixed code. There are

other results that are implied by Lloyd’s polynomials.

Theorem 7.18. There is no 2-perfect mixed code, of length n, with alphabet

of size qi at coordinate i, 1 ≤ i ≤ n, where qi divides 6.

Theorem 7.19. There is no 3-perfect mixed code, of length n, with qi the

alphabet at coordinate i, 1 ≤ i ≤ n, where qj = q > 2 for 1 ≤ j ≤ n− 1.

For an e-perfect code over Zq, where the all-zero word is a codeword, the

codewords of minimum weight form a (generalized) Steiner system. There

is a similar property for perfect mixed codes.

Definition 7.1. Amixed Steiner system MS(t, k,Q), over the mixed alpha-

bet Q = Zq1×Zq2×· · ·×Zqn , is a pair (Q, C), where C is a set of codewords

of weight k, over Q, and for each word x of weight t over Q, there exists

exactly one codeword c ∈ C, such that c covers x, i.e., d(x, c) = k − t.

Lemma 7.4. The number of codewords in a mixed Steiner system
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MS(t, k,Q), over Q = Zq1 × Zq2 × · · · × Zqn , is⎛
⎜⎜⎝ ∑

Y⊆[n]
|Y |=t

∏
j∈Y

(qj − 1)

⎞
⎟⎟⎠/

(
k

t

)
.

Proof. Let S = (Q, C) be a mixed Steiner system MS(t, k,Q). Each word

of weight t must be covered by exactly one codeword of C. For each t co-

ordinates i1, i2, . . . , it, i1 < i2 < · · · < it there are
∏t

j=1(qij − 1) words of

weight t over Q whose support is {i1, i2, . . . , it}. Each of these
∏t

j=1(qij−1)

words must be covered by exactly one codeword of C. A codeword X of

weight k covers exactly
(
k
t

)
words of weight t and hence the claim of the

lemma follows.

Similarly to Lemma 3.4 we have the following result.

Lemma 7.5. If (Q × Zq, C) is a mixed Steiner system MS(t, k,Q × Zq),

where Q = Zq1 × Zq2 × · · · × Zqn , then for each α ∈ Z
−
q , the set

Cα � {c : (c, α) ∈ C}

is a mixed Steiner system MS(t− 1, k − 1, Q).

Corollary 7.5. A necessary condition for the existence of a mixed Steiner

system MS(t, k,Q), where Q = Zq1 × Zq2 × · · · × Zqn , is that for each i,

0 ≤ i ≤ t− 1, and each subset X of [n] whose size is n− i, we have∑
Y⊆X
|Y |=t−i

∏
j∈Y

(qj − 1) ≡ 0

(
mod

(
k − i

t− i

))
.

Theorem 7.20. The codewords of weight 2e + 1 of an e-perfect

code C (which contains the all-zero word), over a mixed alphabet

Q = Zq1 × Zq2 × · · · × Zqn form a mixed Steiner system MS(e+1, 2e+1, Q).

Proof. Clearly, the all-zero codeword covers all the words of weight at

most e, over Q, and no word of weight larger than e. Hence, since the code C
contains the all-zero codeword, it follows that it does not contain any code-

word of weight between one and 2e. Therefore, the words of weight e+ 1,

over Q, must be covered by codewords from C of weight 2e + 1. Each of

these words of weight e+ 1 must be covered by exactly one codeword of

weight 2e+ 1. This implies that the codewords of weight 2e+ 1 in C form

a mixed Steiner system MS(e+ 1, 2e+ 1, Q).
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Corollary 7.6. If C is an e-perfect mixed code of length n, over

Q = Zq1 × Zq2 × · · · × Zqn , where qi, 1 ≤ i ≤ n, is the alphabet size at co-

ordinate i, then for each t, 1 ≤ t ≤ e + 1 and each subset X of [n] whose

size is n− e+ t− 1, we have∑
Y⊆X
|Y |=t

∏
j∈Y

(qj − 1) ≡ 0

(
mod

(
e+ t

t

))
.

Corollary 7.7. If C is an e-perfect mixed code of length n, where qi is the

alphabet size at coordinate i and qr ≤ qs for each 1 ≤ r < s ≤ n, then e+1

divides qr − qs for each 1 ≤ r < s ≤ n.

Proof. Choose t = 1 in Corollary 7.6. Since 0 < e < n, it follows that

there exist two subsets X1 and X2 of {1, 2, . . . , n} whose size is n− e such

that X1 \X2 = {r} and X2 \X1 = {s}. By Corollary 7.6, we have that∑
j∈X1

(qj − 1) ≡ 0 (mod e+ 1), (7.4)

∑
j∈X2

(qj − 1) ≡ 0 (mod e+ 1). (7.5)

By subtracting (7.4) from (7.5), the claim is obtained.

Corollary 7.8. If C is an e-perfect mixed code of length n, where qi is the

alphabet size at coordinate i, then e ≤ min{qt − qs : s < t, qs < qt} − 1.

The next theorem asserts that similar 3-perfect mixed codes, such as

M(m), do not exist.

Theorem 7.21. There is no 3-perfect mixed code over F
n−1
2 × Zq, where

n > 3 and q > 2.

Proof. Assume C is a 3-perfect mixed code over F
n−1
2 × Zq, q > 2. By

Corollary 7.4, we have that if p is a prime which divides q, then p divides at

least n− 2 of the coordinates. Since n > 3 and only 2 divides the alphabet

size in n− 1 of the coordinates, it follows that q must be a power of 2, i.e.,

q = 2� for � > 1. Corollary 7.7 implies that 4 divides 2�−2, which is clearly

impossible.

Theorem 7.21 can be generalized in a naive way for other e-perfect mixed

codes over Fn−1
2 × Zq.

Problem 7.4. Prove that there is no e-perfect mixed code over Fn−1
2 ×Zq,

for n > 2 and q > 2.
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All the necessary conditions that are implied by the results obtained

so far rule out most parameters for e-perfect mixed codes, where e > 1.

There, however, are still some open problems.

Problem 7.5. Find parameters where the necessary conditions (given in

this section) for the existence of perfect mixed codes are satisfied. For

which of these parameters it can be proved that there is no associated

perfect mixed code?

Corollary 7.6 can serve as a motivation to consider mixed Steiner sys-

tems for certain alphabet sizes. To complete our discussion in this section

we add a few words on mixed Steiner systems. Clearly, each 1-perfect

mixed code, over a mixed alphabet Q, constructed in Section 7.1 yields a

mixed Steiner system MS(2, 3, Q). These systems are less interesting and

they can be constructed easily from 1-perfect mixed codes. The more in-

teresting systems are mixed Steiner systems MS(t, k,Q), where t > 2 and

especially those for which k − t > 1 or t > 3. One such family is derived

from the codewords having a minimum weight of 5 in the mixed perfect

codeM(m), which form a mixed Steiner system MS(3, 5,F2m

2 ×Z2m−1). It

is interesting to note that in this mixed Steiner system there is no codeword

which is an element of F2m

2 × {0}. The following construction can be used

to form such systems and also other mixed Steiner systems.

Construction 7.7. Let {S1, S2, . . . , Sr} be a set of r pairwise disjoint

mixed Steiner systems MS(t − 1, k,Q), where
⋃r

i=1 Si is a mixed Steiner

system MS(t, k,Q). Let M̂ be the system defined on Q× [r] as follows

M̂ � {(c, i) : c ∈ Si, 1 ≤ i ≤ r}.

The claim of the following theorem can be verified easily.

Theorem 7.22. The set M̂ obtained in Construction 7.7 is a mixed Steiner

system MS(t, k + 1, Q× Zr+1).

The codewords of minimum weight in the codeM(m), obtained in Con-

struction 7.4, can also be obtained via Construction 7.7 by considering the

codewords of weight four in the even translate of the Preparata code of

length 2m whose union forms the Hamming code. In each such translate,

which is not the Preparata code itself (in which there are no codewords of

weight four), the codewords of weight four form a Steiner system S(2, 4, 2m),

and the union of these codewords forms the Steiner system S(3, 4, 2m). By
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Theorem 7.22, we have that in this case Construction 7.7 yields a mixed

Steiner system MS(3, 5,F2m

2 × Z2m−1).

Problem 7.6. Construct new mixed Steiner systems MS(t, k,Q), where

t > 2 and especially when k − t > 1 or t > 3.

Problem 7.7. Make a comprehensive exposition on properties and bounds

of mixed Steiner systems.

7.4 Notes

Codes with mixed binary and ternary alphabets are important in the con-

text of football pools, already discussed in Section 4.4. Football pools are

a practical game that is played around the world for the purpose of winning

money by correctly guessing of results of football games in advance. It can

be readily generalized to any two-team (player) game and also to games

with more participants.

Assume that there are n football matches and in each one two teams

A and B play. The outcome of the match can be a win for A, or a win

for B, or a draw. Therefore, the total number of possible outcomes of the

n matches is 3n. In the football pools, one has to guess the results of the

n matches. One makes a prediction about the results of the n matches and

each such prediction, of the results of the n matches, is a bet that costs a

certain amount of money. Each such bet can be represented by a ternary

word of length n. If in one of the bets there are at least n − e correct

guesses, where e is usually a very small integer, then there is a prize (in

real life, money) for this bet. Of course, by having 3n bets one can correctly

guess all the results of the n matches, but this will cost a large amount of

money that will not be covered by the prize given for such a correct bet.

Therefore, one wants to guarantee at least n− e correct guesses. This is a

covering problem in which we want to find the smallest subset S of the set

of 3n ternary words, Fn
3 , such that each element of Fn

3 is within Hamming

distance e from at least one element of S. If S is not an e-perfect code,

then there are some possible results that are within distance e from more

than one element of S. This implies that there are some redundant bets

if the target is only to guarantee at least n − e correct guesses. To avoid

this redundancy, i.e., to save some money, one has to use a perfect code to

make the bet.

If the target is to guarantee at least n − 1 correct guesses in one of

the bets, then the solution will be to use a ternary 1-perfect code. Such



February 21, 2022 16:26 ws-book9x6 Perfect Codes and Related Structures Perfect˙Codes˙Main page 204

204 Perfect Codes and Related Structures

1-perfect code exists for n = 3r−1
2 , r > 1, i.e., 4 matches, 13 matches,

40 matches, 121 matches, and so on. Of course, no one bets on 121 matches

and even 40 matches seems to be unlikely. If the target will be to guarantee

at least n−2 correct guesses, then a ternary 2-perfect code should be used.

The ternary Golay code G11 is such a code with 729 codewords. The total

number of words in F
11
3 is 177,147, so 729 is a small fraction (one bet for

each 243 words of the space; one bet for each ball with radius 2).

This idea can be further generalized if, for example, we consider only

two possible results for each game. This can occur if we are betting on

games that have only two possible results or in football pools if we are

confident that one outcome is impossible. In such cases (there are others

too), the 1-perfect code in the Hamming scheme is the solution and the

feasible parameters might be for n = 7, n = 15, or n = 31. For example,

if there are 15 matches, then there are 32,768 possible bets, from which

we can use only 2048 bets to guarantee 14 correct guesses, and hopefully

the last one will also be in our favor. A straightforward generalization is

to have a larger alphabet when each game has more than three possible

outcomes. The last possible generalization is when in some matches we are

confident that one of the outcomes is impossible, while in the other matches

we still consider the three possible outcomes. In this case the solution is

based on a mixed alphabet, where some coordinates have a binary alphabet

and some have a ternary alphabet. Unfortunately, by Corollary 7.7, such a

1-perfect code does not exist in this case and hence one has to settle for a

good covering code for this purpose.

Section 7.1. The construction of Theorem 7.4 was presented in [Heden

(1977)]. The other constructions in this section are straightforward gen-

eralizations of the constructions of nonlinear 1-perfect codes. This repre-

sentation of perfect codes as suggested in Theorem 7.1 and Theorem 7.2

has been reproduced several times, e.g., [Zaremba (1950, 1952)]. Some

other constructions for perfect mixed codes and group partitions can be

found in [Schönheim (1970); Herzog and Schönheim (1971); Herzog and

Schöönheim (1972); Lindström (1975b)].

Section 7.2. Information on error-correcting and error-detecting codes in

memories where the information is organized in bytes can be found in [Chen

(1983, 1986)] and in the book by [Rao and Fujiwara (1989)]. The results in

this section are contained in [Etzion (1998)]. There are many other results

on space partitioning. Construction 7.1 is similar to the one in [Hong and

Patel (1972)], but the representation given in this section of Chapter 7 is
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much simpler. Construction 7.3 was presented in [Etzion (1998)] and the

omitted proof of Theorem 7.9 was also presented in [Etzion (1998)].

A partial k-spread of Fn
q is a set of pairwise disjoint k-subspaces of Fn

q .

A k-spread of F
n
q is a partial k-spread in which each element of F

n
q is

contained in exactly one of the k-subspaces. A construction of a k-spread

of Fn
q is equivalent to a construction of a 1-perfect byte-correcting code,

where the size of a byte is equal to k. A partial k-spread can always be

completed to form a 1-perfect byte-correcting code, with bytes of size k

for all the k-subspaces of the partial k-spread. The other elements that are

not contained in these k-subspaces are partitioned into subspaces of various

sizes (in the worse case, all of them are of dimension one). k-spreads have

many applications in various problems in coding theory, some of which will

be further discussed in Chapter 10. Spreads together with other concepts

in projective geometry are used to construct optimal codes, e.g. [Hamada

and Tamari (1982)]. Spreads are also considered as combinatorial designs

and they have also applications in modern technologies of the 21st century,

e.g. [Chee, Etzion, Kiah, and Vardy (2018); Zhang, Etzion, and Yaakobi

(2020)].

This problem of partitioning F
n
q into subspaces has been the subject

of extensive research. Some of the work in this direction was done in [El-

Zanati, Seelinger, Sissokho, Spence and Vanden Eynden (2007); Blinco, El-

Zanati, Seelinger, Sissokho, Spence and Vanden Eynden (2008); El-Zanati,

Jordon, Seelinger, Sissokho, Spence (2008); El-Zanati, Seelinger, Sissokho,

Spence and Vanden-Eynden (2009); Khare (2009); Heden (2009a,b); El-

Zanati, Heden, Seelinger, Sissokho, Spence and Vanden Eynden (2010);

Seelinger, Sissokho, Spence and Vanden Eynden (2012a,b)].

Section 7.3. The perfect mixed code with radius two was introduced

in [Etzion and Greenberg (1993)]. Theorems 7.16 and 7.17 were proved

in [Heden (1975)]. Theorems 7.18 and 7.19 were proved by [Reuvers (1977)].

Corollary 7.6 was proved by [van Wee (1991)]. It was generalized later to

give a more expanded version for necessary conditions for the existence of

perfect mixed codes in [Perkins, Sakhnovich, and Smith (2006)]. This paper

contains also references to other papers that contain bounds on the sizes

of error-correcting mixed codes. The new proof, for Corollary 7.6, using

the new concept of mixed Steiner systems that we give in this section of

Chapter 7 is much simpler. Corollaries 7.7 and 7.8 were proved in [van Wee

(1991)]. Theorem 7.21 was proved in [Reuvers (1977)] and the proof was

shortened by [van Wee (1991)].
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In [Teirlinck (1994)], a construction for Steiner systems S(3, 4, n), which

can be partitioned into Steiner systems S(2, 4, n), was presented. Such a

construction was presented for each n = 2 ·7m+2 and each n = 2 ·31m+2,

whenever m ≥ 1. This Steiner system S(3, 4, n) is called 2-resolvable. Reso-

lutions in block design, and in particular for Steiner systems, are interesting

and intriguing.

Problem 7.8. Find new constructions for new parameters of 2-resolvable

S(3, 4, n).
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Chapter 8

Binary Constant-Weight Codes

Constant-weight codes have drawn lot of interest in coding theory during

the years. The reason is that they are used to construct general codes

and also since upper bounds on the size of constant-weight codes imply

upper bounds on the size of general codes. These codes have also found

applications in modern technologies and hence the interest in them has

become more intensive. This chapter is concerned with the existence and

constructions of binary perfect constant-weight codes. These codes are

related to the Johnson scheme. It is conjectured that there are no nontrivial

perfect codes in this scheme, but this conjecture is far from settled. A large

part of this chapter is devoted to various techniques to prove this conjecture.

We will use the Johnson scheme for a comprehensive demonstration how to

rule out the possible existence of perfect codes, something which was done

and will be done sporadically for other metrics.

There are three different directions in the nonexistence proofs – exclud-

ing graphs in which there are no perfect codes, excluding radii for which

such codes cannot exist, and finding a tradeoff between the various parame-

ters of possible perfect codes. These directions are presented in Sections 8.1

through 8.7. Concepts and techniques from block design and in particular

Steiner systems play an important role in these directions. In Section 8.8,

we discuss diameter perfect codes in the Johnson scheme and again Steiner

systems have an important role in this discussion.

8.1 The Johnson Scheme

Constant-weight codes are related to the Johnson scheme. The Johnson

scheme J(n,w) is the most important scheme after the Hamming scheme.

In a Johnson scheme J(n,w), we are given two integers, n and w, such

207
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that 0 ≤ w ≤ n. In a code C, all the codewords are binary words having

length n and constant weight w. Two words u and v are at Johnson

distance (J-distance in short) d apart if there are exactly d positions in

which u has ones and v has zeroes. Obviously, there are exactly d other

positions in which u has zeroes and v has ones. This implies the following

simple result.

Lemma 8.1. The J-distance of two words is exactly half of their Hamming

distance.

Corollary 8.1. A code C in the Johnson scheme has minimum J-distance δ

if and only if its minimum Hamming distance is 2δ.

Lemma 8.1 and Corollary 8.1 induce a close connection between the

Hamming scheme and the Johnson scheme, which is a subset of the Ham-

ming scheme. Nevertheless, the definition of the graph J(n,w) must be

done using the Johnson distance, since the graph will not be connected

when using the Hamming distance (there are no words whose Hamming

distance is one). A binary word of length n and weight w can be repre-

sented by its support and, by using this representation, the elements of

the Johnson scheme are w-subsets of an n-set instead of binary words of

length n and weight w. We associate the Johnson graph J(n,w) with the

Johnson scheme. The vertex set, V n
w , of the Johnson graph consists of all

w-subsets of a fixed n-set. Two such w-subsets are adjacent (connected by

an edge) if and only if their intersection has size w−1. With this represen-

tation in hand, the J-distance between the two words x and y of weight w

becomes

dJ(x, y) � |supp(x) \ supp(y)| = |supp(y) \ supp(x)| ,
where supp(x) and supp(y) are the related w-subsets. Throughout this

chapter we will use both representations for the Johnson scheme. In some

cases the proof will have a mixed language of vector notation and set no-

tation. The representation that will be used should be understood from

the context and the translation between the two representations should be

clear. It is easy to verify that the Johnson distance defines an association

scheme. It is not trivial to compute the intersection numbers p�i,j , but it

is trivial to verify that they do not depend on the pair of vertices x, y for

which d(x, y) = �. A code C of such w-subsets is called an e-perfect code in

J(n,w) (or in the Johnson scheme) if the e-balls of all the codewords of C
form a partition of V n

w . In other words, C is an e-perfect code if for each ele-

ment v ∈ V n
w , there exists a unique element c ∈ C, such that the J-distance



February 21, 2022 16:26 ws-book9x6 Perfect Codes and Related Structures Perfect˙Codes˙Main page 209

Binary Constant-Weight Codes 209

between v and c is less than or equal to e. Except for the usual trivial

perfect codes, there is another family of trivial perfect codes in J(n,w). If

w = 2e+ 1 and n = 2w, then any two complement words of weight w form

an e-perfect code in J(2w,w). In this chapter we will try to figure out if

there are other perfect codes in the Johnson scheme. Given Lemma 8.1 and

Corollary 8.1, we have the following result.

Corollary 8.2. The Hamming distance of an e-perfect code in the Johnson

scheme is 4e+ 2.

We start by noting that generalizations of Lloyd polynomials mentioned

in Section 5.8 do not lead to significant nonexistence results and hence

other techniques will be used. The Johnson’s ball of radius e is given in the

following lemma whose proof is straightforward.

Lemma 8.2. The size of an e-ball in J(n,w), Be(n,w), is

|Be(n,w)| =
e∑

i=0

(
w

i

)(
n− w

i

)
.

Hence, by the sphere-packing bound, the number of codewords of an

e-perfect code C in J(n,w) is

|C| =
(
n
w

)
|Be(n,w)|

and, therefore,

|Be(n,w)|
∣∣∣∣
(
n

w

)
. (8.1)

We may, however, do much better than this, as will be demonstrated in

Section 8.5.

Since dH(x̄, ȳ) = dH(x, y) for any two words x, y ∈ F
n
2 , the following

theorem follows from Corollary 8.1.

Theorem 8.1. The code C is an e-perfect code in J(n,w) if and only if C̄ is

an e-perfect code in J(n, n− w).

In view of Theorem 8.1, we only have to consider perfect codes in J(n,w),

where 2w ≤ n. Hence, in the following sections, when the nonexistence of

perfect codes in J(n,w) will be considered, we will assume that n ≥ 2w

in J(n,w), unless otherwise is stated.

For an e-perfect code C in J(n,w), we say that u ∈ C J-cover v ∈ V n
w if

the J-distance between u and v is less than or equal to e. For a given two

subsets u and v, we say that u C-cover v if v is a subset of u (containment).
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8.2 Configuration Distribution

The weight distribution of a code C is an important tool in the Hamming

scheme to obtain many interesting results on the code C. Related to the

weight distribution is the distance distribution. These concepts were con-

sidered for perfect codes in the Hamming scheme (see Section 5.2). If the

code is a linear code or a 1-perfect code in the Hamming scheme, then

these concepts coincide (see Theorem 2.7 and Theorem 5.5). For the John-

son scheme, all the codewords have the same weight. When one codeword

is considered to be the zero codeword, a definition for the weight distri-

bution is an immediate consequence of the distance of the codewords from

the zero codeword. On the other hand, it is straightforward to define the

distance distribution of the code. The definition of the weight distribution

by these observations can be generalized to the concept of configuration

distribution, which is defined next. This definition will enable us to obtain

many nonexistence results on e-perfect codes in the Johnson scheme.

Definition 8.1. Assume C is a code in J(n,w) and let N be the set of

n coordinates of the Johnson scheme. Assume further that N is partitioned

into two subsets (called parts) A and B such that |A| = r and |B| = n− r.

A word x of J(n,w) is in configuration (i, j), where i+j = w if |x∩A| = i

and |x ∩ B| = j.

Definition 8.2. Assume C is a code in J(n,w) and let N be the set of

n coordinates of the Johnson scheme. Assume further that N is parti-

tioned into two subsets (called parts) A and B such that |A| = w and

|B| = n− w. Let {D(i,j) : 0 ≤ i, j, i+ j = w} denote the configuration

distribution of the code, i.e., D(i,j) denote the number of codewords from

configuration (i, j).

The distinction between Definition 8.1 and Definition 8.2 is that only

for the partition of the coordinate set into A and B, such that |A| = w and

|B| = n−w, a configuration distribution is defined in this section. Indeed,

such a definition can be given to any partition as defined in Definition 8.1,

but such a configuration (distance) distribution is not used in this chapter

(although different partitions are defined in the chapter). Other configu-

ration distributions will be discussed in Section 8.5. Moreover, one might

infer some interesting results based on different distance distributions as-

sociated with partition of the coordinate set into parts of different sizes as

defined in Definition 8.1. Different partitions can lead to different results.
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Examples for this claim are demonstrated in Theorems 8.6 and 8.7 which

follow.

Theorem 8.2. There are exactly e+1 possible different configuration dis-

tributions for an e-perfect code in J(n,w). If CDk, 0 ≤ k ≤ e, is the

set of the k-th configuration distribution, then CDk contains D(w−k,k)

and D(w−2e−1+k,2e+1−k) as the only nonzero elements among D(w−i,i),

0 ≤ i ≤ 2e+ 1− k.

Proof. Assume C is an e-perfect code in J(n,w) and the coordinate set N
is partitioned into two parts A and B such that |A| = w and |B| = n− w.

Let k be the smallest integer such that C has a codeword from configuration

(w−k, k). Since the word from configuration (w, 0) must be J-covered by C,
it follows that 0 ≤ k ≤ e. Since by Corollary 8.1 the minimum Hamming

distance of C is 4e + 2, it follows that there is exactly one codeword from

configuration (w−k, k) and no codeword from any configuration (w− j, j),

k + 1 ≤ j ≤ 2e− k. The codeword from configuration (w − k, k) J-covers

all words from configurations (w − i, i) for all i, 0 ≤ i ≤ e − k. Some

words from configuration (w − e + k − 1, e − k + 1), k > 0, are J-covered

by the codewords from configuration (w− k, k) and the other words, which

are the majority, can be J-covered only by codewords from configuration

(w − 2e− 1 + k, 2e+ 1− k). Note that we can always partition the coor-

dinate set N into two subsets A and B such that the first codeword will

have w− k ones in the A-part and k ones in the B-part, and hence w.l.o.g.

C contains a codeword from configuration (w − k, k). To complete the

proof, it is sufficient to show that once we are given k, 0 ≤ k ≤ e, such

that a word from configuration (w− k, k) is a codeword, i.e., D(w−k,k) = 1,

D(w−i,i) = 0, 0 ≤ i ≤ 2e − k, i �= k, then the configuration distribution

is determined. The proof is by induction; assume we have determined all

the values D(w−i,i), 0 ≤ i ≤ r, for some r, r ≥ 2e − k, and all words from

configurations (w − j, j), 0 ≤ j ≤ r − e, are J-covered by codewords from

configurations (w − i, i), 0 ≤ i ≤ r. To evaluate D(w−r−1,r+1), notice that

by considering how words from configuration (w − r + e− 1, r − e+ 1) are

J-covered, we have

(
w

r − e+ 1

)(
n− w

r − e+ 1

)
=

r+1∑
i=r−2e+1

C
(w−r+e−1,r−e+1)
(w−i,i) ·D(w−i,i)

where C
(x2,y2)
(x1,y1)

is the number of words from configuration (x2, y2) that are
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J-covered by a codeword from configuration (x1, y1). Hence we have

D(w−r−1,r+1) =

[(
w

r−e+1

)(
n−w
r−e+1

)
−
∑r

i=r−2e+1 C
(w−r+e−1,r−e+1)
(w−i,i) ·D(w−i,i)

]
C

(w−r+e−1,r−e+1)
(w−r−1,r+1)

and, therefore, D(w−r−1,r+1) is determined and all words from configu-

rations (w − j, j), 0 ≤ j ≤ r − e + 1, are J-covered by codewords from

configurations (w − i, i), 0 ≤ i ≤ r + 1.

Thus, since k has exactly one of the values between 0 and e, it follows

that there are exactly e+1 possible different configuration distributions for

e-perfect codes.

Remark 8.1. To convert the configuration distribution into a distance dis-

tribution we have to require that the word from configuration (w, 0) is a

codeword. This can easily be done by permuting coordinates between the

A-part and the B-part. By Theorem 8.2 there will be exactly one configu-

ration distribution in this case. This implies that similarly to the Hamming

scheme, we have the following property on the the distance distribution of

an e-perfect code in J(n,w).

Corollary 8.3. The distance distribution {Di : 0 ≤ i ≤ w} of an e-perfect

code in J(n,w) does not depend on the e-perfect code. It is derived from

CD0 as defined in Theorem 8.2, where Di = D(w−i,i) for 0 ≤ i ≤ w.

Proof. The proof is derived from the unique configuration distribution

when D(w,0) = 1, as proved in Theorem 8.2, and the simple observation

that each codeword can be chosen as the unique codeword from configura-

tion (w, 0).

Lemma 8.3. If C is an e-perfect code in J(2w + e+ 1, w), then the inter-

section between any two codewords of C is at least of size e.

Proof. Assume C is an e-perfect code in J(2w + e + 1, w) and the coor-

dinate set N is partitioned into two parts A and B such that |A| = w

and |B| = w + e+ 1, and C contains the word c, from configuration (0, w),

which ends with e+1 zeroes (in the B-part), as a codeword. The only words

from configuration (0, w) that are not J-covered by c are the
(

w
e+1

)
words

ending with e + 1 ones. Since C is an e-perfect code and hence any code-

word that J-covers some of these
(

w
e+1

)
words should have J-distance at

least 2e+ 1 from c, it follows that these words are J-covered by codewords

from configuration (e, w − e), which end with e + 1 ones. Moreover, note
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that since D(0,w) = 1, it follows that the entire configuration distribution

of C is determined (as was proved in Theorem 8.2). Now, by Theorem 8.2,

for this configuration distribution we have that D(w−k,k) = 1 for exactly

one k, 0 ≤ k ≤ e, and for i �= k, 0 ≤ i ≤ 2e− k, D(w−i,i) = 0. If k < e, we

can exchange one point from A, with a one in the codeword from config-

uration (w − k, k), with a point from B, with zeroes in the codeword from

configurations (w − k, k) and the codeword from configuration (0, w). This

is possible since the codeword c from configuration (0, w) has e + 1 zeroes

in the B-part and the codeword from configuration (w − k, k) has at most

k ones, where k < e, in the e + 1 positions of the zeroes. The obtained

e-perfect code C′ has D(0,w) = 1 and D(w−k−1,k+1) = 1, k + 1 ≤ e, contra-

dicting the fact that by Theorem 8.2 we have that D(0,w) = 1 determines

all the configuration distribution of such an e-perfect code, while C and

C′ have two distinct such configuration distributions. Thus, D(0,w) = 1,

D(w−e,e) = 1, and D(w−i,i) = 0 for 0 ≤ i ≤ e− 1 (note that k = e does not

yield any such contradiction).

Now assume the contrary, that there exists a codeword from configura-

tion (w − k − r, k + r), k < e, r > 0, that intersects the codeword from

configuration (0, w) in exactly k positions. This intersection in exactly

k positions implies that we can exchange r points from the A-part, with
zeroes in the codeword from configuration (w− k− r, k+ r), with r points

from the B-part with ones in this codeword and zeroes in the codeword from

configuration (0, w). The obtained e-perfect code C′ has D(0,w) = 1 and

D(w−k,k) = 1, for k < e, a contradiction as before, since in C, D(0,w) = 1

and D(w−e,e) = 1. Therefore, the intersection of each codeword with the

codeword from configuration (0, w) is at least e. Since each codeword can

be chosen as the codeword from configuration (0, w) by using an appropri-

ate permutation on the coordinate set, it follows that the intersection of

any two codewords is at least e.

Theorem 8.3. There is no e-perfect code in J(2w + e+ 1, w).

Proof. Assume the contrary, that C is an e-perfect code in J(2w+e+1, w)

and the coordinate set N is partitioned into two parts A and B such that

|A| = w and |B| = w+e+1, and the unique word from configuration (w, 0)

is a codeword in C. By Lemma 8.3 the intersection between any two code-

words is at least e and hence C cannot contain a codeword from any con-

figuration (i, w − i), 0 ≤ i ≤ e − 1. Therefore, the
(
w+e+1

w

)
words from

configuration (0, w) are J-covered only by codewords from configuration

(e, w− e). Moreover, every e+1 positions in the B-part must be C-covered
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by the 2e+ 1 zeroes of exactly one codeword from configuration (e, w− e).

Let C1 be the set of codewords of C from configuration (e, w−e). Thus, the

complements in the projection of that B-part on C1 form a Steiner system

S(e+ 1, 2e+ 1, w + e+ 1).

This Steiner system S(e+1, 2e+1, w+e+1) implies that each e points of

the B-part of C1 have exactly w+1
e+1 codewords with e zeroes. By exchanging

any e points from the A-part that contain e ones in a codeword c′ ∈ C1 with
e points of the B-part that contain e zeroes in c′, we obtain an e-perfect

code C′. Clearly, C′ contains a codeword from configuration (0, w). Since

C has a codeword from configuration (w, 0), it follows that C′ has a codeword
from configuration (w − e, e).

Consider now the w+1
e+1 codewords of C1 with e zeroes in the first

e coordinates of the B-part. Clearly, not all
(
w
e

)
subsets of e coordinates

of the A-part have e ones in these codewords of C1. If we exchange any

such e points of the A-part with the first e points of the B-part we obtain

a code C′′ with a codeword from configuration (w − e, e) but no codeword

from configuration (0, w). This is in contradiction to Theorem 8.2, which

states that all such codes with a codeword from configuration (w − e, e)

have the same configuration distribution, while C′ and C′′ have different

configuration distributions.

Thus, there is no e-perfect code in J(2w + e+ 1, w).

Another interesting consequence of Theorem 8.2 is on the structure of

e-perfect codes in J(2w,w).

Theorem 8.4. An e-perfect code in J(2w,w) is a self-complement code.

Proof. Let C be an e-perfect code in J(2w,w), and assumeN is partitioned

into two parts A and B such that |A| = |B| = w and the unique word from

configuration (w, 0) is a codeword in C. By Theorem 8.2 for exactly one k,

0 ≤ k ≤ e, we have that D(k,w−k) = 1 and for i �= k, 0 ≤ i ≤ 2e − k,

we have that D(i,w−i) = 0. If k > 0, then we can exchange one point from

the A-part with a zero in the codeword from configuration (k, w − k) with

a point from the B-part with a zero in the codeword from configuration

(k,w − k) to obtain a new e-perfect code C′. In C′ we have D(w−1,1) = 1

and D(k,w−k) = 1 in contradiction to the unique configuration distribution

when D(k,w−k) = 1, 0 ≤ k ≤ e, obtained in Theorem 8.2.

Thus, k = 0 and C is a self-complement code.
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8.3 Steiner Systems Embedded in a Perfect Code

It appears that if an e-perfect code exists in J(n,w), then there are many

Steiner systems embedded in it. One such example of a Steiner system

was presented in the proof of Theorem 8.3. These Steiner systems imply

several necessary conditions, derived in Corollary 3.1, which must be sat-

isfied. Hence, these Steiner systems also yield necessary conditions for the

existence of the related e-perfect codes.

Theorem 8.5. If there exists an e-perfect code in J(n,w), then there exists

a Steiner system S(e+ 1, 2e+ 1, w).

Proof. Assume C is an e-perfect code in J(n,w). Partition the coordinate

set N into two subsets A and B, such that |A| = w and |B| = n − w, and

the unique word from configuration (w, 0) is a codeword. This codeword

J-covers exactly all the words of all configurations (w−i, i), where 0 ≤ i ≤ e.

Since C is an e-perfect code and all words from all configurations of the form

(w− i, i), where 0 ≤ i ≤ e, are J-covered, it follows that C does not contain

any codeword of any configurations of the form (w− i, i), where 1 ≤ i ≤ 2e.

Therefore, all words of configuration (w − e − 1, e + 1) must be J-covered

by codewords from configuration (w − 2e− 1, 2e+ 1). Consider now all the(
w

e+1

)
words in configuration (w− e− 1, e+1) with e+1 ones in e+1 fixed

positions of the B-part. These words are J-covered by codewords from

configuration (w−2e−1, 2e+1) with 2e+1 ones in positions of the B-part
that C-cover these e + 1 fixed positions. Let C1 be this set of codewords.

Each subset of e+1 zeroes in the A-part with these e+1 fixed positions in

the B-part must be C-covered and no such subset can be C-covered twice

(since the code is e-perfect). Hence, the complements of these codewords

formed by the projection of the coordinates in the A-part on C1 form a

Steiner system S(e+ 1, 2e+ 1, w).

Corollary 8.4. If there exists an e-perfect code in J(n,w), then there exists

a Steiner system S(e+ 1, 2e+ 1, n− w).

Corollary 8.5. If there exists an e-perfect code in J(n,w), then n − w ≡
w ≡ e (mod e+ 1) and hence e+ 1 divides n− 2w.

Corollary 8.6. If there exists an e-perfect code in J(n,w), then there exists

a Steiner system S(2, e + 2, w − e + 1) and there exists a Steiner system

S(2, e+ 2, n− w − e+ 1).
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Theorem 8.6. If there exists an e-perfect code in J(n,w), then

n ≤ (w − 1)(2e+ 1)/e .

Proof. Assume C is an e-perfect code in J(n,w). Partition the coordi-

nate set N into two subsets A and B, such that |A| = n − w + 1 and

|B| = w − 1, and a word from configuration(e + 1, w − e − 1) is a code-

word. The J-distance between a word from configuration (e+ 1, w− e− 1)

and a word from configuration (e + 1 − i, w − e − 1 + i), where i > 0,

is less than 2e + 1 and hence C does not have any codeword from config-

uration (e+ 1− i, w − e− 1 + i), where i > 0. Therefore, all the words

from configuration (1, w − 1) are J-covered by codewords from configura-

tion (e + 1, w − e − 1). Since |B| = w − 1, it follows that to J-cover each

word from configuration (1, w − 1) exactly once, there must be exactly
n−w+1
e+1 codewords from configuration (e+ 1, w − e− 1). Since the mini-

mum J-distance of C is 2e + 1, it follows that in any two codewords from

configuration (e+1, w− e− 1), the subsets of coordinates with the e zeroes

in the B-part are disjoint. Hence, w − 1 ≥ n−w+1
e+1 e, which is equivalent to

n ≤ (w − 1)(2e+ 1)/e.

Theorem 8.7. If there exists an e-perfect code in J(n,w), where

n < (w − 1) 2e+1
e , then there exists a Steiner system S(2, e+ 2, n− w + 2).

Proof. Assume C is an e-perfect code in J(n,w) and partition the co-

ordinate set N into two subsets A and B, such that |A| = n − w + 1

and |B| = w − 1, and there are n−w+1
e+1 codewords from configuration

(e+1, w−e−1) (see the proof of Theorem 8.6). Since n < (w−1)(2e+1)/e,

i.e., n−w+1
e+1 e < w − 1, it follows that there exists at least one coordi-

nate in the B-part that has ones in all the codewords from configuration

(e + 1, w − e − 1). Remove this coordinate from the B-part to obtain a

new subset B1 and join it to the A-part to obtain a new subset A1. It

this new partition we have that |A1| = n − w + 2, |B1| = w − 2, and

C does not have any codeword from configuration (e+2− i, w− e− 2+ i),

i > 0, with respect to this new partition. Therefore, in this new parti-

tion, all the words from configuration (2, w−2) are J-covered by codewords

from configuration (e + 2, w − e − 2). Since each word from configuration

(2, w − 2) must be J-covered by exactly one codeword from configuration

(e+ 2, w− e− 2), it follows that the codewords obtained from the A1-part

of the codewords from configuration (e+2, w−e−2) form a Steiner system

S(2, e+ 2, n− w + 2).
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Corollary 8.7. If there exists a nontrivial e-perfect code in J(n,w) and

w ≤ n− w, then there exists a Steiner system S(2, e+ 2, w + 2).

Proof. If w < n− w, then Theorem 8.6 implies that

n ≤ (w − 1)(2e+ 1)/e < (n− w − 1)(2e+ 1)/e

and the claim follows from Theorem 8.7.

If n = 2w, then Theorem 8.6 implies that n ≤ (w− 1)(2e+ 1)/e, where

equality holds if and only if w = 2e + 1, i.e., for a trivial perfect code.

Hence, n < (w − 1)(2e+ 1)/e the claim follows from Theorem 8.7.

Finally, we would like to find new nonexistence results by using other

distance distribution for other partitions of the coordinate set.

Problem 8.1. Define the configuration distribution for other partitions of

the coordinate set and use it to obtain new nonexistence results.

The theorems obtained in the previous sections make it possible to re-

duce the range in which perfect codes in the Johnson scheme can exist. If

there exists an e-perfect code in J(n,w), then by Theorem 8.5 and Corol-

lary 8.4 there exist a Steiner systems S(e+1, 2e+1, w) and a Steiner system

S(e+ 1, 2e+ 1, n− w). By the divisibility conditions of Corollary 3.1 we

have that e + 1 should divide w − e and n − w − e and hence we have

n−w ≡ w ≡ e (mod e+ 1). This condition itself limits the range in which

e-perfect codes can exist. Combining this condition with the nonexistence

of e-perfect codes in J(2w+ e+1, w) obtained in Theorem 8.3, we have the

following theorem.

Theorem 8.8. There are no perfect codes in J(2w + p, w), where p is a

prime.

Proof. Assume the contrary, that there exists an e-perfect code in

J(2w + p, w), where p is a prime. By Theorem 8.5, Corollary 8.4, and

Corollary 3.1, we have that e+1 divides w− e and e+1 divides w+ p− e,

and hence e + 1 divides p, which implies that e + 1 = p. Nevertheless, by

Theorem 8.3, there is no perfect code in J(2w+ e+ 1, w), which completes

the proof.

The following theorem will be given without its proof.

Theorem 8.9. There are no perfect codes in J(2w + 1, w).
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In fact, we can obtain many more results similar to Theorem 8.8, e.g.,

there are no perfect codes in J(2w + 2p, w), p prime, p �= 3 or there are no

perfect codes in J(2w+ 3p, w), p prime, p �= 2, p �= 3, and p �= 5, and other

similar theorems. The proofs involve careful examination of the divisibility

conditions of Corollary 3.1 for a Steiner system S(e+ 1, 2e+ 1, w) and for

a Steiner system S(e+ 1, 2e+ 1, n− w), and using Theorem 8.3. Checking

all the necessary conditions we obtain that for e = 1, we must have that

n − w ≡ w ≡ 1 (mod 6), and for e = 2, we have that n− w ≡ w ≡ 2, 17,

26, 41 or 50 (mod 60) and so on. Compiling all this data, we have that

there are no nontrivial perfect codes in J(2w − r, w) and J(2w + r, w) for

all 1 ≤ r ≤ 14 with possible exceptions for r = 6, 9, and 12. This comes

together with modulo conditions imposed on w and n−w for any e-perfect

code in J(n,w). Assume the coordinate setN is partitioned into two subsets

A and B, such that |A| = w and |B| = n − w, and the unique word from

the configuration (w, 0) is a codeword. By considering the way in which

the words of the configuration (w − e− 2, e+ 2) are J-covered, we can get

some more divisibility conditions that rule out perfect codes in some more

graphs. Similarly, other results can be obtained from the configuration

distributions, but the outcome is less significant.

From the proof of Theorem 8.5 we can see the complicated structure

of e-perfect codes in J(n,w). The coordinate set N is partitioned into two

subsets A and B, such that |A| = w and |B| = n−w, and the unique word

of the configuration (w, 0) is a codeword. In the codewords of configuration

(w− 2e− 1, 2e+1), the projection of the coordinates in the A-part forms a

complement of a Steiner system S(e+1, 2e+1, w) for each set of codewords

that C-cover any fixed e+1 positions of the B-part. Similarly, we can obtain

(and this can be an alternative proof for Corollary 8.4) that in the B-part
there exists a Steiner system S(e+1, 2e+1, n−w) for each set of codewords

for which the complements C-cover any fixed e+1 positions in the A-part.
This complicated structure, together with other embedded Steiner systems

that can be obtained in a perfect code, looks to be impossible to exist.

8.4 Tradeoff between Length, Weight, and Radius

The three parameters for an e-perfect code in J(n,w) are n, w, and e.

The tradeoff between these parameters can exclude other possible e-perfect

codes. We first show that no trivial e-perfect code achieves the bound of

Theorem 8.6 with equality.
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Theorem 8.10. If there exists an e-perfect code in J(n,w) then

n < (w − 1)
2e+ 1

e
.

Proof. Assume the contrary, that C is an e-perfect code in J(n,w), where

n = 2w+α and n = (w−1) 2e+1
e . If α = 0, then n = 2w and n = (w−1) 2e+1

e

imply that w = 2e + 1, i.e., C is a trivial perfect code. By Theorem 8.9

we have that there are no perfect codes in J(2w + 1, w) and, therefore, we

assume that α ≥ 2.

Let β = e+ 1; by Corollary 8.5, we have that e+ 1 divides n− w, i.e.,

β divides α, and hence 2 ≤ β ≤ α. Substituting β = e+1 and n = 2w+α,

in n = (w − 1) 2e+1
e , we obtain w = αβ − α+ 2β − 1. By the analysis done

so far, we have the existence of several Steiner systems.

• By Corollary 8.6 there exists a Steiner system S(2, β+1, αβ−α+β+1).

Thus, by Corollary 3.1 we have that
(αβ−α+β+1

2 )
(β+1

2 )
must be an integer.

• By Corollary 8.6 there also exists a Steiner system S(2, β+1, αβ+β+1).

Thus, by Corollary 3.1 we have that
(αβ+β+1

2 )
(β+1

2 )
must be an integer.

• By Corollary 8.7 we have that there also exists a Steiner system

S(2, β + 1, αβ − α+ 2β + 1). Thus, by Corollary 3.1 we have that
(αβ−α+2β+1

2 )
(β+1

2 )
must be an integer.

Therefore,(
αβ+β+1

2

)(
β+1
2

) −
(
αβ−α+β+1

2

)(
β+1
2

) =
2α2 − α2

β + 2α+ α
β

β + 1

is an integer, and hence

2α2 − α2

β
+ 2α+

α

β
≡ 0 (mod β + 1).

But, since β ≡ −1 (mod β + 1), we have that

3α2 + α ≡ 0 (mod β + 1). (8.2)

We also have(
αβ−α+2β+1

2

)(
β+1
2

) −
(
αβ−α+β+1

2

)(
β+1
2

) =
2αβ − 2α+ 3β + 1

β + 1

is an integer, and hence

2αβ − 2α+ 3β + 1 ≡ 0 (mod β + 1).
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Again, we have that β ≡ −1 (mod β + 1), which implies that

4α+ 2 ≡ 0 (mod β + 1). (8.3)

By (8.2) and (8.3) we have that

8(3α2 + α)− (6α− 1)(4α+ 2) ≡ 0 (mod β + 1). (8.4)

Nevertheless, 8(3α2+α)−(6α−1)(4α+2) = 2, and since β ≥ 2, it follows

that 2 is not divisible by β+1, a contradiction. Hence, n < (w−1) 2e+1
e .

By combining Theorem 8.7, Corollary 8.7, and Theorem 8.10 we obtain

the the following result.

Corollary 8.8. If there exists an e-perfect code in J(n,w), then

there exist a Steiner system S(2, e + 2, w + 2) and a Steiner system

S(2, e+ 2, n− w + 2).

Assume again that there exists an e-perfect code in J(n,w). By Corol-

laries 8.6 and 8.8, we have that the following Steiner systems exist:

S(2, e+ 2, w + 2) S(2, e+ 2, n− w + 2)

S(2, e+ 2, w − e+ 1) S(2, e+ 2, n− w − e+ 1).

Hence, by Corollary 3.1, we have that

• (e+ 1)(e+ 2) divides (w + 1)(w + 2).

• (e+ 1)(e+ 2) divides (n− w + 1)(n− w + 2).

• (e+ 1)(e+ 2) divides (w − e)(w − e+ 1).

• (e+ 1)(e+ 2) divides (n− w − e)(n− w − e+ 1).

Since (n − w + 1)(n − w + 2) − (w + 1)(w + 2) = (n + 3)(n − 2w), it

follows that

(e+ 1)(e+ 2) divides (n+ 3)(n− 2w). (8.5)

Since (n−w−e)(n−w−e+1)−(w−e)(w−e+1) = (n−2e+1)(n−2w),

it follows that

(e+ 1)(e+ 2) divides (n− 2e+ 1)(n− 2w). (8.6)
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By Corollary 8.5 we have that e + 1 divides n − 2w and, therefore,

(e+ 1)(e+ 2) divides (e+ 2)(n− w). Hence, by (8.6) we have that

(e+ 1)(e+ 2) divides (n+ 5)(n− 2w). (8.7)

Thus, from (8.5) and (8.7) we have that

(e+ 1)(e+ 2) divides 2(n− 2w). (8.8)

Therefore, by Corollary 8.5, (8.5), and (8.8), we obtain the following

theorem.

Theorem 8.11. Assume C is an e-perfect code in J(n,w).

• If e is odd, then n is even and (e+ 1)(e+ 2) divides n− 2w.

• If e is even and n is even, then (e+ 1)(e+ 2) divides n− 2w.

• If e is even and n is odd, then e ≡ 0 (mod 4) and (e+1)(e+2)
2

divides n− 2w.

Corollary 8.9. Assume C is an e-perfect code in J(n,w).

• If n is even, then (e+ 1)(e+ 2) divides n− 2w.

• If n is odd, then e ≡ 0 (mod 4) and (e+ 1)(e+ 2)/2 divides n− 2w.

Corollary 8.10. There are no perfect codes in

• J(2w + pi, w), p is a prime and i ≥ 1.

• J(2w + pq, w), p and q primes, q < p, and p �= 2q − 1.

Now we present a lower bound on w if there exists an e-perfect code C
in J(n,w).

Theorem 8.12. Assume there exists an e-perfect code in J(n,w),

w < n− w. If n is odd, then w > e(e+1)(e+2)
2 + 2e+ 1. If n is even, then

w > e(e+ 1)(e+ 2) + 2e+ 1.

Proof. Assume first that n is odd. By Corollary 8.9 we have that (e+1)(e+2)
2

divides n − 2w and hence (e+1)(e+2)
2 ≤ n − 2w. By Theorem 8.10 we

have that n − 2w < w−2e−1
e and hence (e+1)(e+2)

2 < w−2e−1
e . Thus,

w > e(e+1)(e+2)
2 + 2e+ 1.

The case where n is even is proved similarly.
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We now handle the case of n = 2w. We denote w = 2e + 1 + ε, and

n = 4e+2+2ε, where ε ≥ 0 (since, clearly, w ≥ 2e+1 and n−w ≥ 2e+1).

We partition the set of coordinates N into two subsets, A and B, such

that |A| = |B| = w, and the unique word from configuration (w, 0) is

a codeword. Recall that D(i,w−i) denote the number of codewords with

i ones in the positions of A. One can easily verify that

D(w−2e−1,2e+1) =

[
(2e+ 1 + ε)!e!

(2e+ 1)!(e+ ε)!

]2
D(w−2e−2,2e+2) = D(w−2e−1,2e+1)

ε2 − 2e(e+ 1)ε

(2e+ 2)2
.

Since D(w−2e−2,2e+2) is obviously nonnegative, we have that

ε2 ≥ 2e(e+ 1)ε.

We note that ε > 0 or else the e-perfect code is trivial. Therefore,

ε ≥ 2e(e+ 1).

Therefore, we have the following theorem.

Theorem 8.13. If there exists an e-perfect code in J(n,w), where n = 2w,

then

w ≥ 2e2 + 4e+ 1.

8.5 Regularity of Codes

In this section we present a different approach to rule out the existence of

e-perfect codes in J(n,w). We note that so far all the divisibility conditions

that rule out perfect codes are derived from Steiner systems. In this section

and the following two sections we investigate the divisibility conditions that

are derived from the size of the code as given by the sphere-packing bound.

For this, we introduce the notion of k-regular codes.

Definition 8.3. Let C be a code in J(n,w) and let A be a subset of the

coordinate set N = {1, . . . , n}. For all 0 ≤ i ≤ |A|, we define

CA(i) � |{c ∈ C : |c ∩ A| = i}|.

Also, for each I ⊆ A, we define

CA(I) � |{c ∈ C : c ∩ A = I}|.

.
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Note that for a given partition of the coordinate set N into two parts

A and B such that |A| = k and |B| = n−k, CA(i) represents a configuration

distribution for this partition.

Definition 8.4. A code C in J(n,w) is said to be k-regular , if the following

two conditions hold:

(c.1) There exist integers α(0), . . . , α(k) such that if A ⊆ N , |A| = k, then

CA(i) = α(i) for all 0 ≤ i ≤ k.

(c.2) For any given k-subset A of N , there exist integers βA(0), . . . , βA(k)
such that if I ⊆ A, then CA(I) = βA(|I|).

Note that if a code is k-regular, k ≥ 1, then it is also (k − 1)-regular.

Equation (8.1) is a simple consequence from the following theorem and the

fact that all codes are trivially 0-regular.

Theorem 8.14. If an e-perfect code C in J(n,w) is k-regular, then

|Be(n,w)|
∣∣∣∣
(
n− i

w − i

)
,

for all 0 ≤ i ≤ k.

Proof. Let C be an e-perfect code in J(n,w), which is k-regular. Let

0 ≤ i ≤ k, and by condition (c.1), let Φ denote the number of all-one words

of length i appearing in a projection of C onto i coordinates. We, therefore,

may write the following equation, which counts in two different ways the

total number of all-one words of length i appearing in all the projections

of C onto i coordinates: (
n
w

)
|Be(n,w)|

(
w

i

)
=

(
n

i

)
Φ.

Therefore,

Φ =

(
n−i
w−i

)
|Be(n,w)|

(8.9)

for each i, 0 ≤ i ≤ k.

For the rest of this section and for Sections 8.6 and 8.7, we examine

e-perfect codes in J(2w + a, w). We define the following polynomial that

plays a crucial role in our examination:

σe(w, a, k) �
e∑

j=0

(−1)j
(
k

j

) e−j∑
i=0

(
w − j

i

)(
w + a− k + j

i+ j

)
.
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Theorem 8.15. Let C be an e-perfect code in J(2w + a, w), and let

1 ≤ k ≤ w. If σe(w, a,m) �= 0 for all the integers 1 ≤ m ≤ k, then C is

a k-regular code.

Proof. We prove the theorem by induction on k. Let C be an e-perfect

code in J(2w + a, w). We partition the coordinate set into two subsets A
and B such that |A| = k and |B| = 2w + a− k.

The basis for the induction is k = 1. We obtain the following two

equations:

CA(0)
e∑

i=0

(
w

i

)(
w + a− 1

i

)
+CA(1)

e−1∑
i=0

(
w − 1

i

)(
w + a

i+ 1

)
=

(
2w + a− 1

w

)

CA(0) + CA(1) =
(
2w+a

w

)
|Be(2w + a, w)| .

The first equation describes the way codewords of configuration (0, w)

and (1, w − 1) J-cover words of configuration (0, w). The second equation

simply relates CA(0) and CA(1) to the total number of codewords. To see

that this equation set has exactly one solution we have to show that the

determinant ∣∣∣∣∣
∑e

i=0

(
w
i

)(
w+a−1

i

) ∑e−1
i=0

(
w−1
i

)(
w+a
i+1

)
1 1

∣∣∣∣∣ (8.10)

is nonzero. The determinant is simply σe(w, a, 1), which is nonzero. Since

our solution does not depend on the partition, we see immediately that the

conditions of Definition 8.4 are satisfied. Therefore, the basis is proved.

For the induction hypothesis, assume that C is a (k − 1)-regular

code. Hence, there exist integers α′(0), . . . , α′(k − 1), such that for each

(k − 1)-subset A′ of N , we have that CA′(i) = α′(i), for all 0 ≤ i ≤ k − 1.

We now prove the induction step, i.e., that C is also a k-regular code. Again,

let A and B be a partition of the coordinate set N into two subsets, with

|A| = k and |B| = 2w + a− k. We start by showing that condition (c.2) in

Definition 8.4 for the regularity is satisfied. This is done by induction on

the weight of the A-part. For weight 0, the claim is obvious. Now assume

the claim holds for weight i, i.e., each word of length k and weight i appears

in the A-part of the codewords the same amount of times. We prove that

the claim holds for weight i+ 1.

Let A′ ⊆ A, where |A′| = k − 1, and let B′ ⊇ B, where

|B′| = 2w + a− k + 1, be a partition of the coordinates that is obtained
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from theA-part and the B-part by moving one coordinate η from theA-part
to the B-part. With these two partitions, fix a word ω of length k − 1 and

weight i in the A′-part. The number of codewords having this word in their

A′-part is given by α′(i)/
(
k−1
i

)
since the code is (k−1)-regular. By our last

induction assumption concerning weight i, the number of codewords con-

taining ω in the A′-part and a zero in coordinate η is given by CA(i)/
(
k
i

)
.

Hence, the number of codewords containing ω in their A′-part and a one

in coordinate η is the difference,

α′(i)(
k−1
i

) − CA(i)(
k
i

) .

We now note that the choice of coordinate η has no bearing on the last

arguments, i.e., we can use any coordinate of A′ instead of η. Therefore,

the number of codewords containing a word of a given weight i + 1 in

the A-part is CA(i + 1)/
(

k
i+1

)
. Hence, condition (c.2) for the regularity is

satisfied. Again, note that (c.2) may hold while (c.1) is not satisfied. In

fact, we have proved that if (c.1) and (c.2) hold for k, then (c.2) also holds

for k + 1.

Therefore, we have k equations in k + 1 variables:

CA(i)(
k
i

) +
CA(i+ 1)(

k
i+1

) =
α′(i)(
k−1
i

) for all 0 ≤ i ≤ k − 1. (8.11)

Just like in the induction basis, to prove condition (c.1) for regularity we

add the following equation,

min(k,e)∑
j=0

CA(j)
e−j∑
i=0

(
w − j

i

)(
w + a− k + j

i+ j

)
=

(
2w + a− k

w

)
. (8.12)

This set of equations has exactly one solution if and only if its determinant

is nonzero. This determinant is easily seen to be equal to

k−1∏
i=0

1(
k
i

) ·
⎡
⎣ e∑
j=0

(−1)j
(
k

j

) e−j∑
i=0

(
w − j

i

)(
w + a− k + j

i+ j

)⎤⎦ = σe(w, a, k)·
k−1∏
i=0

1(
k
i

) .
By our assumption on σe we have a unique solution to the set of equa-

tions in (8.11) and (8.12). Since the partition does not affect the above

arguments, it follows that condition (c.1) for regularity holds and C is a

k-regular code.
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8.6 Regularity of Codes with Radius One

The next step is to focus on 1-perfect codes and show that they are k-regular

for a relatively wide range of values of k.

Theorem 8.16. If a code C is a 1-perfect code in J(2w + a, w), then it is

also a k-regular code for all

0 ≤ k <
2w + a+ 1−

√
(a+ 1)2 + 4(w − 1)

2
.

Proof. By Theorem 8.15, a 1-perfect code is also a k-regular code in

J(2w + a, w) when

σ1(w, a, k) = k2 − (2w + a+ 1)k + w(w + a) + 1

has no integer roots in the range [1, k]. Considered as a polynomial in k, the

smaller of the two possible roots is
2w+a+1−

√
(a+1)2+4(w−1)

2 , so the range

of k described in the theorem contains no integer roots.

Corollary 8.11. If a 1-perfect code exists in J(n,w), n = 2w + a, then

|B1(n,w)| = 1 + w(n− w)

∣∣∣∣
(
n− i

w − i

)
,

for all 0 ≤ i <
2w+a+1−

√
(a+1)2+4(w−1)

2 .

The following theorem by the 19th century mathematician Ernst

Kummer on binomial coefficients will be used later to determine the non-

divisibility of binomial coefficients by powers of primes.

Theorem 8.17. Let p be a prime. The number of times p appears in the

factorization of
(
a
b

)
equals the number of carries when adding b to a− b in

base p.

Theorem 8.18. There are no 1-perfect codes in J(n,w), when

|B1(n,w)| = 1 + w(n− w) ≡ 0 (mod 4).

Proof. Assume there exists a 1-perfect code in J(n,w), n = 2w + a for

2m ≤ n ≤ 2m+1 − 1. We distinguish between two cases depending on

whether w ≤ 2m−1 − 1 or 2m−1 ≤ w.

Case 1. 2m−1 ≤ w ≤ n/2.

In this case,

w − 2m−1 ≤ w

2
<

2w + a+ 1−
√

(a+ 1)2 + 4(w − 1)

2
,
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and hence by Corollary 8.11, we have that

1 + w(n− w)

∣∣∣∣
(
n− w + 2m−1

2m−1

)
.

Theorem 8.17 implies that(
n− w + 2m−1

2m−1

)
�≡ 0 (mod 4),

and hence

1 + w(n− w) �≡ 0 (mod 4).

Case 2. w ≤ 2m−1 − 1.

Note that by Theorem 8.10 we also have that a < w − 3. If we want to

use Corollary 8.11, we have to show that

n− (2m − 1) <
2w + a+ 1−

√
(a+ 1)2 + 4(w − 1)

2
, (8.13)

but, after rearranging, this is equivalent to showing that

2w + a+
√

(a+ 1)2 + 4(w − 1) < 2m+1 − 1.

We now notice the following,

2w + a+
√
(a+ 1)2 + 4(w − 1)

< 3w − 3 +
√

(w − 2)2 + 4(w − 1) since a < w − 3

≤ 2m+1 − 7 since w ≤ 2m−1 − 1

< 2m+1 − 1,

which we wanted to show. Hence (8.13) holds, and then by Corollary 8.11,

we have that

1 + w(n− w)

∣∣∣∣
(

2m − 1

w − n+ 2m − 1

)
.

Theorem 8.17 implies that(
2m − 1

w − n+ 2m − 1

)
�≡ 0 (mod 4),

and hence

1 + w(n− w) �≡ 0 (mod 4).

Corollary 8.12. If there exists a 1-perfect code in J(n,w) then either

w ≡ n− w ≡ 1 (mod 12) or w ≡ n− w ≡ 7 (mod 12).
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8.7 Regularity of Codes with Larger Radius

We now discuss nontrivial e-perfect codes when e ≥ 2. We show that if such

a code exists, it must be k-regular for a wide range of values of k. We start

by giving two simple lemmas, which can be proved by basic combinatorial

techniques.

Lemma 8.4. Vandermonde’s convolution:(
n

m

)
=

p∑
k=0

(
n− p

m− k

)(
p

k

)
.

Lemma 8.5. (
n− p

m

)
=

p∑
k=0

(−1)k
(
n− k

m− k

)(
p

k

)
.

Theorem 8.19. If an e-perfect code, e ≥ 2, exists in J(2w + a, w), then it

is a k-regular code for all 0 ≤ k < w
e − e.

Proof. Our aim is to show that σe(w, a, k) �= 0 for all 0 ≤ k < w
e − e

for the required range of parameters (w, a, and k). We actually show a

stronger claim. We show that σe is strictly positive in the required range

of parameters. We start by noting that the polynomial may be rewritten

in the following manner by summing in a different order:

σe(w, a, k) =

e∑
i=0

i∑
j=0

(−1)j
(
k

j

)(
w − j

i− j

)(
w + a− k + j

i

)
.

We continue and show that in the inner sum, each of the positive sum-

mands is greater than its following negative summand in absolute value.

This is equivalent to showing that(
k

j+1

)(
w−j−1
i−j−1

)(
w+a−k+j+1

i

)
(
k
j

)(
w−j
i−j

)(
w+a−k+j

i

) < 1.

Since, j ≥ 0, i ≤ e, a ≥ 0, and k < w/e− e,(
k

j+1

)(
w−j−1
i−j−1

)(
w+a−k+j+1

i

)
(
k
j

)(
w−j
i−j

)(
w+a−k+j

i

) <
(w − e2)(we− w + e2 + e)

w(we− w + e)
.

So it suffices to show that
(w − e2)(we− w + e2 + e)

w(we− w + e)
≤ 1,

but this is equivalent to

w(e− 2) + e(e+ 1) ≥ 0,

which always holds.
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Corollary 8.13. An e-perfect code in J(n,w) is an e-regular code.

Proof. Assume there exists an e-perfect code in J(n,w). By Theorems 8.12

and 8.13, we have that w > 2e2 and by Theorem 8.19 such a code is

k-regular for all k < w
e − e, and hence the code is e-regular.

In the next theorem we extend the range of regularity given in Theo-

rem 8.19. We use Corollary 8.13 as the starting point for the proof. The

method used in the proof of Theorem 8.19 no longer works for the extended

range, so an asymptotic approach is used.

Theorem 8.20. For all e ≥ 2, there exists We > 0 such that for all

w ≥We, all e-perfect codes in J(2w + a, w) are
⌊
w
2

⌋
-regular.

Proof. Our proof starts essentially the same way as the proof of Theo-

rem 8.19. We actually want to show that for a large enough w, with a ≥ 0

and k ≤ w/2,

σe(w, a, k) =

e∑
i=0

i∑
j=0

(−1)j
(
k

j

)(
w − j

i− j

)(
w + a− k + j

i

)
> 0.

By Corollary 8.13, we may consider k ≥ e, so we have to show that

e∑
i=0

i∑
j=0

(−1)j
(
k

j

)(
w − j

i− j

)(
w + a− k + j

i

)
> 0.

The left side of the equation can be rewritten as

e∑
i=0

(
w
i

)(
w
k

)(w + a− k

i

) i∑
j=0

(−1)j
(
i

j

)(
w − j

k − j

)(w+a−k+j
i

)(
w+a−k

i

) .

We continue by proving that for all 0 ≤ i ≤ e, the inner sum is positive,

i.e.,

i∑
j=0

(−1)j
(
i

j

)(
w − j

k − j

)(w+a−k+j
i

)(
w+a−k

i

) > 0.
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Now,

i∑
j=0

(−1)j
(
i

j

)(
w − j

k − j

)(w+a−k+j
i

)(
w+a−k

i

)
≥

i∑
j=0

j even

(
i

j

)(
w − j

k − j

)
−
(
w+a−k+i

i

)(
w+a−k

i

) i∑
j=0
j odd

(
i

j

)(
w − j

k − j

)

=

i∑
j=0

(−1)j
(
i

j

)(
w − j

k − j

)
−
((

w+a−k+i
i

)(
w+a−k

i

) − 1

)
i∑

j=0
j odd

(
i

j

)(
w − j

k − j

)

=

(
w − i

k

)
−
((

w+a−k+i
i

)(
w+a−k

i

) − 1

)
i∑

j=0
j odd

(
i

j

)(
w − j

k − j

)
,

where the last step is taken by using Lemma 8.5. It is now sufficient to

prove that

((
w+a−k+i

i

)(
w+a−k

i

) − 1

)
i∑

j=0
j odd

(
i

j

)(
w − j

k − j

)
<

(
w − i

k

)
. (8.14)

We note that the sum may be rewritten in the following manner:

i∑
j=0
j odd

(
i

j

)(
w − j

k − j

)
=

1

2

⎛
⎝ i∑

j=0

(
i

j

)(
w − j

k − j

)
−

i∑
j=0

(−1)j
(
i

j

)(
w − j

k − j

)⎞⎠

=
1

2

⎛
⎝ i∑

j=0

(
i

j

)(
w − j

k − j

)
−
(
w − i

k

)⎞⎠ by Lemma 8.5.

Plugging this into (8.14) we have to prove that,

((
w+a−k+i

i

)(
w+a−k

i

) − 1

)⎛
⎝ 1(

w−i
k

) i∑
j=0

(
i

j

)(
w − j

k − j

)
− 1

⎞
⎠ < 2. (8.15)
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Finally, we have the following chain of inequalities:

((
w+a−k+i

i

)
(
w+a−k

i

) − 1

)(
1(

w−i
k

) i∑
j=0

(
i

j

)(
w − j

k − j

)
− 1

)

≤
((

w + a− k + 1

w + a− k − i+ 1

)i

− 1

)(
1(

w−i
k

) i∑
j=0

(
i

j

)(
w − j

k − j

)
− 1

)

=

((
w + a− k + 1

w + a− k − i+ 1

)i

− 1

)(
i∑

j=0

(
i

j

)
i−j∑
�=0

(
i− j

�

)(
w−i

k−j−�

)
(
w−i
k

) − 1

)
by Lemma 8.4

≤
((

w + a− k + 1

w + a− k − i+ 1

)i

− 1

)(
i∑

j=0

(
i

j

)
i−j∑
�=0

(
i− j

�

)(
k

w − i− k + 1

)j+�

− 1

)

=

((
w + a− k + 1

w + a− k − i+ 1

)i

− 1

)(
i∑

j=0

(
i

j

)(
k

w − i− k + 1

)j(
w − i+ 1

w − i− k + 1

)i−j

− 1

)

=

((
w + a− k + 1

w + a− k − i+ 1

)i

− 1

)((
w − i+ k + 1

w − i− k + 1

)i

− 1

)
by Newton’s binomial

≤
((

w/2 + 1

w/2− e+ 1

)e

− 1

)((
3w/2− e+ 1

w/2− e+ 1

)e

− 1

)
since a ≥ 0, i ≤ e, k ≤ w/2.

Therefore, it is enough that we show that((
w/2 + 1

w/2− e+ 1

)e

− 1

)((
3w/2− e+ 1

w/2− e+ 1

)e

− 1

)
< 2. (8.16)

For a fixed value of e,

lim
w→∞

((
w/2 + 1

w/2− e+ 1

)e

− 1

)((
3w/2− e+ 1

w/2− e+ 1

)e

− 1

)
= 0,

and hence, a We exists as required.

Theorem 8.21. There are no e-perfect codes in J(n,w), e ≥ 2, which are

also �w/2�-regular, when |Be(n,w)| ≡ 0 (mod 4).

Proof. Let C be a �w/2�-regular e-perfect code in J(n,w), n = 2w + a,

for 2m ≤ n ≤ 2m+1 − 1. We distinguish between two cases depending on

whether w ≤ 2m−1 − 1 or 2m−1 ≤ w.

Case 1: 2m−1 ≤ w ≤ n/2.

In this case,

w − 2m−1 ≤ w

2
.
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Since the code is a �w/2�-regular code, it follows by Theorem 8.14 that

|Be(n,w)|
∣∣∣∣
(
n− w + 2m−1

2m−1

)
.

Theorem 8.17 implies that(
n− w + 2m−1

2m−1

)
�≡ 0 (mod 4),

and hence

|Be(n,w)| �≡ 0 (mod 4).

Case 2: w ≤ 2m−1 − 1.

Note that by Theorem 8.10 we also have that a < w−(2e+1)
e < w

2 . If we

want to use Theorem 8.14, we have to show that

n− (2m − 1) ≤ w

2
. (8.17)

But now,

n− w

2
= 2w + a− w

2
< 2w < 2m − 1.

Hence (8.17) holds, and then by Theorem 8.14 we have that

|Be(n,w)|
∣∣∣∣
(

2m − 1

w − n+ 2m − 1

)
.

Theorem 8.17 implies that(
2m − 1

w − n+ 2m − 1

)
�≡ 0 (mod 4),

and hence

|Be(n,w)| �≡ 0 (mod 4).

Theorem 8.22. There are no e-perfect codes in J(n,w), e ≥ 2, which are

also �w/2�-regular, when Be(n,w) ≡ 0 (mod p2), p ≥ 3 a prime.

Proof. Let C be an e-perfect code in J(n,w), for pm ≤ n ≤ pm+1 − 1.

Now, if w ≤ pm−1− 1, we have that w < n/p, which is impossible for p ≥ 3

by Theorem 8.6. Hence, let kpm−1 ≤ w ≤ (k + 1)pm−1 − 1, for some

1 ≤ k ≤ p2 − 1. In this case,

w − kpm−1 ≤ w

2
.
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Since the code is �w/2�-regular, it follows by Theorem 8.14 that

|Be(n,w)|
∣∣∣∣
(
n− w + kpm−1

kpm−1

)
.

Theorem 8.17 implies that(
n− w + kpm−1

kpm−1

)
�≡ 0 (mod p2),

and hence

|Be(n,w)| �≡ 0 (mod p2).

Corollary 8.14. There are no e-perfect codes in J(n,w), where e ≥ 2,

which are also �w/2�-regular, where |Be(n,w)| ≡ 0 (mod p2) and p is a

prime.

For the next theorem we draw on another interesting theorem on bi-

nomial coefficients. This theorem was developed by another 19th century

mathematician Edouard Lucas. Let a ≥ 0 be some integer. We then denote

by dp(a, i), the i-th digit of a when written in base p. Hence,

a =

∞∑
i=0

dp(a, i)p
i.

Theorem 8.23. Let p be a prime, and n ≥ m ≥ 0 two integers, then(
n

m

)
≡

∞∏
i=0

(
dp(n, i)

dp(m, i)

)
(mod p).

Theorem 8.24. Let p be a prime, and e ≡ −1 (mod p2). If there exists

an e-perfect in J(n,w), then

|Be(n,w)| ≡ 0 (mod p2).

Proof. Let C be an e-perfect code in J(n,w). By Corollary 8.8, there exist a

Steiner system S(2, e+2, w+2) and a Steiner system S(2, e+2, n−w+2).

Hence by Corollary 3.1, w+1
e+1 and n−w+1

e+1 must be an integer, and hence

w + 1 ≡ 0 (mod p2) and n− w + 1 ≡ 0 (mod p2). In other words, the two

least significant digits in the representation in base p of e, w, and n − w,

are both p− 1, i.e.,

dp(w, 0) = dp(w, 1) = dp(n− w, 0)

= dp(n− w, 1) = dp(e, 0) = dp(e, 1) = p− 1. (8.18)
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Let 0 ≤ j < e be some integer such that j ≡ 0 (mod p). Now,(
w

j + 1

)(
n− w

j + 1

)
=

(
w

j

)(
n− w

j

)
(w − j)(n− w − j)

(j + 1)2
.

Note, however that w − j, n − w − j, and j + 1 are co-prime to p2. Fur-

thermore, w − j ≡ n− w − j ≡ −(j + 1) (mod p2). Hence,(
w

j

)(
n− w

j

)
≡
(

w

j + 1

)(
n− w

j + 1

)
(mod p2).

This may be repeated to get,(
w

j

)(
n− w

j

)
≡
(

w

j + 1

)(
n− w

j + 1

)
≡ · · · ≡

(
w

j + p− 1

)(
n− w

j + p− 1

)
(mod p2).

(8.19)

Now let 0 ≤ j < e be some integer such that j ≡ 0 (mod p2). Note that

in all the integers of the form j + ip, where 0 ≤ i ≤ p− 1, only the second

digit in base p changes while the first digit is always zero. We examine the

following sum modulo p using Theorem 8.23:
p−1∑
i=0

(
w

j + ip

)(
n− w

j + ip

)
≡

p−1∑
i=0

∞∏
�=0

[(
dp(w, �)

dp(j + ip, �)

)(
dp(n− w, �)

dp(j + ip, �)

)]

≡
(

p−1∑
i=0

(
p− 1

i

)2
)( ∞∏

�=2

[(
dp(w, �)

dp(j + ip, �)

)(
dp(n− w, �)

dp(j + ip, �)

)])

≡
(
2(p− 1)

p− 1

) ∞∏
�=2

[(
dp(w, �)

dp(j + ip, �)

)(
dp(n− w, �)

dp(j + ip, �)

)]
(mod p).

We also have that dp(2(p − 1), 0) = p − 2 < p − 1 = dp(p − 1, 0), and,

therefore, by Theorem 8.17,
(
2(p−1)
p−1

)
≡ 0 (mod p). Hence, the previous sum

is congruent to 0 modulo p. Now, for some integer k we have
p−1∑
i=0

(
w

j + ip

)(
n− w

j + ip

)
= kp. (8.20)

We continue by examining the following sum modulo p2:

p2−1∑
i=0

(
w

j + i

)(
n− w

j + i

)
≡

p−1∑
�=0

p−1∑
i=0

(
w

j + ip+ �

)(
n− w

j + ip+ �

)

≡ p

p−1∑
i=0

(
w

j + ip

)(
n− w

j + ip

)
by (8.19)

≡ kp2 by (8.20)

≡ 0 (mod p2).
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Finally, the sphere size modulo p2 equals,

|Be(n,w)| ≡
e∑

i=0

(
w

i

)(
n− w

i

)

≡
∑

0≤j<e
j≡0 (mod p2)

p2−1∑
i=0

(
w

j + i

)(
n− w

j + i

)
since e ≡ −1 (mod p2)

≡ 0 (mod p2).

Corollary 8.15. For any given e ≥ 2, e ≡ −1 (mod p2), p prime, there

are finitely many nontrivial e-perfect codes in the Johnson scheme.

A simple observation is that the left side of (8.16) is a monotonously

decreasing function in w. Hence, a simple computer search can find the

value of We of Theorem 8.20 and validate that σe(w, a, k) has no integer

roots for k ≤ w/2 and w ≤ We. Such a computer search was done for

e = 3, 7, 8 and indeed no such roots were found. Therefore, we conclude

with the following result.

Proposition 8.1. There are no nontrivial 3-perfect, 7-perfect, and

8-perfect codes in the Johnson graph.

Another computer search was conducted to test the divisibility condi-

tions of Theoren 8.14. The computer search was used to prove the following

result.

Proposition 8.2. There are no 2-perfect codes in J(n,w) for all n ≤ 40000.

Proving the conjecture that there are no perfect codes in J(n,w) appears

to be impossible to prove in the near future. We suggest the following four

problems as the main targets for future research in this direction.

Problem 8.2. Prove that there are no 1-perfect codes in the Johnson

scheme.

Problem 8.3. Prove that there are no perfect codes in J(2w,w).

Problem 8.4. Prove that for each e > 0 there are finitely many nontrivial

e-perfect codes in the Johnson graph J(n,w).

Problem 8.5. Prove that for each n > 2w > 0 there are finitely many

nontrivial perfect codes in the Johnson graph J(n,w).
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8.8 Diameter Perfect Codes

The proof of Lemma 2.14 does not hold for the Johnson scheme since there

is no binary operation that makes the metric right or left distance invariant.

Fortunately, we can provide an alternative proof for the Johnson scheme.

Lemma 8.6. Let CD be a code in J(n,w) with distances between the code-

words of CD taken from a subset D. Let A be a subset of J(n,w) and let

C′D ⊆ A be the largest code in A with distances taken from D. Then

|CD|(
n
w

) ≤ |C′D|
|A| . (8.21)

Proof. Consider the set of pairs,

P = {(c, π) : c ∈ CD, π ∈ Sn, π(c) ∈ A}.
For a fixed c ∈ CD and a fixed a ∈ A, there are exactly w!(n − w)!

choices for π such that a = π(c). Hence, the number of pairs in P equals

|CD| · |A| · w! · (n− w)!.

Note that for each permutation π and two elements x, y ∈ J(n,w),

we have that d(π(x), π(y)) = d(x, y). This implies that a fixed

permutation π ∈ Sn can transfer the elements of CD into at most |C′D| ele-
ments of A. Therefore, each permutation π contributes at most |C′D| pairs
to P, and hence the number of pairs in P is at most |C′D|n!, which implies

that

|CD| · |A| · w! · (n− w)! ≤ |C′D|n! ,
and the claim of the lemma follows.

Lemma 8.6 implies that the code-anticode bound is satisfied for the Johnson

scheme.

Corollary 8.16. Let CD be a code in J(n,w) with distances between the

codewords of CD taken from the range [2δ, n]. Let A be a subset of J(n,w)

and let C′D ⊆ A be the largest code in A with distances from [2δ, n]. Then

A(n, 2δ, w) ≤
(
n
w

)
|C′D|
|A| (8.22)

As a consequence of Corollary 8.16, the two Johnson bounds (Lemma 2.3

and Lemma 2.4) can be obtained using proofs, which are completely differ-

ent from the ones given in Chapter 2.

Corollary 8.17.

A(n, 2δ, w) ≤
⌊
n

w
A(n− 1, 2δ, w − 1)

⌋
.
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Proof. In (8.22) take A to be the set of all the words in V n
w with a one in

a fixed coordinate.

Corollary 8.18.

A(n, 2δ, w) ≤
⌊

n

n− w
A(n− 1, 2δ, w)

⌋
.

Proof. In (8.22) take A to be the set of all the words in V n
w with a zero in

a fixed coordinate.

The following two lemmas are readily verified, with the proof of the first

one being trivial.

Lemma 8.7. The set A2(n,w, t), where 0 ≤ t ≤ w ≤ n
2 , defined by

{(
t times︷ ︸︸ ︷

1 · · · · · · 1, c1, . . . , cn−t) : cj ∈ F2, 1 ≤ j ≤ n−t, wt(c1, . . . , cn−t) = w−t},
is an anticode in J(n,w) whose diameter is w − t and size is

(
n−t
w−t

)
.

Lemma 8.8. The set Ā2(n,w, t), where 0 ≤ t ≤ w ≤ n
2 , defined by

{(
t times︷ ︸︸ ︷

0 · · · · · · 0, c1, . . . , cn−t) : cj ∈ F2, wt(c1, . . . , cn−t) = n− w},
is an anticode in J(n, n− w) whose diameter is w − t and size is

(
n−t
w−t

)
.

Proof. Clearly, Ā2(n,w, t) is the set of complements of the elements from

A2(n,w, t) and hence
∣∣Ā2(n,w, t)

∣∣ = A2(n,w, t) =
(
n−t
w−t

)
. Moreover, for

each two words x, y ∈ J(n,w), we have that d(x, y) = d(x̄, ȳ) and hence

the diameter of Ā2(n,w, t) equals the diameter of A2(n,w, t). The claim

follows now directly from Lemma 8.7.

Theorem 8.25. Any Steiner system S(t, w, n) forms a (w − t)-diameter

perfect code.

Proof. If C is an (n, 2(w−t+1), w) code constructed from a Steiner system

S(t, w, n), then its Johnson distance is w − t+ 1, and

|C| =
(
n
t

)(
w
t

) =

(
n
w

)(
n−t
w−t

) .

On the other hand, by the code-anticode bound, |C| ≤ (nw)
A , where A is any

anticode in J(n,w) whose diameter is w − t, and, therefore, A ≤
(
n−t
w−t

)
.

Since by Lemma 8.7 A2(n,w, t) is an anticode in J(n,w) of size
(
n−t
w−t

)
whose diameter is w − t, the claim of the theorem follows.
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Theorem 8.26. Any complement of a Steiner system S(t, w, n) forms a

(w − t)-diameter perfect code.

Proof. For each two words x, y ∈ J(n,w), d(x, y) = d(x̄, ȳ) and hence the

complement of a Steiner system S(t, w, n) has minimum Hamming distance

2(w− t+1), i.e., minimum J-distance w− t+1. By Lemma 8.8, Ā2(n,w, t)

and A2(n,w, t) have the same diameter and the same size. Moreover, the

weight of anticodewords in Ā2(n,w, t) is n − w and since
(

n
n−w

)
=
(
n
w

)
, it

follows by Theorem 8.25 that the complement of a Steiner system S(t, w, n)

forms a (w − t)-diameter perfect code in J(n, n− w).

Corollary 8.19. Any Steiner system S(t, w, n) and any complement of a

Steiner system S(t, w, n) forms a (w − t)-diameter perfect code in J(n,w)

and J(n, n− w), respectively.

Problem 8.6. Are there diameter perfect codes in J(n,w), asides from

Steiner systems and their complements?

Conjecture 8.1. There are no nontrivial diameter perfect codes in J(n,w),

asides from Steiner systems and their complements.

Problem 8.7. Are there perfect sets in J(n,w), asides from Steiner sys-

tems? (see the definition in Section 2.4).

8.9 Notes

Constant-weight have found many applications throughout the years. Op-

tical orthogonal codes [Chung, Salehi, and Wei (1989)] also known as cycli-

cally permutable codes [Moreno, Zhang, Kumar, and Zionviev (1995)] are

two such applications. They have also found applications in storage de-

vices like flash memories [En Gad, Langberg, Schwartz, and Bruck (2011)].

Constant-weight codes in J(2w,w), called balanced codes are of special

interest and have drawn lot of attention [Knuth (1986)]. They are impor-

tant in the context of constrained codes, a family of code which found lot

of applications in the 20th and the 21st centuries.

Section 8.1. The Johnson scheme was given its name by Delsarte [Del-

sarte (1973)] based on Johnson bounds on the sizes of constant-weight

codes [Johnson (1972)]. These bounds are presented in Lemmas 2.3 and 2.4.

The definition of the Johnson distance as half of the Hamming distance was

given in [Delsarte (1973)]. Delsarte was the first to consider perfect codes

in the Johnson scheme. In his work, [Delsarte (1973)] wrote in page 55:
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“After having recalled that there are “very few” perfect codes in the
Hamming schemes, one must say that, for 1 < δ < n, there is not a single
one known in the Johnson schemes. It is tempting to risk the conjecture
that such codes do not exist. Certain results contained in the present
work could be useful to attack this problem; especially the generalized
Lloyd theorem of sec. 5.2.2 and theorem 4.7 about t-designs.”

It was proved in [Bannai (1977)] that there are no e-perfect codes in

J(2w + 1, w) for e ≥ 2. The proof is based on a generalization of Lloyd’s

theorem for the Johnson scheme. In [Hammond (1982)] a different ap-

proach was used to prove that a class of completely regular codes in certain

distance-regular graphs does not exist. The results by this approach imply

that there are no perfect codes in J(2w+1, w) and J(2w+2, w) (and hence

Theorem 8.9 is true).

Section 8.2. The concept of configuration distribution and some discus-

sions regarding it were presented in [Etzion (1996a)]. A comprehensive

work on configuration distributions was done in [Etzion (2007)].

Section 8.3. The idea of looking at Steiner systems embedded in perfect

codes was suggested by [Etzion (1996a)] and further developed in [Etzion

(2001b)]. Enumeration for the number of Steiner systems embedded in a

perfect code was done in [Etzion (2007)]. Theorem 8.6 was proved for first

time in [Roos (1983)] using the code-anticode bound. The proof presented

in this section is the result work by [Etzion (2001b)]. The improvement

of the inequality for a strict inequality as proved in Theorem 8.10 was

presented in [Etzion and Schwartz (2004)].

The bound was further improved in [Bannai and Noda (2016)] as follows.

Theorem 8.27. If there exists an e-perfect code in J(n,w), where e ≥ 2,

then

n ≤ 2we

e− 1
− 7e+ 1

2(e− 1)
−

√
D(e)

2e(e− 1)
,

where

D(e) = 8e(e+ 1)

(
w − e+ 3

2

)2

− e(e+ 2)(e− 1)2 .

The analysis of graphs with no perfect codes is from [Etzion (1996a)],

where the nonexistence proof of perfect codes in J(2w + 1, w), which was

presented in [Hammond (1982)] (see Theorem 8.9), is used.

Section 8.4. Tradeoff between the various parameters (length, weight, ra-

dius) for the nonexistence of perfect codes was done first in [Etzion (1996a)],
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and improved later in [Etzion (2001b)]. The other results that appear in

this section were proved in [Etzion and Schwartz (2004)].

Section 8.5. The concept of regularity of codes in the Johnson scheme

was presented first in [Etzion and Schwartz (2004)] and the analysis in this

section is taken from this paper. It was further investigated in [Etzion

(2007)], where some proofs were given using a different approach. Based on

the analysis of the regularity of codes, the nonexistence of perfect codes for

some radii was proved in [Etzion and Schwartz (2004)]. Computer search

was also used for elimination of some radii up to a certain length of code-

words. In particular, Corollary 8.15 was proved in [Etzion and Schwartz

(2004)].

Section 8.6. The analysis in this section is taken from [Etzion and

Schwartz (2004)]. It was further proved in [Gordon (2006)] that there are

no 1-perfect codes in J(n,w) when n ≤ 2250. The proof used computer

search after a proof of some related results from number theory.

Section 8.7. The analysis in this section is also taken from [Etzion and

Schwartz (2004)]. Finally, for a given e and a, it was examined by [Etzion

and Schwartz (2004)] in which graph J(2w+a, w) the existence of e-perfect

codes was not ruled out. The results of the previous sections and careful

analysis show the following:

Theorem 8.28. For 1 ≤ a ≤ 35 there are no e-perfect codes in J(2w+a, w)

with the following possible exceptions: 1-perfect codes and 2-perfect codes

in J(2w + 12, w) and J(2w + 24, w), and 4-perfect codes in J(2w + 15, w)

and J(2w + 30, w).

It is worth mentioning that, as proved in [Shimabukuro (2005)], there are

also no perfect codes in J(2w + p2, w), p prime, and in J(2w+5p, w), p prime

different from 3.

Two older results in number theory were used in the proofs of this

section. Theorem 8.23 is due to Edouard Lucas in his book “Théorie des

Nombres” and a short proof was given in [Fine (1947)]. Theorem 8.17

was proved by Ernst Kummer and can be found in [Graham, Knuth, and

Patashnik (1994), p. 245].

There are many other properties which perfect codes (if exist) in the

Johnson scheme must satisfy. They can be found in [Martin (1992); Etzion

(2007); Silberstein (2007); Silberstein and Etzion (2010)]

Section 8.8. The results of this section were taken from [Ahlswede, Ay-
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dinian, and Khachatrian (2001)] and [Etzion (2021)]. [Ahlswede, Aydinian,

and Khachatrian (2001)] have pointed out on the connection between the

diametric problem in the Johnson scheme and the intersection problem for

systems of finite sets. This problem was completely solved in [Ahlswede

and Khachatrian (1997)] as follows.

A system of subsets A ⊂ J(n,w) is called t-intersecting if

|A1 ∩A2| ≥ t for all A1, A2 ⊂ A .

Define the function

M(n,w, t) � max

{
|A| : A is at-intersecting system, A ⊂

(
[n]

w

)}
,

where 1 ≤ t ≤ w ≤ n. It was proved in [Ahlswede and Khachatrian (1997)]

that M(n,w, t) is the size of the maximum size anticode with Johnson

distance w − t. Define

Fi �
{
A ∈

(
[n]

w

)
: |A ∩ [t+ 2i]| ≥ t+ i

}
for 0 ≤ i ≤ n−t

2 .

As a consequence, the following theorem was proved in [Ahlswede and

Khachatrian (1997)].

Theorem 8.29. Let, t, w, and n be integers such that 1 ≤ t ≤ w ≤ n.

• If (w− t+1)(2+ t−1
r+1 ) < n < (w− t+1)(2+ t−1

r ) for some r ∈ N∪{0},
then M(n,w, t) = |Fr|. The set Fr is up to permutation the unique

optimum set for M(n,w, t), where by convention α
β =∞ for α �= 0 and

β = 0.

• If (w − t+ 1)(2 + t−1
r+1 ) = n for r ∈ N ∪ {0}, then M(n,w, t) = |Fr| =

|Fr+1|. An optimal system equals up to permutations either to Fr or

to Fr+1.

If the maximum cardinality of an anticode in J(n,w) whose diameter

is D is denoted by A(n,w,D), then

A(n,w,D) = M(n,w, t), if D = w − t.

The parameters of a maximum anticode of diameter δ − 1 can be ob-

tained using Theorem 8.29 from the following inequalities

δ

(
2 +

w − δ

r + 1

)
≤ n < δ

(
2 +

w − δ

r

)
. (8.23)
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We must have that w − δ + 1 + 2r = w and, therefore, r = δ−1
2 = e.

Hence, the Roos bound (Theorem 8.6)

n ≤ (2e+ 1)(w − 1)/w

is proved again.

These results on the maximum size anticode are important in our con-

text since by the code-anticode bound we have that

A(n, 2δ, w) · |Fr| ≤
(
n

w

)
.

In their paper [Ahlswede, Aydinian, and Khachatrian (2001)] also

proved a result that is analogous to Theorem 8.5 and to Corollary 8.5.

The proof of this result is also based on the structure of the maximum size

anticodes, i.e., the largest t-intersecting families.

Theorem 8.30. If there exists an (δ−1)-diameter perfect code C in J(n,w)

and r is a nonnegative integer obtained as the parameter in (8.23), then

there exist a Steiner system S(δ−r, δ, w) and a Steiner system S(r+1, δ, w).

For example, there exists a Steiner system S(5, 8, 24) (embedded in the

extended Golay codes), which is a (24, 8, 8) diameter perfect code. Since

(k− t+1)(t+1) = 24, it follows by Theorem 8.29 that there are two choices

for r, i.e., r = 0 or r = 1. Therefore, by Theorem 8.30 (with r = 1) we

obtain two Steiner systems, S(3, 4, 8) and S(2, 4, 16).

In view of Theorem 8.30, more necessary conditions on the existence

of diameter perfect codes in the Johnson scheme can be obtained from the

necessary conditions on the existence of the related Steiner systems.

Finally, [Ahlswede, Aydinian, and Khachatrian (2001)] have also pre-

sented the following bound on the weight of a diameter perfect code.

Theorem 8.31. A (δ − 1)-diameter perfect code exists in J(n,w) only if

w ≥ (r + 1)(δ − r + 1).
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All the words in the Johnson scheme J(n,w) are binary words of length n

and constant weight w. The Johnson distance between two words is ex-

actly half of their Hamming distance. The definition of a perfect code is

based on the Johnson graph and the Johnson distance. Using the Hamming

distance on binary words will give us the obvious result that an e-perfect

code in J(n,w) is also an (2e)-perfect code when the space is the set of all

binary words of length n and constant weight w and the metric used is the

Hamming metric. The definition, however, will not be based on the graph,

which is not a connected graph. The reason is that all the Hamming dis-

tances are even and the edges in the graph correspond to words for which

the distance is one. To define the same perfect code using the Hamming dis-

tance we say that in an e-perfect code C in J(n,w), the (2e)-balls (using the

Hamming distance) around the codewords of C form a partition of J(n,w).

By Lemma 8.1 these (2e)-balls are exactly the e-balls using the J-distance.

The same definition can be done using the Hamming graph H2(n) with

the Hamming distance and considering a code which consists only of words

with the same weight w. The (2e)-balls around a code C with codewords

of weight w are disjoint. Hence, this definition is exactly the same one as

the one defined on J(n,w).

The next natural problem is to consider nonbinary perfect constant-

weight codes, which is done as follows. Let Jq(n,w) be the set of words

of length n and weight w over an alphabet with q symbols. This set of

words is our space V and the metric defined on Jq(n,w) is the Hamming

distance, i.e., for two words x, y ∈ Jq(n,w), d(x, y) is the number of coor-

dinates in which x and y differ. In other words, if x = (x1, x2, . . . , xn) and

y = (y1, y2, . . . , yn), then

d(x, y) � |{i : xi �= yi}| .

243
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The distinction between the binary and the nonbinary cases is the graph

that represents the space with its distance. The graph based on Jq(n,w),

which represents nonbinary constant-weight words, is not a connected

graph, unless w = n, and hence the definition of an e-perfect code can-

not be based on the graph Jq(n,w) in the same way that it is used for

the binary case, when the Johnson distance is used. Nevertheless, there is

one exception – when w = n, which will be discussed later. For the defini-

tion of an e-perfect codes, we simply use the usual definition that considers

the balls with radius e by using the Hamming distance. Now, we can ask

whether there exist e-perfect codes for Jq(n,w) with the Hamming distance.

Can we use the same definition as the one we used for J(n,w), i.e., taking

the e-balls around codewords of a code C in Jq(n,w) to defined a code with

minimum distance 2e + 1 in Jq(n,w). Unfortunately, this definition does

not work since these e-balls can be disjoint in Jq(n,w), but the minimum

distance of the code can be smaller than 2e+ 1. For example, if e = 1 and

the two codewords are (01 · · · 11) and (11 · · · 10), then the 1-balls centered

at these codewords are disjoint, but their distance is two and hence they

cannot be contained in a 1-perfect code. Hence, the distance between the

codewords should be taken into account. To overcome this problem we can

use the Hamming graph Hq(n), consider only codewords with weight w and

require that the e-balls centered at the codewords are disjoint and contain

all the words of weight w (but not all the vertices of the graph are contained

in these e-balls). This is equivalent to require minimum distance 2e+1 for

disjoint e-balls in Jq(n,w).

The next question is whether the set of words in Jq(n,w) with the

Hamming distance a scheme? As noted before, the graph is not connected,

but there is a representation of e-codes with a connected graph. Hence,

we would like to know whether related intersection numbers are indepen-

dent of the given words in Jq(n,w). Consider n ≥ 3 and w = 2, and

the three words x = (110 · · · 0), y = (220 · · · 0), z = (1010 · · · 0).

Clearly, d(x, y) = d(x, z) = 2, and a word u, in the space, for which

d(x, u) = d(y, u) = 1 is in the set {(120 · · · 0), (210 · · · 0)}, while there is

no word u such that d(x, u) = d(z, u) = 1. Hence, this space with the given

metric is not an association scheme. A similar example can be given for

any weight w < n. This is our starting point to consider nonbinary perfect

constant-weight codes.

The rest of this chapter is organized as follows. Nonbinary perfect

constant-weight codes are considered in Section 9.1. The code-anticode

bound is proved for nonbinary constant-weight codes in Section 9.2 and
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six families of diameter perfect constant-weight codes are identified. These

families of codes are discussed in Section 9.3 through Section 9.8. Maximum

size anticodes for these families of codes are also defined in these sections.

Four families of maximum size anticodes are identified in Section 9.9 and

they are analyzed to find anticodes, related to diameter perfect constant-

weight codes, with the same parameters and size, but a different structure.

9.1 Nonbinary Perfect Constant-Weight Codes

When w = n, the graph Jq(n,w) is the same as the graph Hq−1(n) since

words in Jq(n, n) do not have zeroes and hence only the q − 1 nonzero

symbols are used. Accordingly, the only difference between the two graphs

is the symbols used (and hence we say that it is the same graph and not just

isomorphic graphs). In this case we have one family of important e-perfect

constant-weight codes that can be constructed easily based on the following

theorem.

Theorem 9.1. There exists an e-perfect code of length n over an alphabet

of size q in the Hamming space, if and only if there exists an e-perfect

constant-weight code of length n and weight w = n over an alphabet of

size q + 1.

Proof. Let C be an e-perfect code of length n over an alphabetQ of size q in

the Hamming space. Let Q = {1, 2, . . . , q} be the alphabet for C. The code
C′ � C defined over the alphabet Q ∪ {0} is an e-perfect constant-weight

code of length n and weight w = n over an alphabet of size q + 1.

If C is an e-perfect constant-weight code of length n and weight w = n

over an alphabet Q of size q + 1, where 0 ∈ Q, then the same code defined

over Q− is an e-perfect code, of length n over Q−, in the Hamming space.

By Theorem 9.1 we have that if w = n, then e-perfect constant-weight

codes over an alphabet of size q + 1 are equivalent to e-perfect codes over

an alphabet of size q in the Hamming scheme. We continue to consider the

sphere-packing bound for nonbinary constant-weight codes in Jq(n,w). For

the reminder of this section we will consider only 1-perfect constant-weight

codes.

Lemma 9.1. If C is a (q+1)-ary constant-weight code of length n, weight w,
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and minimum Hamming distance 3, then

|C| ≤
(
n
w

)
qw

(q − 1)w + 1
.

Proof. First, we enumerate the total number of words of length n and

weight w, which form the whole space. The number of possible w-subsets

of the n coordinates is
(
n
w

)
and on each such w coordinates we can form

qw words of weight w, where in the other n−w coordinates there are zeroes.

Therefore, the number of words of length n and weight w over an alphabet

of size q + 1 is
(
n
w

)
qw.

Since the minimum Hamming distance of the code is 3, it follows that

the balls with radius one around the codeword of C must be disjoint. The

size of a ball with radius one is (q − 1)w + 1 since we can change at most

one coordinate. Moreover, to remain with weight w, this change should be

made from a nonzero value to another nonzero value in the same coordinate.

There are w coordinates that have nonzero alphabet symbols. There are

q nonzero alphabet symbols and hence there are q − 1 possible changes to

each such coordinate.

Therefore, the sphere-packing bound implies that |C| ≤ (nw)q
w

(q−1)w+1 .

Corollary 9.1. Let C be a (q + 1)-ary constant-weight code of length n,

weight w, and minimum distance 3. C is a 1-perfect code if and only if

|C| =
(
n
w

)
qw

(q − 1)w + 1
.

Let C be a (q + 1)-ary 1-perfect constant-weight code of length n,

weight w, and minimum Hamming distance 3. Define the following n sub-

codes of C.
Ci � {c : c = (c1, c2, . . . , cn) ∈ C, ci = 0}, 1 ≤ i ≤ n.

Each codeword in C is contained in exactly n − w of these sub-codes and

hence
n∑

i=1

|Ci| = (n− w)|C|

and, therefore, by Corollary 9.1, we have that

1

n

n∑
i=1

|Ci| =
n− w

n
|C| = n− w

n

(
n
w

)
qw

(q − 1)w + 1
=

(
n−1
w

)
qw

(q − 1)w + 1
. (9.1)

Let C′i be the shortening of C with respect to the i-th coordinate, i.e., the

code obtained from Ci by puncturing with respect to the i-th coordinate.
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Clearly, C′i is a (q+1)-ary constant-weight code of length n−1, weight w, and
minimum Hamming distance 3, for which |C′i| = |Ci|. Therefore, by (9.1) we

have that
∑n

i=1 |C′i| = n
(n−1

w )qw

(q−1)w+1 and since, by Lemma 9.1, |C′i| ≤
(n−1

w )qw

(q−1)w+1 ,

it follows by Corollary 9.1 that C′i is a (q+1)-ary 1-perfect constant-weight

code of length n−1 and weight w. These arguments work as long as w < n

and hence we have the following lemma.

Lemma 9.2. If C is a (q+1)-ary 1-perfect constant-weight code of length n

and weight w, where w < n, then its shortened code, with respect to any

coordinate, is a (q + 1)-ary 1-perfect constant-weight code of length n − 1

and weight w.

Corollary 9.2. If there exists a (q + 1)-ary 1-perfect constant-weight code

of length n, weight w, then (q − 1)w + 1 divides qw.

Proof. Lemma 9.2 is applied iteratively n − w times on a (q + 1)-ary

1-perfect constant-weight code of length n and weight w, to obtain a

(q + 1)-ary 1-perfect constant-weight code of length n = w, weight w, min-

imum Hamming distance 3, and qw

(q−1)w+1 codewords.

Consider the (q+1)-ary 1-perfect constant-weight code of length n and

weight w = n, obtained via the proof of Corollary 9.2. The code does not

have any codeword with zeroes and hence it is a q-ary 1-perfect code of

length n in the Hamming scheme. Consequently, its existence is equivalent

to the existence of 1-perfect codes in the Hamming scheme, as was proved

in Theorem 9.1.

We distinguish now between a ternary alphabet and an alphabet of

size greater than three. If the alphabet size is three, i.e., q = 2, then by

Corollary 9.2 we have that w + 1 is a power of two.

Let H∗(r) be the [2r, 2r − 1 − r, 4] extended Hamming code whose

parity-check matrix is Hr = [h0, h1, . . . , h2r−2, h∞], where hi = (αi, 1)tr,

0 ≤ i ≤ 2r − 2, α is a primitive element in GF(2r), and αi is represented

by a binary vector of length r. The code has 2r+1 cosets (see Section 4.1),

2r cosets whose words have even weight and 2r cosets whose words have

odd weight. Consider the cosets with words of odd weight. These cosets

will be denoted by Ho
i , 0 ≤ i ≤ 2r − 2, and Ho

∞, where the coset leader

in Ho
i is ei. Similarly, Ho

∞ is the coset with a coset leader of weight one

whose unique one is in the last coordinate. Let Ti, 0 ≤ i ≤ 2r − 2, be the

code obtained from Ho
i by replacing the symbol in the (i+1)-th position by

the symbol two, where indices are taken modulo 2r−1. Similarly, let T∞ be
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the code obtained from Ho
∞ by replacing the symbol in the last coordinate

of each codeword by the symbol two.

The following three lemmas will lead to the main claim that the union

of all the Ti’s has minimum distance 3, from which a ternary 1-perfect

constant-weight code will be constructed. The first lemma is a simple ob-

servation from the definition.

Lemma 9.3. Each codeword in Ti, 0 ≤ i ≤ 2r − 2, and each codeword

in T∞ has a unique position with the symbol two.

Lemma 9.4. The minimum distance of each Ti, 0 ≤ i ≤ 2r − 1 is 3, and

the minimum distance of T∞ is 3.

Proof. The minimum distance of H∗(r), and also of each of its cosets,

is 4. Replacing the symbol in the same position of all the codewords by

the symbol two can reduce the minimum distance at most by one, i.e., to

minimum distance 3.

Lemma 9.5. In H∗(r) there is no codeword of weight four with the ones

in four distinct positions i, i+ 1, j, j + 1, where these positions are taken

modulo 2r − 1, and they do not include the last position.

Proof. Assume the contrary, that there exists such a codeword of

weight four with the ones in distinct positions i, i + 1, j, j + 1. By

the structure of the parity-check matrix of H∗(r), this implies that

αi + αi+1 + αj + αj+1 = 0. Since, the characteristic of the field is 2, it

follows that αi + αi+1 = αj + αj+1, i.e., αi(α+ 1) = αj(α+ 1) or αi = αj ,

which implies that i = j, a contradiction of the fact that the four positions

are distinct.

Theorem 9.2. The ternary code

T � T∞ ∪
2r−2⋃
i=0

Ti ,

has minimum distance 3.

Proof. By Lemma 9.4, each Ti (including T∞) has minimum Hamming dis-

tance 3. Hence, to complete the proof it suffices to show that the Hamming

distance between two codewords c1 and c2 from two distinct Ti’s is at least 3.
By Lemma 9.3, each codeword in Ti has exactly one coordinate with the

symbol two. This symbol appears in a different coordinate for each Ti and,
therefore, the distance between any two codewords from two distinct Ti’s
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is at least two. Note that by the definition of Ti, 0 ≤ i ≤ 2r − 2, each code-

word of Ti differs in exactly two coordinates from a codeword in H∗(r),
one related to the coset leader and one coordinate with the symbol two.

On the other hand, a codeword in T∞ differs exactly in the last coordinate

from a codeword of H∗(r). Moreover, note that any two codewords from

distinct Ti’s (including T∞) that were formed from the same codeword of C
differ in at least three coordinates, two related to the coset leaders and at

least one that was changed to two. Let c1 and c2 be two words from dis-

tinct Ti’s (including T∞), formed from two distinct codewords ofH∗(r), and
assume the contrary that d(c1, c2) = 2. Assume further that ci, i = 1, 2,

was obtained from the codeword c′i ∈ H∗(r). Distinguish between three

cases depending on which Ti contains c1 and which Tj contains c2.

Case 1. c1 ∈ Ti, 0 ≤ i ≤ 2r − 2 and c2 ∈ T∞.

This case implies that the only other position (except for position i+ 1

modulo 2r−1 and the last position, in which the symbol was changed to two)

in which c′1 and c′2 might differ is the i-th position. Hence, d(c′1, c
′
2) ≤ 3,

which contradicts the fact that d(H∗(r)) = 4.

Case 2. c1 ∈ Ti, 0 ≤ i ≤ 2r − 2 and c2 ∈ Ti+1, where i + 1 is taken

modulo 2r − 1.

This case implies that the only other position (except for positions i+1

and i+2 modulo 2r−1) in which c′1 and c′2 might differ is the i-th position.

Hence, d(c′1, c
′
2) ≤ 3, which contradicts the fact that d(H∗(r)) = 4.

Case 3. c1 ∈ Ti, c2 ∈ Tj 0 ≤ i < j ≤ 2r − 2, i �= j +1 and j �= i+1, where

these additions are taken modulo 2r − 1.

This case implies that the only other positions (except for positions i+1

modulo 2r − 1 and j + 1 modulo 2r − 1) in which c′1 and c′2 might differ

are i and j. Hence, this implies that d(c′1, c
′
2) ≤ 4 and since d(H∗(r)) = 4,

it follows that d(c′1, c
′
2) = 4. But, d(c′1, c

′
2) = 4 if and only if c′1 + c′2 is a

codeword of weight four in H∗(r) with ones in positions i, i + 1, j, j + 1

modulo 2r − 1, a contradiction to Lemma 9.5.

Thus, d(T ) ≥ 3 and the theorem is proved.

Theorem 9.3. The code

T ∗ � (

n times︷ ︸︸ ︷
1 · · · 1 ) + T = (

n times︷ ︸︸ ︷
1 · · · 1 ) +

(
T∞ ∪

2r−2⋃
i=0

Ti

)

is a ternary 1-perfect constant-weight code of length n = 2r and weight

w = 2r − 1.
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Proof. The code T ∗ is a translate of the code T and hence it has, by The-

orem 9.2, minimum distance 3. Moreover, by Lemma 9.3 and Theorem 9.2,

each codeword of T has exactly one position with the symbol two, which

implies that in each codeword of its translate T ∗, there is a unique zero

and hence the weight of each codeword of T ∗ is 2r−1. The total number of

ternary words of length n = 2r and weight w = 2r−1 is 2r ·22r−1. The size

of a ball with radius one is 2r, and the size of the code T ∗ is 2r ·22r−1−r and

hence, by Corollary 9.1, the code T ∗ is a ternary 1-perfect constant-weight

code of length n = 2r and weight w = 2r − 1.

Theorem 9.4. If C is a ternary 1-perfect constant-weight code, then

either C is essentially a binary 1-perfect code of length 2r − 1 (and hence

n = w = 2r − 1), or w = 2r − 1 and n = w + 1 = 2r for some r ≥ 2.

Proof. In view of Theorem 9.3 and Lemma 9.2, a ternary 1-perfect

constant-weight code C with weight w can be shortened to obtain a shorter

1-perfect constant-weight code with the same weight w. By iteratively

shortening the obtained code, we end up with a ternary constant-weight

code of weight w and length n = w. By Theorem 9.1 this code is equiv-

alent to a binary 1-perfect code and hence its length is 2r − 1 (which im-

plies that n = w = 2r − 1). Since by Theorem 9.3 there exists a ternary

1-perfect constant-weight code of length 2r and weight 2r − 1, it follows by

Lemma 9.2 that to complete the proof it suffices to prove that a ternary

1-perfect constant-weight code with parameters w = 2r − 1 and n = w + 2

does not exist.

Assume the contrary, that C is a ternary constant-weight code of weight

w = 2r−1, length n = w+2, and minimum Hamming distance 3, for some

r ≥ 2. For

S � {(c, x) : c ∈ C, x ∈ {1, 2}n, xi = ci if ci �= 0, 1 ≤ i ≤ n},
we have that |S| = 4|C| since each codeword of C has two zeroes and there

are four assignments in S for these two positions in x to obtain a pair

(c, x) ∈ S for a given c ∈ C. Let x ∈ {1, 2}n, c and c′ be two distinct

codewords of C for which the two pairs (c, x) and (c′, x) are in S. This

implies that xi = ci = c′i, whenever ci �= 0 and c′i �= 0. Accordingly, since c

and c′ have exactly two positions with zeroes and also d(c, c′) ≥ 3, it follows

that there is no position j for which cj = c′j = 0. Therefore, since n is odd,

it follows that for each x ∈ {1, 2}n, the size of the set {(c, x) : c ∈ C} is at
most n−1

2 , i.e.,

|S| ≤ 2n
n− 1

2
.
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Hence,

|C| = |S|
4
≤ 2n−3(n− 1) = 2w−1(w + 1) < 2w−1(w + 2) =

2w
(
w+2
w

)
w + 1

,

which contradicts Corollary 9.1. Thus, the proofs of the claims in the

theorem are completed.

Theorem 9.4 settles the existence question about ternary 1-perfect

constant-weight codes. It is natural to ask whether there exist e-perfect

constant-weight codes, except for the ones obtained Theorem 9.1 and the

ones obtained by Theorem 9.3. The answer is that there exists at least

one more such family of such codes that generalizes the ternary code of

length 4. This family is based on the extended 1-perfect Hamming codes

of length q + 2 over Fq, where q = 2r, that was presented in Theorem 4.4.

The new 1-perfect constant-weight codes are of length n = 2r + 2, weight

w = 2r + 1, over an alphabet with 2r + 1 symbols.

Let Q � Fq ∪ {∞}, where q = 2r and r ≥ 2, be the alphabet. The

symbol ∞ will play the role of the symbol two for the construction of

the ternary code when q = 2. As in the ternary case, at the end of the

construction we interchange the symbols zero and ∞ (in the ternary case

this was done by adding the all-one word to all the codewords), which will

imply that all the codewords will have weight w. For r > 1, the construction

works only for w = q + 1 and n = w + 1 = 2r + 2.

Consider the cyclic q-ary Hamming code C of length w. Clearly, C has

minimum Hamming distance 3 and the extended code C∗ has minimum

Hamming distance 4 (see Theorem 4.4).

For 0 ≤ i < w we define C∗i to be the coset of C∗ that contains ei. The

code T∞ is obtained from C∗ by replacing the symbol in the last position

by the symbol ∞. Similarly, the code Ti is obtained from C∗i by replacing,

in each codeword of C∗, the symbol in position i + 1 modulo w by the

symbol ∞. Clearly, T∞ and each Ti has minimum Hamming distance 3.

Define

T � T∞ ∪
w−1⋃
i=0

Ti.

This construction leads to the following theorem.

Theorem 9.5. The code T is a 1-perfect constant-weight code. For q = 2r,

r ≥ 2, there exists a 1-perfect constant-weight code of length q + 2 and

weight q + 1, over an alphabet with q + 1 symbols.
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By Theorem 4.10, for length greater than q + 1, there is no extended

Hamming code with minimum Hamming distance 4. Therefore, the idea

of the construction does not work (except of course if r = 1 which yields

the ternary alphabet). Perfect codes with parameters corresponding to

Corollary 9.1 and Lemma 9.2, however, could still exist.

Problem 9.1. Prove or disprove that the only nonbinary 1-perfect

constant-weight codes are those introduced in this section, i.e., the ones

with n = w obtained from the Hamming scheme, the ternary ones of

length 2r, where r ≥ 2, and the ones of length q + 2 over an alphabet

of size q = 2r, where r ≥ 2.

Problem 9.2. Are there e-perfect constant-weight codes with e > 1 except

for the ones implied by Theorem 9.1? Develop the theory for such codes

over any alphabet with q + 1 symbols, q > 1.

9.2 Nonbinary Diameter Perfect Constant-Weight Codes

We will now consider nonbinary diameter perfect constant-weight codes. It

appears that there are a few families of such codes. We will distinguish

between six families of such codes and four families of related maximum

size anticodes.

We already saw that Steiner systems are diameter perfect codes in the

Johnson scheme. Steiner systems are binary constant-weight codes. It is

quite natural to ask whether the generalized Steiner systems defined in

Section 3.1 are also diameter perfect codes? Recall that GS(t, w, n, q) is

a constant-weight code C of length n, weight w for each codeword, over

an alphabet Q of size q such that the minimum Hamming distance of C is

2(w − t) + 1 and each word of length n and weight t over Q is covered by

exactly one codeword of C. By Lemma 3.3, the number of codewords in a

generalized Steiner system GS(t, w, n, q) is(
n
t

)(
w
t

) (q − 1)t .

To verify whether a GS(t, w, n, q) is a diameter perfect code, we have to

prove the code-anticode bound for nonbinary constant-weight codes and

find the maximum size of an anticode with codewords of length n and

weight w, over Q, such that the maximum Hamming distance of the an-

ticode is 2(w − t). To prove the code-anticode bound we have to prove
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the local inequality lemma, which was proved in Lemma 8.6 for the John-

son bound. This is required since the code-anticode theorem of Delsarte

(see Section 2.5) cannot be applied because the metric is not an association

scheme. Moreover, our metric does not satisfy the conditions of Lemma 2.14

since we do not have a binary operation that will make the metric right or

left distance invariant. The same technique that was used in the proof of

Lemma 8.6 will not work for the nonbinary case and the proof technique

should be amended. For our proof of such a lemma for nonbinary constant-

weight codes, it is required to prove the following simple lemma.

Lemma 9.6. For each q ≥ 2 and any given pair (t, n), where 1 ≤ t ≤ n,

there exists some λ ≥ 1 for which there exists an OAλ(t, n, q).

Proof. Consider a matrix M whose rows are all the qn distinct words

of length n over Zq. Clearly, in each projection of t coordinates from M
each t-tuple is contained in qn

qt = qn−t distinct rows (codewords). Thus, the

qn × n matrix M forms an OAλ(t, n, q), where λ = qn−t.

Lemma 9.7. Let CD be a constant-weight code of length n and weight w

over Zq, q > 2, with distances between the codewords of CD taken from a

subset D. Let A be a subset of Jq(n,w) and let C′D ⊆ A be the largest code

in A with distances taken from D. Then

|CD|(
n
w

)
(q − 1)w

≤ |C′D|
|A| . (9.2)

Proof. Consider the set of pairs

P = {(c, π) : c ∈ CD, supp(π(c)) = supp(a), π ∈ Sn, a ∈ A}.

For a fixed c ∈ CD and a fixed a ∈ A there are exactly w!(n − w)! choices

for π, for which supp(π(c)) = supp(a). Hence, the number of pairs in P
equals to |CD| · |A| · w! · (n− w)!.

For the word v = (v1, v2, . . . , vn) ∈ Z
n
q−1, we form a subset Av of

Jq(n,w) as follows. Given a word x = (x1, x2, . . . , xn) of A, the word

av = (a1, a2, . . . , an) is constructed in Av as follows.

(1) If xi = 0, then ai = xi = 0.

(2) If xi �= 0, then ai = xi + vi when xi + vi < q and ai = xi + vi − (q− 1)

when xi + vi ≥ q. In other words, if j = vi, then ai takes the j-th

nonzero value of Zq after the value of xi, where 1 follows q − 1.

Using this definition, we have that supp(av) = supp(x).
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Clearly, Av is obtained from A by permuting the nonzero elements

in each one of the w nonzero coordinates, of the words in A, by some

w cyclic permutations (a permutation for each coordinate) on the q − 1

nonzero symbols of Zq (which can be different for each coordinate) and

hence |Av| = |A|. Moreover, Av and A are isomorphic subsets of Jq(n,w).

Now, let M be any orthogonal array OAλ(w, n, q − 1), for some λ ≥ 1,

whose existence is implied by Lemma 9.6. The number of rows of M is

λ(q − 1)w.

Consider now the set of triples

T = {(c, π, v) : c ∈ CD, π ∈ Sn, v ∈M, π(c) ∈ Av}.

Let (c, π) be a pair in P, i.e., c ∈ CD, π ∈ Sn, and supp(π(c)) = supp(a)

for some a ∈ A. Let X = supp(a) and let u = (u1, u2, . . . , un) be a word

in Z
n
q−1 such that a = π(c)u. It is easy to verify that for each word v ∈ Z

n
q−1,

for which the projection of the coordinates in X on u and the projection

of the coordinates in X on v are equal, we have that π(c)v = a = π(c)u.

Since M contains λ rows for which these projections are equal, it follows

that |T | = λ |P|.
Note, that for each permutation π ∈ Sn and two elements

x, y ∈ Jq(n,w), we have that d(π(x), π(y)) = d(x, y). This implies that

a fixed permutation π with a fixed row v ∈ M can transfer the elements

of CD into at most |C′D| elements of Av. Therefore, the number of triples

in T is at most λ · |C′D| · n! · (q − 1)w which implies that

λ · |CD| · |A| · w! · (n− w)! = λ · |P| = |T | ≤ λ · |C′D| · n! · (q − 1)w ,

and hence the claim of the lemma is proved.

Lemma 9.7 implies that the code-anticode bound holds for Jq(n,w).

Therefore, we can use this bound to search for nonbinary diameter perfect

constant-weight codes and related maximum size anticodes. The bound will

also yield interesting maximum size t-intersecting families that will be found

based on coding theory rather than through extremal combinatorics. We

distinguish between six families of such diameter perfect codes in Jq(n,w),

where q > 2.

[F1] Nonbinary diameter perfect constant-weight codes for which w = n.

[F2] Diameter perfect constant-weight codes over an alphabet of size 2k +1

for which w = n− 1.

[F3] Nonbinary diameter perfect constant-weight codes which are general-

ized Steiner systems.
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[F4] Nonbinary diameter perfect constant-weight codes for which d = w.

These codes are called maximum distance separable constant-weight

codes. Each such code has
(
n
w

)
(q − 1) codewords.

[F5] Nonbinary diameter perfect constant-weight codes for which d = w+1.

Such a code has
(
n
w

)
codewords.

[F6] Nonbinary diameter perfect constant-weight codes for which d < w.

These codes are called multiple orthogonal arrays constant-weight

codes. Each such code has
(
n
w

)
(q − 1)w−d+1 codewords.

Remark 9.1. The number of codewords in the (n, d, w)q codes of the fam-

ilies [F4], [F5], and [F6] is
(
n
w

)
(q − 1)w−d+1. But, each has different prop-

erties and constructions and hence they are separated.

Problem 9.3. Are there more families of diameter perfect constant-weight

codes, except for these six families. We believe that these six families

contain all such codes, but a proof for such a claim can be very challenging.

One possible direction is to show sets of parameters with tradeoff between

n, w, and d, where such codes cannot exist.

9.3 Diameter Perfect Codes for which w = n

In the first family, [F1], of diameter perfect codes in Jq(n,w) we have

that w = n. Theorem 9.1 is adapted for this case.

Theorem 9.6. There exists a D-diameter perfect code of length n over an

alphabet of size q − 1 in the Hamming scheme, if and only if there exists a

D-diameter perfect constant-weight code of length n and weight w = n over

an alphabet of size q.

Proof. Let C be a D-diameter perfect code of length n over the alphabet

{1, 2, . . . , q − 1} in the Hamming scheme. Let A be the related maximum

size anticode with diameter D for which |C| · |A| = (q − 1)n. We define

the same code C′ � C and the same anticode A′ � A over the extended

alphabet Q � {0, 1, 2, . . . , q− 1}. We claim that C′ is a D-diameter perfect

constant-weight code of length n, weight w = n, and minimum Hamming

distance D + 1, over Q. We also claim that A′ a maximum size anticode

of length n, weight w = n, and maximum Hamming diatance D, over Q,

respectively. Clearly, the minimum Hamming distance of C′ is equal to the

minimum Hamming distance of C, i.e., D + 1. Similarly, the maximum

Hamming distance of A′ is equal to the maximum Hamming distance of A,
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i.e., D. Moreover,

|C′| · |A′| = |C| · |A| = (q − 1)n = |Jq(n, n)| ,
which completes the proof of our claim.

Let C be a D-diameter perfect constant-weight code of length n and

weight w = n over an alphabet Q = {0, 1, 2, . . . , q − 1}. Using similar

arguments, in reverse order, the same code defined over Q− is a D-diameter

perfect code, of length n over Q−, in the Hamming scheme. Similarly, ifA is

a maximum size anticode, of length n and weight w = n, with diameter D,

over Q, then the same anticode defined over Q− is a maximum size anticode

over Q−.

In other words, Theorem 9.6 implies that when w = n, in each word

all the coordinates are nonzero. Hence, the words in Jq(n, n) are over an

alphabet with only q − 1 symbols. This implies that any code in Jq(n, n)

can be considered as a code in the Hamming scheme over an alphabet with

q− 1 symbols. Therefore, any D-diameter perfect code of length n over an

alphabet with q − 1 symbols is also a D-diameter perfect code in Jq(n, n).

Similarly, each maximum size anticode of length n and diameter D over

an alphabet with q − 1 symbols (with no zeroes) is also a maximum size

anticode with diameter D in Jq(n, n). All the linear diameter perfect codes

in the Hamming scheme over an alphabet whose size is a prime power

were characterized in Theorem 4.9. Accordingly, the family implied by

Theorem 9.6 also includes codes derived from the extended Hamming codes,

extended Golay codes, and MDS codes. Other nonlinear codes include

codes with the same parameters as the Hamming codes and also orthogonal

arrays with index unity over any alphabet and not necessary a prime power

alphabet. Each such nonbinary diameter perfect constant-weight code with

w = n imply some maximum size nonbinary constant-weight anticodes for

which w = n.

9.4 Codes with Alphabet Size 2k + 1 for which w = n− 1

By Theorem 2.11 an e-perfect code in Jq(n,w) is also a (2e)-diameter perfect

code in Jq(n,w). All known nontrivial nonbinary perfect constant-weight

codes of length n have weight w = n−1 and they form an important class of

the second family [F2] of nonbinary diameter perfect constant-weight codes.

Two classes of such perfect codes are known and constructed in Section 9.1.

The first class consists of ternary codes of length 2r, weight 2r − 1, and

minimum Hamming distance 3. The second class consists of codes over
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an alphabet with 2r symbols, length 2r + 2, weight 2r + 1, and minimum

Hamming distance 3. For these two classes, balls are the maximum size

anticodes, but there are other maximum size anticodes.

Lemma 9.8. If n ≥ 4, then the size of an anticode with diameter 2 in

J3(n, n− 1) is at most n.

Proof. Assume that A is an anticode with diameter 2 in J3(n, n−1) having

at least n anticodewords.

Assume first that there are two anticodewords where the unique zero is

in the same position.

Assume further that the distance between these two anticodewords is

two and w.l.o.g. these two anticodewords are 0111 · · · 1 and 0221 · · · 1. It is
easy to verify that there is no other anticodeword whose zero is not in the

first position. This implies that the only two words that can be added to

the anticode are 0121 · · · 1 and 0211 · · · 1, and hence the anticode has size

four.

Assume now that the distance between these two anticodewords is one

and w.l.o.g. these two anticodewords are 0111 · · · 1 and 0211 · · · 1. It is now
easy to verify that any anticodeword without a zero in the first position

must have its zero in the second position and there are at most two such

anticodewords and in this case (one or two anticodewords with a zero in

the second position) there are no more anticodewords with a zero in the

first position. Thus, in this case their are either four anticodewords or n

anticodewords which have their zero in the same position.

If there are no two anticodewords with zeroes in the same position, then

clearly size of A is at most n and the claim of the lemma follows.

Lemma 9.8 implies that if n ∈ {2, 3}, then the maximum size anticode

in J3(n, n−1) has four anticodewords and if n ≥ 4, then the maximum size

anticode in J3(n, n−1) has n anticodewords. There are two nonisomorphic

anticodes with n anticodewords when n ≥ 5 (there are four nonisomorphic

when n = 4). The first anticode of zise n is a ball and the second anticode

consists of n binary words in J3(n, n−1). Perfect diameter constant-weight

codes in this case are perfect constant-weight codes since they meet the

sphere-packing bound which is the same as the code-anticode bound in this

case.

Example 9.1. If n = 3 then the four anticodewords {011, 012, 110, 210}
form an anticode in J3(3, 2) whose diameter is two. Another nonisomorphic

anticode of the same size and diameter is {011, 012, 021, 022}.
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If n = 4 then there are four nonisomorphic anticodes of size four and

diameter two in J3(4, 3). These four anticodes can be taken as:

(1) {1101, 1102, 1110, 1120}.
(2) {1011, 1012, 1021, 1022}.
(3) {0111, 0211, 0121, 0112}.
(4) {0111, 1011, 1101, 1110}.

If n = 7 then there are two nonisomorphic anticodes of size 7 with

diameter two in J3(7, 6). These two anticodes can be taken as:

(1) {0111111, 0211111, 0121111, 0112111, 0111211, 0111121, 0111112}.
(2) {0111111, 1011111, 1101111, 1110111, 1111011, 1111101, 1111110}.

Are there ternary perfect 3-diameter codes in J3(n, n − 1)? To answer

this question we first find the size of the maximum size anticode with di-

ameter 3.

Lemma 9.9. If n ≥ 5, then the size of an anticode with diameter 3 in

J3(n, n− 1) is at most 3n− 2.

Proof. Assume that A is an anticode with diameter 3 in J3(n, n− 1) hav-

ing at least 2n + 1 anticodewords. This implies that there are at least 3

anticodewords x, y, z with a zero in a common position. It is easy to verify

that the distance between two of these three anticodewords is at least two.

We distinguish between two cases depending on whether this distance is

two or three.

Case 1. Assume that two of the anticodewords, say x and y, have dis-

tance 3. W.l.o.g. we assume that

x = 011111 · · · 1,
y = 022211 · · · 1,
z = 0122φ1 · · · 1,

where φ can be either 1 or 2. By the structure of x ans y we have that

there is no anticodeword with a zero in one of the last n − 4 positions.

Moreowver, if the zero is in position 2, 3, or 4, then the last n− 4 positions

are ones. Hence, there are only the following 8 (or less if φ is 1) possible

anticodewords at distance at most 3 from each of x, y, z:

1012 1 · · · 1, 2012 1 · · · 1, 1021 1 · · · 1, 2021 1 · · · 1,
2120 1 · · · 1, 1120 1 · · · 1, 2102 1 · · · 1, 1102 1 · · · 1.
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Since the distance between a pair of words in a column (of these 8 possible

anticodewords) is 4, it follows that at most four of these words are contained

in A. The set of anticodewords in A with a zero in the first position form

a binary anticode of length n− 1 and diameter 3 in the Hamming scheme.

Such an anticode has at most 2(n − 1) anticodewords. Hence, in this case

A has at most 2n + 2 anticodewords and since 3n − 2 ≥ 2n + 2 if n ≥ 4,

the claim of the lemma follows,

Case 2. Assume now that x and y have distance 2. W.l.o.g. we assume

that

x = 01211 · · · 1,
y = 02111 · · · 1,
z = 011φ1 · · · 1.

Note, that if n ≥ 4, then there are at most n anticodewords with a zero

in the first position since these anticodewords form a binary anticode of

length n− 1 and diameter 2 in the Hamming scheme.

Consider now the number of anticodewords with a zero not in the first

position. There are 2(n − 3) words with a zero in the last n − 3 positions

that could be anticodewords in A. These words are

11101 · · · 1, 111101 · · · 1, . . . , 111 · · · 10, 111 · · · 101, (9.3)

21101 · · · 1, 211101 · · · 1, . . . , 211 · · · 10, 211 · · · 101. (9.4)

There are only eight words with a zero in the second or third position that

could be anticodewords in A. The first four words are

10111 · · · 1, 20111 · · · 1, 11011 · · · 1, 21011 · · · 1.

The other four words are

10211 · · · 1, 20211 · · · 1, 12011 · · · 1, 22011 · · · 1.

If n = 4 these eight words and the four anticodewords with a zero in the

first position form and anticode of size 12. But, each one of the last four

words is at distance four from each one of the words either in (9.3) or

in (9.4). Thus, if n ≥ 5, then there are at most n+ 2(n− 3) + 4 = 3n− 2

anticodewords in A.

Lemma 9.9 implies that if n ≥ 5, then the maximum size anticode in

J3(n, n−1) has at most 3n−2 anticodewords. Fortunately, such an anticode

with 3n − 2 anticodewords always exists. Let x be a word in J3(n, n − 1)

and let x1, x2 be the two words in J3(n, n) whose distance from x is exactly
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one, where x1 has a one instead of the zero in x and x2 has a two instead

of the zero in x. One can easily verify that the set

{y : d(x, y) ≤ 1 or d(x1, y) ≤ 1 or d(x2, y) ≤ 1, y ∈ J3(n, n− 1)},

is an anticode with diameter 3 in J3(n, n − 1), whose size is 3n − 2 and

hence it is a maximum size anticode.

Example 9.2. When n = 6 the following anticode in J3(6, 5) has diameter

3 and 16 anticodewords:

011111, 021111, 012111, 011211,

011121, 011112, 111011, 111101,

111110, 211011, 211101, 211110,

101111, 201111, 110111, 210111.

If a code C in J3(n, n−1) is a 3-diameter perfect code then by the code-

anticode bound we have that 3n − 2 divides |J3(n, n− 1)| = n2n−1. Since

gcd(3n − 2, n) = 1, it follows that 3n − 2 divides 2n−1, i.e., 3n − 2 = 22m

for some m. When m = 2 we have that n = 6 and there exists such a code

of cardinality 12 whose codewords are

011221, 022112, 102121, 201212,

120211, 210122, 212011, 121022,

221101, 112202, 111110, 222220.

The next value of m is 3 which implies that n = 22. Do we have a

3-diameter perfect code in J3(n, n − 1) for n = 22 or for a larger n? To

continue this discussion we will mention the concept of a perfect coloring.

A coloring of a graph is called a perfect coloring if the multiset of colors

of all neighbours of a vertex depends only on its own color. In particular

for a perfect 2-coloring there are two colors μ1 and μ2, for the vertices of

the graph, and the neighbours of the colors can be represented by an 2× 2

partition array [
a11 a12
a21 a22

]
,

where aij is the number of neighbours with the color μj of a vertex with the

color μi. We are interested in the 2-coloring of the n-dimensional hypercube

(the vertices are the elements of Fn
2 and x, y ∈ F

n
2 are connected by an edge

if and only if dH(x, y) = 1) which is isomorphic to H2(n). The following



February 21, 2022 16:26 ws-book9x6 Perfect Codes and Related Structures Perfect˙Codes˙Main page 261

NonBinary Constant-Weight Codes 261

tradeoff between the entries of the partition array of a perfect 2-coloring is

known.

Theorem 9.7. If {A,B} is a partition of the colors associated with a per-

fect 2-coloring of the graph H2(n) with the partition array[
a11 a12
a21 a22

]
,

where a12 �= a21, then a11 ≥ 3a21−a12

4 .

Assume now that C is a perfect 3-diameter code in J3(n, n− 1). By the

code-anticode bound we have that |C| = n2n−1

3n−2 .

Let C1 � {x ∈ F
n
2 : d(x, C) = 1} and C2 � F

n
2 \ C1. Clearly,

|C1| = 2 |C| = n2n

3n−2 and |C2| = 2n − |C1| = (n−1)2n+1

3n−2 .

Since C is a code in J3(n, n − 1), while C1 contain words only from F
n
2

which are at distance one from C, it follows that each codeword of C1 has

exactly one neighbour from C1 and hence n− 1 neighbours in C2. Consider
now the number of neighbours from C1 that a word from C2 has. Assume

(b1, b2, b3, . . . , bn) is a word in C2 and (β1, b2, b3, . . . , bn), (b1, β2, b3, . . . , bn)

are words in C1, where βi = 1 if bi = 2 and βi = 2 if bi = 1, where i ∈ {1, 2}.
The two associated codewords of C which are at distance one to these two

words in C1 must have their zeroes in different positions since the minimum

distance in C is 4. This implies that each word from C2 has at most n/2

neighbours from C1.
Each word in C1 is a neighbour of n− 1 words in C2 and hence the total

number of pairs in the set P � {(c1, c2) : c1 ∈ C1, c2 ∈ C2} is 2n

3n−2 (n−1).

Since |C2| = (n−1)2n+1

3n−2 , it follows that in average a word in C2 is contained in

n/2 pairs of P. Since each word in C2 has at most n/2 neighbours from C1,
it follows that it has exactly n/2 neighbours from C1. As a consequence

each word in C2 has exactly n/2 neighbours also from C2. If all the words

of C1 are colored by μ1 and all the words of C2 are colored by μ2, then this

2-coloring is a perfect 2-coloring with the partition array[
1 n− 1

n/2 n/2

]
.

But, by Theorem 9.7 such a perfect 2-coloring cannot exist if n > 10. On

the other hand we saw a code which yield such a perfect 2-coloring for

n = 6. Since such a perfect 2-coloring of Fn
2 exists only for n = 6, it follows

that a perfect 3-diameter code in J3(n, n− 1) exists only for n = 6.
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Finally, to end this section we will mention that 4-diameter perfect code

in J3(n, n− 1) is known to exist for each n = 2m, where m ≥ 3 is and m is

an odd integer and also for n = 64.

9.5 Generalized Steiner Systems

We continue with the third family, [F3], of nonbinary diameter constant-

weight codes. We already saw that a Steiner system S(t, w, n) is a binary

(w − t)-diameter perfect constant-weight code. For a nonbinary alphabet,

we can use the definition of generalized Steiner system that was introduced

in Section 3.1.

By Lemma 3.3 we have that the number of codewords in a generalized

Steiner system GS(t, w, n, q) is (
n
t

)(
w
t

) (q − 1)t .

By definition, the minimum Hamming distance ofa generalized Steiner sys-

tem GS(t, w, n, q) is 2(w − t) + 1.

Let As(n,w, t) be the anticode defined by

As(n,w, t) � {(
t times︷ ︸︸ ︷

1 · · · · · · 1, a1, . . . , an−t) : ai ∈ Zq, wt(a1 · · · an−t) = w−t} .
Note that when q = 2, we have that As(n,w, t) is identical to A2(n,w, t)

defined in Lemma 8.7.

The following lemma can be readily verified.

Lemma 9.10. The anticode As(n,w, t), where 2w − t ≤ n, over Zq, has

maximum distance 2(w− t) and
(
n−t
w−t

)
(q− 1)w−t anticodewords of length n

and weight w.

Lemma 9.11. If there exists a generalized Steiner system S(t, w, n, q), then

the anticode As(n,w, t) is a maximum size anticode of length n, weight w,

and maximum distance 2(w − t), over Zq.

Proof. Let C be a generalized Steiner system GS(t, w, n, q) and let A be

the anticode As(n,w, t). By the definition of a generalized Steiner system

and by Lemma 3.3, C has minimum Hamming distance 2(w− t)+1 and its

size is
(nt)
(wt )

(q− 1)t. By Lemma 9.10, the anticode As(n,w, t) has maximum

distance 2(w − t) and its size is
(
n−t
w−t

)
(q − 1)w−t. Since

|C| · |A| =
(
n
t

)(
w
t

) (q − 1)t ·
(
n− t

w − t

)
(q − 1)w−t =

(
n

w

)
(q − 1)w = |Jq(n,w)| ,
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it follows by the code-anticode bound that As(n,w, t) is a maximum size

anticode of length n and weight w, over Zq, whose maximum distance

is 2(w − t).

Corollary 9.3. A generalized Steiner system GS(t, w, n, q) is a 2(w − t)-

diameter perfect code.

As mentioned in the Chapter 2, an anticode in some metrics is equivalent

to a t-intersecting family and an anticode of maximum size is equivalent

to a t-intersecting family of the largest size. In our context we have by

Lemma 9.11 that As(n,w, t)) is such a family of maximum size. It is readily

verified that all the codewords in the anticode As(n,w, t) have the same

entries in the first t coordinates and hence they form a t-intersecting family

in Jq(n,w). This is a t-intersecting family of maximum size when the related

generalized Steiner system exists (but also for some other parameters),

i.e., the largest set in Jq(n,w) in which each pair of words have at least

t coordinates with the same nonzero entries.

9.6 Maximum Distance Separable Constant-Weight Codes

The next family, [F4], of nonbinary diameter perfect constant-weight codes

in Jq(n,w) contains codes for which some can be derived from codewords

of minimum weight in an MDS code (or an orthogonal array with the all-

zero codeword). In this family, however, there are also nonbinary codes

whose parameters are not associated with minimum weight codewords of

MDS codes or orthogonal arrays with index unity (since MDS codes or

orthogonal arrays with these parameters do not exist).

Assume we are given a constant-weight code of length n, and weight w

over an alphabet with q symbols and
(
n
w

)
(q − 1) codewords, where each

w coordinates are the support of exactly q − 1 codewords. If q = 2, then

the minimum distance of the code is 2. If q > 2, then there are at least

two codewords on each projection of w coordinates and hence the minimum

distance of the code should satisfy d ≤ w.

Definition 9.1. An (n,w, q) MDS constant-weight code (MDS-CW

code in short) is a constant-weight code of length n, weight w, minimum

distance d = w, over an alphabet with q symbols, and
(
n
w

)
(q−1) codewords.

In other words, each w coordinates form a support for exactly q − 1 code-

words.
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Note, that an (n,w, q) MDS-CW code is an (n,w,w)q code. If q = 2,

then the minimum distance of an MDS-CW code must be 2, and hence a

binary MDS-CW code exists if and only if n ≥ 2 and w = 2. If q > 2,

then codewords of minimum weight d = w in an MDS code over Fq form an

(n,w, q) MDS-CW code. Are there any other MDS-CW codes? The answer

is clearly positive when orthogonal arrays, which are nonlinear codes, take

the role of the MDS codes. W.l.o.g. we can assume that the all-zero row

is a codeword in such an orthogonal array. With this assumption, the

nonzero rows with minimum weight, in such an orthogonal array, define

an MDS-CW code as will be proved in Theorem 9.10. There are also more

MDS-CW codes that are not derived directly fromMDS codes or orthogonal

arrays.

MDS codes exist for all parameters that are specified in Theorem 3.29

and there are also some other infinite families of orthogonal arrays. Finally,

by Theorem 3.4, OA(2, n, q) is equivalent to a set of n− 2 pairwise disjoint

orthogonal Latin squares of order q. From all these facts, one can construct

MDS-CW codes with various parameters. We are interested in introducing

constructions that are not derived from the codewords of minimum weight

in an orthogonal array. Hence, we turn our discussion first to bounds and

constructions for MDS-CW codes and their connection with orthogonal

arrays.

Theorem 9.8. If there exists an (n,w, q) MDS-CW code, then there exists

an (n− 1, w, q) MDS-CW code.

Proof. Let C be an (n,w, q) MDS-CW code. Shortening C, with respect

to any coordinate, yields an (n− 1, w, q) MDS-CW code.

Theorem 9.9. If there exists an (n,w, q) MDS-CW code, then there exists

an (n− 1, w − 1, q) MDS-CW code.

Proof. Let C be an (n,w, q) MDS-CW code and define

C1 � {(c1, c2, . . . , cn−1) : (c1, c2, . . . , cn−1, cn) ∈ C, cn �= 0}.
It is readily verified that C1 is an (n− 1, w − 1, q) MDS-CW code.

Theorem 9.10. The rows of weight w = n− t+ 1 in an orthogonal array

OA(t, n, q), which contains the all-zero row, form an (n,w, q) MDS-CW

code.

Proof. Assume that A is an OA(t, n, q) over an alphabet Q with q sym-

bols that contains an all-zero row. The first step is to prove that any
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w = n− t+ 1 coordinates are supports of exactly q − 1 codewords. This

will also prove the weight w of the code. Assume that the orthogonal ar-

ray A is on the set of coordinates Zn. Given any set W of w coordinates,

if x ∈ W , then Zn \ W ∪ {x} contains n − (n − t + 1) + 1 = t coordi-

nates, which must include all possible t-tuples since in an OA(t, n, q), each

t-tuple, over Q, is contained exactly once in any projection on t coordinates

of A. By taking the q − 1 words with t− 1 zeroes in the t− 1 coordinates

of Zn \ W and each of the q − 1 nonzero symbols of the alphabet Q in

the coordinate of x, we must have that the corresponding q − 1 rows in A

have weight w, i.e., all the other coordinates are nonzero. Otherwise the

all-zero t-tuple will be contained twice in some t coordinates, one in these

q − 1 rows and one in the all-zero row. This completes the proof of the

first step as the set W can be taken as any set of w coordinates. Finally,

the minimum Hamming distance of the code is also an immediate result

since by Theorem 3.3, the minimum distance of the code derived from an

OA(t = n− w + 1, n, q) is w.

Corollary 9.4. If there exists an OA(t, n, q), then there exists an

(n, n− t+ 1, q) MDS-CW code.

Trivial MDS-CW codes are derived similarly to (or from) trivial or-

thogonal arrays. For w = 1 all possible words of weight one and length n

over an alphabet of size q form an (n, 1, q) MDS-CW code related to an

OA(n, n, q). For w = 2, the set of all
(
n
2

)
(q− 1) possible words with weight

two with two equal nonzero entries on the two nonzero coordinates forms

an (n, 2, q) MDS-CW code. This code is of size
(
n
2

)
(q − 1) and is related

to an OA(n − 1, n, q). For w = n, the set {(α, α, . . . , α) : α ∈ [q − 1]}
forms an (n, n, q) MDS-CW code related to an OA(1, n, q). The construc-

tion of MDS-CW codes from orthogonal arrays is simple, but the main

question is whether there exist MDS-CW codes that cannot be obtained

from orthogonal arrays. This will be the next goal in our exposition.

Theorem 9.11. If there exists an (n,w, q1) MDS-CW code and there exists

an (n,w, q2) MDS-CW code, then there exists an (n,w, q1+q2−1) MDS-CW

code.

Proof. Assume that there exists an (n,w, qi) MDS-CW code Ci over Qi,

i = 1, 2, where Q1 ∩ Q2 = {0}. It is easy to verify that C1 ∪ C2 is an

(n,w, q1 + q2 − 1) MDS-CW code over Q1 ∪Q2.
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Corollary 9.5. If there exists an (n,w, q) MDS-CW code, then there exists

an (n,w, r(q − 1) + 1) MDS-CW code for each r > 0.

By Corollary 9.4, from an OA(2, n, q) we can obtain an (n, n − 1, q)

MDS-CW code. Now, we will show another type of an MDS-CW code

obtained from an OA(2, n, q). Assume A is an OA(2, n, q) over [q], which

implies that there are no zeroes in the array, such that the first q symbols

in the first column of A are ones, the next q symbols in the first column are

twos, and so on. Delete the first column of A to obtain an array B. In B,

replace the first symbol in the first q rows with zeroes, the second symbol

in the next q rows will be replaced with zeroes, the third symbol in the next

q rows will be replaced with zeroes, and so on. Rows for which no symbol

was replaced are removed and the new array obtained is M. Clearly, the

array M has n− 1 columns and, therefore, (n− 1)q rows (note that in an

OA(2, n, q) there are q2 rows and by Corollary 3.5 we have that n ≤ q + 1,

and hence there are at least (n−1)q rows in the array A and in the array B).

The constructed array M is an (n − 1, n − 2, q + 1) MDS-CW code that

implies the following theorem.

Theorem 9.12. If there exists an OA(2, n, q), then there exists an

(n− 1, n− 2, q + 1) MDS-CW code.

An (n− 1, n− 2, q + 1) MDS-CW code obtained by Theorem 9.12 can-

not be always extended into an OA(2, n, q + 1). For example, from an

OA(2, 6, 5) (which is equivalent to four orthogonal Latin squares of order 5

by Theorem 3.4), we obtain by Theorem 9.12 a (5, 4, 6) MDS-CW code. If

this (5, 4, 6) MDS-CW code forms the 5 · 44 rows of minimum weight of an

orthogonal array, then this array will be an OA(2, 5, 6), which is equiva-

lent to three orthogonal Latin squares of order 6. But, by Theorem 3.27,

there is no pair of orthogonal Latin squares of order 6, and hence there

is no OA(2, 4, 6) and, of course, no OA(2, 5, 6). More generally, from an

OA(2, q + 1, q) (which is equivalent to q − 1 orthogonal Latin squares of

order q by Theorem 3.4), where q is a power of a prime, we obtain by The-

orem 9.12 a (q, q−1, q+1) MDS-CW code. If this code forms the minimum

weight codewords of an orthogonal array, then this orthogonal array will

be an OA(2, q, q+1). If q+1 is not a power of a prime, no such orthogonal

array is known. The cases when both q and q + 1 are powers of primes

are quite rare. These cases are related to Mersenne primes when q + 1 is

a power of two or Fermat primes when q is a power of 2. Combinations

of the arrays obtained from Theorem 9.12, other known MDS-CW codes
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obtained from orthogonal arrays, Theorem 9.11, and Corollary 9.5, would

result in other MDS-CW codes that cannot be obtained from the known

parameters of orthogonal arrays.

The construction that led to Theorem 9.12 will be generalized in Sec-

tion 9.8 to obtain other MDS-CW codes and also other types of nonbinary

diameter constant-weight codes.

We now want to derive bounds on the size of the alphabet, q, of an

(n,w, q) MDS-CW code for 3 ≤ w ≤ n− 1. If w ≤ n− 1, we know that on

each support of size w there are q − 1 codewords. These codewords have

distinct nonzero symbols in each coordinate and in each coordinate each of

the nonzero q−1 symbols appears. Let S be such a set of codewords whose

support is the first w coordinates. Another codeword c that shares exactly

w − 1 coordinates with the q − 1 codewords of S cannot have more than

one common symbol with each of these q − 1 codewords (if they share the

same nonzero symbols in two coordinates, then their distance will be less

than w). Each entry of these w−1 entries in c must share a nonzero symbol

with a different codeword of S. Therefore, we must have q − 1 ≥ w − 1,

i.e., q ≥ w.

If w ≥ 3, we consider a set S of codewords with nonzero symbols in the

first w− 1 coordinates and the same nonzero symbol in the first coordinate

of all these codewords. This implies that |S| ≤ q − 1. Each codeword of S

must have its last nonzero symbol in a distinct coordinate from the last

n − w + 1 coordinates. Therefore, |S| ≤ n − w + 1. Moreover, each of

the last n − w + 1 coordinates must have a nonzero symbol for one of the

codewords in S. Therefore, |S| ≥ n − w + 1 and hence |S| = n − w + 1.

Finally, |S| ≤ q − 1 and hence q − 1 ≥ n− w + 1, i.e., q ≥ n− w + 2.

Thus, we have proved the following theorem.

Theorem 9.13. Let C be an (n,w, q) MDS-CW code.

• If w ≤ n− 1, then q ≥ w.

• If w ≥ 3, then q ≥ n− w + 2.

So far, we have constructed MDS-CW codes from orthogonal arrays. In

the next result we start with an MDS-CW code to obtain an orthogonal

array.

Theorem 9.14. If there exists an (n,w,w) MDS-CW code, where n > w,

then there exists an OA(2, w + 1, w).

Proof. Let C be an (n,w,w−1) MDS-CW code. We apply Theorem 9.8, by
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considering all the codewords with nonzero entries only in the first w + 1 co-

ordinates. These codewords form an (w + 1, w, w) MDS-CW code. If we

add the all-zero word to this code we obtain a code of length w+1 over an

alphabet with w symbols, (w−1)(w+1)+1 = w2 codewords, and minimum

distance w. Hence, this code is an OA(2, w + 1, w) and the claim of the

theorem follows.

Theorems 9.10 and 9.14 imply the following result.

Corollary 9.6. There exists an OA(2, w + 1, w) if and only if there exists

an (w + 1, w, w) MDS-CW code.

Given w and n, where 1 ≤ w ≤ n, there exists some alphabet of size q

for which there exists an (n,w, q) MDS-CW code since there exists an

[n, n − w + 1, w]q MDS code for each power of a prime q ≥ n − 1. Given

n and w, is there an q′ such that for each q ≥ q′ there exists an (n,w, q)

MDS-CW code? Such a result can be obtained based on the well-known

partition theorem of Frobenius.

Theorem 9.15. Every integer q, such that q > 22m+1 − 3 · 2m+1 + 3 can

be represented as q = r1(2
m − 1) + r2(2

m+1 − 1), for some rl, r2 ≥ 0.

Theorem 9.16. For each n and w there exists a q0 such that for each

q ≥ q0 there exists an (n,w, q) MDS-CW code.

Proof. Let m be the smallest integer such that 2m ≥ n − 1.

By Theorem 3.29, there exists an OA(n − w + 1, n, 2m) and hence

there exists an (n,w, 2m) MDS-CW code. Similarly, there exists an

(n,w, 2m+1) MDS-CW code. By Theorem 9.15 we have that every

integer q, such that q > 22m+1 − 3 · 2m+1 + 3, can be represented as

q = r1(2
m − 1) + r2(2

m+1 − 1), for some rl, r2 ≥ 0. Therefore, by Theo-

rem 9.11 and Corollary 9.5, for each n and w there exists a q0 such that for

each q ≥ q0 there exists an (n,w, q) MDS-CW code.

Let QMDS(n,w) be the smallest integer such that for each

q ≥QMDS(n,w) there exists an (n,w, q) MDS-CW code. The upper bounds

on QMDS(n,w) implied by Theorems 9.15 and 9.16 might be weak, while

the lower bounds implied by Theorem 9.13 might be impossible to attain.

This leads to the natural research problem.

Problem 9.4. Find better lower and upper bounds on QMDS(n,w).
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Usually, the bound implied by Theorems 9.15 and 9.16 can be improved

by the same technique used in Theorem 9.16, if we find a prime power q,

n− 1 ≤ q < 2m+1 such that q − 1 and 2m − 1 are relatively primes.

We continue with our goal to find diameter perfect codes in Jq(n,w) and

examine if an (n,w, q) MDS-CW code whose size is
(
n
w

)
(q−1) forms a diam-

eter perfect constant-weight code in Jq(n,w). Let Am(n,w, δ), 1 ≤ δ ≤ w,

be the anticode defined as follows

Am(n,w, δ) � {(a1, a2, . . . , aδ,
w−δ times︷ ︸︸ ︷
1 · · · · · · 1,

n−w times︷ ︸︸ ︷
0 · · · · · · 0) : ai ∈ Z

−
q , 1 ≤ i ≤ δ} .

The following lemma can be readily verified.

Lemma 9.12. The anticode Am(n,w, δ) has anticodewords of length n,

weight w, with maximum distance δ. The number of anticodewords in

Am(n,w, δ) is (q − 1)δ.

Lemma 9.13. If there exists an (n,w, q) MDS-CW code, then the anticode

Am(n,w,w − 1) is a maximum size anticode of length n, weight w, and

maximum distance w − 1, over Zq.

Proof. Let C be an (n,w, q) MDS-CW code and A be the anticode

Am(n,w,w − 1). By the definition, an (n,w, q) MDS-CW code, has min-

imum distance w and size
(
n
w

)
(q − 1). By Lemma 9.12, the anticode

Am(n,w,w − 1) has maximum distance w − 1 and size (q − 1)w−1. Since

|C| · |A| =
(
n

w

)
(q − 1) · (q − 1)w−1 =

(
n

w

)
(q − 1)w = |Jq(n,w)| ,

it follows by the code-anticode bound that the anticode Am(n,w,w − 1)

is a maximum size anticode of length n, weight w, and maximum dis-

tance w − 1, over Zq.

Corollary 9.7. An (n,w, q) MDS-CW code is a (w − 1)-diameter perfect

code.

Lemma 9.13 will be generalized later to show that Am(n,w, δ) is a max-

imum size anticode for other parameters too.

9.7 Codes for which d = w + 1

The fifth family, [F5], of nonbinary diameter perfect constant-weight codes

in Jq(n,w) is for d = w + 1. When d = w + 1 we are looking for an

(n,w + 1, w)q code, i.e., a constant-weight code of length n, weight w, and
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minimum Hamming distance w + 1, over Zq. In such a code, each subset

of w coordinates will be the support exactly one codeword, which implies

that the number of codewords is
(
n
w

)
. It is rather easy to verify that such

a code is a w-diameter perfect constant-weight code and it exists for any

given n and w as proved in the following theorem.

Theorem 9.17. If n and w are integers such that 1 ≤ w ≤ n−1, then there

exists a q0(w, n) such that for each q ≥ q0(w, n) there exist an (n,w+1, w)q
w-diameter perfect code C.

Proof. First, note that since the minimum distance of an (n,w + 1, w)q
code C is w+1, it follows that each subset of w coordinates can be a support

for at most one codeword. If each such subset of w coordinates supports

exactly one codeword, then the total number of codewords in C will be
(
n
w

)
.

Assume further that in C for each coordinate all the nonzero elements in the

codewords of C have distinct symbols. This implies that in each coordinate

there are
(
n
w

)
w
n =

(
n−1
w−1

)
nonzero symbols. Let q′ � 1+

(
n−1
w−1

)
and let Q be

an alphabet with q = q′ + ε symbols, where ε ≥ 0. Assign now for each

coordinate a different nonzero symbols from the q′+ ε− 1 nonzero symbols

of Q− to each codeword that has a nonzero symbol in this coordinate.

Clearly, C in an (n,w + 1, w)q code with
(
n
w

)
codewords.

Let A be the anticode Am(n,w,w) over Q. By Lemma 9.12, the anti-

code A, has diameter w and (q − 1)w anticodewords. Clearly,

|C| · |A| =
(
n

w

)
(q − 1)w = |Jq(n,w)|

and hence by the code-anticode bound, C is an (n,w + 1, w)q w-diameter

perfect constant-weight code over the alphabet Q of size q.

Corollary 9.8. If there exists an (n,w + 1, w)q code with
(
n
w

)
codewords,

then Am(n,w,w) is a maximum size anticode of length n, weight w, and

diameter w, over an alphabet with q symbols.

The proof of Theorem 9.17 implies that indeed an (n,w + 1, w)q
w-diameter constant-weight perfect code C has

(
n
w

)
codewords, where each

w-subset of w coordinates of C is the support of exactly one codeword

of C. In view of Theorem 9.17 our goal now is to find q0(w, n) which is the

smallest size alphabet q for such an (n,w + 1, w)q code exists.

Corollary 9.9. For each alphabet Q of size q, where q ≥ 1 +
(
n−1
w−1

)
, there

exists an (n,w + 1, w)q code, i.e., q0(w, n) ≤ 1 +
(
n−1
w−1

)
.
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Lemma 9.14. For each w ≥ 1 there exists an (w + 1, w + 1, w)w+1 code

which is a w-diameter perfect code.

Proof. Follows immediately from the fact that if there is a codeword on

each subset of w coordinates, then there are exactly w codewords with

nonzero symbols on each coordinates.

Corollary 9.10. If w ≥ 1, then q0(w,w + 1) = w + 1.

Theorem 9.17 implies the existence of an (n,w + 1, w)q code for each

q ≥ q0(w, n), but the upper bound 1+
(
n−1
w−1

)
on q0(w, n), inferred in Corol-

lary 9.9, is quite large. Can we find a better upper bound on q0(w, n)?

The answer is definitely positive and for this purpose we have the following

results.

Lemma 9.15. If n > w + 1, then q0(w, n) ≥ q0(w, n− 1).

Proof. Assume that C is an (n,w + 1, w)q w-diameter constant-weight

perfect code and let S be any subset of n−1 coordinates. By definition, the

set codewords whose supports are subsets of S form a w-diameter perfect

(n − 1, w + 1, w)q constant-weight code. Thus, the claim of the lemma

follows.

Corollary 9.11. If n > w + 1 then q0(w, n) ≥ w + 1.

Lemma 9.16. If n > w + 1, then q0(w, n) ≥ n− w + 2.

Proof. Let C be a w-diameter perfect (n,w + 1, w)q code C. Consider the
sub-code C′ of codewords from C for which there is no zero in the first

w − 1 coordinates. Since, each one of the other n−w+1 coordinates must

have a nonzero symbol with exactly one of these codewords, it follows that

the sub-code C′ contains n − w + 1 codewords. Since the distance of C′
is w+1, each pair of codewords of C′ have only two distinct coordinates in

their supports, and each pair of codewords of C′ have w−1 joint coordinates

with nonzero symbols, it follows that in each given coordinate of the first

w−1 coordinates the codewords of C′ have distinct nonzero symbols. Since

|C′| = n − w + 1, it follows that C has at least n − w + 1 nonzero symbols

and hence q ≥ n− w + 2.

Corollary 9.12. If n > 2, then q0(2, n) = n.

Proof. By Lemma 9.16 we have that q0(2, n) ≥ n and by Corollary 9.9 we

have that q0(2, n) ≤ n. Thus, q0(2, n) = n.
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The proof of the next theorem requires two more concepts, a one-

factorization and a near-one-factorization (see also Section 3.1). A one-

factorization of the complete graph Kn, n even, is a partition of the edges

of Kn (or all the pairs on an n-set) into perfect matchings. In other words,

the set

F = {F1,F2, . . . ,Fn−1}

is a one-factorization of Kn if each Fi, 1 ≤ i ≤ n− 1, is a perfect matching

(called a one-factor), and the Fi’s are pairwise disjoint.

If n is odd, then there is no perfect matching in Kn and we define a

near-one-factorization

F = {F1,F2, . . . ,Fn}

to be a partition of the edges in Kn into sets of n−1
2 pairwise disjoint edges,

where each Fi has one isolated vertex. Each Fi is called a near-one-factor.

Example 9.3. Let n be an odd integer and define the set

F = {F0,F1, . . . ,Fn−1},

where

Fi{{i, j} : i+ j ≡ i (mod n)}

for each i, 0 ≤ i ≤ n−1. For each such i, the only integer which is not con-

tained in a pair of Fi is i/2 modulo n. F is a near-one-factorization on Zn

from which a one-factorization on Zn+1 was constructed in Section 3.1.

Theorem 9.18. If n is odd, then q0(3, n) = n − 1, and if n is even, then

q0(3, n) = n.

Proof. By Lemma 9.16 we have that q0(3, n) ≥ n − 1 and this bound is

applied when n is odd.

Assume now that n is even and let C be a related code. Let C1 be the

set of codewords in C with a nonzero symbol in the first coordinate. By the

definition of this family of codes, it follows that |C1| =
(
n−1
2

)
= (n−1)(n−2)

2 .

Since the minimum distance of C1 is four and n is even, it follows that the

number of codewords in C1 with a given nonzero symbol σ in the first coor-

dinate is at most n−2
2 . Since |C1| = (n−1)(n−2)

2 , it follows that there are at

least n− 1 nonzero symbols in the first coordinate. Therefore, q0(3, n) ≥ n

if n is even.

Regarding the upper bound on q0(3, n) we distinguish again between

two cases, depending on whether n is odd or n is even.
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Case 1. n is odd.

Let N be the set of n coordinates and let Q � {0, σ1, . . . , σn−2} be an

alphabet of size n − 1. Let C be a code of length n and weight 3 with(
n
3

)
codewords, a codeword for each support of size 3. Consider the i-th

coordinate, i ∈ N and let F = {F1,F2, . . . ,Fn−2} be a one-factorization

on the n − 1 points of N \ {i}. Given a triple {i, j, k}, where {j, k} ∈ Fr,

we assign σr to the symbol in coordinate i of the codeword {i, j, k}, where
the nonzero symbols are in coordinates i, j, k. It is readily verified that we

have constructed a code of length n and weight 3, over an alphabet Q of

size n − 1. Clearly, if two codewords share at most one coordinate, then

their Hamming distance is at least 4. Now, assume that two codewords c1
and c2 share nonzero symbols in two coordinates i and j. If the symbols

in the i-th coordinate of c1 and c2 are distinct and the symbols in the

j-th coordinate of c1 and c2 are distinct, then clearly d(c1, c2) = 4. Now,

assume for the contrary that in one coordinate, say i, c1 and c2 have the

same symbol. By the construction, we have that the two other pairs of

nonzero coordinates in c1 and c2 must be disjoint (they belong to the same

one-factor), a contradiction. Therefore, the minimum distance of C is 4 and

hence q0(3, n) ≤ n− 1.

Case 2. n is even.

Let N be the set of n coordinates and let Q � {0, σ1, . . . , σn−1} be an

alphabet of size n. Let C be a code of length n and weight 3 with
(
n
3

)
code-

words, a codeword for each support of size 3. Consider the i-th coordinate,

i ∈ N and let F = {F1,F2, . . . ,Fn−1} be a near-one-factorization on the

n − 1 points of N \ {i}. Given a triple {i, j, k}, where {j, k} ∈ Fr, we as-

sign σr to the symbol in coordinate i of the codeword {i, j, k}. It is readily
verified that we have constructed a code of length n and weight 3, over an

alphabet Q of size n. As in Case 1 the minimum distance of C is 4 and

therefore, q0(3, n) ≤ n.

Thus, these two cases complete the proof of the theorem.

Similarly to the technique used in the proof of Theorem 9.18 one can

construct w-diameter perfect (n,w + 1, w)q codes, for relatively small q,

when w is small using techniques coming from combinatorial designs. The

same is true for w-diameter perfect (n,w + 1, w)q codes, when n is not

much larger than w. Such constructions are left for future research. More-

over, the technique used in Theorem 9.18 to obtain the upper bound on

q0(3, n) can be used to obtain better upper bounds on q0(w+1, n+1) than

the trivial one, i.e., q0(w + 1, n + 1) ≤ 1 +
(
n
w

)
. The idea is to partition
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the set of all binary words of length n and weight w into pairwise dis-

joint constant-weight codes of length n, weight w, and minimum Hamming

distance w + 2. Let χ(n,w) be the minimum number of codes in such a

partition. With an identical proof as the one in Theorem 9.18 we can prove

that q0(w + 1, n+ 1) ≤ χ(n,w) + 1. Note, that the minimum distance of

a constant-weight code is always even and hence the proof will be more

effective for even w, i.e., for bounds on q0(w+ 1, n+ 1) when w+ 1 is odd.

This kind of partitions lead to the following result.

Theorem 9.19. If w is even and p is the smallest prime power for which

p ≥ n, then

q0(w + 1, n+ 1) ≤ 1 + pw/2 .

Although the bound in Theorem 9.19 is much better than the trivial

bound q0(w+1, n+1) ≤ 1+
(
n
w

)
, it is reasonable to assume that this bound

can considerably be improved.

Problem 9.5. Improve the upper bound on q0(w, n).

9.8 Multiple Orthogonal Arrays Constant-Weight Codes

In the last family of diameter perfect constant-weight codes we have simi-

larly as in the families [F4] and [F5] that each projection of any w coordi-

nates is the support of some specified number of codewords. The distinction

from the families [F4] and [F5] is that the minimum distance of the code

in this family, [F6], is strictly smaller than the weight of the codewords.

More precisely we have the following definition.

Definition 9.2. An (n, d, w)q multiple orthogonal arrays constant

weight (MOA-CW in short) code is a code of length n, constant weight w,

minimum distance d < w, where each subset of w coordinates is the sup-

port of exactly (q − 1)w−d+1 codewords, i.e., these codewords form an

OA(w − d+ 1, w, q − 1).

One might asks why this family does not include the MDS-CW codes,

where d = w. The two families of codes, [F4] and [F6] share some prop-

erties such as similar expression of their size (which is also shared by the

family [F5]), they are both related to orthogonal arrays (MDS codes) in

a way that codewords with no zeroes in the same w coordinates form an

orthogonal array. The main reason for the distinction between the two

families is that an MDS-CW code either forms the codewords of minimum
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weight in an orthogonal array or has the same parameters as it would have

had, if such an orthogonal array have been possible. There is no similar

property for an MOA-CW code. The codewords of an MOA-CW code are

not associated with codewords of some weights in MDS codes or orthogonal

arrays. Another important distinction is in the simple union construction

of Theorem 9.11 which cannot be applied to MOA-CW codes. The similar-

ity of the two families will also be demonstrated in one construction of such

codes which is a joint construction for both families of codes. Similarly,

some bounds on the tradeoff between the parameters of these codes are

joint bounds for the two families of codes.

Theorem 9.20. An (n, d, w)q MOA-CW code is a (d−1)-diameter perfect

constant-weight code.

Proof. By definition, the size of an (n, d, w)q MOA-CW code C is(
n
w

)
(q − 1)w−d+1 and by Lemma 9.12 the related anticode A with diam-

eter d − 1 in Jq(n,w), Am(n,w, d − 1), has size (q − 1)d−1. Therefore we

have that,

|C| · |A| =
(
n

w

)
(q − 1)w−d+1(q − 1)d−1 =

(
n

w

)
(q − 1)w = |Jq(n,w)| ,

which by the code-anticode bound implies that C is a (d − 1)-diameter

perfect constant-weight code.

Corollary 9.13. If there exists an (n, d, w)q MOA-CW code, then

Am(n,w, d − 1) is a maximum size anticode of length n, weight w, and

diameter d− 1, over an alphabet with q symbols.

Next, we present a construction for MOA-CW codes which can also serve

as a construction for MDS-CW codes. The construction is a generalization

and a modification of a construction related to Theorem 9.12 to obtain

MDS-CW codes. LetM be an OA(t, n, q) over Q, where Q = {1, 2, . . . , q}.
Assume further that the symbols in the last coordinate of the first qt−1 code-

words of M are ones, the symbols in the last coordinate of the next

qt−1 codewords of M are twos, and so on, where the symbols in the last

coordinate of the last qt−1 codewords of M are q’s. Assume further that

q ≥
(
n−1
�

)
for a given �, 1 ≤ � ≤ n− 1. Let S1, S2, . . . , Sr, where r =

(
n−1
�

)
,

be a sequence containing all the �-subsets of {1, 2, . . . , n − 1}. Let M′ be
the

((
n−1
�

)
qt−1

)
× (n− 1) array constructed from M as follows.

(1) If S1 = {i1, i2, . . . , i�}, then replace all the symbols in the first qt−1 rows

of column ij in M, for each 1 ≤ j ≤ �, with zeroes.
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(2) If S2 = {i1, i2, . . . , i�}, then replace all the symbols in the next qt−1 rows

of column ij in M, for each 1 ≤ j ≤ �, with zeroes.

(3) Continue the same process with S3, S4, and so on until Sr.

(4) Remove the last column of M.

(5) Remove the last qt −
((

n−1
�

)
qt−1

)
rows of M.

Theorem 9.21. The rows of the array M′, obtained in the construction,

form an (n−1, n−t−�+1, n−�−1)q+1 code C that is an (n−t−�)-diameter

perfect constant-weight code over Q ∪ {0}.

Proof. Exactly one column was deleted from M to obtain M′ and hence

the length of the code M′ is n − 1. In each codeword of length n − 1

exactly � zeroes were inserted instead of nonzero symbols and hence the

weight of each codeword is n − 1 − �. Since M is an OA(t, n, q), it fol-

lows that |M| = qt, and since q ≥
(
n−1
�

)
, it follows that qt ≥

(
n−1
�

)
qt−1

and hence M has at least
(
n−1
�

)
qt−1 rows as required by the construction.

Furthermore, note that the minimum distance of the code defined byM is

n− t+1. Let c1 and c2 be two codewords inM′. If the zeroes in c1 and c2
are on the same � coordinates, then c1 and c2 were derived from two rows

c′1α and c′2α of M, where α ∈ {1, 2, . . . , q}, and d(c′1α, c
′
2α) ≥ n − t + 1.

Since the same � coordinates were changed in c′1 and c′2, respectively, to
obtain c1 and c2, respectively, it follows that d(c1, c2) ≥ n− t+1− �. If the

zeroes in c1 and c2 are not on the same coordinates, then c1 and c2 were

derived from two rows c′1α and c′2β, where α, β ∈ {1, 2, . . . , q}, α �= β, and

d(c′1α, c
′
2β) ≥ n − t + 1, which implies that d(c′1, c

′
2) ≥ n − t. The number

of coordinates in which both c1 and c2 have zeroes is at most � − 1 and

hence d(c1, c2) ≥ d(c′1, c
′
2)− (�− 1) ≥ n− t− (�− 1) = n− t− �+ 1. Thus,

d(C) ≥ n− t− �+ 1.

As an immediate consequence from the construction, the number of

rows in the array M′ is
(
n−1
�

)
qt−1 and its alphabet {0, 1, 2, . . . , q} is of

size q + 1. Let A be a related anticode of length n − 1 and diameter

n − t − �. By Lemma 9.12 there exists such a constant-weight anticode

Am(n− 1, n− 1− �, n− t− �), over Zq+1, whose size is qn−t−�. Therefore,

|C| · |A| = |C| · |Am(n− 1, n− 1− �, n− t− �)| =
(
n− 1

�

)
qt−1 · qn−t−�

=

(
n− 1

n− 1− �

)
qn−�−1 = |Jq+1(n− 1, n− �− 1)| ,

which implies by the code-anticode bound thatM′ is an (n−t−�)-diameter

perfect code.
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Corollary 9.14. When t = 2 the code M′, obtained in the construction,

is an (n− 1, n− �− 1, q + 1) MDS-CW code.

Corollary 9.15. When t > 2 the code M′, obtained in the construction,

is an (n− 1, n− t− �+ 1, n− �− 1)q+1 MOA-CW code.

Theorem 9.22.

(1) If there exists an (n, d, w)q MOA-CW code, then there exists an

(n− 1, d, w)q MOA-CW code.

(2) If there exists an (n, d, w)q MOA-CW code, then there exists an

(n− 1, d− 1, w − 1)q MOA-CW code.

Proof. Let C be (n, d, w)q MOA-CW code and define the following two

code

C1 � {(x2, x3, . . . , xn) : (0, x2, x3, . . . , xn) ∈ C}
and

C2 � {(x2, x3, . . . , xn) : (x1, x2, x3, . . . , xn) ∈ C, x1 �= 0} .

One can easily verify that C1 is an (n− 1, d, w)q MOA-CW code and C2 is

an (n− 1, d− 1, w − 1)q MOA-CW code.

After constructing (d − 1)-diameter constant-weight perfect codes for

d < w, where each w coordinates are the support of exactly (q − 1)w−d+1

codewords we would like to have some lower bounds on the alphabet size

of such codes and upper bounds on their length and their weight. Since

each w coordinates are the support of exactly (q − 1)w−d+1 codewords,

it follows that the projection on each w coordinates on these codewords

forms an orthogonal array OA(w − d+ 1, w, q − 1) and the related bounds

on orthogonal arrays in Corollary 3.5, Theorem 3.5, and Theorem 3.6, can

be applied. This implies the following theorem which present a tradeoff

between the alphabet size and the minimum distance of the code.

Theorem 9.23.

(1) If there exists an (n,w − 1, w)q MOA-CW code, then w ≤ q.

(2) If there exists an (n,w − δ, w)q MOA-CW code where 2 ≤ δ ≤ w − 1

and q is even, then w ≤ q + δ.

(3) If there exists an (n,w − δ, w)q MOA-CW code, where 2 ≤ δ ≤ w − 1

and q is odd, then w ≤ q + δ − 1.

(4) If there exists an (n,w − δ, w)q MOA-CW code, where q − 1 ≤ δ + 1,

then w ≤ δ + 2.
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Proof. All the claims are direct consequences of Corollary 3.5, Theo-

rem 3.5, and Theorem 3.6, where the length n in the OA(t, n, q) is restricted

to w, the alphabet size is q − 1, and w − δ = n− t+ 1.

Theorem 9.23 implies upper bounds on w as a function of the alphabet

size q and the minimum distance d of the code and, similarly, lower bounds

on q as a function of the weight w and the minimum distance of the code.

Since d = w−δ, it follows that these bounds can be written as bounds only

on the tradeoff between d and q.

Corollary 9.16.

(1) If there exists an (n, d, w)q MOA-CW code, where 1 ≤ d ≤ w − 2 and

q is even, then d ≤ q.

(2) If there exists an (n, d, w)q MOA-CW code, where 1 ≤ d ≤ w − 2 and

q is odd, then d+ 1 ≤ q.

The next bound presents a tradeoff between the length, the weight, and

the alphabet size, of the code. It is interesting to note that the minimum

distance has no influence on the bound.

Theorem 9.24. If there exists an (n, d, w)q MOA-CW code, then

n ≤ q + w − 2 (equivalently, q ≥ n− w + 2).

Proof. Let C be an (n, d, w)q MOA-CW code and consider a set S of code-

words in C which have only nonzero symbols in the first w − 1 coordinates

and in these w− 1 coordinates of S, all the codewords of S share the same

prefix, say v, of length w− d+ 1. Each two such codewords of S can differ

in at most two coordinates out of the last n − w + 1 coordinates and in

the first d− 2 coordinates. Hence, since the minimum distance of C is d, it

follows that two such codewords of S differ exactly in these d coordinates.

This implies the following observations:

(1) Consider the first w − 1 coordinates and one coordinate from the last

n− w + 1 coordinates. The codewords whose supports are these coor-

dinates form an OA(w − d + 1, w, q − 1) with exactly one codewords

with the prefix v in the first w− d+1 coordinates. This implies that S

contains exactly one codeword with a nonzero symbol in each one of

the last n− w + 1 coordinates and hence |S| = n− w + 1.

(2) Each two codewords of S differ in all the symbols of their last d− 2 coor-

dinates out of the first w−1 coordinates. This implies that q − 1 ≥ |S|.
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Thus, q− 1 ≥ n−w+1, which completes the proof of the theorem.

There are many intriguing question on MDS-CW codes and MOA-CW

codes. Some example are the following problems.

Problem 9.6. Present new constructions for MDS-CW codes (and also

for MOA-CW codes). The only construction, which is not derived directly

from an orthogonal array, which is known was analyzed in Theorem 9.21.

Another construction is the union construction for MDS-CW codes as men-

tioned in Theorem 9.11. Is there a related construction for MOA-CW

codes? We would like to see new different constructions as well as amend-

ments to the construction which was given in this section.

Problem 9.7. Present new bounds on the tradeoff between the parame-

ters of MDS-CW codes (and also for MOA-CW codes). This is especially

important to see some new directions which will enable to conjecture for

which parameters such codes exist.

Problem 9.8. Given 1 < d < w < n, does there exist a q0(n, d, w) for

which there exists an (n, d, w)q MOA-CW for all q ≥ q0(n, d, w)? Recall

that for MDS-CW codes such a value called QMDS(w, n) exists as was

proved in Theorem 9.16.

9.9 Comparison Between Maximum Size Anticodes

So far we have characterized the families of diameter perfect constant-

weight codes. Each family is associated with some maximum size anticodes.

In this section we will characterize these families of maximum size anticodes

and compare some of them.

The first family of maximum size anticodes is associated with the fam-

ily [F1] of nonbinary diameter perfect constant-weight codes for which

w = n. Clearly, for these anticodes the length of a codeword is n and

the weight of each codeword is w = n. Moreover, the anticodes are derived

from the associated anticodes in the Hamming scheme, by replacing the ze-

roes in the anticodes of the Hamming scheme with the additional nonzero

symbol of the constant-weight code.

The second family of maximum size anticodes is associated with the

family [F2] of diameter perfect constant-weight codes over an alphabet of

size 2k + 1 for which w = n − 1. Clearly, the related anticodes also have

length n and weight w = n − 1. If the nonbinary diameter perfect code is
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in fact a nonbinary perfect code with minimum distance 3, then the related

anticode is a ball, but another anticode with the same paramter as a ball

can be of the same size (see the discussion after the proof of Lemma 9.8). If

the nonbinary diameter perfect code is not a nonbinary perfect code, then

the related anticode is not a ball and it should be computed for each set

of parameters. If the minimum distance of the code is 4, i.e., the diameter

of the anticode is 3, then a maximum size anticode in J3(n, n − 1) has

3n− 2 anticodewords (see Lemma 9.9 and the discussion which follows it).

For diameter 4 the maximum size anticode in J3(n, n−1) has n2 codewords

if n ≥ 8 is a power of 2.

The third family of maximum size anticodes is associated with the family

of generalized Steiner system. The related anticode As(n,w, t) was defined

by

As(n,w, t) � {(
t times︷ ︸︸ ︷

1 · · · · · · 1, a1, . . . , an−t) : ai ∈ Zq, wt(a1 · · · an−t) = w−t} .

This anticode has diameter 2(w− t) (when n− t ≥ 2(w− t)) and its size is(
n−t
w−t

)
(q − 1)w−t.

The last family of maximum size anticodes is associated with the families

[F4], [F5], and [F6] of the diameter perfect constant-weight codes. The

related anticode Am(n,w, δ) was defined by

Am(n,w, δ) � {(a1, . . . , aδ,
w−δ times︷ ︸︸ ︷
1 · · · · · · 1,

n−w times︷ ︸︸ ︷
0 · · · · · · 0) : ai ∈ Z

−
q } .

This anticode has diameter δ and its size is (q − 1)δ.

One can be easily observe that nontrivial anticodes of the first two

families cannot have the same parameters since they have different weights

compared to their lengths. Moreover, it can be observed that nontrivial

anticodes from these two families cannot have the same parameters as the

anticodes from the last two families. In the first family of anticodes we have

that w = n. It should be noted that most anticodes in the second family are

over ternary alphabet and the other anticodes in this family have alphabet

smaller by one than the weight. Hence, we will compare the anticodes from

the last two families.

Unless the two anticodes represent one of two trivial cases (w = n and

δ = w− t; or w = t) they cannot be isomorphic. This can be observed from

the fact that the zeroes of Am(n,w, δ) are in n−w fixed coordinates, while

the zeroes of As(n,w, t) are in any combination of n−w coordinates in the

last n− t coordinates.
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Do there exist two different maximum size anticodes, related to two

diameter perfect codes of different families (when the length, weight, and

diameter are the same)? Note first that this implies that the related code

from the family [F4], or the family [F5], or the family [F6] must be also a

generalized Steiner system since the two codes will have the same parame-

ters. Since |As(n,w, t)| =
(
n−t
w−t

)
(q − 1)w−t and |Am(n,w, δ)| = (q − 1)δ, it

follows that the two anticodes are of equal size if and only if
(
n−t
w−t

)
= (q−1)�

for some nonnegative integer � = δ+ t−w. If � = 0, then either n = w (the

first trivial case) or w = t (the second trivial case). We distinguish now

between two cases depending on whether � = 1 or � > 1.

(1) If � = 1, then
(
n−t
w−t

)
= q − 1 and we distinguish between three cases,

depending on whether the related code is from the family [F4], the

family [F5], or the family [F6].

Case 1.1. The diameter perfect code is from the family [F4] which

implies that δ = w − 1 and hence t = �+ 1 = 2.

For the generalized Steiner system GS(2, w, n, q) and the (n,w, q)

MDS-CW code to be equal they must have the same minimum dis-

tance and hence 2(w−2)+1 = w, i.e., w = 3. Since also
(
n−2
w−2

)
= q−1,

it follows that n = q + 1. Two codes are considered in this case. The

first one is a generalized Steiner system GS(2, 3, q + 1, q) derived from

a 1-perfect Hamming code over Fq. The second one is an (q + 1, 3, q)

MDS-CW code derived from a [q + 1, q − 1, 3]q MDS code. For these

parameters the 1-perfect Hamming code is also an MDS code and hence

both constant-weight codes are the same code. There might be other

such constant-weight codes for q which is not a power of a prime, but

no such code is known.

Case 1.2. The diameter perfect code is from the family [F5] which

implies that δ = w and hence t = � = 1.

Since t = 1, it follows that
(
n−1
w−1

)
= q − 1 and hence by Corollary 9.9,

there exists an (n,w + 1, w)q code of the family [F5]. If w = 2, then

q = n and the two related codes form a generalized Steiner system

GS(1, 2, n, n) which is also an (n, 3, 2)n code from the family [F5]. Such

a code exists by Corollary 9.12. If 2 < w < n, then a related code with(
n
w

)
codewords cannot be a generalized Steiner system GS(1, w, n, q).

Case 1.3. The diameter perfect code is from the family [F6], for

which the MOA-CW code has minimum Hamming distance d < w,

which implies that δ = d− 1 and hence t = �+ 1 +w − d = w − d+ 2.

Hence, the related codes are generalized Steiner systems GS(t, w, n, q)
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and an (n, d, w)q MOA-CW code. The codes have the same minimum

Hamming distance and hence d = 2(w−t)+1 = 2d−3, i.e., d = 3, which

implies that w = t+1. Since
(
n−t
w−t

)
= q−1, it follows that n−t = q−1,

i.e., n = q + t− 1, and hence one of our codes is a generalized Steiner

system GS(t, t + 1, q + t − 1, q). By iteratively applying Lemma 3.4,

we obtain a generalized Steiner system GS(2, 3, q + 1, q) which is the

code in the previous case. Unfortunately, no generalized Steiner system

GS(t, t+ 1, q + t− 1, q) is known for t > 2.

(2) If � > 1, then
(
n−t
w−t

)
= (q − 1)� and first we have to consider the solu-

tions for this equation. We distinguish between three cases depending

whether w − t ∈ {1, n − t − 1}, w − t ∈ {2, 3, n − t − 3, n − t − 2}, or
3 < w − t < n− t− 3.

Case 2.1. If w − t ∈ {1, n− t− 1}.
If w − t = n − t − 1, then w = n − 1 and one code is a generalized

Steiner system GS(t, n − 1, n, q). By iteratively applying Lemma 3.4,

we obtain a generalized Steiner system GS(1, n − t, n − t + 1, q). By

Theorem 3.1 for such a code n− t+1 ≥ 1+(n− t−1)(q−1) and hence

such a code does not exist.

If w − t = 1, then one code is a generalized Steiner system

GS(t, t+ 1, n, q) for which the minimum distance is 3. Hence, the re-

lated codes from the families [F4], [F5], and [F6] are only those con-

sidered in Cases 1.1., 1.2., and 1.3., respectively. Therefore, no such

code will be found for � > 1.

Case 2.2. If w − t ∈ {2, n− t− 2}.
When w − t = 2 or w − t = n − t − 2, there are infinitely many

such solutions which satisfy the recursion am = 6am−1 − am−2 (where

q − 1 = am and � = 2) with the initial conditions a1 = 1 and a2 = 6.

Similar analysis to the previous cases shows that there is no diameter

perfect code from two different families in this case.

Case 2.3. If 2 < w − t < n− t− 2.

In this case the equation has exactly one solution for n − t = 50 and

w − t = 3 or w − t = n− t− 3. In the region for this solution there is

no code from two families.

Therefore, all those cases for which the anticodes As(n,w, t) and

Am(n,w, δ) have the same size and different structure (except for the anti-

codes in Case 1.1. given in Example 9.4 which follows, they are not related

to a diameter perfect codes from two different families. Moreover, they

might not be of maximum size. Note also, that the analysis could have
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taken other parameters into account. For example, by the diameter of the

anticodes we have that δ = 2(w − t).

In general, one can decide based on the size of a maximum size anticode

if the given parameters are in the range of a generalized Steiner system,

an MDS-CW code, or an MOA-CW code. Each such code is an optimal

nonbinary constant-weight code that meets the value ofAq(n, d, w). In some

cases these codes coincide as illustrated again in the following example

Example 9.4. Let C be a linear 1-perfect code of length q + 1, dimen-

sion q − 1, and minimum Hamming distance 3, over Fq. By its parame-

ters, this code is also an MDS code. The codewords of weight three of C
form a generalized Steiner system GS(2, 3, q + 1, q) and also a (q + 1, 3, q)

MDS-CW code. The related maximum size anticodes are As(q+1, 3, 2) and

Am(q + 1, 3, 2) which are of the same size (q− 1)2, but different structures.

If n = 5, w = 3, and q = 4, then the two anticodes have nine anticode-

words and the following structures:

As(5, 3, 2) = {11100, 11010, 11001, 11200, 11020, 11002, 11300, 11030, 11003},

Am(5, 3, 2) = {11100, 12100, 13100, 21100, 22100, 23100, 31100, 32100, 33100}.

We conclude this subsection with some more intriguing problems which

arise from our discussion.

Problem 9.9. Characterize all parameters for which As(n,w, t) is a max-

imum size anticode. Such a proof can be done by using extremal combi-

natorics for such anticodes related to binary words with constant weight.

Similarly, characterize all parameters for which Am(n,w, δ) is a maximum

size anticode.

Problem 9.10. Are there (q+1, 3, q) MDS-CW codes which are also gen-

eralized Steiner systems GS(2, 3, q + 1, q) beside those for prime power q?

Problem 9.11. Is there any GS(3, 4, q+2, q) for a prime power q? and for

non-prime power q?

Problem 9.12. Define the anticodes As(n,w, t) and Am(n,w, δ) in terms

of t-intersecting families. Find the maximum size of these t-intersecting

families (in other words, the maximum size of these anticodes) for all pa-

rameters, including the cases where d > w + 1.
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9.10 Notes

Section 9.1. The ternary perfect constant-weight codes were constructed

independently using the same technique in [van Lint and Tolhuizen (1999)]

and in [Svanström (1999a)]. The generalization for an alphabet of size q + 1,

where q is a power of 2, was presented in [Etzion and van Lint (2001)].

A perfect code with parameters corresponding to Lemma 9.2, however,

could still exist. Using ad hoc arguments one can exclude the case of 4-ary

alphabet, weight 4, and length 5 [Etzion and van Lint (2001)].

Constructions similar to the one used to construct nonlinear binary

perfect codes were used in [Krotov (2001b)] to obtain 22
2n−1−2 different

such codes. Other nonisomorphic 1-perfect ternary constant-weight codes

were constructed in [Krotov (2008)]. In both [Krotov (2001b, 2008)] it

was proved that a family 1-perfect constant-weight codes is equivalent to

a specific family of perfect matchings of the n-dimensional cube, i.e., the

graph whose vertices are the words of Fn
2 and two vertices x, y ∈ F

n
2 are

connected by an edge if and only if d(x, y) = 1.

A completely different approach for the nonbinary perfect constant-

weight codes problem is to generalize the Johnson distance in terms of

subsets. This approach was used in [Schwartz (2004)]. The codewords were

taken as subsets as follows. Let Q be an alphabet with q+1 symbols includ-

ing the zero symbol. A word of length n and weight w over Q is represented

by a w-subset from [n] × Q−, i.e., pairs of coordinates and values, under

the restriction that no coordinate appears twice in the w-subset.

Using this representation, the distance between two words x1 and x2 is

given by

d(x1, x2) = w − |x1 ∩ x2| .

When Q is the binary alphabet, this is simply the Johnson distance on

binary words of length n and weight w. When w = n the distance degener-

ates to the Hamming distance and the graph is isomorphic to the Hamming

graph with alphabet Q−, similarly to Theorem 9.1. Therefore, w.l.o.g. we

assume that w < n and |Q| > 2.

Denote by CW(n,w, q + 1, d) a constant-weight code of length n,

weight w, over an alphabet Q of size q + 1, and minimum distance d.

Lemma 9.17. If C is a CW(n,w, q + 1, d), then

|C|
(

w

w − d+ 1

)
≤
(

n

w − d+ 1

)
qw−d+1 .
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Proof. Take any projection of C onto w − d + 1 coordinates and remove

codewords containing a zero in any of these coordinates. Of the remaining

codewords, there cannot be any two that agree on all w−d+1 coordinates,

since then their distance is at most d− 1. If we count the total number of

such nonzero strings of length w−d+1, each original codeword contributes(
w

w−d+1

)
strings, while the total number of such strings is

(
n

w−d+1

)
qw−d+1,

and the claim in the lemma follows immediately.

For d = 3, the size of a sphere with radius one is given by

1 + (k − 1)w + w(n− w)q, so for a 1-perfect CW(n,w, q + 1, 3) to exist,

the following must hold:(
n
w

)
qw

1 + (q − 1)w + w(n− w)q

(
w

w − d+ 1

)
≤
(

n

w − d+ 1

)
qw−d+1 ,

which implies that

(n− w + 1)(n− w + 2)q2 ≤ 2(1 + (q − 1)w + w(n− w)q .

Note that for fixed q and w, and n tending to infinity, the left side of

the inequality grows as n2 while the right side of the inequality grows as n,

so there are no asymptotic 1-perfect constant-weight codes. On the other

hand, if q and n−w are fixed, and w tends to infinity, the right side grows

as w while the left side is a constant and hence there are also no perfect

constant-weight codes in this case. This does not exclude possible perfect

codes for specific parameters or when neither n nor w tends to infinity.

Similar arguments can be made for d > 3.

Finally, a perfect CW(6, 5, 3, 3) is given by the following set of code-

words:

011221, 022112, 102121, 201212,

120211, 210122, 212011, 121022,

221101, 112202, 111110, 222220.

This code is the same code as the 3-diameter perfect code in J3(6, 5).

Problem 9.13. Are there more perfect CW(n,w, q, d)? It would be inter-

esting to have even a few sporadic examples of such codes or to prove that

they cannot exist.

Problem 9.14. Provide nonexistence theorems for perfect CW (n,w, q, d)

and exclude as many parameters as possible.
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Problem 9.15. Is there a connection between this family of nonbi-

nary constant-weight codes and diameter perfect codes as the perfect

CW(6, 5, 3, 3) which is a 3-diameter perfect code in J3(6, 5).

Section 9.2. The discussion on the families of nonbinary diameter perfect

constant-weight codes is taken from [Etzion (2021)]. In this paper there is

a comprehensive analysis of diameter perfect constant-weight codes. The

proof of Lemma 9.7 was also presented in this paper.

Section 9.4. Ternary diameter perfect constant-weight codes in J3(n, n−1)
were mainly considered in [Krotov (2008)] who proved that such a code

with diameter 3 exist only for n = 6. The code of length 6 was first

presented in [Svanström (1999b)] and later in [Österg̊ard and Svanström

(2002)]. Theorem 9.7 used for the nonexistence proof was proved by [Fon-

Der-Flaass (2007)]. The proof of Lemma 9.9 was provided for this book by

Denis Krotov.

Ternary diameter perfect constant-weight codes with diameter 4 in

J3(n, n− 1) were considered first in [Krotov (2008)]. It was proved in this

paper that if there exists an APN (almost perfect nonlinear) permutation,

then there exists such a diameter perfect code. A bijection f : Fn
2 → F

n
2

is a almost perfect nonlinear function (permutation) of order n if and

only if the system of equations

α = x+ y,

β = f(x) + f(y),

has either no solution or two solutions for every pair (α, β) �= (0n, 0n). The

connections between these bijections and coding theory were considered

first in [Carlet, Charpin, and Zinoviev (1998)]. It was proved in [Krotov

(2008)] that if there exists an APN permutation of order n, then there

exists a 4-diameter perfect code in J3(2
n, 2n − 1). APN functions exist for

all odd orders [Carlet, Charpin, and Zinoviev (1998)] and hence there exists

a 4-diameter perfect code in J3(2
n, 2n − 1) if n is odd. When n is even the

situation is more complicated. It is trivial to see that there is no 4-diameter

perfect code in J3(4, 3). It was proved in [Krotov, Österg̊ard, and Pottonen

(2016)] that there is no 4-diameter perfect code in J3(16, 15). On the other

hand, an APN permutation of order 6 was demonstrated in [Browning,

Dillon, McQuistan, and Wolfe (2009)]. Therefore, there exists a 4-diameter

perfect code in J3(64, 63). This leads to the following question.

Problem 9.16. For which values of even n > 6 there exists a 4-diameter
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perfect code in J3(2
n, 2n − 1)? and for which such values there is no such

diameter perfect code?

Problem 9.17. Does there exists a D-diameter perfect code in J3(n, n−1),

where D ≥ 5?

Problem 9.18. Does there exists another D-diameter perfect code in

Jq(n, n− 1), where q > 3 and D ≥ 3?

Finally, the number of anticodewords in a maximum size anticode with

diameter 2 or 3 was considered in [Krotov (2008)].

Section 9.6. MDS-CW codes were introduced in [Etzion (1997)] and the

results in this section on these codes were taken mainly from this paper.

Theorem 9.16 can also be obtained from the results in [Blanchard

(1995)], but the proof of Theorem 9.16 is much simpler than the proof

in [Blanchard (1995)], and the bounds are much better than the ones that

can be obtained from the proofs in [Blanchard (1995)].

A Mersenne prime is a prime of the form 2n − 1. It is known that

for such a Mersenne prime, n must be a prime. Only 51 primes of this

form are known as of 2021, but it is conjectured that infinitely many exist.

A Fermat prime is a prime of the form 2n + 1. It is known that for a

Fermat prime, n = 2k. There are five known Fermat primes, 3, 5, 17,

257, and 65537 and it is conjectured that there are no more such primes.

The online encyclopedia on integer sequences that is regularly updated is

an excellent reference to view the up-to-date status of this sequences of

primes. This sequences of primes are mentioned in most books on number

theory. There are many papers on these two types of primes. An example

for such a paper is [Robinson (1954)].

The partition problem of Frobenius was used to find upper bounds on

QMDS(n,w). This partition problem is stated as follows. Given k rel-

atively prime positive integers a1, a2, . . . , ak, what is the largest integer

M(a1, a2, . . . , ak) which does not have a representation as
∑k

i=1 riai, where

each ri, 1 ≤ i ≤ k, is a nonnegative integer. The solution for the problem

when k = 2 can be used to obtain an upper bound on QMDS(n,w). It was

proved in [Sylvester (1884)] that M(a1, a2) = a1a2 − (a1 + a2).

Sections 9.7, 9.8. The results in these sections about the fifth family, [F5],

and the sixth family, [F6], of nonbinary diameter perfect constant-weight

codes were taken from [Etzion (2021)]. This fifth family, [F5], of codes

is very interesting and especially when finding bounds on q0(w, n). The
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partition problem, to obtain such a bound, was extensively considered

in [Brouwer, Shearer, Sloane, and Smith (1990)] and a proof of Theo-

rem 9.19 can be obtained from the codes and related partitions in [Gra-

ham and Sloane (1980)]. Other codes with the same parameters as the

ones constructed in Theorem 9.18 were also presented in [Chee, Dau, Ling,

and Ling (2008); Chee and Ling (2007)], by using different techniques from

combinatorial designs.

As for the sixth family, [F6], of code, we believe that there is still lot of

ground for further research on this family and the results in [Etzion (2021)]

given in this section are just the foundation for this family.

Section 9.9. The families of maximum anticodes for nonbinary constant-

weight codes that were defined in the section form a demonstration of the

strength of the code-anticode bound. Usually, such anticodes are found by

combinatorial methods related to extremal combinatorics. These anticodes

are associated with t-intersecting families of maximum size, something that

usually requires a lot of nontrivial combinatorial work. The existence of

diameter perfect codes implies that for the given parameters, associated

anticodes are of maximum size and also form the maximum size of the

associated intersecting family.

For example, it was proved in [Krotov, Österg̊ard, and Pottonen (2016)]

that for ternary codes if n = 2m ≥ 8, w = n − 1, and the diameter is 4,

then the maximum size anticode has size n2 and such an anticode can be

defined by the union of the set of ternary words with a unique zero (n

anticodewords) and all the other symbols are ones with the set of ternary

words with a unique zero and a unique two and all the other symbols are

ones (n(n − 1) anticodewords). We currently have no information about

anticodes with larger diameter.

Problem 9.19. What is the size and the structure of maximum size anti-

codes in J3(n, n− 1) whose diameter is at least 5?

Problem 9.20. What is the size and the structure of maximum size anti-

codes in Jq(n, n− 1), where q > 3?

Finally, the solution for the equation
(
n
2

)
= �2, with the recursive formu-

lar am = 6am−1 − am−2 with the initial condition a1 = 1 and a2 = 6, and

the extensive literature can be found in the Online Encyclopedia on Inte-

ger Sequences, sequence A001109. The solution for the equation
(
n
r

)
= �2,

where 3 ≤ r ≤ n− 3 was proved by Erdös [Le Lionnais (1983), p. 48].
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Codes Over Subspaces

So far all the perfect codes we considered use the Hamming distance (the

Johnson distance is no exception since it is exactly half of the Hamming

distance). We now turn our attention to codes over subspaces with a differ-

ent distance measure. Some codes related to subspaces were considered in

Section 7.2 in constructions of 1-perfect byte correcting codes. These sub-

spaces and their codes will also be important in the current chapter, which

considers codes over subspaces. The subspaces will be considered first in

the third important scheme (after the Hamming and the Johnson schemes)

based on a distance-regular graph, the Grassmann scheme. The Grassmann

scheme Gq(n, k) consists of all the k-subspaces of a given n-dimensional

space over Fq. The metric in this scheme is called the Grassmann metric.

This scheme began getting a lot of attention in the 21st century, due to

the important application of codes from this scheme in network coding. In

Section 10.1 the basic definitions for this scheme will be presented and it

will be proved that there are no perfect codes in the Grassmann scheme.

The setting for subsets related to codes in the Hamming scheme and

the Johnson scheme should be transferred to setting for subspaces. This

transformation from subsets to subspaces is known as a q-analog, where

the q-analog of subsets are subspaces, the q-analog of the size is the dimen-

sion, the q-analog of the binomial coefficients are the q-binomial coefficients

(known also as Gaussian coefficients), etc. Diameter perfect codes in this

scheme are q-Steiner systems (and also systems with the dual subspaces

of the subspaces in a q-Steiner system) that are the q-analog of Steiner

systems. Other diameter perfect codes do not exist in this scheme. These

systems will be the topic of Section 10.2. One family of q-Steiner systems is

formed by spreads which were mentioned in Chapter 7. An important class

of spreads are the normal spreads discussed in Section 10.3. A connection

289
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between these spreads and Hamming codes is proved in this section

In Section 10.4 the discussion will be expanded to subspaces, over F
n
q ,

with no restriction on the dimension. The set of all subspaces in F
n
q will be

called the projective space and will be denoted by Pq(n). The Grassmann

distance is generalized for this space to a distance called the subspace dis-

tance. It will be proved that also in Pq(n), there are no nontrivial perfect

codes. Next, in Section 10.5 a related metric, the rank metric, applied on

matrices will be considered. This metric is associated with the bilinear

forms scheme. The matrices in this scheme are used to construct codes

over subspaces. In addition, this metric is also important in the context of

network coding. This is also the motivation for the topic of Section 10.6,

where constant-dimension MDS codes, i.e., subspace-MDS codes, will be

considered. These codes form a family of codes that lie in-between the

linear MDS codes and the nonlinear orthogonal arrays.

10.1 No Perfect Codes in the Grassmann Scheme

TheGrassmann scheme (and the Grassmann Graph) Gq(n, k) consists of

all the k-subspaces of an n-space over Fq. For two elementsX,Y ∈ Gq(n, k),

the Grassmann distance dG(X,Y ), is defined by

dG(X,Y ) = k − dim(X ∩ Y ) .

We are also interested in a distance measure between subspaces that

are not of the same dimension. The projective space Pq(n) consists of all

subspace of Fn
q . This space is a q-analog of the Hamming space Hq(n). The

distance used for the projective space is a generalization of the Grassmann

distance. For two subspace X and Y in Pq(n), the subspace distance

dS(X,Y ), is defined by

dS(X,Y ) � dimX + dimY − 2 dim(X ∩ Y ).

The subspace distance is the q-analog of the Hamming distance, but con-

trary to the Hamming space together with the Hamming distance that de-

fine an association scheme, the projective space together with the subspace

distance do not define an association scheme. This is easy to verify since

the associated graph is not regular. The distinction between the subspace

distance and the Grassmann distance is the same as the distinction between

the Hamming distance and the Johnson distance, as one can readily verify.

Lemma 10.1. The Grassmann distance of two k-subspaces is exactly half

of their subspace distance.
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Our next step is to prove that the subspace distance is a metric. The

first lemma is well known.

Lemma 10.2. For any two subspaces A,B ∈ Pq(n) we have

dim(A ∩B) = dimA+ dimB − dim(A+B) .

Proposition 10.1. The function

dS(X,Y ) = dimX + dimY − 2 dim(X ∩ Y )

is a metric for the projective space Pq(n).

Proof. The coincidence and the symmetry axioms are trivial. Hence, it

is sufficient to prove the triangle inequality. Let X,Y, Z ∈ Pq(n). By

Lemma 10.2, we have that

dim((X ∩ Y ) + (Y ∩ Z)) = dim(X ∩ Y ) + dim(Y ∩ Z)− dim(X ∩ Y ∩ Z)

and hence,

dim(X ∩ Y ) + dim(Y ∩ Z)

= dim((X ∩ Y ) + (Y ∩ Z)) + dim(X ∩ Y ∩ Z)

≤ dimY + dim(X ∩ Z).

This implies by the definition of the subspace distance that

dS(X,Y ) + dS(Y, Z)

= dimX + dimZ + 2dimY − 2 dim(X ∩ Y )− 2 dim(Y ∩ Z)

≥ dimX + dimZ − 2 dim(X ∩ Z) = dS(X,Z),

which completes the proof.

Corollary 10.1. The Grassmann distance forms a metric in Gq(n, k).

We note that the Grassmann graph Gq(n, k) together with the Grass-

mann distance also define an association scheme. Moreover, the Grassmann

scheme Gq(n, k) is the q-analog of the Johnson scheme J(n, k). To prove

that it is a scheme, the important property to verify is that each intersec-

tion number p�i,j for the Grassmann metric does not depend on the two

subspaces X,Y ∈ Gq(n, k) for which dG(X,Y ) = �. For such a proof, a

q-analog for the binomial coefficient is required. To accomplish this, we will
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make use of the q-binomial coefficients, known also as the Gaussian

coefficients , defined by[
n

k

]
q

� (qn − 1)(qn−1 − 1) · · · (qn−k+1 − 1)

(qk − 1)(qk−1 − 1) · · · (q − 1)
.

Many of the well-known equalities for binomial coefficients have q-analog

equalities with the q-binomial coefficients. For example[
n

k

]
q

=

[
n

n− k

]
q

;

for every 0 < k < n,[
n

k

]
q

= qk
[
n− 1

k

]
q

+

[
n− 1

k − 1

]
q

,

[
n

k

]
q

=

[
n− 1

k

]
q

+ qn−k

[
n− 1

k − 1

]
q

;

for every positive odd integer n,

n∑
j=0

(−1)j
[
n

j

]
q

= 0;

and for any two non-negative integer n and m,

n∑
j=0

qj
[
m+ j

m

]
q

=

[
n+m+ 1

n

]
q

.

Similarly to the Johnson distance, it is not trivial to compute the in-

tersection number p�i,j , but it is easy to verify that this number does not

depend on the two k-subspaces X and Y for which dG(X,Y ) = �. The

computations are similar to other computations that are performed later

on.

Theorem 10.1. For each two positive integers n and k such that

0 ≤ k ≤ n, we have that

|Gq(n, k)| =
[
n

k

]
q

.

Proof. We form a k-subspace of Fn
q by choosing an appropriate base for

the subspace. We first choose the nonzero vectors of the basis in some order

and at the end we cancel this order. The first nonzero vector can be chosen

in qn − 1 distinct ways; the linear span of this vector has size q. For the

second one we can choose any nonzero vectors not in the linear span of the

first vector. Hence, there are qn − q distinct ways to choose the second

vector. The first two vectors span a subspace with q2 vectors and hence the
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third nonzero vector can be chosen in qn − q2 distinct ways. We continue

iteratively, where the last (k-th) nonzero vector can be chosen in qn− qk−1

distinct ways. Therefore, the total number of distinct ways to choose a

k-subspace, with an ordered base, in this way is
∏k−1

i=0 (q
n − qi).

Now, we compute the number of times that a given k-subspace X is

counted in this enumeration. The first nonzero vector of X can be chosen

in qk − 1 distinct ways. The second one we can choose in qk − q distinct

ways and the third one in qk − q2 distinct ways. We continue iteratively,

where the last (k-th) nonzero vector can be chosen in qk − qk−1 distinct

ways. Therefore, the total number of distinct k-subspaces of Fn
q is∏k−1

i=0 (q
n − qi)∏k−1

i=0 (q
k − qi)

=
(qn − 1)(qn−1 − 1) · · · (qn−k+1 − 1)

(qk − 1)(qk−1 − 1) · · · (q − 1)
=

[
n

k

]
q

and hence |Gq(n, k)| =
[
n
k

]
q
.

Clearly, Theorem 10.1 is the q-analog for the assertion that

|J(n, k)| =
(
n
k

)
.

Lemma 10.3. If V is an n-space over Fq and X is an m-subspace of V,
then the number of i-subspaces of V that intersect X in an �-subspace is

q(i−�)(m−�)

[
n−m

i− �

]
q

[
m

�

]
q

.

Proof. Let Z be an �-subspace of a subspace X ∈ Gq(n,m). We com-

plete Z to an i-subspace by adding i − � linearly independent vectors of

length n, which are not contained in X, to obtain an i-subspace whose in-

tersection with X is exactly Z. For each �-subspace Z, the number of such

i-subspaces is

(qn − qm)(qn − qm+1) · · · (qn − qm+i−�−1)

(qi − q�)(qi − q�+1) · · · (qi − qi−1)
=

[
n−m

i− �

]
q

q(m−�)(i−�) .

The number of �-subspaces of X is
[
m
�

]
q
and each can be chosen as Z and

hence the total number of i-subspaces of V that intersectX in an �-subspace

is

q(i−�)(m−�)

[
n−m

i− �

]
q

[
m

�

]
q

.
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In the rest of this chapter we omit the q from the Gaussian coeffi-

cient
[
n
k

]
q
and denote it by

[
n
k

]
.

Lemma 10.4. The size of a ball with radius e around a subspace of Gq(n, k)

is
e∑

i=0

qi
2

[
k

i

][
n− k

i

]
.

Proof. Let X be a subspace in Gq(n, k). Now, apply Lemma 10.3, where

m = k and i = k. A k-subspace Y is in the ball with radius e around X if its

intersection with X is of dimension between k (X itself) and k− e. Hence,

in Lemma 10.3 � takes all the values from k − e to k. This implies that

these k-subspaces are exactly all the k-subspaces that are within distance

0 to e from X, i.e., they form the ball with radius e around X. Hence, the

size of the ball is

k∑
�=k−e

q(k−�)(k−�)

[
n− k

k − �

][
k

�

]
=

e∑
i=0

qi
2

[
k

i

][
n− k

i

]
.

Let X be a (k − 2)-subspace of an n-space V. Let T be the subset

of all the subspaces from Gq(n, k) that intersect X in a subspace whose

dimension is at least k − e− 1.

Lemma 10.5. The subset T is an anticode in Gq(n, k) whose diameter

is 2e and whose size is

e−1∑
i=0

qi(i+2)

[
k − 2

i

][
n− k + 2

i+ 2

]
.

Proof. If Y, Z ∈ T ⊂ Gq(n, k) and X ∈ Gq(n, k − 2), then by the triangle

inequality we have that

dS(Y, Z) ≤ dS(Y,X) + dS(X,Z) (10.1)

and by the definition of the subspace distance and since Y ∈ T, it follows

that

dS(Y,X) = dimY +dimX − 2 dim(Y ∩X) ≤ k+ k− 2− 2(k− e− 1) = 2e.

Similarly, dS(X,Z) ≤ 2e, which implies by (10.1) that dS(Y, Z) ≤ 4e, and

by Lemma 10.1, by taking m = k−2 and i = k, we have that dG(Y, Z) ≤ 2e

and hence T is an anticode in Gq(n, k) with diameter 2e.
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By Lemma 10.3, the number of k-subspaces that intersect the

(k − 2)-subspace X in an �-subspace is

q(k−�)(k−2−�)

[
n− k + 2

k − �

][
k − 2

�

]
.

Since � can take any value between k − e− 1 and k − 2, it follows that the

size of T is
k−2∑

�=k−e−1

q(k−�)(k−2−�)

[
n− k + 2

k − �

][
k − 2

�

]
.

By changing the variable of the sum from � to i, where i = k − 2 − �, the

sum over i is between 0 and e − 1. Moreover, the required size claimed in

each product of the summation in the lemma is obtained and the lemma is

proved.

Theorem 10.2. There is no nontrivial e-perfect code in the Grassmann

scheme Gq(n, k).

Proof. Assume the contrary, that there exists a nontrivial e-perfect code C

in Gq(n, k). Since C is a nontrivial code, this implies that the minimum

Grassmann distance of the code is 2e + 1 and hence C has at least two

codewords and k ≥ 2e + 1. Let Y be a subspace of Gq(n, k) and X be a

(k − 2)-subspace of Y . As before, let T be the subset of all the subspaces

from Gq(n, k) that intersect X in a subspace whose dimension is at least

k − e− 1. Let S be the set of all subspaces in Gq(n, k) that intersect both

X and Y in a subspace whose dimension is k− e−1. Let P be the set of all

subspaces of Gq(n, k) that intersect Y in a (k−e)-subspace and intersect X

in a (k − e− 2)-subspace. Formally,

T � {Z : Z ∈ Gq(n, k), dim(Z ∩X) ≥ k − e− 1},

S � {Z : Z ∈ Gq(n, k), dim(Z ∩X) = dim(Z ∩ Y ) = k − e− 1},

and

P � {Z : Z ∈ Gq(n, k), dim(Z ∩X) = k − e− 2, dim(Z ∩ Y ) = k − e}.

To prove the claim of the theorem our goal is to show that the set T is

an anticode with diameter 2e in Gq(n, k) whose size is larger than the ball

of radius e in Gq(n, k). This will form a contradiction to the code-anticode

bound and imply that there is no nontrivial e-perfect code in the Gq(n, k).

The first step is to find the diameter of T. The dimension of X is k− 2

if Z1 and Z2 are two subspace which intersect X in a subspace whose
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dimension is at least k − e − 1, then their intersection is of dimension at

least 2(k− e− 1)− (k− 2) = k− 2e. This implies that if Z1, Z2 ∈ Gq(n, k),

then dG(Z1, Z2) ≤ k − (k − 2e) = 2e. Therefore, The diameter of T is 2e.

Assume that Z is a k-subspace in T and not in Be(Y ). Since Z ∈ T,

it follows that dim(Z ∩ X) ≥ k − e − 1 and if dim(Z ∩ Y ) > k − e − 1,

this will imply that Z ∈ Be(Y ). Therefore, dim(Z ∩ Y ) ≤ k − e − 1 and

since X ⊂ Y , it follows that dim(Z ∩ X) = dim(Z ∩ Y ) = k − e − 1 and

hence Z ∈ S. Clearly, by the definition of X, Y , and S, each element of S

satisfies this property of Z.

Assume now that Z is a k-subspace in Be(Y ) and not in T. As-

sume further that � = dim(Z ∩ Y ) and since Z ∈ Be(Y ), it follows

that � ≥ k = e. Since X ⊂ Y and dimX = dimY − 2, it follows

that dim(Z ∩X) ≥ �− 2. Recall that Y is a k-subspace and Z is not

in T and hence dim(Z ∩X) < k − e− 1. Together, this implies that

dim(Z ∩X) = k − e− 2, � = k − e, and Z ∈ P. Clearly, each element

of P satisfies this property.

Taking all these assertions into account, it follows that S = T \ Be(Y )

and P = Be(Y ) \ T. Therefore, |S| = |T| − |T ∩ Be(Y )| and

|P| = |Be(Y )| − |Be(Y ) ∩ T|. This implies that |T| − |Be(Y )| = |S| − |P|.
Applying arguments as in Lemma 10.3, one can find that

|S| = q(e+1)2
[
k − 2

e− 1

][
n− k

e+ 1

]
and

|P| = qe(e+2)

[
k − 2

e

][
n− k

e

]
.

Therefore, we have that

|T| − |Be(Y )| = |S| − |P| = qe(e+2)

(
q

[
k − 2

e− 1

][
n− k

e+ 1

]
−
[
k − 2

e

][
n− k

e

])
.

Nevertheless, if q ≥ 2, k ≥ 2e + 1, and n ≥ 2k, this difference is always

positive, i.e., the size of the anticode T with diameter 2e is larger than the

ball with radius e, which contradicts the code-anticode bound if C is an

e-perfect code. Thus, there is no nontrivial e-perfect code in Gq(n, k).

Note that in the proof of Theorem 10.2, we used the fact that the code-

anticode bound is true for the Grassmann scheme. This fact was already

proved by Delsarte as was mentioned in Chapter 2. Our proof of the code-

anticode bound in Chapter 2 does not hold for the Grassmann scheme.
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We do, however provide another proof for the bound based on the local

inequality lemma for Gq(n, k), which will be presented in Lemma 10.9.

The idea in the proof of Theorem 10.2 can also be used to prove The-

orem 8.6, but this proof for the Johnson scheme can be simplified as was

done in the proofs of Theorems 8.6 and 8.10.

10.2 q-Steiner Systems

In Theorem 10.2 we proved that there is no nontrivial perfect code in the

Grassmann scheme. The Grassmann scheme Gq(n, k) is the q-analog of

the Johnson scheme J(n, k). In the Johnson scheme we were not able to

resolve the existence problem of perfect codes, but we were able to exhibit

a family of diameter perfect codes, the Steiner systems. Moreover, when

we expanded our interest to perfect constant-weight codes over a nonbi-

nary alphabet, some perfect codes were found and six families of diameter

perfect codes, were presented. One of these families consists of the gen-

eralized Steiner systems. We would like to generalize these results for the

Grassmann scheme.

Definition 10.1. A q-Steiner system Sq(t, k, n) is a set S of subspaces

from Gq(n, k) (called blocks), such that each subspace of Gq(n, t) is con-

tained in exactly one subspace of S.

Similarly to the proof on the size of a Steiner system S(t, k, n) and its

minimum Hamming (or Johnson) distance, the following results are proved.

Lemma 10.6. The number of blocks in a q-Steiner system Sq(t, k, n)

is
[
n
t

]
/
[
k
t

]
.

Proof. Each k-subspace contains
[
k
t

]
distinct t-subspaces. The number

of t-subspaces in an n-space is
[
n
t

]
. Since each t-subspace is contained in

exactly one k-subspace of a q-Steiner system Sq(t, k, n), the claim of the

lemma follows.

Proposition 10.2. The minimum Grassmann distance of the code defined

by the k-subspaces of a q-Steiner system Sq(t, k, n) is k − t+ 1.

Proof. Two k-subspaces X and Y of Sq(t, k, n) can intersect in a subspace

whose dimension is at most t− 1. Therefore,

dG(X,Y ) ≥ k − (t− 1) = k − t+ 1.
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Lemma 10.7. If C is a code in Gq(n, k) with minimum Grassmann dis-

tance k − t + 1 and
[
n
t

]
/
[
k
t

]
codewords, then C is a q-Steiner system

Sq(t, k, n).

Proof. By the same arguments as in the proof of Lemma 10.6 on can

verify that a q-Steiner system Sq(t, k, n) is the largest code in Gq(n, k) with

minimum Grassmann distance k − t+ 1.

For the rest of this chapter, we will assume now for simplicity, but

w.l.o.g., that the n-space taken for Pq(n) and for Gq(n, k) is F
n
q .

Lemma 10.8. If there exists a q-Steiner system Sq(t, k, n), t > 1, then

there exists a q-Steiner system Sq(t− 1, k − 1, n− 1).

Proof. Let S be a q-Steiner system Sq(t, k, n) in F
n
q , X be a one-subspace

of Fn
q , and U be an (n− 1)-subspace of Fn

q such that X ⊕ U = F
n
q . Define

the following set

S
′ � {Y ∩ U : Y ∈ S, X ⊂ Y } .

We claim that S′ is a q-Steiner system Sq(t−1, k−1, n−1) in U . Let Z ⊆ U

be a (t − 1)-subspace. Since S is a q-Steiner system Sq(t, k, n), it follows

that for a t-subspace Ze � X ⊕Z, there exists a unique k-subspace Y such

that Y ∈ S and Ze ⊂ Y . Therefore, by the definition of S′ we have that

Z = Ze ∩ U ⊂ Y ∩ U ∈ S
′, i.e., each (t − 1)-subspace is contained in a

(k − 1)-subspace of S′.
If Z is contained in two distinct blocks of S′, i.e., Z ⊂ Y1, Z ⊂ Y2,

Y1, Y2 ∈ S
′, then using the same arguments we have that Ze = Z ⊕ X is

contained in Y e
1 � X ⊕ Y1 and Y e

2 � X ⊕ Y2, which are in two distinct

blocks of S, a contradiction. This completes the proof.

Corollary 10.2. A necessary condition for the existence of a q-Steiner

system Sq(t, k, n) is that all the numbers[
n−i
t−i

][
k−i
t−i

] , 0 ≤ i ≤ t− 1,

are integers.

Lemma 10.9. Let CD be a code in Gq(n, k), where the distances between

the codewords in CD are taken from a subset D. Let A be a subset of

Gq(n, k) and let C
′
D ⊆ A be the largest code in A with distances between

codewords of C′D are from D. Then

|CD|[
n
k

] ≤ |C′D|
|A| . (10.2)
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Proof. Consider the set of pairs

P � {(X,M) : X ∈ CD, M ∈ F
n×n
q is nonsingular, 〈G(X) ·M〉 ∈ A },

where G(X) is any k × n generator matrix of X. For a fixed X ∈ CD
and a fixed Y ∈ A, the number of nonsingular matrices, such that

Y = 〈G(X) ·M〉, is computed as follows. Choose an arbitrary generator

matrix G(X) for X. The number of possible distinct generator matrices

for Y equals the number of nonsingular k × k matrices over Fq, which is

equal to

k−1∏
i=0

(qk − qi) =

k−1∏
i=0

(qi(qk−i − 1)) = qk(k−1)/2
k−1∏
i=0

(qk−i − 1) .

Given one such generator matrix G(Y ) for Y , the number of nonsingular

n×n matrices, for M , such that G(Y ) = G(X) ·M , is equal to the number

of distinct ways to complete G(X) to a nonsingular n × n matrix. This

claim can be observed from the fact that for each two nonsingular n × n

matrices X̂ and Ŷ , there exists a unique nonsingular n× n matrix M such

that Ŷ = X̂M . Hence, this number equals

n−1∏
i=k

(qn − qi) =

n−k−1∏
i=0

(qn − qk+i) = qk(n−k)
n−k−1∏
i=0

(qn−k − qi) .

Therefore, the number of pairs in P equals

|CD| · |A| ·
k−1∏
i=0

(qk − qi) · qk(n−k)
n−k−1∏
i=0

(qn−k − qi) .

Note that for each nonsingular n × n matrix M and two subspaces

X,X ′ ∈ Gq(n, k), we have that d(〈G(X) ·M〉, 〈G(X ′) ·M〉) = d(X,X ′).
This implies that a fixed nonsingular matrix can transfer the elements

of CD into at most |C′D| elements of A. Since there are
∏n−1

i=0 (q
n − qi)

nonsingular n × n matrices, it follows that the number of pairs in P is at

most |C′D|
∏n−1

i=0 (q
n − qi). This implies that

|CD| · |A| ·
k−1∏
i=0

(qk − qi) · qk(n−k)
n−k−1∏
i=0

(qn−k − qi) ≤ |C′D|
n−1∏
i=0

(qn − qi) ,

which proves the claim of the lemma.

Let Aq(n, 2δ, k) be the size of the largest code in Gq(n, k) with a mini-

mum subspace distance 2δ (Grassmann distance δ).
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Corollary 10.3. Let CD be a code in Gq(n, k) with distances between the

codewords of CD are taken from the range [2δ, n]. Let A be a subset of

Gq(n, k) and let C
′
D ⊆ A be the largest code in A with distances taken

from [2δ, n]. Then

Aq(n, 2δ, k) ≤
[
n
k

]
q
|C′D|
|A| . (10.3)

Corollary 10.4.

Aq(n, 2δ, k) ≤
⌊
qn − 1

qk − 1
Aq(n− 1, 2δ, k − 1)

⌋
.

Proof. In (10.3) take A to be the set of all the subspaces in Gq(n, k) that

contain a given one-subspace X of Fn
q . The size of A in this case is

(qn − q)(qn − q2) · · · (qn − qk−1)

(qk − q)(qk − q2) · · · (qk − qk−1)
=

[
n− 1

k − 1

]
.

Let U be any (n − 1)-subspace in F
n
q such that X ⊕ U = F

n
q and let

C � {Y ∩ U : Y ∈ C
′
D}. Clearly, each subspace in C is a (k− 1)-subspace

of the (n − 1)-subspace U . Moreover, |C| = |C′D| and since dS(C
′
D) = 2δ,

it follows that dS(C) = 2δ. Therefore, |C| ≤ Aq(n − 1, 2δ, k − 1) (in fact,

equality can be proved, but it is not required) and the claim follows.

Corollary 10.3 is the q-analog of Corollary 8.16 proved for the Johnson

scheme. Similarly, Corollary 10.4 and its proof are the q-analog of Corol-

lary 8.17 and its proof for the Johnson scheme. Similarly, we can have a

q-analog for Corollary 8.18 as follows.

Corollary 10.5.

Aq(n, 2δ, k) ≤
⌊

qn − 1

qn−k − 1
Aq(n− 1, 2δ, k)

⌋
.

Given an n-space V and an integer k, 0 ≤ k ≤ n, let
[V
k

]
denote the

set of all k-subspace of an n-space V. A t-intersecting family F in Gq(n, k)

consists of k-subspace such that for each two distinct subspace X,Y ∈ F,

we have that dim(X∩Y ) ≥ t. This implies that dG(X,Y ) ≤ k−t and hence

a t-intersecting family is an anticode with diameter k− t. As noted before,

finding the largest size of a t-intersecting family is an important problem in

extremal combinatorics. The problem has been well treated and a complete

solution is known. This solution is presented in the following theorem.

Theorem 10.3. Let P ⊂
[V
k

]
be a t-intersecting family. Then

|P| ≤ max

{[
n− t

k − t

]
,

[
2k − t

k

]}
.
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• If 2k − t < n < 2k, then

|P| ≤
[
2k − t

k

]
q

,

and this bound is attained with equality in a unique way by taking any

(2k − t)-subspace X ∈
[ V
2k−t

]
and defining

P � {F ∈
[
V
k

]
: dim(F ∩X) ≥ k}.

• If 2k < n, then

|P| ≤
[
n− t

k − t

]
,

and this bound is attained with equality in a unique way by taking any

t-subspace X ∈
[V
t

]
and defining

P � {F ∈
[
V
k

]
: dim(F ∩X) ≥ k}.

• If n = 2k, then

|P| ≤
[
n− t

k − t

]
=

[
2k − t

k

]
.

In the Johnson scheme we have not ruled out possible e-perfect codes,

while in its q-analog scheme, the Grassmann scheme, such e-perfect codes

were ruled out. Now, we continue and consider diameter perfect codes. We

have found some families of such codes in the Johnson scheme, but did not

rule out other possible families. In the Grassmann scheme we are going to

characterize all the possible diameter perfect codes.

Theorem 10.4. When n ≥ 2k, a code C is a (k− t)-diameter perfect code

in the Grassmann scheme Gq(n, k), if and only if C is a q-Steiner system

Sq(t, k, n).

Proof. Assume first that n ≥ 2k and C is a (k− t)-diameter perfect code,

which implies that C has minimum Grassmann distance k−t+1. By Theo-

rem 10.3, when 2k ≤ n, the size of a maximum anticode with diameter k−t

in Gq(n, k) is
[
n−t
k−t

]
and hence by the code-anticode bound, the size of a

code C with minimum distance k − t+ 1 in Gq(n, k) is at most[
n
k

][
n−t
k−t

] =

[
n
t

][
k
t

] .
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Since by Lemma 10.6, the size of a q-Stiener system Sq(t, k, n) is
[
n
t

]
/
[
k
t

]
,

by Proposition 10.2 its minimum Grassmann distance is k − t+ 1, and by

Lemma 10.7 each code with these parameters is an Sq(t, k, n), it follows

that C is a q-Steiner system Sq(t, k, n).

Assume now that C is Sq(t, k, n), i.e., C is a code in Gq(n, k) with

minimum Grassmann distance k − t+ 1 and
[
n
t

]
/
[
k
t

]
codewords. Since the

maximum anticode with diameter k − t in Gq(n, k) is
[
n−t
k−t

]
it follows by

the code-anticode bound that C is a (k − t)-diameter perfect code.

To examine diameter perfect codes in Gq(n, k), where 2k > n, we

have to introduce the concept of orthogonal complement C
⊥ for a code

C ∈ Pq(n) defined by

C
⊥ � {X⊥ : X ∈ C} .

The following lemma is an immediate result of this definition.

Lemma 10.10. If C is a code in Gq(n, k), then C
⊥ is a code in Gq(n, n−k).

Lemma 10.11. If X,Y ∈ Pq(n), then X⊥ ∩ Y ⊥ = (X + Y )⊥.

Proof. For u, v ∈ F
n
q , let u · v denote the inner product of the vectors u

and v.

If u ∈ X⊥ ∩ Y ⊥, then u · x = 0 and u · y = 0 for every x ∈ X

and y ∈ Y . This implies that u · (αx + βy) = 0 for each α, β ∈ Fq and

hence u ∈ (X + Y )⊥.
If u ∈ (X + Y )⊥, then u ∈ X⊥ and u ∈ Y ⊥ which implies that

u ∈ X⊥ ∩ Y ⊥.

Lemma 10.12. If X,Y ∈ Pq(n), then

dim(X⊥ ∩ Y ⊥) = n− dimX − dimY + dim(X ∩ Y ).

Proof. By Lemma 10.11 we have that

dim(X⊥ ∩ Y ⊥) = dim(X + Y )⊥ = n− dim(X + Y ),

and the claim follows now from Lemma 10.2.

Corollary 10.6. If C is a code in Pq(n), then dS(C
⊥) = dS(C).

Proof. If X,Y ∈ Pq(n), then by the definition of the subspace distance

and by Lemma 10.12 we have that

dS(X
⊥, Y ⊥) = dimX⊥ + dimY ⊥ − 2 dim(X⊥ ∩ Y ⊥)
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= n− dimX + n− dimY − 2(n− dimX − dimY + dim(X ∩ Y ))

= dimX + dimY − 2 dim(X ∩ Y ) = dS(X,Y ).

This implies that if C is a code in Pq(n), then dS(C
⊥) = dS(C).

The same arguments used in Corollary 10.6 implies the following result.

Corollary 10.7. If A is an anticode in Pq(n), then the maximum distance

of A equals the maximum distance of A⊥.

By Theorem 10.4 and Corollaries 10.6 and 10.7, and since
[
n
k

]
=
[

n
n−k

]
,

we have the following theorem.

Theorem 10.5. When n < 2k, a code C is an (n− k− t)-diameter perfect

code in the Grassmann scheme Gq(n, k), if and only if C⊥ is a q-Steiner

system Sq(t, n − k, n). When n < 2k, the maximum size anticode with

diameter n− k − t has size
[

n−t
n−k−t

]
q
.

Proof. If n < 2k, then 2n−2k < n, i.e., 2(n−k) < n and the claim follows

from Theorem 10.4.

In contrast to Steiner systems, which have been studied extensively

over the years and for which there are many constructions, bounds, and

interesting properties, much less is known about q-Steiner systems. The

main reason is that constructing q-Steiner systems is an extremely difficult

task. Many efforts have been made, but few results have accrued. The

efforts became more intensive at the beginning of the 21st century after the

introduction of error-correction in random network coding. It appears that

error-correction for random network coding is performed efficiently with

codes whose codewords are subspaces.

There is one well-known family of q-Steiner systems, the q-Steiner sys-

tems Sq(1, k, n). This family exists, for any finite field Fq, if and only if

k divides n. These q-Steiner systems were already considered in Chapter 7

in the context of 1-perfect byte-correcting codes, where all the bytes are

of the same size k. For the parity-check matrix of such a code, each byte

of size k is represented by a k-subspace. The collection of the k-subspaces

that form the parity-check marix for such a 1-perfect byte-correcting code

in F
n
q , alsp form a q-Steiner system Sq(1, k, n). Recall that these q-Steiner

systems are called k-spreads, and it was mentioned in Section 7.2 that there
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are non-isomorphic such codes (systems). This also leads to the following

observation.

Theorem 10.6. A k-spread in F
n
q exists if and only if k divides n. The

size of a k-spread in F
n
q is (qn − 1)/(qk − 1).

Except for the family of q-Steiner systems Sq(1, k, n), i.e., k-spreads,

the only known q-Steiner systems have the parameters of a q-Steiner sys-

tem S2(2, 3, 13). Let α ∈ F213 be a root of the primitive polynomial

x13 + x12 + x10 + x9 + 1. Let S be a system of 3-subspaces of F213 with

the following two properties:

[P1] If {0, αi1 , αi2 , αi3 , αi4 , αi5 , αi6 , αi7} is a 3-subspace in S, then

{0, αi1+1, αi2+1, αi3+1, αi4+1, αi5+1, αi6+1, αi7+1} is also a 3-subspace

in S. This property is related to a cyclic mapping on the subspaces.

[P2] If {0, αi1 , αi2 , αi3 , αi4 , αi5 , αi6 , αi7} is a 3-subspace in S, then

{0, α2i1 , α2i2 , α2i3 , α2i4 , α2i5 , α2i6 , α2i7} is also a 3-subspace in S. This

property is related to a Frobenius mapping on the subspaces.

Properties [P1] and [P2] are related to the application of the Singer sub-

group on the set of 3-subspaces. We start with fifteen 3-subspaces of F213

associated with the following sets (the seven elements in each set represent

the powers of α of the elements in the 3-subspaces). Each set contains eight

elements of F213 , which together form a 3-subspace.

{0, 1, 1249, 5040, 7258, 7978, 8105}, {0, 7, 1857, 6681, 7259, 7381, 7908},
{0, 9, 1144, 1945, 6771, 7714, 8102}, {0, 11, 209, 1941, 2926, 3565, 6579},
{0, 12, 2181, 2519, 3696, 6673, 6965}, {0, 13, 4821, 5178, 7823, 8052, 8110},
{0, 17, 291, 1199, 5132, 6266, 8057}, {0, 20, 1075, 3939, 3996, 4776, 7313},
{0, 21, 2900, 4226, 4915, 6087, 8008}, {0, 27, 1190, 3572, 4989, 5199, 6710},
{0, 30, 141, 682, 2024, 6256, 6406}, {0, 31, 814, 1161, 1243, 4434, 6254},
{0, 37, 258, 2093, 4703, 5396, 6469}, {0, 115, 949, 1272, 1580, 4539, 4873},

{0, 119, 490, 5941, 6670, 6812, 7312}.

On these fifteen 3-subspace we apply the Singer subgroup, i.e., apply the

mappings induced by [P1] and [P2].

This construction leads to the following conjecture.

Conjecture 10.1. If p ≡ 1 (mod 6), p > 7, is a prime, then there exists a

q-Steiner system S2(2, 3, p) whose subspaces satisfy properties [P1] and [P2].
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For p = 7 such a construction does not work. Three representative

are required to construct a q-Steiner system S2(2, 3, 7), but only two such

representatives exist. Nevertheless, the number of potential representa-

tive is relatively small compared to large p. It is highly probable that

as p increased more nonequivalent systems exist, but unfortunately as p

increased the search for such systems is more complicated. The Steiner

system S(2, 3, 7) is known as the Fano plane (see Fig. 3.2). It is embed-

ded in the binary Hamming code of length 7. Does there exist a q-Fano

plane? A lot of research was done in this direction, especially for q = 2,

and most people believe that even if it exists, it will not be found in the

near future or even the unseen future.

It is worth to mention that each codeword of weight three in the Ham-

ming code H(r) is associated with a two-subspace X of G2(r, 2), which

contains the corresponding three nonzero column vectors ofX in the parity-

check matrix.

So far we have realized that there are no nontrivial perfect codes in

the Grassmann scheme and the only diameter perfect codes are q-Steiner

systems and their orthogonal complements, for which the only known ones

are the spreads (which many will claim are trivial q-Steiner systems) and

q-Steiner systems with the parameters of the q-Steiner system S2(2, 3, 13).

Although we conjecture that there are infinitely many sets of parameters

for q-Steiner systems, we just barely believe that they will be found, with

a possible exception of a small number of such systems, if any. This moti-

vates us to search for q-perfect sets (see the definition in Section 2.4) and,

accordingly, we have the following three research problems.

Problem 10.1. Prove or disprove the existence of a q-Fano plane

Sq(2, 3, 7), where q is a power of some prime. Such a result for any value

of q will be a major breakthrough.

Problem 10.2. Are there any nontrivial perfect sets that are not q-Steiner

systems in the Grassmann scheme?

Problem 10.3. Develop a theory for the existence and nonexistence of

perfect sets in the Grassmann scheme.

10.3 Normal Spreads

Recall that a k-spread in F
n
q is a partition of the elements of F

n
q into

k-subspaces (where the zero element of Fn
q and the k-subspaces is ignored).
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A k-spread S is called a normal spread (also a geometric spread) if

every subspace spanned by k-subspaces of S is partitioned by elements of S.

In other words, S is a normal spread if it satisfies the following requirements:

(1) S is a k-spread.

(2) If Y1, Y2, . . . , Ym are k-subspaces in S and Z is the subspace spanned by

Y1, Y2, . . . , Ym, then there exists a set {X1, X2, . . . , X�} of k-subspaces

in S such that Z =
⋃�

i=1 Xi.

The next lemma is a trivial observation.

Lemma 10.13. Each k-spread in F
2k
q is a normal spread.

Another simple lemma considers the dimension of any subspace spanned

by any set of elements of a normal spread.

Lemma 10.14. If S is a normal k-spread in F
rk
q , then the dimension of

any subspace spanned by any subset of k-subspaces of S is a multiple of k.

Proof. Assume the contrary and let B = {Y1, . . . , Ym−1, Ym} be the small-

est subset of k-subspaces from S which span a subspace whose dimension is

not a multiple of k. Hence, the k-subspaces Y1, . . . , Ym−1 span a subspaceX

whose dimension is (m− 1)k. Clearly, Ym is not contained in X. Since S is

a normal spread, it follows that X is partitioned by elements of S which

do not contain Ym and hence Ym ∩ X = {0}. Therefore, X and Ym span

a subspace of dimension mk, a contradiction and the claim of the lemma

follows.

Theorem 10.7. If S is a k-spread in F
rk
q in which each (2k)-subspace

spanned by two k-subspaces of S is partitioned by elements of S, then S

is a normal spread.

Proof. The proof is by induction, where the claim is that for m ≤ r, any

(mk)-subspace spanned by elements of S is partitioned by elements of S.

The basis for the induction is m = 2, which is a property of S as given in the

theorem. Assume that the claim is true for some 2 ≤ m < r. Let X be an

((m+1)k)-subspace, where m+1 ≤ r, spanned by the m+1 elements of S,

say, the m+1 elements in the set B = {Y1, Y2, . . . , Ym+1}. By the induction

hypothesis, each (mk)-subspace spanned bym of them+1 subspaces in B is

partitioned by elements of S. Let S1 be the set of all subspaces that partition

these (mk)-subspaces. Let Z be any k-subspace of the (mk)-subspace S

spanned by {Y1, Y2, . . . , Ym}, which is not spanned by any proper subset of
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{Y1, Y2, . . . , Ym}. By the basis of the induction, the (2k)-subspace spanned

by Z and Ym+1 is partitioned by elements of S. Add these subspaces of S

to S1 and do the same for each such k-subspace Z. It can be verified easily

that S1 is a partition of the ((m+ 1)k)-subspace X and this completes the

proof.

We continue to show a connection between normal spreads in F
n
q and

1-perfect codes over Fq in the Hamming scheme.

Theorem 10.8. Let S be a normal k-spread in F
rk
q for some r ≥ 3. Let T be

the set of all (2k)-subspaces spanned by all the pairs of k-subspaces of S,

where each (2k)-subspace X is represented by the q2k−1
qk−1

k-subspaces of S

contained in X. Then, T form a (Q,B) Steiner system S(2, qk + 1, qrk−1
qk−1

),

where Q = S, B = T, and a block X of B contains the points (k-subspaces

of S), which are contained in X.

Proof. First, consider the parameters of the system. The total number of

k-subspaces in S is qrk−1
qk−1

, which is the number of points in T. Two disjoint

k-subspaces in S span a (2k)-subspace that consists of q2k−1
qk−1

= qk + 1

distinct k-subspaces and hence the size of a block is qk + 1.

Let {X,Y } be a pair of two disjoint k-subspaces of S. X and Y span a

unique (2k)-subspace and hence T yields a Steiner system S(2, qk+1, qrk−1
qk−1

).

Let

c(x) = xk −
k∑

i=1

cix
k−i, ciFq (10.4)

be a primitive polynomial over Fq. The k × k matrix

C =

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0 ck
1 0 · · · 0 ck−1

0 1 · · · 0 ck−2

...
...
. . .

...
...

0 0 · · · 1 c1

⎤
⎥⎥⎥⎥⎥⎦

is called the companion matrix of the polynomial c(x) (or the companion

matrix of β, where β is any root of c(x)).
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If β is a root of c(x), then by (10.4) we have

βk =

k∑
i=1

ciβ
k−i =

k−1∑
i=0

ck−iβ
i . (10.5)

If an element βm has the vector representation

(βm) =

⎛
⎜⎜⎜⎝

b0
b1
...

bk−1

⎞
⎟⎟⎟⎠ ,

then

βm =

k−1∑
i=0

biβ
i.

By plugging (10.5) this implies that

βm+1 =

k−1∑
i=0

biβ
i+1 =

k−1∑
i=1

bi−1β
i + bk−1β

k

=

k−1∑
i=1

bi−1β
i + bk−1

k−1∑
i=0

ck−iβ
i = bk−1ck +

k−1∑
i=1

(bi−1 + bk−1ck−i)β
i,

and hence (βm+1) = C · (βm). Therefore,

(βm) = Cm · (β0)⇒ [(βm)(βm+1) · · · (βm+k−1)] = Cm,

which implies that

βi + βj = β� ⇒ βi+m + βj+m = β�+m ⇒ Ci + Cj = C�.

Thus, we have the following theorem.

Theorem 10.9. There is an isomorphism between the finite field Fqk and

the qk − 1 consecutive powers of the companion matrix C together with the

k × k all-zero matrix.

Corollary 10.8. Let c(x) be a primitive polynomial of degree k over Fq,

β be its root, and C the associated k × k companion matrix. Let γ be any

nonzero element of Fqk and let Γ be its representation as a column vector

of length k. Then, for each i, 0 ≤ i ≤ qk − 2, we have that the vector CiΓ

is the representation of the element βiγ in Fqk as a k-ary vector over Fq.
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Recall that the parity-check matrix H of the Hamming code of

length qrk−1
qk−1

over Fqk consists of pairwise linearly independent nonzero

column vectors of length r with elements of Fqk , i.e., the points of

PG(r − 1, qk). Now, let H ′ be the (rk)×
(

qrk−1
qk−1

k
)
matrix formed from H

by replacing each element βi, 0 ≤ i ≤ qr − 2, of Fqk in H by Ci in H ′ and
replacing any zero in H by the k × k all-zero matrix in H ′.

Theorem 10.10. Each k consecutive columns of H ′ originating from the

same column of H is a basis of a k-subspace. The set of these qrk−1
qk−1

subspaces is a normal k-spread.

Proof. Clearly, CiCqk−1−i = Ck−1 = C0 = Ik and hence each Ci is a

nonsingular matrix, which implies that each k consecutive columns of H ′

originating from a column of H are linearly independent and hence they

form a base of a k-subspace.

Consider now the isomorphism, implied by Theorem 10.9, between the

nonzero elements of Fqk and the qk−1 consecutive powers of the companion

matrix C. This isomorphism implies that each block of the Steiner system

S(2, q+1, qrk−1
qk−1

) defined in Theorem 10.8 is transferred into a (2k)-subspace

spanned by any two k-subspaces of H ′. The claim is now implied by The-

orem 10.7.

10.4 Nonexistence of Perfect Codes in the Projective Space

We have proved in Theorem 10.2 that there are no nontrivial perfect codes

in Gq(n, k). Are there any e-perfect codes in Pq(n)? Except for the usual

trivial perfect codes, there exists another trivial perfect code. When n is

odd, i.e., n = 2e+ 1, there exists an e-perfect code that contains exactly

two disjoint codewords, the null space {0} and Pq(n). This is the q-analog

of the binary e-perfect code of length n = 2e + 1 with two codewords,

the all-zero word and the all-one word. Finally, we note that the graph

of Pq(n) is not a regular graph and hence the subspace distance is not a

regular metric since there are balls with the same radius and different sizes.

For the proof of the nonexistence of perfect codes in Pq(n), we will first

need the following lemma.

Lemma 10.15.

Aq(n, 2k, k) ≤
⌊
qn − 1

qk − 1

⌋
− 1 if n �≡ 0 (mod k) .
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Proof. Divide k into n to write n = mk + r, where the remainder r is

nonzero by assumption and r < k. It is easy to verify that

qn − 1 = qr(q(m−1)k + q(m−2)k + · · · qk + 1)(qk − 1) + qr − 1 . (10.6)

Now assume to the contrary that there exists a code C in Gq(n, k) with

M =
⌊
qn−1
qk−1

⌋
codewords. Further, let Z1, Z2, . . . , ZM denote the code-

words of C, and observe that Zi ∩ Zj = {0} for all i �= j. Hence, we can

partition F
n
q \ {0} into M + 1 disjoint sets as follows:

F
n
q \ {0} = Z−1 ∪ Z−2 ∪ · · ·Z−M ∪X , (10.7)

where X denotes the set of all vectors in F
n
q that are not contained in any

codeword of C. Thus,

|X| = qn − 1−M(qk − 1) = qr − 1 .

in view of (10.6) and (10.7). Given a fixed nonzero vector u ∈ F
n
q and

a set S ⊆ F
n
q , let ηu(S) denote the number of vectors in S that are not

orthogonal to u; that is,

ηu(S) � |{x ∈ S : 〈x, u〉 �= 0}|,

where the inner product is over Fq. Note that ηu(Z
−
i ) = ηu(Zi) is either 0

or (q−1)qk−1 for all i, since Zi is a vector space of dimension k. This claim

can be proved by induction. This also implies that ηu(F
n
q ) = (q − 1)qn−1.

Hence,

ηu(X) = ηu(F
n
q \ {0})−

M∑
i=1

ηu(Z
−
i )

is divisible by qk−1. But |X| = qr−1 < qk−1, which implies that ηu(X) = 0.

Since this is true for all nonzero u ∈ F
n
q , the set X cannot contain any

nonzero vectors, a contradiction.

Thus, M ≤
⌊
qn−1
qk−1

⌋
− 1.

Recall that for an e-perfect code, we say that X covers Y if d(X,Y ) ≤ e.

Theorem 10.11. For all q and n, there are no nontrivial perfect codes in

the projective space Pq(n).

Proof. Let us assume to the contrary that C is an e-perfect code in Pq(n).

Let d = 2e + 1, and define Ck � C ∩ Gq(n, k) for all k = 0, 1, . . . , n. We

distinguish between two cases depending on whether {0} is a codeword in C

or {0} /∈ C.
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Case 1. {0} ∈ C.

Clearly, C1 = C2 = · · · = C2e = ∅, and all the subspaces in

Gq(n, e+ 1) must be covered by the codewords of Cd. This implies that

Cd is a q-Steiner system Sq(e + 1, 2e + 1, n) and, hence by Lemma 10.6,

we have that |Cd| =
[

n
e+1

]
/
[
2e+1
e+1

]
. Each subspace of Cd covers

[
2e+1
e+2

]
sub-

spaces of Gq(n, e+ 2). This leaves
[

n
e+2

]
− |Cd|

[
2e+1
e+2

]
uncovered subspaces

of Gq(n, e + 2), and each one must be covered by a codeword of Cd+1.

Furthermore, each codeword of Cd+1 covers exactly
[
2e+2
e+2

]
subspaces of

Gq(n, e+ 2). Putting all this together implies that

|Cd+1| =
([

n

e+ 2

]
−
[
2e+ 1

e+ 2

]
·
[

n

e+ 1

]
/
[
2e+ 1

e+ 1

])
/
[
2e+ 2

e+ 2

]

=
(qn − 1)(qn−1 − 1) · · · (qn−e − 1)

(qd+1 − 1)(qd − 1) · · · (qe+1 − 1)
(qn−e−1 − qe) .

Observe that Aq(n, 2e+ 2, 2e+ 2) = Aq(n, d+ 1, d+ 1) ≥ |Cd+1|. Starting
with this, and applying Corollary 10.4 iteratively e+ 1 times, we obtain

Aq(m, 2(e+ 1), e+ 1) ≥ qm − qk−1

qk − 1
, (10.8)

where m = n − (e + 1) and k = e + 1. Moreover, the fact that Cd is a

q-Steiner system Sq(e + 1, 2e + 1, n) implies, by Lemma 10.8, that there

exists an Sq(1, e+1, n− e) and hence k = e+1 divides n− e = m+1. This

further implies that

qm − qk−1

qk − 1
= qm−k + qm−2k + qm−2k + · · ·+ q2k−1 + qk−1 =

⌊
qm − 1

qk − 1

⌋
.

Also, since k = e+ 1 divides m+ 1, it cannot divide m. This establishes a

contradiction between (10.8) and Lemma 10.15.

Case 2. {0} �∈ C.

Our proof for this case is based upon constructing a certain partition

of Fn
q , and then applying a counting argument to this partition to arrive at

a contradiction. For the counting argument, let us introduce a function ξ

from subsets of F
n
q to the natural numbers, defined as follows: given a

set S ⊆ F
n
q , let ξ(S) denote the number of vectors (x1, x2, . . . , xn) in S

such that x1 = 1. Note that if S is a vector space of dimension � and

ξ(S) �= 0, then each symbol occurs the same amount of times in the first

coordinate and hence ξ(S) = q�−1. Now let X ∈ C be a codeword of the

smallest dimension k among all the codewords in C. Since X �= {0}, we can
assume w.l.o.g. that ξ(X) �= 0 (otherwise, permute the coordinates of the
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ambient space F
n
q or the code C so that X is not entirely zero on the first

coordinate). The partition of Fn
q is constructed as follows. Since X must

cover the null-space {0}, it follows that k ≤ e. Find a subspace Z in Pq(n)

that satisfies the following conditions:

dimZ = e− k, X ∩ Z = {0}, ξ(Z) = 0. (10.9)

It is easy to verify that such a subspace Z always exists. Next, define

W = X⊕Z. In view of (10.9), we have that dimW = e, and since ξ(X) �= 0,

it follows that ξ(W ) �= 0, i.e., ξ(W ) = qe−1. Finally, define a sub-code C
′

of C as follows:

C
′ � {Y ∈ C : Z ⊂ Y and dimY = 2e+ 1− k}.

Suppose that C
′ contains M codewords Y1, Y2, . . . , YM . For all

i = 1, 2, . . . ,M , let Y ×i = Yi \ Z. We claim that

{Y ×1 , Y ×2 , . . . , Y ×M ,W} . (10.10)

is a partition of Fn
q . Assuming that (10.10) is, indeed, a partition of Fn

q ,

we easily arrive at a contradiction. Since dimYi = d − k and ξ(Z) = 0,

we have that ξ(Y ×i ) = ξ(Yi) is either 0 or qd−k−1 = q2e−k for all i. Also,

ξ(Fn
q ) = qn−1 and, therefore,

ξ(W ) = ξ(Fn
q )−

M∑
i=1

ξ(Y ×i )

must be divisible by q2e−k. This is a contradiction, since we have already

shown that ξ(W ) = qe−1, but e− 1 < 2e− k for all k ≤ e. To complete the

proof, it remains to establish that (10.10) is indeed a partition.

Claim 10.1. Let u be a vector of Fn
q that lies outside of W . Then there

exists a Yi ∈ C
′ such that u ∈ Yi.

Proof. If U = Z⊕{0, u}, then U is a subspace of dimension e−k+1 that

must be covered by some codeword of C. This codeword is not X since

U ∩X = {0}, and hence

dS(U,X) = dimU + dimX = (e− k + 1) + k = e+ 1 .

Let Y ∈ C be the codeword that covers U , i.e., dS(U, Y ) ≤ e. Since X ∈ C,

dimX = k, and dS(C) = d, it follows that dS(X,Y ) ≥ d which implies that

dimY ≥ d− k. From the fact that Y covers U , we obtain that

dS(U, Y ) = dimU + dimY − 2 dim(U ∩ Y ) ≤ e .
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This implies that e− k + 1 + dimY − 2 dim(U ∩ Y ) ≤ e and hence

d− k − 2 dim(U ∩ Y ) ≤ dimY − 2 dim(U ∩ Y ) ≤ k − 1 .

Therefore, d − 2k + 1 ≤ 2 dim(U ∩ Y ), i.e., e + 1 − k ≤ dim(U ∩ Y ) and

since dimU = e+ 1− k, it follows that dimY = 2e− k and

dim(U ∩ Y ) = dimU = e− k + 1 . (10.11)

(10.11), the definition of U , and dimY = 2e + 1 − k, however, imply that

Z ⊂ U ⊂ Y and, therefore, Y ∈ C
′. Finally, U ⊂ Y also implies that u ∈ Y ,

which completes the proof of the claim. �
If u lies outside of W = X ⊕ Z and u ∈ Yi, then clearly u must

belong to Y ×i = Yi \ Z. Hence, Claim 10.1 shows that the set union

Y ×1 ∪ Y ×2 ∪ · · · ∪ Y ×M ∪W indeed contains all of Fn
q .

Claim 10.2. The sets Y ×1 , Y ×2 , . . . , Y ×M and W are pairwise disjoint.

Proof. Given any two codewords Yi and Yj in C
′, we have that

dS(Yi, Yj) = 2(d− k)− 2 dim(Yi ∩ Yj) = 2(d− k)− 2(e− k) = 2(e+1) > d.

This implies that dim(Yi∩Yj) ≤ e−k = dimZ and, therefore, Yi∩Yj = Z.

Consequently, the sets Y ×1 , Y ×2 , . . . , Y ×M are disjoint.

Now assume to the contrary that there exists a nonzero vector y in

the intersection Y ×i ∩ W for some i. Then y ∈ Yi, and y = x + z for

some nonzero x ∈ X and some z ∈ Z. Yi, however, is a vector space that

contains Z as a subspace. Therefore, Yi also contains the vector y− z = x,

and hence dim(X ∩Yi) ≥ 1. This clearly contradicts the minimum distance

of C, since then dS(X,Yi) = k + (d− k)− 2 dim(X ∩ Yi) ≤ d− 2. �
Claims 10.1 and 10.2 complete the proof that (10.10) is, indeed, a par-

tition of Fn
q . This, in turn, completes the proof of the theorem.

10.5 Rank-Metric Codes

Rank-metric codes are highly related to subspaces (as a concept and in

their applications in random network coding) and hence these codes are

considered with subspaces.

For two k×m matrices A and B over Fq, the rank distance is defined

by

dR(A,B) � rank(A−B) .

A [k × m, �, δ] rank-metric code C is a linear code, whose codewords

are k ×m matrices over Fq; they form a linear subspace with dimension �
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of F
k×m
q , and for each two distinct codewords A and B, we have that

dR(A,B) ≥ δ. Similarly, we define a (k × m,M, δ)q rank-metric code to

be a code of size M whose codewords are k ×m matrices over Fq and the

rank distance between any two distinct matrices is at least δ. The related

graph Bq(k,m), k ≤ m, called the bilinear forms graph , is the graph

whose vertices are all the qk·m distinct k × m matrices over Fq and two

vertices are joined by an edge if and only if the difference between their

related matrices is a matrix whose rank is one. The following theorem is

not difficult to prove.

Theorem 10.12. The bilinear forms graph Bq(k,m) defines an association

scheme.

Theorem 10.13. If C is a (k ×m,M, δ)q rank-metric code, then M ≤ q�,

where

� ≤ min{k(m− δ + 1),m(k − δ + 1)} . (10.12)

Proof. Let C be a (k × m,M, δ)q rank-metric code and w.l.o.g. assume

that k ≤ m, which implies that m(k− δ+ 1) ≤ k(m− δ+ 1). Consider the

first k − δ + 1 rows of the M codewords of C. If the entries in these rows

of two such matrices A and B, where A,B ∈ C, are equal, then the matrix

A−B has k− δ+1 rows with zeroes and at most δ− 1 nonzero rows. This

implies that rank(A−B) ≤ δ − 1, a contradiction. Thus, in each two such

matrices, the m(k−δ+1) entries in the first k−δ+1 rows of the M matrices

are different, i.e., M ≤ qm(k−δ+1) and the proof is completed.

Corollary 10.9. If C is a [k ×m, �, δ] rank-metric code, then

� ≤ min{k(m− δ + 1),m(k − δ + 1)} . (10.13)

The bound of Theorem 10.13 (for nonlinear codes) and the bound of

Corollary 10.9 (for linear codes), is called the Singleton bound for the

rank distance. This bound is attained with equality for all feasible pa-

rameters. The codes that meet this bound are called maximum rank-

distance codes (or MRD codes in short). A generator matrix for a

[k × (n − k), (n − k)(k − δ + 1), δ] MRD code C, n − k ≥ k, can be repre-

sented as follows.

G =

⎛
⎜⎜⎜⎜⎝

g1 g2 . . . gk
gq1 gq2 . . . gqk
...

... · · ·
...

gq
k−δ

1 gq
k−δ

2 . . . gq
k−δ

k

⎞
⎟⎟⎟⎟⎠ ,
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where the gi’s, 1 ≤ i ≤ k, gi ∈ Fqn−k , are linearly independent over Fq

and hence a row in G is a k × (n − k) matrix. If the last i rows,

1 ≤ i ≤ k − δ are removed from G, then the outcome is a generator ma-

trix for a [k × (n− k), (n− k)(k − δ + 1− i), δ + i] MRD sub-code of C.

Theorem 10.14. The maximum size anticode whose codewords are k ×m,

k ≤ m, matrices, having maximum rank-distance δ − 1, has qm(δ−1) code-

words. A [k×m,m(k− δ+1), δ] MRD code C is a (δ− 1)-diameter perfect

code.

Proof. Let A be the set of all k ×m matrices, with nonzero entries only

in the last δ − 1 rows. There are qm(δ−1) such distinct matrices and the

rank distance between any two such matrices is at most δ − 1. Therefore,

a [k ×m,m(k − δ + 1), δ] MRD code C and the anticode A meet the code-

anticode bound, i.e.,

|C| · |A| = qm(k−δ+1)qm(δ−1) = qm·k .

Thus, A is a maximum size anticode in Bq(k,m), k ≤ m, with diame-

ter δ − 1 and size qm(δ−1) and the [k ×m,m(k − δ + 1), δ] MRD code C is

a (δ − 1)-diameter perfect code.

Corollary 10.10. The set of anticodewords in an anticode with diameter δ,

δ ≥ 2, defined for the bilinear forms scheme, contains the set of anticode-

words in an anticode with diameter δ − 1, defined for the bilinear forms

scheme,

In view of Corollary 10.10 we consider the anticodes defined in The-

orem 10.14 as the maximum size anticodes considered in the rest of this

section.

The code-anticode bound of Corollary 2.15 holds for the rank-metric

since the conditions of Lemma 2.14 are satisfied for this metric. The code-

anticode bound and the fact that for each set of parameters there exists an

MRD code which meets the bound in (10.12) can also be used to prove that

there are no nontrivial perfect codes in the bilinear forms graph. This claim

will be proved in the rest of this section. The idea is to consider the last

sphere in a ball and the “almost” sphere in a maximum size anticode, where

an “almost” sphere is the set of elements that are contained in a maximum

size anticode with diameter δ, but are not contained in its sub-anticode of
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maximum size whose diameter is δ − 2.

Lemma 10.16. The size of a sphere with radius t of in Bq(k,m) is

t−1∏
j=0

(qk − qj)(qm − qj)

qt − qj
.

Proof. The size of a sphere with radius t does not depend on its center

and hence it equals the number of k ×m matrices of rank t over Fq. Let

F (k, t) be the number of such matrices. We claim that

F (k, t) = qtF (k − 1, t) + (qm − qt−1)F (k − 1, t− 1) , (10.14)

where F (k, 0) = 1 for k ≥ 1, and F (k, k) =
∏k−1

i=0 (q
m − qi).

Given a (k − 1) × m matrix M of rank t, a k × m matrix of rank t

is obtained by adding a row of length m, which is formed by one of the

qt distinct linear combinations of the k − 1 rows of M . Hence, the number

of k ×m matrices of rank t whose first k − 1 rows form a matrix of rank t

is qtF (k − 1, t).

Given a (k − 1)×m matrix M of rank t− 1, a k ×m matrix of rank t

is obtained by adding a row of length m that is not in the linear span of

the first k − 1 rows of M . There are qm possible rows of length m and

qt−1 linear combinations of these k− 1 rows of M since their rank is t− 1.

Hence, the number of k×m matrices of rank t whose first k− 1 rows form

a matrix of rank t− 1 is (qm − qt−1)F (k − 1, t− 1).

This implies the recursion in (10.14).

As for the initial conditions in (10.14), F (k, 0) is readily verified, while

F (k, k) is the number of k ×m matrices of full-rank k.

To complete the proof, only a simple computation using induction is

needed to verify that F (k, t) =
∏t−1

j=0
(qk−qj)(qm−qj)

qt−qj is the solution for this

recursion with the initial conditions.

Using Theorem 10.14 we can compute the size of an “almost” sphere in

a maximum size anticode. This size is computed in the following lemma.

Lemma 10.17. The difference in the size of a maximum size anticode with

diameter 2e and the size of a maximum size anticode with diameter 2e− 2

in Bq(k,m) is

q2me − qm(2e−2) = qm(2e−2)(q2m − 1) .

Proof. By Theorem 10.14, a maximum size anticode with diameter 2e in

Bq(k,m) has qm·2e codewords. By Theorem 10.14, a maximum size anticode
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with diameter 2e−2 in Bq(k,m) has qm·(2e−2) codewords. This implies the

claim in the lemma.

Lemma 10.18. If m ≥ k ≥ e ≥ 1, then

qm(2e−2)(q2m − 1) >

e−1∏
j=0

(qk − qj)(qm − qj)

qe − qj
.

Proof. The proof is by induction on e. Let

DA(e) � q2me − qm(2e−2) = qm(2e−2)(q2m − 1)

and

DB(e) �
e−1∏
j=0

(qk − qj)(qm − qj)

qe − qj
.

When e = 1, DA(1) = q2m−1 and DB(1) = (qk−1)(qm−1)
q−1 and since m ≥ k,

it follows that DA(1) > DB(1) and the basis of the induction is proved.

Assume now that DA(e) > DB(e), where k > e ≥ 1. It is easy to verify

that

DA(e+ 1) = DA(e)q2m

and

DB(e+1) = DB(e)(qk−qe)(qm−qe)

∏e−1
j=0(q

e − qj)∏e
j=0(q

e+1 − qj)
< DB(e)(qk−qe)(qm−qe).

Since q2m > (qm − qe)(qk − qe) and by the induction hypothesis

DA(e) > DB(e), it follows that DA(e + 1) > DB(e + 1) and the proof

of the claim is completed.

Theorem 10.15. There are no nontrivial perfect codes in the bilinear

forms scheme Bq(k,m).

Proof. Clearly, by (10.13) if any perfect code exists in Bq(k,m), then it

should be an MRD code. Assume C is a [k ×m, �, δ] e-perfect rank-metric

code. Since C is a perfect code, it follows that δ = 2e+1. By Theorem 2.11

(and also by Theorem 10.14), C is also a (2e)-diameter perfect code. This

implies that the size of ball with radius e, Be(k ×m), is equal to the size

of the largest anticode with diameter 2e, qm(δ−1), i.e.,

|Be(k ×m)| = qm(δ−1). (10.15)
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Consider now a [k ×m, �, δ − 2] code C′ of maximum size. The code C′ is
also an MRD code, which is a (2e − 2)-diameter perfect code whose an-

ticode has size is qm(2e−2) and, therefore, by the code-anticode bound,

|C′| · qm(δ−3) = qkm. For the related ball, Be−1(k × m), we have that

|C′| · |Be−1(k ×m)| ≤ qkm. This implies that

|Be−1(k ×m)| ≤ qkm

|C′| = qm(δ−3) ,

which by (10.15) implies that

|Be(k ×m)| − |Be−1(k ×m)| ≥ qm(δ−1) − qm(δ−3) . (10.16)

By Lemma 10.16 we have that

|Be(k ×m)| − |Be−1(k ×m)| =
e−1∏
j=0

(qk − qj)(qm − qj)

qe − qj
.

By Lemma 10.18 we have that DB(e) < DA(e) and hence

|Be(k ×m)| − |Be−1(k ×m)| < qm(δ−1) − qm(δ−3) ,

which contradicts (10.16).

Thus, there are no nontrivial perfect codes in the bilinear forms

scheme Bq(k,m).

10.6 Constant-Dimension MDS Codes

In the Hamming scheme, we have proved that orthogonal arrays (or MDS

codes) form diameter perfect codes. In Jq(n,w), the MDS-CW codes are

also diameter perfect codes. Are there some similar subspace-MDS codes

(constant-dimension MDS codes)? The answer is that there do exist such

similar subspace-MDS codes. Moreover, these codes can be generated from

MDS codes and they also yield a family of orthogonal arrays (Lemmas 10.19

and 10.20, respectively). In other words, they form a family between the

linear MDS codes and the nonlinear orthogonal arrays.

An (n, t, k)q subspace-MDS code C is a set of n subspaces of Gq(kt, t)

such that each k subspaces of C span F
kt
q . Before elaborating why this

family of code lies between the nonlinear orthogonal arrays and the linear

MDS codes, we consider a slightly larger family of codes and a bound on

the size of such a family.

Definition 10.2. Let t, k, α be three positive integers, where α ≤ k

and t ≥ 1. A (t; k, α)q-independent configuration (IC) is a set

C = {U1, . . . , Un} ⊆Gq(kt, t), such that for all 1 ≤ i1 < i2 < · · · < iα ≤ n,

dim(Ui1 + Ui2 + · · ·+ Uiα) = αt .

We say that |C| = n is the size of the IC.
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Theorem 10.16. If C is a (t; k, α)q-IC, where α ≥ 2, then

|C| ≤ q(k−α+2)t − 1

qt − 1
+ α− 2.

Proof. If α = 2, the claim is immediate by considering the size of a t-spread

in F
kt
q (see Theorem 10.6).

Assume now that α > 2 and let C � {U1, U2, . . . , Un} be a (t; k, α)q-IC.

Define

W1 � U1 + U2 + · · ·+ Uα−2,

where dimW1 = (α − 2)t. By the definition of an IC, we have that there

exists a ((k − α + 2)t)-subspace W2 of Fkt
q such that F

kt
q = W1 +W2. It

follows that any vector u ∈ Uj , α− 1 ≤ j ≤ n, may be written uniquely as

u = u1 + u2, where u1 ∈W1 and u2 ∈W2. We now define

U ′j � {u2 : u1 + u2 ∈ Uj , u1 ∈W1, u2 ∈W2},

for all α− 1 ≤ j ≤ n. It is easily verified that dimU ′j = t.

Furthermore, for any α− 1 ≤ j1 < j2 ≤ n,

dim(W1 + U ′j1 + U ′j2) = αt⇒ dim(U ′j1 + U ′j2) = 2t.

Thus, the set {U ′i : α − 1 ≤ i ≤ n} contains |C| − α + 2 pairwise disjoint

t-subspaces of W2. The number of such subspaces is upper bounded by the

size of a t-spread (see Theorem 10.6), and thus,

|C| − α+ 2 ≤
[
(k−α+2)t

1

][
t
1

] .

When t = 1, bounding the size of (1; k, k)q-IC is equivalent to finding the

longest MDS codes, and hence it is related to the MDS conjecture. Thus,

Theorem 10.16 forms a generalization of an upper bound on the length of

an MDS code (see Theorem 3.5). When α = k, a (t; k, k)q-IC of size n is an

(n, t, k)q subspace-MDS code. To end this section we prove the connections

between subspace-MDS codes and orthogonal arrays on one side and MDS

codes on the other side.

Lemma 10.19. If there exists an [n, k, d]qt MDS code, then there exists an

(n, t, k)q subspace-MDS code.
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Proof. Let G be the k × n generator matrix of an [n, k, d]qt MDS code,

let α be a primitive element of Fqt , and let C be the related t × t com-

panion matrix. From the i-th column vector v of length k in G we form a

(kt)× t matrix, Ĝi, by replacing each element αj in v by the matrix Cj ;

and each zero in the column vector v of G is replaced by the t × t all-

zero matrix. Let Gi � Ĝtr
i be a t × (kt) matrix. Since each power of

the companion matrix is of full-rank, it follows that Gi is a generator ma-

trix for a t-subspace of F
kt. Since G is a k × n matrix, it follows that

from the columns of G, the matrices G1, G2, . . . , Gn form n subspaces of

dimension t. Hence, to complete the proof it is sufficient to prove that

the (kt)× (kt) matrix formed by concatenations of any k distinct matrices

from the set {Ĝi : 1 ≤ i ≤ n} is of full rank. Let A be a k × k matrix

formed by any projection on k columns of G. Since G is a generator matrix

of an [n, k, d]qt MDS code, it follows that A is of full-rank. Let Â be the

(kt)× (kt) matrix formed from A by replacing each element αj in A by the

matrix Cj ; and each zero in the matrix A of G is replaced by the t× t all-

zero matrix. Assume that u = (u1, u2, . . . , uk) ∈ F
kt
q is a nonzero vector

such that Â ·utr = 0, where uj is a word of length t for each 1 ≤ j ≤ k. By

Corollary 10.8, if (α1, α2, . . . , αk) ∈ F
k
qt , where αj is the element in Fqt that

is represented by the vector uj of length t, then A · (α1, α2, . . . , αk)
tr = 0.

This is a contradiction of the fact that G is the k×n generator matrix of an

[n, k, d]qt MDS code, where any k column vectors are linearly independent.

Therefore, the set {〈Gi〉}ni=1 is an (n, t, k)q subspace-MDS code.

Lemma 10.20. If there exists an (n, t, k)q subspace-MDS code, then there

exists an OA(k, n, qt).

Proof. Let C be an (n, t, k)q subspace-MDS code whose n subspaces are

represented by t × (kt) generator matrices. For a given such matrix Gi,

1 ≤ i ≤ n, and a word x = (x1, x2, . . . , xk) ∈ F
k
qt , where xj is a sub-word

of length t over Fq, we form the word ui(x) = Gi · xtr. For each such

word ui(x), of length t over Fq, let γi(x) be the element of Fqt whose q-ary

representation is ui(x). We form a row vector (γ1(x), γ2(x), · · · , γn(x)) in
an array M . We claim that all these row vectors of M form an OA(k, n, qt).

There are qtk distinct words that can be taken as x and each will generate

one row in M and hence M has the required number of rows and columns

of the orthogonal array, i.e., M is a qtk × n array.

Therefore, to complete the proof it is sufficient to show that the projec-

tion of each k columns of M contains each word of length k over Fqt exactly
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once. Assume to the contrary, that some word of length k over Fqt appears

at least twice in some projection. W.l.o.g. we can assume that this is the

projection on the first k columns of M . Let G be the (kt) × (kt) matrix

formed from the rows of the k generator matrices G1, G2, . . . , Gk. Since the

projection of the first columns of M form two equal k-tuples this implies

that there exist two distinct words x, y ∈ F
k
qt such that G ·xtr = G ·ytr, i.e.,

G · (ytr − xtr) = 0. Since y �= x, this implies that G is not a matrix of full

rank and hence the related first k subspaces do not span F
kt. Therefore,

C is not an (n, t, k)q subspace-MDS code, a contradiction.

Thus, M is an orthogonal array OA(k, n, qt) and the proof is completed.

The following intriguing research problems seem to be very difficult.

Problem 10.4. Are there subspace-MDS codes with parameters that can-

not be obtained from MDS codes?

Problem 10.5. Are there orthogonal arrays over an alphabet which is a

power of a prime that cannot be obtained from subspace-MDS codes?

Problem 10.6. Can a subspace-MDS code be described as a diameter

perfect code without its translation into an orthogonal array?

10.7 Notes

The projective space and the Grassmann scheme are of particular interest in

coding theory. Representation of subspaces and codes defined by subspaces

can be a key to obtain results in coding theory and in particular on codes

in the projective space and the Grassmann scheme. In particular, one can

observe that the
[
n
k

]
q
subspaces of Gq(n, k) are exactly all the linear codes

of dimension k over Fq. Hence, better understanding of the projective space

can influence on the knowledge about linear codes. For example, encoding

and decoding Gq(n, k) is equivalent for enumerating and ordering all [n, k]q
codes. This problem was considered first in [Silberstein and Etzion (2011)],

where several representation of k-subspaces are presented and as a result a

few encoding and decoding algorithms for Gq(n, k) are presented.

Section 10.1. The nonexistence proof for perfect codes in the Grassmann

scheme is due to [Martin and Zhu (1995)]. This proof is a shorter proof

than the one given earlier by [Chihara (1987)]. In [Ahlswede, Aydinian, and

Khachatrian (2001)] it was asserted that the most interesting association



February 21, 2022 16:26 ws-book9x6 Perfect Codes and Related Structures Perfect˙Codes˙Main page 322

322 Perfect Codes and Related Structures

schemes in coding theory are the Hamming scheme, the Johnson scheme,

and the Grassmann scheme. The projective space was defined first in the

connection of error-correcting codes for random network coding [Koetter

and Kschischang (2008)]. Related computations on the intersection between

subspaces and enumerations for intersection numbers were done in [Etzion

and Vardy (2011)]. This paper was the first that analyzed codes in the

projective space after they were found applicable to error-correction for

random network coding [Koetter and Kschischang (2008)]

Section 10.2. The classic theory for q-analogs of mathematical objects

and functions has its beginnings in the early work of Leonard Euler [Euler

(1750 - 51)]; see also [Koelink and van Assche (2009)]. It is, therefore, nat-

ural to ask which combinatorial structures can be generalized from sets to

vector spaces over Fq. For t-designs and Steiner systems, this question was

first studied in [Cameron (1974a,b)] and [Delsarte (1976)]. While there has

been a lot of progress in constructing q-analogs of block designs (see [Et-

zion and Storme (2016)] and references therein), there has been almost no

progress in constructing nontrivial q-Steiner systems (recall that spreads are

considered to be trivial q-Steiner systems). The only major breakthrough

was done by [Braun, Etzion, Österg̊ard, Vardy and Wassermann (2016)],

where a construction of the q-Steiner system S2(2, 3, 13) was given. Many

such non-isomorphic systems were found by sophisticated computer search.

Although q-analog of designs are more difficult to find than designs over

sets, there has been a lot of progress in this direction from the beginning of

the 21st century. Apart from the work by [Braun, Etzion, Österg̊ard, Vardy

and Wassermann (2016)], there has been hardly any progress, on q-Steiner

systems, since the problem was tackled in [Thomas (1996)]. In [Etzion and

Hooker (2018)], a construction of codes, which are similar to a punctured

q-Fano plane Sq(2, 3, 7) for q = 2, was presented. Their code has the same

parameters and properties as the ones expected from the punctured q-Fano

plane. Another interesting result was presented in [Kiermaier and Laue

(2015)], where the derived and the residual designs for q-analog of designs

are considered. The q-analog of designs are also called subspace designs.

It was observed in [Ahlswede, Aydinian, and Khachatrian (2001)] that

q-Steiner systems are diameter perfect codes in the Grassmann scheme.

The size of maximum size anticodes in the Grassamnn scheme was found

in [Frankl and Wilson (1986)] in the connection of finding the maximum

size of t-intersecting families and a generalization of the Erdös-Ko-Rado

theorem for vector spaces. Their results were used by [Schwartz and Etzion
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(2002)] to consider q-Steiner systems and tilings of the Grassmann space

with these maximum size anticodes in the Grassmann scheme.

Finally, normal spreads were characterized in [Beutelspacher and Ue-

berberg (1991)] where the following theorem is proved.

Theorem 10.17. There exists a unique normal k-spread in F
rk
q for

each r ≥ 3.

Clearly, Theorem 10.17 does not hold for r = 2 as it was proved in

Lemma 10.13 that all k-spreads in F
2k
q are normal. Normal spreads were

further considered in [Lunardon (1999)].

Various applications of the companion matrix and its powers to network

coding and subspaces were suggested in [Etzion and Wachter-Zeh (2018)].

The connections between Hamming codes, normal spreads, companion ma-

trices, and Steiner systems were presented by the author of this book in an

invited talk presented at Combinatorics 2016, held in Maratea, Italy.

Section 10.4. The nonexistence proof for perfect codes in Pq(n), with the

subspace distance, was presented in [Etzion and Vardy (2011)].

Section 10.5. The Singleton bound and the constructions of rank-metric

codes, which meet this bound, were found using different approaches

by [Delsarte (1978); Gabidulin (1985); Roth (1991)]. This bound was gen-

eralized in [Etzion, Gorla, Ravagnani and Wachter-Zeh (2016)] to Ferrers-

diagram rank-metric codes. They also extended the work on anticodes

and maximum size rank-metric codes (which are diameter perfect codes)

to Ferrers-diagram rank-metric codes, which were defined in [Etzion and

Silberstein (2009)] in the context of codes for random network coding.

The recursive solution in the proof of Lemma 10.16 was given by [Lands-

berg (1893)]. Previous proofs for the nonexistence of perfect rank-metric

codes are slightly more complicated than the one given in Theorem 10.15.

Such proofs were given, for example, in [Chihara (1987); Martin and Zhu

(1995); Loidreau (2014)].

There are many strong connections between codes in the bilinear forms

scheme Bq(k,m) and the Grassmann scheme Gq(m+ k, k). Given a k ×m

matrix M over Fq, we form a k-subspace in Gq(m+k, k) whose k× (m+k)

generator matrix [Ik M ], is called the lifting of M .

For a [k ×m, �, δ] rank-metric code C, the code

C � {〈[Ik M ]〉 : M ∈ C}
is called the lifted code of C. This code C in Gq(m + k, k) has minimum

subspace distance 2δ, i.e., minimum Grassmann distance δ. If C is an MRD
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code, the corresponding lifted code is called the lifted MRD code C
MRD

of C. This construction was first observed in [Silva, Kschischang, and Koet-

ter (2008)]. A generalization with Ferrers-diagram rank-metric codes was

done first in [Etzion and Silberstein (2009)] and later explored in [Etzion

and Silberstein (2013)]. The paper [Etzion and Silberstein (2013)] also

tie together the code C
MRD with combinatorial designs and in particular

q-analog of designs.

Section 10.6. MDS codes over subspaces were considered first as array

codes by various authors (see [Blaum, Bruck, and Vardy (1996); Raviv,

Silberstein, and Etzion (2017); Silberstein, Etzion, and Schwartz (2019)]

and references therein), where the representation was not always given us-

ing subspaces (the representation usually used arrays). It was considered

later for network coding solutions with subspaces in [Etzion and Wachter-

Zeh (2018)] and in [Etzion and Zhang (2019)]. The MDS bound in The-

orem 10.16 is due to [Cai, Chrisnata, Etzion, Schwartz, and Wachter-Zeh

(2020)]. Various metrics for network coding with matrices and subspaces

were considered by [Silva and Kschischang (2009)].
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Chapter 11

The Lee and the Manhattan Metrics

The Lee metric and the Manhattan metric are two important metrics from

both theoretical and practical points of view. In this chapter codes in these

metrics are considered. Section 11.1 is devoted to the definitions of the two

metrics, their codes, and anticodes. Section 11.2 introduces the concept of

lattice tiling, which replaces the concept of linear perfect codes when we

consider linear codes in Z
n. This concept can also be used for linear codes

in Z
n
m. It will be used in this chapter and in Chapter 12. Section 11.3

is devoted to three constructions of perfect codes that form two infinite

sets of parameters. Section 11.4 deals with constructions and properties of

diameter perfect codes. All codes which are constructed in this section have

periodicity properties. In Section 11.5, nonperiodic codes are constructed

and some constructions for a large set of inequivalent perfect codes and

inequivalent diameter perfect codes are presented. Finally, in Section 11.6

we present one of the known techniques to exclude the existence of perfect

codes in the Lee metric. This existence problem of perfect codes in the

Lee metric and perfect codes in the Manhattan metric is the main open

problems in this research area.

11.1 The Lee and the Manhattan Distances

The Lee metric was introduced for transmission of signals taken from Fp,

where p is a prime, over some certain noisy channels. It was later generalized

for Zm, where m > 1 is any positive integer. Our assumption throughout

this chapter, when e-perfect codes are considered, is that m ≥ 2e+ 1.

The Lee distance dL(x, y) between two words x = (x1, x2, . . . , xn) and

325
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y = (y1, y2, . . . , yn) in Z
n
m is given by

dL(x, y) �
n∑

i=1

min{xi − yi (mod m), yi − xi (mod m)} ,

where the outcome from the computation modulo m is taken as the residue

modulo m between 0 and m−1. The Manhattan distance (known also as

the L1 distance, the rectilinear distance, and the taxicab distance), is a re-

lated distance defined over Zn. This is the first time, in this book, where the

space being considered is not a finite set. For two words x = (x1, x2, . . . , xn)

and y = (y1, y2, . . . , yn) in Z
n, the Manhattan distance between x and y is

defined by

dM (x, y) �
n∑

i=1

|xi − yi| .

It is easy to verify, that the triangle inequality holds for the Lee distance and

also for the Manhattan distance, and hence these distances define metrics.

Neither of these two metrics defines an association scheme. For the Manhat-

ten metric, this is trivial as it is defined on an infinite space. The Lee metric

is also not a scheme. This can be verified by considering a simple example

for the possible intersection numbers. Consider the following three words

x = (0, 0, 0, . . . , 0), y = (2, 0, 0, . . . , 0), and z = (1, 1, 0, . . . , 0) of length n

over Zm, m ≥ 5. Clearly, dL(x, y) = dL(x, z) = 2. There exists exactly one

word u for which dL(x, u) = dL(y, u) = 1 (this word is u = (1, 0, 0, . . . , 0)),

while the number of words for which dL(x, u) = dL(z, u) = 1 is two, where

u ∈ {(1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0)}. This implies that the Lee metric does

not define an association scheme for m ≥ 5. The same is true for m = 4

and a proof for this is left as an exercise to the reader. What about m < 4?

When m = 2 and when m = 3, the Lee metric coincides with the Hamming

metric and hence in both cases the Lee metric defines a scheme. As was

mentioned before, it will be assumed that m ≥ 2e+1 and hence m ≤ 3 does

not introduce interesting new results. The reason for choosing m ≥ 2e+1 is

that, geometrically, the balls with radius e will be the same in Z
n and Z

n
m,

with the only difference that in Z
n
m there might be a wrap around.

An n-dimensional Lee ball (also called a Lee sphere) with radius e,

centered at the point z = (z1, z2, . . . , zn) ∈ Z
n, is the shape defined by

Be(z) � {(x1, x2, . . . , xn) : (x1, x2, . . . , xn) ∈ Z
n, Σn

i=1 |xi − zi| ≤ e} .

In other words, Be(z) consists of all points in Z
n whose Manhattan distance

from the given point (z1, z2, . . . , zn) is at most e. If we are in the Lee metric,
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i.e., Be(z) (Be(n)) is in Z
n
m, then the points are taken modulom. The shapes

are the same in both metrics since m ≥ 2e+ 1, but the presentation in Z
n

makes it simpler to understand the shape (the e-ball). Moreover, we can

associate each point x ∈ Z
n with an n-dimensional unit cube whose center

is in x. This will turn our coding problems into geometrical problems.

We further emphasize that geometrically the ball with radius e in the Lee

metric and the Manhattan metric are equal. The only difference is that in

the Lee metric it can be wrapped around depending on the alphabet Zm in

the Lee metric. A 2-dimensional and a 3-dimensional Lee balls with radius

one are depicted in Fig. 11.1, where the center of the balls has no specific

point in Z
n.

Fig. 11.1 A 2-dimensional and a 3-dimensional Lee balls with radius one.

Theorem 11.1.

|Be(n)| =
min{n,e}∑

i=0

2i
(
n

i

)(
e

i

)
. (11.1)

Proof. We consider the coordinates of each codeword as “boxes” and there

are at most e “elements” to be distributed to all the boxes. For each i ≤ e,

we consider the number of different distributions of elements to exactly

i boxes. There are
(
n
i

)
distinct ways to choose i boxes, where i ≤ n.

Each such box has at least one element and hence we have to distribute

all the other e − i elements (or some of them) to these i boxes. This is

a simple partition problem of e − i identical elements into i + 1 distinct

boxes, with an unlimited numbers of elements in a box. For this purpose,

there are
(
e−i+i+1−1

e−i

)
=
(
e
i

)
different distributions. The absolute value in

each coordinate is determined by the number of elements distributed to the

associated boxes. Each such value can be positive or negative and hence



February 21, 2022 16:26 ws-book9x6 Perfect Codes and Related Structures Perfect˙Codes˙Main page 328

328 Perfect Codes and Related Structures

there are 2i distinct ways to determine the signs. Multiplying these three

factors yields the formula.

Corollary 11.1. For n ≥ 1, |B1(n)| = 2n+ 1.

Corollary 11.2. For e ≥ 1, |Be(2)| = 2e2 + 2e+ 1.

An (n, d,m)L Lee code is a code of length n, minimum Lee distance d,

over Zm. The following theorem can easily be verified from the sphere-

packing bound.

Theorem 11.2. A Lee code C of length n over Zm has minimum Lee dis-

tance 3 and size mn

1+2n if and only if C is a 1-perfect code.

What is the size of the largest anticode with diameterD in Z
n, n ≥ 2? It

is easy to verify that the ball Be(n) is an anticode with diameterD = 2e and

it will be defined as the anticode A2e(n). For odd D, we define anticodes

with diameter D = 2e + 1, A2e+1(n) as follows. For e = 0, let A1(n) be a

shape consisting of two adjacent points of Zn, where two points are adjacent

if the Manhattan distance between them is one. These two points are the

core of the anticode. The anticode A2e+1(n) is defined as all the points

in Z
n whose distance from the core A1(n) is at most e. A 2-dimensional and

a 3-dimensional anticodes with diameter three are depicted in Fig. 11.2.

Fig. 11.2 A 2-dimensional and a 3-dimensional anticodes with diameter three.

Theorem 11.3.

|A2e+1(n)| =
min{n−1,e}∑

i=0

2i+1

(
n− 1

i

)(
e+ 1

i+ 1

)
. (11.2)
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Proof. Assume that the two adjacent points are (0, . . . , 0, 0) and

(0, . . . , 0, 1). We compute the number of different ways to obtain elements

of A2e+1(n). Each element has n coordinates. The last coordinate is ini-

tially 0.5 and should be changed (either increased or decreased) by at

least 0.5. There are two distinct ways for the direction change (plus or

minus) of this coordinate. Except for the last coordinate, another i coordi-

nates are changed, but not more than n− 1 coordinates and not more than

e coordinates by the definition of A2e+1(n). For these i coordinates, there

are 2i ways to determine if the change is positive or negative. Now we have

to distribute up to e identical elements into i+ 2 boxes (note that one box

represents the last coordinate and one box represents the elements that are

not contained in the other i + 1 boxes), where exactly i specific boxes are

not empty. This can be done in
(
e−i+i+2−1

e−i

)
=
(
e+1
i+1

)
distinct ways.

Corollary 11.3. For n ≥ 1, |A3(n)| = 4n.

Corollary 11.4. For 2e+ 1 ≥ 1, |A2e+1(2)| = 2(e+ 1)2.

The following fact is known about the maximum size anticode for each

diameter.

Theorem 11.4. The anticode A2e+1(n) is a maximum size anticode with

diameter 2e + 1 and the ball Be(n) is a maximum size anticode with

diameter 2e.

Finally, the conditions of Corollary 2.15 are clearly satisfied for the Lee

metric, where addition is the binary operation, and hence the code-anticode

bound holds for the Lee metric.

Corollary 11.5. If a code C of length n over Zm has minimum Lee

distance 4 and size mn

4n , then C is a 3-diameter perfect code.

11.2 Lattice Tiling

Lattices are a very important concept for packing and tiling of the

n-dimensional Euclidian space with a given n-dimensional shape. They

are most useful in describing linear codes for the Lee metric and for the

Manhatten metric. Lattices replace the concept of linear codes for these

metrics.

A lattice Λ is an additive subgroup of the real n-space R
n, defined by

Λ � {a1v1 + a2v2 + · · ·+ anvn : a1, a2, . . . , an ∈ Z}
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where {v1, v2, . . . , vn} is a set of linearly independent vectors in R
n, i.e., the

lattice has rank n. The set of vectors {v1, v2, . . . , vn} is called the base

for Λ, and the n× n matrix

G �

⎡
⎢⎢⎢⎣
v1
v2
...

vn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
v11 v12 . . . v1n
v21 v22 . . . v2n
...

...
. . .

...

vn1 vn2 . . . vnn

⎤
⎥⎥⎥⎦

having these vectors as its rows is said to be the generator matrix for Λ

and it is also denoted by G(Λ). The lattice Λ will be denoted also by Λ(G).

The volume of a lattice Λ, denoted by V (Λ), is inversely proportional to

the number of lattice points per a unit volume. More precisely, V (Λ) may be

defined as the volume of the fundamental parallelogram (fundamental

region) Π(Λ), which is given by

Π(Λ) � {ξ1v1 + ξ2v2 + · · ·+ ξnvn : 0 ≤ ξi < 1, 1 ≤ i ≤ n} .

There is a simple expression for the volume of Λ, namely, V (Λ) = | detG|.
A set of points T in Z

n (or Zn
m) is a tiling for a shape S, S ∈ Z

n, if T +S
is equal to Z

n (Zn
m, respectively) and each point of Zn (Zn

m, respectively),

can be represented in a unique way as x + y, where x ∈ T and y ∈ S.
Recall that with this property, the pair (T ,S) is a tiling. This definition

can be generalized to non-discrete shapes in R
n, but these tilings will be

considered in our discussion only briefly in Section 12.5. Moreover, these

shapes in Z
n and also in Z

n
m can be described by a collection of unit cubes in

the n-dimensional Euclidian space, whose centers are in the integer points

of the shape. This will form a one-to-one correspondence between tilings

in Z
n (or Zn

m) and some sets of tilings in the n-dimensional Euclidian space.

Nevertheless, it should be noted that these shapes can tile the n-dimensional

Euclidian space in other ways (where only some points in the tilings are

integer points). These tilings will not be discussed in our context. The only

lattices in R
n that will be discussed in Section 12.5 are those of shapes that

cannot be described as shapes in Z
n.

A lattice Λ is a lattice tiling for a shape S if the points of Λ form

a tiling for S. A lattice tiling Λ is an integer lattice tiling for S if all

entries of G(Λ) are integers. The following lemma is well known and can

be verified from the given definitions.

Lemma 11.1. If Λ defines a lattice tiling (over Rn or Zn) with the shape S,
then V (Λ) = |S|, where |S| denote the volume of the shape S.
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Related to a tiling of a shape S is a packing of a shape S, where no point

in the space is covered more than once by a translate of the shape S.
Lemma 11.1 is relaxed in the following way.

Lemma 11.2. A necessary condition for a lattice Λ (over R
n or Z

n) to

define a lattice packing with a shape S is that V (Λ) ≥ |S|. A sufficient

condition for a lattice packing Λ, for the shape S, to define a lattice tiling

of the shape S is that V (Λ) = |S|.

A lattice Λ ⊆ Z
n has period (t1, . . . , tn) ∈ Z

n if whenever v ∈ Λ, also

v ± tiei ∈ Λ for each i, 1 ≤ i ≤ n. Lattices are always periodic, and the

minimum period in the i-th direction, ti, is the smallest positive integer for

which tiei ∈ Λ. We also say that the period of the lattice is t, where t equals

to the least common multiplier of t1, t2, . . . , tn. Note that this definition

implies that if a lattice has period t, then it also has period r · t for each

positive integer r.

11.3 Constructions of Perfect Codes

This section is devoted to constructions of perfect codes in the Lee metric.

As usual, the codes that will be generated and the codes that will be con-

sidered contain the all-zero codeword. We note that an e-perfect code in

the Lee metric over Z
n
m induces an e-perfect code in the Manhattan met-

ric over Z
n. This e-perfect code in Z

n has periodicity m. Similarly, an

e-perfect code in the Manhattan metric over Z
n, which has periodicity m

in all dimensions, induces an e-perfect code in the Lee metric over Zn
m.

Theorem 11.5. The set

C �
{
(c1, c2, . . . , cn) :

n∑
i=1

i · ci ≡ 0 (mod 2n+ 1)

}

is a 1-perfect code over Z2n+1.

Proof. By Corollary 11.1, the size of a ball with radius one is m = 2n+ 1.

The number of solutions to the congruence in the definition of C is mn−1,

since for any choice of c2, c3, . . . , cn, there is a unique value of c1 mod-

ulo 2n + 1 for which the congruence equals zero. Hence, by the sphere-

packing bound, to prove that the code is a 1-perfect code, it suffices to

show that the minimum distance of C is three or that the covering radius

of C is one. Therefore, to complete the proof, it is sufficient to prove that
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for each word b = (b1, b2, . . . , bn), there is one codeword within distance one

of b. Let
n∑

i=1

i · bi ≡ k (mod 2n+ 1) .

If k = 0, then b is a codeword. Otherwise, let c = (c1, c2, . . . , cn), where

ci = bi for i �= k and ck = bk−1 (taken modulo m = 2n+1 in Zm). Clearly,

n∑
i=1

i · ci ≡
n∑

i=1

i · bi − k ≡ 0 (mod 2n+ 1),

and hence c is a codeword for which dL(c, b) = 1 and the proof is completed.

Theorem 11.6. The set

C � {(α, (2e+ 1)α) : 0 ≤ α ≤ 2e2 + 2e}

is an e-perfect code over Z
2
m, where m = 2e2 + 2e+ 1.

Proof. By Corollary 11.2, the size of a ball with radius e in Z
2
m is

|Be(2)| = 2e2 + 2e+ 1. The size of the code C is 2e2 + 2e + 1 since there

are 2e2 + 2e+ 1 distinct choices for α in the definition of C. Hence,

|C| · |Be(2)| = (2e2 + 2e+ 1)2 =
∣∣Z2

m

∣∣ .
Thus, by the sphere-packing bound, to prove that the code is an e-perfect,

it is sufficient to show that the minimum distance of C is 2e + 1. Since

C is linear, it follows that it is sufficient to show that the Lee weight

of each codeword is at least 2e + 1. Let (α, (2e + 1)α) be a codeword.

If 2e < α < 2e2 + 1, then the claim is trivial and hence assume that

0 < α < 2e+ 1. If 0 < α < e, then 2e+ 1 ≤ (2e+ 1)α < 2e2 − e and hence

wt((α, (2e+ 1)α)) > 2e + 1. If α = e, then (α, (2e + 1)α) = (e,−(e + 1))

and hence wt((α, (2e+ 1)α)) = 2e+1. If e < α ≤ 2e, then note that we can

write (α, (2e+ 1)α) as (−(2e+ 1)β, β) (by assuming that α = −(2e+ 1)β,

which implies that β = (2e+1)α, where the computation is performed mod-

ulo 2e2+2e+1), and the proof is similar. Finally, if 2e2 < α < 2e2+2e+1,

then the proof is symmetric to the case when 0 < α < 2e+ 1.

Clearly, (1, 2e+1) is a codeword in the code C defined in Theorem 11.6.

Sincem = 2e2+2e+1 is a period of C by the definition of the code, it follows

that (0, 2e2+2e+1) is also a codeword of C, where (0, 2e2+2e+1) = (0, 0)

over Z
2
m. Since these two codewords of C are linearly independent and
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clearly, by its definition, the code is linear, it follows that the lattice of the

code C, defined in Theorem 11.6, has the generator matrix[
1 2e+ 1

0 2e2 + 2e+ 1

]
.

This lattice induces a tiling of the Lee ball with radius e, Be(2), whose size

by Corollary 11.2 is 2e2 + 2e+ 1.

At this point we will use an adaptation of the general product construc-

tion to construct 1-perfect error-correcting Lee codes.

Let C1 be a 1-perfect Lee code of length n = qr−1
2 (i.e., qr = 2n + 1),

q odd, over an alphabet with ν(2n + 1) symbols (i.e., Zν(2n+1)), where

ν ≥ 1, which has a total of qr translates (the size of the Lee ball

with radius one, which is B1(n) in this case), including C1 itself. Let

πt = (πt(1) = 1, πt(2), . . . , πt(2n+ 1)), 1 ≤ t ≤ �, be a permutation of

{1, 2, . . . , qr}. Consider � permutations, where the first permutation is de-

fined to be the identity permutation. Let C2 be a 1-perfect code of length

� = qrs−1
qr−1 , in the Hamming scheme, over an alphabet with qr symbols.

Let C1i , 1 ≤ i ≤ qr, be the i-th translate of C1, where C11 = C1. We

construct the following code Ĉ
Ĉ � {(xi1 , . . . , xi�) : xit ∈ C1πt(it)

, (i1, . . . , i�) ∈ C2}.

Theorem 11.7. The code Ĉ is a 1-perfect error-correcting Lee code of

length qrs−1
2 over an alphabet of size ν(2n+ 1).

Proof. Clearly, the length of the codewords from Ĉ is qr−1
2

qrs−1
qr−1 = qrs−1

2 .

Hence, the size of a ball with radius one is qrs. The proof that the code Ĉ has
minimum Lee distance three is identical to the related proof in Theorem 5.4.

The perfect code C2 is in the Hamming scheme and hence its size is
qr�

1+(qr−1)� = qr�−rs. The size of C1 is νn(2n + 1)n−1, where 2n + 1 = qr.

Clearly, ∣∣∣Ĉ∣∣∣ = ∣∣C2∣∣ · ∣∣C1∣∣� = qr�−rsνn�(2n+ 1)(n−1)�

= qr�−rsνn�qr(n−1)� = qrn�−rsνn� =
νn�(2n+ 1)n�

qrs
.

This implies, by Theorem 11.2, that Ĉ is a 1-perfect Lee code of

length qrs−1
2 over an alphabet of size ν(2n+ 1).

Finally, it worth mentioning that the construction of Ĉ can be applied

in various ways, since there are (2n)!�−1 different ways to choose the �

permutations, to obtain many nonisomorphic 1-perfect Lee codes.
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11.4 Diameter Perfect Codes

There are only two known families of perfect Lee codes, having two sets of

parameters (presented in Theorems 11.5 and 11.6), and it is also easy to

verify that the related codes in dimension two are unique. The situation for

diameter perfect codes is similar, as only two families of diameter perfect

codes are known, but the codes in dimension two are not unique. Recall

again that the code-anticode bound holds for the Lee metric. The first

theorem is a consequence of the code-anticode bound.

Theorem 11.8. Let Λ be a lattice that forms a code C ⊂ Z
n
m with minimum

Lee distance d. Then the size of any anticode of length n with maximum

distance d− 1 is at most V (Λ).

Recall that any lattice in Z
n, obtained from a lattice Λ, is reduced to a

Lee code of length n over Zm, where m = V (Λ), and similarly a Lee code

of length n over Zm can be expanded to a code in Z
n.

Corollary 11.6. Let Λ be a lattice that forms a code C ⊂ Z
n with mini-

mum Manhattan distance d. Then the size of any anticode of length n with

maximum distance d− 1 is at most V (Λ).

Since the definition of a diameter perfect code is based on the code-

anticode bound, it is required to have a different definition for the Man-

hattan distance. The definition is straightforward if the code is defined by

a lattice, since in this case the code can be reduced to a code over a finite

space with the Lee distance. When the code is not based on a lattice, then

we can use a definition based on the density of the code. This will not

be necessary in the discussion that follows. We will use a simpler defini-

tion based on the straightforward observation that the code and translates

of the anticode based on the code form a tiling of Z
n. In other words,

the code C is a D-diameter perfect code in Z
n if its minimum Manhattan

distance is D + 1 and if it induces a tiling of Zn with AD(n).

By Corollary 11.3, there exists a maximum size anticode of length n,

with diameter three over Z
n in the Manhattan metric, whose size is 4n.

Therefore, by Corollary 11.6, a related diameter perfect code with minimum

distance four can be formed from a lattice whose volume is 4n in which the

minimum Manhattan distance is four. Consider the lattice Λ(Gn) defined

by the following generator matrix
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Gn =

[
An Bn

Cn Dn

]
,

where An = In−1, Bn is the (n − 1) × 1 for which Btr
n = [3 5 · · · 2n − 1],

and Cn is an 1× (n− 1) all-zero matrix, and Dn = [4n].

Example 11.1. For n = 6, G6 is the following generator matrix

G6 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 3

0 1 0 0 0 5

0 0 1 0 0 7

0 0 0 1 0 9

0 0 0 0 1 11

0 0 0 0 0 24

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Note that the lattice is reduced to a code with Lee distance 4 over Z
6
24.

The period of the lattice is 24, but considering each coordinate separately,

its period is (8, 24, 24, 8, 24, 24).

The volume of Λ(Gn) is 4n and it is easy to verify that the mini-

mum Manhattan distance of the code defined by Λ(Gn) is four. Moreover,

|A3(n)| = 4n and it is readily verified that Λ(Gn) is reduced to a Lee code

over Z4n. Hence, we have the following theorem.

Theorem 11.9. The code defined by the lattice Λ(Gn) is a 3-diameter

perfect code in the Manhattan metric. The code can be reduced to a Lee

code C over Z
n
4n, which is a 3-diameter perfect code.

The 3-diameter perfect code defined by Λ(Gn) is not unique. There are

other 3-diameter perfect codes of length n in the Lee metric. The main goal

is to construct many such codes over alphabets with the smallest possible

size, i.e., with the smallest period.

For n = 2, there are (2e+ 1)-diameter perfect codes for each e ≥ 1. By

Theorem 11.4 and Corollary 11.4, the size of a maximum size anticode with

diameter 2e + 2 over Z
2 is 2(e + 1)2. For each i, 0 ≤ i ≤ e, the following

generator matrix forms a lattice that generates a diameter perfect code

whose minimum distance is 2e+ 2.

Ge
i =

[
e+ 1 + i e+ 1− i

i 2(e+ 1)− i

]
. (11.3)

There are nonequivalent two-dimensional (2e+1)-diameter perfect codes in

this case. For example, Λ(Ge
0) is not equivalent to Λ(Ge

i ) for any 1 ≤ i ≤ e.
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This can easily be verified from the fact that Λ(Ge
0) contains the points

(0, 0), (2e+ 2, 0), while the other lattices do not contain two points with a

similar distance horizontally and vertically.

Cosets and translates of a code C with the Lee distance or Manhattan

distance are defined in the same way that they are defined in the Hamming

scheme. A translate of a code C is said to be an even translate if all its words

have even Lee (Manhattan, respectively) weight. A translate is said to be

an odd translate if all its words have odd Lee (Manhattan, respectively)

weight.

Similarly to the cosets and translates of extended 1-perfect error-

correcting codes in the Hamming scheme, there are even translates and

odd translates for the two families of diameter perfect codes in the Lee

metric. This is proved in the following results. The following lemma can

be readily verified.

Lemma 11.3. A (d−1)-diameter perfect code with minimum Lee distance d

over Z
n
m can be expanded to a (d− 1)-diameter perfect code with minimum

Manhattan distance d over Z
n.

For the next lemma, we have to show that the code-anticode bound, in

the Lee metric and the Manhattan metric, induces a tiling.

Lemma 11.4. A (d− 1)-diameter perfect code, in Z
n
m, with Lee distance d

(or in Z
n with Manhattan distance d, respectively), induces a tiling of Zn

m

(Zn, respectively) with the related anticode whose diameter is d− 1.

Proof. Assume the contrary, that C is a (d − 1)-diameter perfect code

in Z
n and A is its related anticode with diameter d − 1 and C does not

induce a tiling of Z
n with A. This implies that there are two code-

words of C, c1 and c2 such that (c1 + A) ∩ (c2 + A) �= ∅. Assume that

x ∈ (c1 +A) ∩ (c2 +A). Since x ∈ c1 +A, it follows that x− c1 ∈ A, and
hence c2 + x − c1 ∈ c2 + A. Clearly, c1 + x − c1 = x ∈ c2 + A and hence

dM (c2 + x − c1, x) ≤ d − 1. But, dM (c2 + x − c1, x) = dM (c2, c1) ≥ d,

a contradiction. Therefore, C induces a tiling of Z
n with A. If C is a

(d − 1)-diameter perfect code in Z
n
m, it can be extended periodically to a

(d− 1)-diameter perfect code in Z
n and the same proof follows.

Lemma 11.5. If C is a (d − 1)-diameter perfect code in the Manhattan

metric, where d is even, then all the codewords of C have even Manhattan

weight.
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Proof. Let C be a (2e + 1)-diameter perfect code in the Manhattan met-

ric. Assume the contrary, that there exists a codeword with odd Man-

hattan weight. Since C is a (2e + 1)-diameter perfect code, it follows by

Lemma 11.4 that there exists a tiling of Zn with the anticode A2e+1(n).

W.l.o.g. we can assume that the two adjacent points in A2e+1(n) (the

core of each A2e+1(n) in this tiling) differ in the last coordinate, one

of these points (z1, . . . , zn−1, zn) is a codeword in C and the second

point is (z1, . . . , zn−1, zn + 1). Since there exists a codeword with odd

Manhattan weight, it follows that for this tiling, there exist two points

x = (x1, . . . , xn−1, xn) ∈ Z
n and y = (y1, . . . , yn−1, yn) ∈ Z

n, such

that dM (x, y) = 1, x is in an anticode containing a codeword α ∈ C,
and y is in an anticode containing a codeword β ∈ C; furthermore,

α has even Manhattan weight and β has odd Manhattan weight. Clearly,

dM (x, α), dM (y, β) ∈ {e, e + 1}, dM (α, β) is odd and at least 2e + 2. This

implies that dM (x, α) = dM (y, β) = e + 1 and dM (α, β) = 2e + 3. (recall

that α+(0, . . . , 0, 1) is an element in α+A2e+1(n) and β+(0, . . . , 0, 1) is an

element in β+A2e+1(n).) Note that dM (x, α) = dM (y, β) = e+1, the facts

that in the tiling, the point x is contained in the anticode containing α and

the point y is contained in the anticode containing β, implies that xn is

greater than the last entry of α and yn is greater than the last entry of β.

Therefore, dM ((x1, . . . , xn−1, xn−1), α) = dM ((y1, . . . , yn−1, yn−1), β) = e

and since dM (x, y) = 1, it follows that dM (α, β) ≤ 2e+ 1, a contradiction.

Thus, if C is a (d − 1)-diameter perfect code in the Manhattan metric,

where d is even, then all the codewords of C have even Manhattan weight.

Lemma 11.6. If C is a (d− 1)-diameter perfect code, over Z
n
m, with min-

imum Lee distance d, where d is even, then m is even.

Proof. By Theorem 11.3, it can easily be verified that the size of the

anticode with maximum distance d− 1 is an even integer. This implies by

the code-anticode bound that the size of the space, mn, is even. Thus, m

is even.

Corollary 11.7. If C is a (d − 1)-diameter perfect code in the Lee metric

where d is even, then all the codewords of C have even Lee weight.

Theorem 11.10. Each translate of a D-diameter perfect code in the Lee

metric, where D is odd, is either an even translate or an odd translate. The

number of even translates is equal the number of odd translates.



February 21, 2022 16:26 ws-book9x6 Perfect Codes and Related Structures Perfect˙Codes˙Main page 338

338 Perfect Codes and Related Structures

Proof. Let C be a diameter perfect code over Z
n
m in the Lee metric. By

Corollary 11.7, each translate of C is either an even translate or an odd

translate. By Lemma 11.6 the period of the code m is even which implies

that the number of points of even weight is equal to the number of points

of odd weight. Therefore, the number of even translates of C is equal to the

number of odd translates of C.

We note one important difference between binary perfect codes and bi-

nary diameter perfect codes in the Hamming scheme and perfect codes and

diameter perfect codes in the Lee metric. Binary 1-perfect error-correcting

codes in the Hamming scheme can be extended to binary diameter perfect

codes (and vice versa via puncturing, respectively) by adding a parity bit

(removing a coordinate, respectively) and thus increasing (decreasing, re-

spectively) the distance by one. There is no extension and puncturing with

similar properties in the Lee metric, i.e., an extended code with increased

distance of one can be defined, but puncturing can decrease the distance

by more than one. Moreover, these operations do not induce a connection

between perfect codes and diameter perfect codes.

Finally, there is one more known diameter perfect code in the Lee and

Manhattan metrics. It is formed by the celebrated Minkowski lattice with

the generator matrix

G =

⎡
⎣ 1 −2 3

−2 3 1

3 1 −2

⎤
⎦ .

It is readily verified that the minimum Manhattan distance of the code C
implied by Λ(G) is 6. Simple calculation implies that |detG| = 38 and

|A5(3)| = 38 and hence C is a 5-diameter perfect code over Z3
38.

Let C1 and C2 be two (n, 4,m)L 3-diameter perfect codes. Each

code has 4n translates of which 2n are even translates. Let

C�1 = C�, C�2, . . . , C�2n, � = 1, 2, be these 2n even translates, for each code.

Let π = (π(1) = 1, π(2), . . . , π(2n)) be a permutation of {1, 2, . . . , 2n}. The
following theorem is based on the direct product construction.

Theorem 11.11. The code C× defined by

C× � {(x, y) : x ∈ C1i , y ∈ C2π(i), 1 ≤ i ≤ 2n}
is a 3-diameter perfect Lee code of length 2n, over Zm.

Proof. By Corollary 11.5, the size of the code C�, � = 1, 2, is mn

4n and hence

the size of C× is 2nm2n

16n2 = m2n

8n . We claim that dL(C×) = 4. Let (x1, y1)
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and (x2, y2) be two distinct codewords in C× such that x1 ∈ C1i and x2 ∈ C1j .
We distinguish between two cases depending on whether i = j or i �= j.

Case 1. i �= j.

This implies that C1i �= C1j and C2π(i) �= C2π(j). Hence dL(x1, x2) ≥ 2,

dL(y1, y2) ≥ 2, which implies that dL((x1, y1), (x2, y2)) ≥ 4.

Case 2. i = j.

This implies that x1, x2 ∈ Ci1 and y1, y2 ∈ C2π(i). Since x1 �= x2 or

y1 �= y2, we have that dL(x1, x2) ≥ 4 or dL(y1, y2) ≥ 4, respectively. Hence,

dL((x1, y1), (x2, y2)) ≥ 4.

Thus, dL(C×) ≥ 4.

The code C× is defined over Z2n
m and hence the size of its space is m2n.

Since, by Corollary 11.3, the size of the related maximum size anticode with

diameter three is 8n and the minimum Lee distance of C× is four, it follows,

by Corollary 11.5, that C× is a 3-diameter perfect Lee code over Z2n
m .

Combining Theorems 11.9 and 11.11 implies the following consequence.

Corollary 11.8. For each two integers n ≥ 4 and r ≥ 0, there exists a

(2rn, 4, 4n)L 3-diameter perfect code.

Note, that in Corollary 11.8 we can use n equal to a prime p and the codes

will have the same minimum periodicity 4p in all dimensions.

The lattice of the following generator matrix[
2 2

0 4

]
,

forms a (2, 4, 4)L 3-diameter perfect code. By applying Theorem 11.11

iteratively, we obtain the following theorem.

Theorem 11.12. For each n = 2r, r ≥ 1, there exists an (n, 4, 4)L
3-diameter perfect code.

Theorem 11.11 can be modified and applied on codes in Z
n with the

Manhattan metric.

Theorem 11.13. Let C1 and C2 be a 3-diameter perfect codes of length n

in the Manhattan metric. Each code has 4n translates of which 2n are even

translates. Let Ci1 = Ci, Ci2, . . . , Ci2n, i = 1, 2, be these 2n even translates.

Let π = (π(1) = 1, π(2), . . . , π(2n)) be a permutation of {1, 2, . . . , 2n}. The

code C× defined by

C× � {(x, y) : x ∈ C1i , y ∈ C2π(i), 1 ≤ i ≤ 2n} (11.4)

is a 3-diameter perfect Manhattan code of length 2n, over Z.
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11.5 Nonperiodic Codes and Enumeration of Codes

In this section we consider two different problems with a related solution.

The first one is the number of nonequivalent perfect codes in the Lee met-

ric, which was considered in Section 5.7 for the Hamming scheme. For the

Hamming scheme, it was proved that for any given 0 < ε < 1
q , the number

of nonequivalent 1-perfect codes of length n over Fq is at least qq
cn

, where

c = 1
q − ε. The second problem is whether there exist nonperiodic perfect

codes and nonperiodic diameter perfect codes in Z
n. The question on non-

periodic codes is asked only for the Manhattan metric. The same question

for the Lee metric is not relevant since we can always reduce the alphabet

size in the Lee metric to the period of the code. The two questions are

somehow related as will be demonstrated in this section. We will prove

that there exists many different nonlinear perfect codes in the Lee metric.

Clearly, the product construction presented in Theorem 11.11 yields

many 3-diameter perfect codes by using different permutations. We will

not go into the exact computations on the number of nonequivalent perfect

and diameter perfect codes. This computation is left as an exercise for

the reader. We will just count the number of different perfect codes. The

two product constructions, introduced in Section 11.3 and in Section 11.4,

can be used to provide lower bounds on the number of perfect codes and

diameter perfect codes in the Lee metric. Given a 3-diameter perfect code

of length n, n ≥ 4, the size of the related anticode is 4n, and hence this code

has 2n even translates. Therefore, there are (2n−1)! different perfect codes

of length 2n, which can be generated by the construction of Theorem 11.11.

By applying iteratively the construction of Theorem 11.11, we obtain

�∏
i=1

(2in− 1)!2
�−i

different 3-diameter perfect codes of length 2�n over Z4n.

Similarly, a bound on the number of perfect Lee codes can be obtained

from the general product construction and its proof in Theorem 11.7 pre-

sented in Section 11.3. In this computation, for the number of perfect Lee

codes, we can also take into account the bounds on the number of perfect

codes in the Hamming scheme, which are used in the construction.

Before we continue our discussion of nonperiodic perfect codes and non-

periodic diameter perfect codes in Z
n, we consider a question related to

both problems discussed in this section. Can we also apply the switching

method, that was used several times in Chapter 5 for the Hamming scheme,
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to the Lee metric and the Manhattan metric?

Let C1 and C2 be two distinct sub-codes of a subspace U ⊆ Z
n, such that

any elements in U is within Manhattan distance one from a unique code-

word of C1 and a unique codeword of C2. Also, each element which is within

distance one from C1 (also C2) is contained in U . If we consider anticodes in-
stead of balls, then the elements of C1 and C2 are the balanced points (taken

instead of the centers of the balls) of the anticodes that form a tiling of U . If
C1 is contained in a 1-perfect Manhattan code (or a 3-diameter perfect code

in the Manhattan metric, respectively) C, then it can be replaced by C2 to

obtain a new different 1-perfect Manhattan code C′ (or a 3-diameter per-

fect code in the Manhattan metric, respectively). This switching method

technique was used in Section 5.7 to form a large number of nonequiva-

lent perfect codes in the Hamming scheme. The same technique can be

considered for the Lee metric as follows.

The previous two product constructions can provide such a subspace U
and codes C1 and C2. Assume that we take two permutations that differ

in one transposition (a transposition exchanges two adjacent elements in

the permutation) to apply the construction in Theorem 11.11. It is eas-

ily verified that the intersection of the two generated codes is relatively

large (exactly η−2
η of the code size, where η = 2n). The union of the two

direct products related to this transposition in the two generated codes,

in Theorem 11.11, for the construction of the 3-diameter perfect code are

used to tile the same subset of Z2n
m . Similarly, we can define a larger set

of disjoint transpositions to obtain a large set of different codes, which are

also nonlinear codes in the Lee metric and the Manhattan metric. Different

permutations can be also used in Theorem 11.7 to obtain nonlinear codes

and also some linear codes for which we can compute the exact intersection

between the perfect codes. Also, in this case, the obtained codes are non-

linear 1-perfect Lee codes for which we can find two codes C1 and C2 that

perfectly cover the same finite subset of Zn
m. Unfortunately, such a finite

space U ⊂ Z
n, and codes C1 and C2 cannot exist for the Manhattan metric

as will be proved in the following theorem.

Recall that a subset U is perfectly e-covered by a code C if

(1) for each element u ∈ U , there is a unique element c ∈ C such that

d(u, c) ≤ e;

(2) all the words within radius e from C are contained in U .

When the Manhattan distance is applied, we will also have the natural

requirement that the number of words covered by each codeword is the size
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of the related Lee ball.

Theorem 11.14. There is no finite subset of Z
n that can be perfectly

e-covered by two different codes, using the Manhattan metric.

Proof. Assume the contrary, that there exists a subset S of Zn, for which

there exist two codes C1 and C2 that perfectly e-cover S and assume further

that S is the smallest subset with this property. Let k be the largest

integer for which there exists a codeword in C1 or C2 with the value k in

one of the n coordinates. W.l.o.g. we can assume that such a codeword is

(k, x2, . . . , xn) ∈ C1. This codeword covers the word (k+e, x2, . . . , xn) ∈ S.

Since k can be the largest integer in a codeword of C2, it follows that the

only codeword of C2 that can cover (k+e, x2, . . . , xn) ∈ S is (k, x2, . . . , xn).

Thus, C1 \ {(k, x2, . . . , xn)} and C2 \ {(k, x2, . . . , xn)} perfectly e-cover a

subset S′ ⊂ S, a contradiction to the assumption that S is such a subset

with the smallest size. Thus, there is no finite subset in Z
n that can be

perfectly e-covered by two different codes.

For each n = 2�, � ≥ 1, there exists a nonperiodic 3-diameter perfect

code over Z
n. If n = 2, then nonperiodic (2e + 1)-diameter perfect code

exists for each e ≥ 1. For this purpose we can interleave the e+ 1 lattices

defined in (11.3) with i = 0 and that were used to construct diameter

perfect codes with minimum Manhattan distance 2e+ 2. This interleaving

is defined as follows. For a given e ≥ 1, let S = {si}∞i=−∞ be an infinite

sequence, where s0 = 0 and si ∈ Ze+1 for i �= 0. Given the sequence S, we

construct the following set T of points:

T � {(2(e+ 1)i+ (e+ 1)j + si, (e+ 1)j + si) : si ∈ S, i, j ∈ Z } .

The sequence S will be called nonperiodic if there is no nonzero integer ρ

and an integer τ such that si = si+τ + ρ (mod e+ 1) for each i ∈ Z.

Theorem 11.15. If the points of the set T are taken as balanced points

for the translates of the anticode A2e+1(2), then a tiling is obtained. The

tiling is nonperiodic if the sequence S is nonperiodic.

Proof. First note that the set of points {((e+ 1)j, (e+ 1)j) : j ∈ Z} ⊂ T
is taken as balanced points for the translates of the anticode A2e+1(2).

These translates are nonintersecting since their mutual distance is at

least 2e + 2 and the diameter of the anticode is 2e + 1. More-

over, they form a connected diagonal strip of translates of the an-

ticode A2e+1(2). The same is true for the set of balanced points
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{(2(e+ 1)i+ (e+ 1)j + si, (e+ 1)j + si) : j ∈ Z} ⊂ T for any given fixed

i ∈ Z. The set of points {(2(e+ 1)i+ (e+ 1)j, (e+ 1)j) : i ∈ Z, j ∈ Z} is

exactly the set of points of the lattice formed by the generator matrix[
e+ 1 e+ 1

2(e+ 1) 0

]
,

which forms a (2e + 1)-diameter perfect code whose minimum

distance is 2(e+ 1). Finally, replacing the set of balanced points

{(2(e+ 1)i+ (e+ 1)j, (e+ 1)j) : j ∈ Z} in this tiling by the set of

points {(2(e+ 1)i+ (e+ 1)j + si, (e+ 1)j + si) : j ∈ Z} is just a shift of

length si of a diagonal strip, 45 degrees in the diagonal direction. This

does not affect the fact that the set of these points forms a tiling with the

anticodes A2e+1(2).

Finally, it is readily verified that if the sequence S is periodic, then also

the tiling generated from T is periodic. Similarly, iff the sequence S is

nonperiodic, then also the tiling generated from T is nonperiodic.

The construction presented in Theorem 11.15 for nonperiodic two-

dimensional diameter perfect codes yields an uncountable number of diam-

eter perfect codes. The number of nonequivalent (2e+ 1)-diameter perfect

codes formed in this way is equal to the number of infinite nonperiodic

sequences of the form {si}∞i=−∞ over the alphabet Ze+1. Of course, one

has to consider shifts of the sequences that can coincide, but this does not

affect the asymptotic number of nonequivalent codes.

Finally, it is easy to verify the following theorem.

Theorem 11.16. Let C1 be a nonperiodic 3-diameter perfect code of

length n in the Manhattan metric, and let C2 be a 3-diameter perfect code

of length n in the Manhattan metric. The code C× defined in (11.4) is a

nonperiodic 3-diameter perfect code of length 2n in the Manhattan metric.

11.6 The Nonexistence of Perfect Codes

Do any other parameters of perfect codes in the Lee metric or in the Man-

hattan metric exist? A well-known conjecture from 1970, known as the

Golomb-Welch conjecture is that there are no more such parameters. The

conjecture is both for the Lee metric and the Manhattan metric. We note

that a proof of the conjecture for the Manhattan metric implies that it also

true for the Lee metric. Many attempts have been made to prove this con-

jecture using various techniques, some of them are ad hoc techniques and
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some are more general. We restrict ourselves to a general technique used for

the Lee metric in any dimension, but we apply it only to the 3-dimensional

space.

The basic idea is that for a perfect Lee code over Z
3
m, the tiling with

cubistic octahedra must have the property that the total number of unit

cubes meeting in one point is always 8. The number of unit cubes belonging

to the same cubistic octahedron (of a Lee ball) meet in one point can have

the values 1, 4, and 7.

This number is called the type of that vertex. A vertex of type 4, which

is adjacent (by a connecting edge on the 3-dimensional grid) to another

vertex of type 4, is denoted as type 4∗ (the set of vertices of type 4 contains

the set of vertices of type 4∗). If we try to combine types, we find that

there are only a few possible combinations of types meeting in a point, as

follows. Two possible combinations of vertices from only two Lee balls,

[7, 1] and [4, 4]; one combination with five Lee balls [4, 1, 1, 1, 1] and one

combination with eight Lee balls [1, 1, 1, 1, 1, 1, 1, 1]. Accordingly, we make

the following observations:

• Every vertex of type 7 requires a vertex of type 1 for combination up

to 8.

• No two adjacent vertices of type 4 (which are, of course, of type 4∗)
can be completed by a vertex of type 4, i.e., at least half of the vertices

of type 4∗ require four vertices of type 1 for a combination up to 8.

Figure 11.3 demonstrates the types of vertices in on octant of the Lee

ball with radius 5.

Combining these two properties, we see that if a periodic tiling of Z3
m

with cubistic octahedra exists, then in every period box we have

t1 − t7 −
1

2
t4∗ · 4 ≥ 0,

where ti stands for the number of vertices of type i in that period box. This

is equivalent to the assertion

g1 − g7 − 2g4∗ ≥ 0,

where gi stands for the number of vertices of type i in one octant of a

cubistic octahedron. These numbers are easily found (note the vertices of

type 7 are exactly below vertices of type 4, which are exactly below the

vertices of type 1. Vertices of type 4∗ are exactly on the boundaries of this

octant Lee ball.):
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Fig. 11.3 Type of vertices of one octant with radius 5, where vertices of type 4∗ are
marked by •.

e g1 g4 g7 g4∗

0 1 0 0 0

1 3 1 0 1

2 6 3 1 3

3 10 6 3 6

4 15 10 6 9
...

...
...

...
...

e
(
e+2
2

) (
e+1
2

) (
e
2

)
3(e−1)
e≥2

This implies that a necessary condition for the existence of an e-perfect

Lee code over a large alphabet with parameters (n, e) = (3, e), e ≥ 2, is

that (
e+ 2

2

)
−
(
e

2

)
− 6(e− 1) ≥ 0,
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which implies that

−4e+ 7 ≥ 0.

This prove that there are no e-perfect Lee codes over Zm, for (n, e) = (3, e),

where e ≥ 2.

11.7 Notes

Section 11.1. The Lee metric was introduced in [Ulrich (1957)] and [Lee

(1958)] for transmission of signals taken from Fp, p prime, over some noisy

channels. It was generalized for Zm in [Golomb and Welch (1970)]. Many

applications were found for this metric in coding theory, e.g., [Roth and

Siegel (1994); Blaum, Bruck and Vardy (1998); Etzion and Vardy (2002);

Etzion and Yaakobi (2009); Etzion, Vardy, and Yaakobi (2013)], to name a

few such applications. Theorem 11.4 on the size of the maximum anticode

in the Manhattan metric was proved in [Ahlswede and Blinovsky (2008),

pp. 30–41].

Section 11.2. Applications of lattice tilings with Lee spheres and max-

imum Lee anticodes were presented, for example, in [Blaum, Bruck and

Vardy (1998); Etzion and Vardy (2002); Etzion (2011)]. These papers also

include a short introduction to lattice tiling. A comprehensive book on

lattices is the one by [Conway and Sloane (1988)]. It also includes tilings

in R
n (which are not tilings in Z

n), which are not considered in our expo-

sition. Tilings in R
n were also considered in the book by [Stein and Szabó

(1994)]. These tilings in R
n are also for shapes in Z

n and many interesting

results are presented in the book.

Section 11.3. The two basic constructions for perfect Lee codes were

presented in [Golomb and Welch (1970)]. The product constructions for

Lee codes were presented in [Etzion (2011)].

Section 11.4. Diameter perfect codes in the Lee metric were consid-

ered in [Etzion (2011)]. The famous Minkowski lattice was presented

in [Minkowski (1904)]. Codes with the same parameters as in Theo-

rem 11.12 were also generated by Krotov [Krotov (2001a)]. A complete

characterization of alphabet size for which there exist 3-diameter perfect

codes was given in [Horak and AlBdaiwi (2012b)].

Section 11.5. The presentation of this section is also taken from [Etzion

(2011)]. It was proved in [Horak and AlBdaiwi (2012b)] that there are

uncountable distinct 3-diameter perfect codes for each dimension n ≥ 3.
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Section 11.6. The conjecture on the nonexistence of nontrivial per-

fect codes in the Manhattan metric was proposed by [Golomb and Welch

(1970)]. They conjectured that no perfect code exists in the Lee metric (and

the Manhattan metric), except for trivial ones, perfect codes with radius

one, and two-dimensional perfect codes. They proved that for each n ≥ 3,

there exists an en, such that for each e > en, there is no e-perfect code

in Z
n.

Clearly, the nonexistence of e-perfect codes in Z
n implies the nonexis-

tence of such codes in Z
n
m for each m ≥ 2e + 1. On the other hand, the

nonexistence of a perfect codes in Z
n
m for each m ≥ 2e+ 1 does not imply

their nonexistence in Z
n. The following conjecture was made in [Lagarias

and Wang (1996)].

Conjecture 11.1. If the shape S tiles Z
n by translations, then S admits

a fully periodic tiling, i.e., S tiles Z
n
m for sufficiently large m.

If Conjecture 11.1 is true, then the conjecture of Golomb and Welch for the

nonexistence of perfect codes in the Lee metric and the Manhattan metric

are equivalent. Conjecture 11.1 was proved in [Szegedy (1998)] for the case

when S has a size of a prime. It was further proved in [Bhattacharya

(2020)] for Z
2. Nevertheless, in general, this interesting conjecture is far

from resolved.

There are not many more results for the nonexistence of perfect codes

in Z
n. The nonexistence of such codes in Z

3 was proved in [Gravier, Mol-

lard, and Payan (1998, 2001)] using a technique that is based on the “pic-

ture” of the balls. In Z
4 the nonexistence of such perfect codes was proved

in [S̆pacapan (2007)] using a computer based exhaustive search. A com-

pletely different algebraic approach was used in [Horak (2009b)] to prove

the nonexistence of perfect codes in Z
n for 3 ≤ n ≤ 5. In fact, the proof

in these papers also ruled out possible tiling with balls of different sizes.

For n = 6, the nonexistence of 2-perfect codes in Z
6 was proved in [Horak

(2009a)]. The last result in this direction was done in [Kim (2017)] where it

is proved that if the size 2n2 +2n+1 of the ball with radius two is a prime

and a certain number-theoretic condition is satisfied, then a 2-perfect code

does not exist. This condition is not restrictive as, e.g., there are 12706

numbers for which n ≤ 105, where 2n2 + 2n + 1 is a prime. Only four

values of n, out of these 12706 values, do not satisfy the given condition.

It is not known, however, if there are infinity many values of n for which

2n2 + 2n+ 1 is a prime.

Even a restriction for perfect codes that are based on lattice tiling does
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not make the existence problem much easier. Nonexistence proofs and new

techniques for such 2-perfect codes in Z
n for some values of n were presented

first in [Horak and Gros̆ek (2014)]. Other results in [Zhang and Ge (2017)]

were improved later in [Leung and Zhou (2020)].

The proof for the nonexistence of e-perfect codes in Z
3
m presented in

this section was done by [Post (1975)]. He has generalized his method and

proved the following theorem.

Theorem 11.17. There are no e-perfect codes in the Lee metric over Z
n
m,

where m ≥ 2e+ 1, for

(1) 3 ≤ n ≤ 5, where e ≥ n− 1;

(2) n ≥ 6, where e ≥ 2n
√
2−3

√
2−2

4 .

These results of [Post (1975)] were asymptotically improved by [Lepistö

(1981); Astola (1982a)]. A survey on the results related to this conjecture in

the following fifty years was given in [Horak and Kim (2018)]. The survey

includes all the various techniques that were used to exclude parameters

where perfect codes can exist. This survey appeared in a special journal

issue in memory of Solomon W. Golomb. They summarized the known

results and their improved bounds in the following theorem.

Theorem 11.18. There is no e-perfect code in Z
n the Manhattan metric

for

(1) 3 ≤ n ≤ 74, where 2 ≤ e and
√
2
2 n− 3

4

√
2− 1

2 ≤ e.

(2) 75 ≤ n ≤ 405, where max{18,
√
2n+ 40} ≤ e ≤ n−21

3 or√
2
2 n− 3

4

√
2− 1

2 ≤ e.

(3) 406 ≤ n ≤ 876, where
√
2n+ 40 ≤ e ≤ n−21

3 or 285 ≤ e.

(4) 876 ≤ n, where
√
2n+ 40 ≤ e.

All the results mentioned above are for large alphabet sizes, i.e.,

e-perfect codes in Z
n
m, where m ≥ 2e + 1. Smaller alphabet sizes were

hardly considered. One such work in which parameters for e-perfect codes

were excluded for small m was presented in [Astola (1982b)].
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Chapter 12

Tiling with a Cluster of Unit Cubes

Tiling is a concept that is very closely related to perfect codes. The defini-

tion of a tiling in a finite space was given in Section 2.4. The definition was

generalized for Z
n in Section 11.2, where the concept of lattices was also

briefly introduced. A ball with radius e will be considered as a shape S,
which is a contiguous cluster of n-dimensional unit cubes. A tiling will be

a tile of the n-dimensional Euclidian space with translates of S. Tilings

with the same shape will also be considered in Z
n
m. Note again that a tiling

in Z
n
m implies a tiling in Z

n, but the reverse is not necessarily true. The Lee

sphere Be(n) and the Lee anticode A2e+1(n) introduced in Chapter 11 are

two types of such shapes and the related perfect codes in Z
n
m and Z

n form

the related tilings. There are other shapes, which are not balls or anticodes,

which are interesting in coding theory. These shapes will be called error

spheres. Each error sphere represents some type of errors in some space.

There are a few types of tilings. We can distinguish between lat-

tice tiling and non-lattice tilings. Another distinction is between integer

tilings and non-integer tilings. For shapes which are contiguous clusters of

n-dimensional unit cubes, only integer tilings, where the balanced points

are on integer points, will be considered in this chapter. Another technique

for describing a tiling is group splitting. This technique is equivalent to lat-

tice tiling in Z
n, but sometimes it can be described more efficiently. This

technique is discussed in Section 12.1. The two most popular shapes that

were considered for both tiling and coding are the cross and the semi-cross,

which are considered in Section 12.2. Modern applications in flash mem-

ories in which such tilings were considered are discussed in Section 12.3.

The first shape with application to flash memory is the quasi-cross, which

is a generalization of the cross and the semi-cross. Tilings with this shape

are considered in Section 12.4. A completely different shape is the notched

349
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cube whose tiling is discussed in Section 12.5.

12.1 Group Splitting

This section is devoted to two important concepts in tiling of various shapes,

group splitting and generalized splitting.

A group splitting of a group G is a pair of sets, M ∈ Z
−, called the

multiplier set , and S = {s1, s2, . . . , sn} ⊆ G, called the splitter set ,

such that the elements of the form m · s, where

m · s �
m summands︷ ︸︸ ︷

s+ s+ · · ·+ s, (12.1)

m ∈M , s ∈ S, are all distinct nonzero elements and contain all the nonzero

elements in G. In this case we say that the multiplier set M splits the

group G.

Let G be an Abelian group and let β = β1, β2, . . . , βn be a sequence

with n elements of G. For every X = (x1, x2, . . . , xn) ∈ Z
n, we define

X · β =

n∑
i=1

xi · βi,

as the inner product of X by β, where addition is performed in G and the

multiplication is defined in (12.1).

A set S ⊂ Z
n (which can be viewed as a discrete shape S in Z

n) splits

an Abelian group G with a splitting sequence β = β1, β2, . . . , βn, where

βi ∈ G, 1 ≤ i ≤ n, if the set {E ·β : E ∈ S} contains |S| distinct elements

from G. This operation is called generalized splitting . Clearly, group

splitting is a special case of generalized splitting, where the splitter set of the

group splitting is the splitting sequence of the generalized splitting. Later

on we will use the term “split” for both group splitting and generalized

splitting. It will be understood from the context to which one we are

referring.

In the rest of this section we examine the connection between general-

ized splitting and lattice tiling and prove that these concepts are equivalent

when our shape S is a discrete shape. We note that a discrete shape

consists of a collection of n-dimensional unit cubes that are connected by

(n− 1)-dimensional unit cubes. In fact, lattice tiling is also equivalent to

group splitting and hence the two concepts of group splitting and general-

ized splitting are equivalent.

Lemma 12.1. If Λ is a lattice packing of Zn with a shape S ⊂ Z
n, then

there exists an Abelian group G of order V (Λ), such that S splits G.
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Proof. Let G = Z
n/Λ and let φ : Zn → G be the group homomorphism

that maps each element X ∈ Z
n to the coset X + Λ. Clearly, |G| = V (Λ).

Let β = β1, β2, . . . , βn, be a sequence defined by βi = φ(ei) for each i,

1 ≤ i ≤ n. Clearly, for each X ∈ Z
n we have φ(X) = X · β.

Now assume that there exist two distinct elements E1, E2 ∈ S, such that

φ(E1) = E1 · β = E2 · β = φ(E2) .

This implies that

φ(E1 − E2) = (E1 − E2) · β = E1 · β − E2 · β = 0 .

Since φ(X) = 0 if and only if X ∈ Λ, it follows that there exists X ∈ Λ,

where X �= 0, such that

E1 = E2 +X .

Therefore, S ∩ (X + S) �= ∅, which contradicts the fact that Λ is a lattice

packing of Zn with the shape S.
Thus, S splits G with the splitting sequence β.

Lemma 12.2. Let G be an Abelian group and let S be a shape in Z
n. If

S splits G with a splitting sequence β, then there exists a lattice packing Λ

of Zn with the shape S, for which V (Λ) ≤ |G|.

Proof. Consider the group homomorphism φ : Zn → G defined by

φ(X) = X · β.

Clearly, Λ = ker(φ) is a lattice and its volume is V (Λ) = |φ(Zn)| ≤ |G|.
To complete the proof we have to show that Λ is a packing of Zn with

the shape S. Assume the contrary, that there exists X ∈ Λ such that

S ∩ (X + S) �= ∅. Hence, there exist two distinct elements E1, E2 ∈ S such

that E1 = E2 +X and, therefore,

φ(E1) = φ(E2 +X) = φ(E2) + φ(X) = φ(E2).

Accordingly, E1 · β = E2 · β, which contradicts the fact that S splits G with

the splitting sequence β.

Thus, Λ is a lattice packing with the shape S.

Corollary 12.1. A lattice tiling of Zn with the shape S ⊆ Z
n exists if and

only if there exists an Abelian group G of order |S| such that S splits G.
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If our shape S is not discrete, i.e., cannot be represented as a shape

in Z
n, then its tiling might be represented with a lattice, but cannot be rep-

resented with a splitting sequence. If, however, our shape S is in Z
n, then

we can use both methods as they were proved to be equivalent. In fact, both

methods are complementary. If we consider the matrix H = [β1 β2 · · · βn],

then the vector X = (x1, x2, . . . , xn) ∈ Z
n is contained in the related lattice

if and only if H · Xtr = 0. Therefore, H has some similarity to a parity-

check matrix. The representation of a lattice with its generator matrix

seems to be more practical. Sometimes, however, it is not easy to construct

one. Moreover, the splitting sequence has, in many cases, a nice structure

and from its structure, the general structure of the lattice can be found.

12.2 Crosses and Semi-Crosses

A (k, n)-semi-cross (or a corner) is an n-dimensional shape whose center

unit can be considered w.l.o.g. as 0 and it has n arms of length k, an arm

in each positive direction for each dimension. The i-th arm, 1 ≤ i ≤ n,

contains the k points j · ei, 1 ≤ j ≤ k.

A (k, n)-cross is an n-dimensional shape whose center unit can be con-

sidered w.l.o.g. as 0 and it has 2n arms of length k, an arm in each direction

for each dimension. The two arms in the i-th dimension, 1 ≤ i ≤ n, contain

the 2k points j · ei, j ∈ [−k, k]− � [−k, k] \ {0}.
An example of a (2, 3)-cross and a (2, 3)-semi-cross is presented in

Fig. 12.1.
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Fig. 12.1 A (2, 3)-cross on the left and a (2, 3)-semi-cross on the right.

We will be interested to know when there exists a tiling of Zn with the

cross? when there exist a tiling with the semi-cross? and when such tilings

do not exist? These questions are related to 1-perfect codes in the Lee

metric since the n-dimensional Lee sphere of radius one is a (1, n)-cross.

Theorem 12.1. If n ≥ 2 and k ≥ 2n−1, then there is no tiling of Zn with

the (k, n)-cross.
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Proof. Assume that n ≥ 2 and that the (k, n)-cross tiles Z
n for some k.

Consider any translate in Z
n of the (k + 1)2 points in the two-dimensional

plane

{(i, j, 0, . . . , 0) : 0 ≤ i, j ≤ k}.

Two (k, n)-crosses whose centers lie in any translate of such a plane must

overlap in the two dimensions of the plane. Hence, each such translate

contains at most one center of a cross from the tiling. It is readily verified

that there exists a tiling of Zn by translates of such a plane. Since each

such translate contains at most one center of a the (k, n)-cross, it follows

that the density of centers of the crosses, which cannot be larger, is at

most 1
(k+1)2 . The density of the centers of the (k, n)-crosses in a tiling,

however, is 1
2kn+1 . Therefore,

1

2kn+ 1
≤ 1

(k + 1)2

which implies that k ≤ 2n− 2, and the theorem is proved.

Let S(k) � {1, 2, . . . , k} and F (k) � {±1,±2, . . . ,±k}. The following

two theorems are implied by Corollary 12.1.

Theorem 12.2. There is a lattice tiling of Zn by (k, n)-semi-crosses if and

only if S(k) splits an Abelian group of order kn+ 1.

Theorem 12.3. There is a lattice tiling of Zn by (k, n)-crosses if and only

if F (k) splits an Abelian group of order 2kn+ 1.

The following lemma is an immediate consequence.

Lemma 12.3. If the (k, n)-cross tiles Z
n, then the (k, 2n)-semi-cross

tiles Z
2n.

Theorem 12.4. If n ≥ 2 and k > n−1, then there is no lattice tiling of Zn

with the (k, n)-cross.

Proof. The claim is trivial for n = 2 and hence assume that n ≥ 3. Assume

to the contrary, that F (k) splits the finite Abelian group G with a splitter

set {s1, s2, . . . , sn}.
We first show that for each integer i, 2 ≤ i ≤ n, there exist integers xi, yi,

such that k + 1 ≤ xi ≤ 2n− 1, |yi| ≤ k and xis1 + yisi = 0.

For simplicity, let i = 2 and consider the 2n(k+1) elements a1s1 + a2s2,

0 ≤ a1 ≤ 2n − 1, 0 ≤ a2 ≤ k. Since 2kn + 1 < 2n(k + 1), i.e., the number
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of elements is greater than the order of G, it follows that there exist two

distinct pairs (b1, b2) and (c1, c2), 0 ≤ b1, c1 ≤ 2n − 1, 0 ≤ b2, c2 ≤ k

such that b1s1 + b2s2 = c1s1 + c2s2. W.l.o.g. assume that b1 ≥ c1
and let d1 = b1 − c1 and d2 = b2 − c2. Clearly, d1s1 + d2s2 = 0, where

(d1, d2) �= (0, 0), 0 ≤ d1 ≤ 2n − 1, and |d2| ≤ k. If 0 ≤ d1 ≤ k, then

d1s1 = −d2s2, which contradicts the fact that s1 and s2 are part of a

splitter set.

Therefore, for each integer i, 2 ≤ i ≤ n, there exists a pair of integers

(xi, yi) such that k + 1 ≤ xi ≤ 2n− 1, |yi| ≤ k, and xis1 + yisi = 0.

Assume that there are distinct integers i and j such that xi = xj . Since

xis1 + yisi = 0 and xjs1 + yjsj = 0, it follows that yisi = yjsj . This

contradicts the condition of the group splitting, unless yi = yj = 0. This

implies that xis1 = 0.

Note that the 2k + 1 elements

−k · s1, . . . ,−s1, 0, s1, . . . , k · s1
are distinct since s1 is an element of a splitter set. Hence, the order

of s1 in G is at least 2k + 1. Since xis1 = 0, it follows that the order

of s1 divides xi and hence xi ≥ 2k + 1. But, xi ≤ 2n − 1 and, therefore,

2k + 1 ≤ 2n− 1, i.e., k ≤ n− 1

If all the xi’s are distinct, then

n− 1 ≤ 2n− 1− (k + 1) + 1,

since all the xi’s lie in the interval [k+1, 2n−1] and hence k ≤ n. Consider

the (2n− 1)(k+1) elements of the form b1s1+ b2si, where 0 ≤ b1 ≤ 2n− 2,

0 ≤ b2 ≤ k. Now,

(2n− 1)(k + 1) = 2kn+ 2n− k − 1 ≥ 2kn+ n− 1 ≥ 2kn+ 2 > 2kn+ 1 .

With the same arguments, we can conclude that for each integer i,

2 ≤ i ≤ n, there are integers xi and yi such that k + 1 ≤ xi ≤ 2n − 2,

|yi| ≤ k, and xis1 + yisi = 0.

If all n − 1 of the xi’s are distinct, then from the fact that they are in

the interval [k+1, 2n− 2], we have that n− 1 ≤ 2n− 2− (k+1)+1, which

implies that k ≤ n− 1.

If not all the xi’s are distinct, then we argue as before, starting with

yisi = yjsj . This time we conclude that 2k + 1 ≤ 2n − 2, and hence

k ≤ n− 2, which concludes the proof.

Theorem 12.4, will be extended later in Theorem 12.12 which uses a

similar, but not identical, technique. It will imply another proof for Theo-

rem 12.4.
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We would like to know when S(k) splits a group G of order nk+ 1 and

when F (k) splits a group G of order 2nk + 1. The motivation is to find

when we can tile Z
n with a cross or a semi-cross. This motivates the rest

of this section.

Lemma 12.4. Let n and k be integers, where n ≥ 3 and k ≥ n−1. Assume

that S(k) splits an Abelian group G of order nk + 1. If s and s′ are two

elements of the splitter set, then one of the following two conditions holds

(c.1) There are integers x and y, 1 ≤ x ≤ n − 2, 1 ≤ y ≤ k, such that

xs+ ys′ = 0.

(c.2) s′ = (1− n)s and G is a cyclic group with a generator s.

Proof. Define a mapping f : Z × Z → G by f(i, j) = is + js′ and let

A � {(i, j) : 0 ≤ i ≤ n− 2, 0 ≤ j ≤ k}.
If the mapping f : A → G is not one-to-one, then there ex-

ist integers x and y that satisfy (c.1). If it is one-to-one, note that

it is also one-to-one on B = A ∪ {(n− 1, 0), (n, 0), . . . , (k, 0)}. Now,

|B| = (n− 1)(k + 1) + k − (n− 2) = nk + 1. Thus, f , restricted to B, is

one-to-one from B onto G. Hence, there exists a tiling of Z2 by translates

of B using the points in the kernel of f as the points of the tiling for the

balanced points of the translated copies of B. The nk+1 points in B form

an L-shaped set, as demonstrated in Fig. 12.2.

(0,0)

(n-2,0) (k,0)

(n-1,1)

0,k( )

Fig. 12.2 The L-shaped set.

Since translates of B tile Z
2, it follows by analyzing, for example,

Fig. 12.2, that the point (n − 1, 1) is a point in the lattice which tiles
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the translates of B. In other words, (n− 1, 1) lies in the kernel of f . This

means that (n− 1)s+ s′ = 0.

Since s and s′ generate G and s′ = −(n − 1)s, it follows that s gener-

ates G, and, therefore, G is a cyclic group.

Theorem 12.5. Let n and k be integers, such that n ≥ 3. If S(k) splits a

group G of order nk + 1, then k ≤ n− 2.

Proof. Assume the contrary, that k ≥ n − 1 and S = {s1, s2, . . . , sn} is

a splitter set of G, a group of order nk + 1. For each index j, 2 ≤ j ≤ n,

consider the two elements s1 and sj of S. Assume that each such j, condi-

tion (c.1) in Lemma 12.4 holds for s1 and sj ; that is, there exist xj and yj ,

where 1 ≤ xj ≤ n − 2, 1 ≤ yj ≤ k, such that xjs1 + yjsj = 0. Hence,

there would be n − 1 variables x1, x2, . . . , xn with n − 2 values from the

interval [1, n − 2]. This implies that two of these values of xj are equal,

say xu = xv, where u �= v. Therefore, yusu = yvsv, contradicting the

assumption that su and sv are in the splitter set.

Hence, an index j such that condition (c.2) in Lemma 12.4 holds must

exist. This implies that G is a cyclic group, s1 is a generator of G and

(1− n)s1 is in the splitter set.

Using the same arguments, with (1− n)s1 playing the role of s1 for the

first of the two elements from the splitter set, implies that (1−n)(1−n)s1
is also in the splitter set. Since s1 is a generator of G and the order of G is

larger than (n − 1)2 (since k ≥ n − 1), it follows that the elements s1 and

(1− n)2s1 are distinct. Nonetheless, since

k(1− n)2 ≡ k + 2− n (mod kn+ 1),

it follows that

k(1− n)2s1 = (k + 2− n)s1,

violating the fact that (1− n)2s1 and s1 are in the splitter set.

Thus, k ≤ n− 2.

Recall that in the Hamming scheme, for a power of a prime q, a 1-perfect

code of length n and its translates can be regarded as a tiling of the

(q − 1, n)-semi-cross. Since there exists such a code for n = q+1, it follows

that there exists such a tiling for the (q − 1, q + 1)-semi-cross. If p = q is

a prime, then there exists such a code that can be described with a lattice

tiling over Zp+1
p that can be expanded to become a lattice over Zp+1. This

implies that the bound of Theorem 12.5 cannot be improved in the general
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case. It can, however, be improved for specific values of n. When q is not

a prime, the tiling, implied by a 1-perfect code, cannot be described by a

lattice and hence it cannot be described with the group splitting technique.

This implies that there are linear 1-perfect codes in the Hamming scheme

that can be described by a lattice and that there are linear 1-perfect codes

that cannot be described by a lattice. We would like also to know if there

are related tilings that cannot be transferred into 1-perfect codes in the

Hamming scheme.

12.3 Codes for Nonvolatile Memories and Quasi-Crosses

Flash memory was the fastest growing memory technology at the begin-

ning of the 21st century. Flash memory cells use floating gate technology

to store information using trapped charges. By measuring the charge level

in a single flash memory cell and comparing it with a predetermined set

of threshold levels, the charge level is quantized to one of m values, conve-

niently chosen to be Zm. While originally m was limited to 2, and each cell

stored a single bit of information, new multilevel flash memory technol-

ogy allows much larger values of m, thus storing log2 m bits of information

in each cell. It should be noted that other alternatives to the conventional

multilevel modulation scheme have been suggested, such as, for example,

rank modulation.

As is usually the case, the stored charge levels in flash cells suffer from

noise that may affect the information retrieved from the cells. Many off-the-

shelf coding solutions exist and have been applied for flash memory. The

main problem with this approach, however, is the fact that these codes are

not tailored to the specific errors occurring in flash memory and thus are

wasteful. A more accurate model of the flash memory channel is, therefore,

required to enable the design of better-suited codes.

The most notorious property of flash memory is its inherent asymmetry

between cell programming, i.e., charge injection into cells and cell erasure,

i.e., charge removal from cells. While the former is easy to perform on

single cells, the latter works on large blocks of cells and physically dam-

ages the cells. Thus, when attempting to reach a target stored value in a

cell, charge is slowly injected into the cell over several iterations. If the

desired level has not been reached, then another round of charge injection

is performed. If, however, the desired charge level has been passed, then

there is no way to remove the excess charge from the cell without erasing

an entire block of cells. In addition, the actions of cell programming and
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cell reading disturb adjacent cells by injecting extra unwanted charge into

them. Because the careful iterative programming procedure employs small

charge-injection steps, it follows that over-programming errors, as well as

cell disturbs, are likely to have a bounded magnitude of error.

This technological constraint motivated the application of the asym-

metric limited-magnitude error model to the case of flash memory. In

this model, a transmitted vector c ∈ Z
n is received with an error ε as

y = c + ε ∈ Z
n, where we say that e asymmetric limited-magnitude errors

occurred with magnitude at most k if the error vector ε = (ε1, . . . , εn) ∈ Z
n

satisfies 0 ≤ εi ≤ k for all i, and there are exactly e nonzero entries in ε.

The main drawback of the asymmetric limited-magnitude error model

is the fact that not all error types were considered during the model formu-

lation. Another type of common error in flash memories is due to retention,

which is a slow process of charge leakage. As before, the magnitude of er-

rors created by retention is limited; however, unlike over-programming and

cell disturbs, which increase cell charge levels, retention errors reduce cell

charge levels.

Therefore, a generalization to the error model, which is called the un-

balanced limited-magnitude error model, was suggested. In this model,

a transmitted vector c ∈ Z
n is now received with an error ε as the vector

y = c+ ε ∈ Z
n, where it is said that e unbalanced limited-magnitude errors

occurred if the error vector ε = (ε1, . . . , εn) ∈ Z
n satisfies −k− ≤ εi ≤ k+

for all i, and there are exactly e nonzero entries in ε. Both k+ and k− are

nonnegative integers, where we call k+ the positive-error magnitude limit,

and k− the negative-error magnitude limit.

Henceforth, in this section only single error-correcting codes are consid-

ered. In general, assuming at most a single error occurs, the error sphere

containing all possible received words y = c + ε forms a shape called a

(k+, k−, n)-quasi-cross. This is a generalization of the (k, n)-semi-cross

that is obtained when choosing k− = 0, and the (k, n)-cross that is ob-

tained when choosing k+ = k− = k. To avoid these two cases considered in

Section 12.2, it is assumed in the current section and in the next one that

0 < k− < k+. An example of a (2, 1, 3)-quasi-cross is depicted in Fig. 12.3.

In the unbalanced limited-magnitude-error channel model, the trans-

mitted (or stored) word is a vector v ∈ Z
n. A single error is a vector ε ∈ Z

n

whose entries are zeroes except for a single entry with a value belonging to

the set

M = {−k−, . . . ,−2,−1, 1, 2, . . . , k+}
where the integers 0 < k− < k+ are the negative-error and positive-error
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magnitudes. For convenience we denote this set as M = [−k−, k+]−. We

define β = k−/k+ and call it the balance ratio, where 0 < β < 1.

Fig. 12.3 A (2, 1, 3)-quasi-cross.

Given a transmitted vector v ∈ Z
n, and provided that at most a single

error occurred, the received word resides in the error sphere centered at v

and is defined by

E(v) � {v} ∪ {v +m · ei : i ∈ [n], m ∈M} .

The shape E(0) is called a (k+, k−, n)-quasi-cross. By translation,

E(v) = v + E(0) for all v ∈ Z
n. Let

Q � {(x1, . . . , xn) : 0 ≤ xi < 1, xi ∈ R}

denote the unit cube centered at the origin. By abuse of terminology,

the set of unit cubes Q+ E(v), will also be called a (k+, k−, n)-quasi-cross
centered at v for any v ∈ Z

n. Note that the volume of Q + E(v) does not

depend on the choice of v and it equal to n(k+ + k−) + 1.

12.4 Tiling with Quasi-Crosses

A v-modular Bh(M) sequence , where M ⊆ Z
− is a subset S, S ⊆ Z

−
v , of

size n is represented by its characteristic vector of length v and weight n.

The elements of S = {s1, . . . , sn}, satisfy that all the sums
∑h

i=1 misji are

distinct, where 1 ≤ j1 < j2 < · · · < jh ≤ n, and mi ∈M .

Thus, a v-modular B1(M) sequence is a group splitting of Zv defined

by M and S. These sequences are defined only by splitting a cyclic group.

When we have a v-modular B1(M) sequence S, i.e., a group split-

ting of Zv by M and S, and, therefore, an 1 × n parity-check matrix
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H = [s1, s2, . . . , sn], we can construct other packings, provided the elements

of M are co-prime to v. This is done by constructing any k×n vk−1
v−1 parity-

check matrix H ′ containing all distinct column vectors whose top nonzero

element is from S. This is equivalent to a splitting of the noncyclic group Z
k
v

by M and S being the columns of H ′. Note that if H results in a tiling,

then so does H ′.
We shall now consider constructions of lattice tilings by (k+, k−, n)-

quasi-crosses. We first examine the case of a constant balance ratio

0 < β < 1 and show that for any rational β, there exist infinitely many

triplets (k+, k−, n) such that β = k−
k+

and the (k+, k−, n)-quasi-crosses
tile Z

n. This is accomplished by constructions for all k+ + k− = p − 1,

where p is a prime. We then focus on a particular case of (2, 1, n)-quasi-

crosses and show an infinite family of tilings for them.

Construction 12.1. Let 0 < k− < k+ be positive integers such

that k= + k− = p− 1, where p is a prime. We set the multiplier set

M = [−k−, k+]−. Consider the cyclic group G = Zp� , � ∈ N. We split G

using a splitter set S constructed recursively in the following manner:

S1 = {1}

Si+1 = pSi ∪
{
s ∈ Zpi+1 : s ≡ 1 (mod p)

}
.

The requested set is S = S�.

Theorem 12.6. The sets S and M from Construction 12.1 split Zp� , form-

ing a tiling by (k+, k−, (p� − 1)/(p − 1))-quasi-crosses and a p�-modular

B1(M) sequence.

Proof. The proof is by a simple induction. Obviously, M and S1 = {1}
split Zp. Now assume M and Si split Zpi . Let us consider M , Si+1,

and Zpi+1 . We now show that if ms = m′s′ in Zpi+1 , m,m′ ∈ M ,

s, s′ ∈ Si+1, then m = m′ and s = s′.
For the first case, given any s ∈ Si+1, p does not divide s, and given

m,m′ ∈M , m �= m′, since M = [−k−, k+]−, it follows that ms �= m′s since

they leave different residues modulo p.

For the second case, let s, s′ ∈ S, s′ �= s′, where p does not divide s,

and let m,m′ ∈ M , where m and m′ are not necessarily distinct. If p

divides s′, then ms �= m′s′ since p does not divide ms but does divide m′s′.
We, therefore, assume that s′ ≡ 1 (mod p). If we write s = qp + 1 and

s′ = q′p + 1, 0 ≤ q, q′ ≤ pi − 1, then ms = m′s′ implies that m = m′
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(by reduction modulo p). This implies that mqp ≡ mq′p (mod pi+1), but,

gcd(m, p) = 1 and so q ≡ q′ (mod pi), which (due to the range of q and q′)
implies that q = q′, i.e., s = s′.

For the last case, let s, s′ ∈ pSi. We note that the multiples of p in Zpi+1

are isomorphic to Zpi , and since M and Si split Zpi , for all m,m′ ∈ M , it

follows that if ms = m′s′, then m = m′ and s = s′.
Finally, |M | = p − 1, |S�| = (p� − 1)/(p − 1), and hence

|M | · |S�|+ 1 =
∣∣Zp�

∣∣, implying that the splitting induces a tiling.

Construction 12.2. Let 0 < k− < k+ be positive integers such

that k+ + k− = p− 1, where p is a prime. We set the multiplier set

M = [−k−, k+]−. Consider the additive group of Fp� , � ∈ N. Let α be a

primitive element in Fp� and define S � {P (α) : P ∈Mp
� [x]}, where M

p
� [x]

denotes the set of all monic polynomials of degree strictly less than � − 1

over Fp in the indeterminate x.

Theorem 12.7. The sets S and M from Construction 12.2 split the addi-

tive group of Fp� and form a tiling by (k+, k−, (p�−1)/(p−1))-quasi-crosses.

Proof. Since α is primitive in Fp� , the elements 1, α, α2, . . . , α�−1 form a

basis of the additive group of Fp� over Fp. Since M = F
−
p , it is easy to

verify that ms = m′s′, where m,m′ ∈ M , s, s′ ∈ S, implies that m = m′

and s = s′. Again, by counting the size of M and S, the splitting induces

a tiling.

Note that a special case of Construction 12.2 is the [p
�−1
p−1 ,

p�−1
p−1 − �, 3]

Hamming code over Fp.

From the next example we can observe that the lattice tilings of Con-

struction 12.1 and Construction 12.2 are not equivalent.

Example 12.1. Consider two different 6-dimensional lattice tilings with

(k+, k−, n) = (3, 1, 6)-quasi-crosses. Using Construction 12.1 we construct

a lattice Λ1 by splitting Z25 and getting a splitter set S = {1, 5, 6, 11, 16, 21},
resulting in parity-check matrix

H1 = [1 5 6 11 16 21]

over Z25. This produces a generator matrix for Λ1
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G1 �

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

25 0 0 0 0 0

20 1 0 0 0 0

19 0 1 0 0 0

14 0 0 1 0 0

9 0 0 0 1 0

4 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

We confirm that

detG1 = 25 = 6 · (3 + 1) + 1 = n(k+ + k−) + 1,

making Λ1 a tiling for (3, 1, 6)-quasi-crosses.

On the other hand, we can use Construction 12.2 to construct a lat-

tice Λ2. We split F25 to get a parity-check matrix

H2 =

[
0 1 1 1 1 1

1 0 1 2 3 4

]
over F5. The corresponding generator matrix of the lattice Λ2 is

G2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

5 0 0 0 0 0

0 5 0 0 0 0

4 4 1 0 0 0

3 4 0 1 0 0

2 4 0 0 1 0

1 4 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Again, we confirm that detG2 = 25. Note that the code C2 = Λ2 ∩ Z
6
5 is

the [6, 4, 3] Hamming code over F5.

Finally, to show that the lattices are not equivalent, it is readily verified

that the minimal period of Λ1 is (25, 5, 25, 25, 25, 25), while the minimal pe-

riod of Λ2 is (5, 5, 5, 5, 5, 5). Moreover, one can easily verify that Λ1 cannot

be reduced to a perfect code over F5.

The following theorem shows that there are infinitely many tilings by

quasi-crosses of any given rational balance ratio.

Theorem 12.8. For any given rational balance ratio β = k−
k+

,

where 0 < β < 1, there exists an infinite sequence of quasi-crosses,

{(k(i)+ , k
(i)
− , n(i))}∞i=1, such that n(i) < n(i+1), k

(i)
− /k

(i)
+ = β, and there exists

a tiling by (k
(i)
+ , k

(i)
− , n(i))-quasi-crosses, for all i ∈ N.
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Proof. Given a rational 0 < β < 1, let k+, k− ∈ N be such that

k−/k+ = β. Denote d = k+ + k− and consider the arithmetic progres-

sion 1, 1 + d, 1 + 2d, . . . , 1 + id, . . .. Since gcd(1, d) = 1, by the well-known

Dirichlet’s Theorem, the sequence contains infinitely many prime numbers.

For any such prime, p, there exists q ∈ N such that q · k+ + q · k− = p− 1.

We can apply Construction 12.1 and Construction 12.2 to form tilings by

(q · k+, q · k−, n)-quasi-crosses with the required balance ratio and n un-

bounded.

We now consider (2, 1, n)-quasi-crosses tilings and their associated mod-

ular B1(M) sequences. The following construction is similar in flavor to

Construction 12.1.

Construction 12.3. Let k+ = 2, k− = 1, and let the multiplier set be

M = {−1, 1, 2}. Split the group G = Z4� , � ∈ N, using a splitter set S

constructed recursively as follows:

S1 = {1}

Si+1 = 4Si ∪ {s ∈ Z4i+1 : s ≡ 1 (mod 2), 2s < 4i+1}.
The requested set is S = S�.

Theorem 12.9. The sets S and M defined in Construction 12.3 split Z4� ,

forming a tiling by (2, 1, (4�− 1)/3)-quasi-crosses and a 4�-modular B1(M)

sequence.

Proof. The proof is by induction, where the basis is formed from the sets

M and S1 which split Z4. Assume M and Si split Z4i and consider M

and Si+1. For convenience, denote

S′i+1 = {s ∈ Z4i+1 : s ≡ 1 (mod 2), 2s < 4i+1}.
It is easy to verify that due to the restriction 2s < 4i+1, the elements of S′i+1

and the elements of −S′i+1 are distinct, and together they contain all the

4i odd integers in Z4i+1 . This implies that the elements of 2S′i+1 are also

distinct and contain all the even integers in Z4i+1 that have a reminder of

2 modulo 4.

We are left with all the multiples of 4 in Z4i+1 that form a group iso-

morphic to Z4i , and thus, by the induction hypothesis, are split by M

and 4Si.

A simple counting argument shows that |M | = 3, |S�| = 4�−1
3 and,

therefore, |M | · |S�|+1 = |Z4� |. It follows that M and S� split Z4� and form

a tiling.
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One can further prove the following theorem.

Theorem 12.10. A lattice tiling of Zn with (2, 1, n)-quasi-cross exists only

with the parameters of Construction 12.3.

We now elaborate on the idea behind Theorem 12.10. We observe that

in this case, since the elements of M are not co-prime to 4, extending the

4�-modular B1(M) sequence to a parity-check matrix does not produce a

valid tiling or even a packing. For example, if we take the trivial 4-modular

B1(M) sequence, {1} and attempt to create a parity-check matrix over Z4

H =

[
0 1 1 1 1

1 0 1 2 3

]
,

then we would find that M together with the columns of H is not a splitting

of Z2
4 since 2 · [1 0]tr = 2 · [1 2]tr over Z4. Hence, the lattice formed by the

parity-check matrix H is not a lattice packing of (2, 1, 5)-quasi-crosses.

Example 12.2. To find a tiling by (2, 1, 5)-quasi-crosses using Construc-

tion 12.3, we construct a lattice Λ by splitting Z16 with S = {1, 3, 4, 5, 7}.
The parity-check matrix and generator matrix are

H =
[
1 3 4 5 7

]
, G =

⎡
⎢⎢⎢⎢⎣
16 0 0 0 0

13 1 0 0 0

12 0 1 0 0

11 0 0 1 0

9 0 0 0 1

⎤
⎥⎥⎥⎥⎦ .

Unlike Λ2 from Example 12.1, which turned out to be inferred from a

Hamming code, the lattice Λ is not related to 1-perfect code in the Hamming

scheme. Its minimal period is (16, 16, 4, 16, 16), and it contains a lattice

point (2, 0, 0, 0, 2) of Hamming weight two.

We now consider bounds on the parameters of lattice tilings by quasi-

crosses, expressed in terms of the arm lengths of the quasi-crosses and the

dimension of the tiling. Some of the theorems to follow may be viewed as

extensions to the theorems on crosses and semi-crosses presented in Sec-

tion 12.2. The first result is a generalization of Theorem 12.1.

Theorem 12.11. For any n ≥ 2, if

2k+(k− + 1)− k2−
k+ + k−

> n

then there is no tiling of (k+, k−, n)-quasi-crosses.
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Proof. Given an integer n ≥ 2, assume there exists a tiling of Z
n by

(k+, k−, n)-quasi-crosses. Consider the plane {(x, y, 0, . . . , 0) : x, y ∈ Z}.
Clearly, translates of this plane tile Z

n. Within this plane, we look at the

subset

A = {(x, y, 0, . . . , 0) : 0 ≤ x, y ≤ k+ and (x ≤ k− or y ≤ k−)}.
It is easy to verify that A cannot contain two points from two centers

of (k+, k−, n)-quasi-crosses, or else the arms of two quasi-crosses would

overlap. Thus, the density of the tiling (which is exactly 1/(n(k++k−)+1))

cannot exceed the reciprocal of the volume of A, i.e.,

1

n(k+ + k−) + 1
≤ 1

(k+ + 1)2 − (k+ − k−)2
,

which implies the desired result.

Corollary 12.2. There is no tiling of Z2 by (k+, k−, 2)-quasi-crosses.

Proof. It is easy to verify that for any 0 < k− < k+,

2k+(k− + 1)− k2−
k+ + k−

> 2.

The following theorem generalizes Theorem 12.4.

Theorem 12.12. For any n ≥ 2, if there exists a lattice tiling of Zn by

(k+, k−, n)-quasi-crosses, then k− ≤ n− 1.

Proof. Let 0 < k− < k+, and let M = [−k−, k+]−. Assume there

is a group splitting of an Abelian group G by M , with a splitter set

S = {s1, . . . , sn} that induces a lattice tiling with (k+, k−, n)-quasi-crosses,
which implies that |G| = n(k+ + k−) + 1.

We first claim that for 2 ≤ i ≤ n there are integers xi and yi such that

k+ + 1 ≤ xi ≤
⌊
n(k+ + k−) + 1

k− + 1

⌋
,

|yi| ≤ k− ,

and

s1xi + siyi = 0 .

To prove this claim we fix i and look at the integers

0 ≤ a1 ≤
⌊
n(k+ + k−) + 1

k− + 1

⌋
, 0 ≤ a2 ≤ k−
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and the sums s1a1 + sia2. Since(⌊
n(k+ + k−) + 1

k− + 1

⌋
+ 1

)
(k− + 1)

≥ n(k+ + k−) + 1− k− + k− + 1

= n(k+ + k−) + 2 > |G| ,
it follows by the pigeonhole principle that there exist two distinct pairs

(b1, b2), and (c1, c2), such that

s1b1 + sib2 = 0 s1c1 + sic2 = 0.

Assume w.l.o.g. that b1 ≥ c1 and define

d1 � b1 − c1 d2 � b2 − c2 .

This implies that s1d1 + sid2 = 0, where (d1, d2) �= (0, 0). In addition,

0 ≤ d1 ≤
⌊
n(k+ + k−) + 1

k− + 1

⌋
, |d2| ≤ k− .

If 0 ≤ d1 ≤ k+ then s1d1 = −sid2, which contradicts the fact that S and

M split G. Thus,

k+ + 1 ≤ d1 ≤
⌊
n(k+ + k−) + 1

k− + 1

⌋
,

which proves the claim regarding the existence of xi and yi.

For the rest of the proof we distinguish between two cases depending on

whether there exists a pair xi = xj for i �= j or not.

Case 1. There exist i �= j such that xi = xj .

In this case,

0 = s1xi + siyi = s1xj + sjyj ,

which implies that 0 = siyi = sjyj ; however, −k− ≤ yi, yj ≤ k− and to

avoid a contradiction to the group splitting, we must have that yi = yj = 0.

This implies that s1xi = 0. Note that

−k− · s1, . . . ,−2s1,−s1, 0, s1, 2s1, . . . , k+ · s1
are all distinct and hence the order of s1 in G is at least k+ + k− + 1, but

this order also has to divide xi. Therefore,

k+ + k− + 1 ≤ xi ≤
⌊
n(k+ + k−) + 1

k− + 1

⌋
.

This implies that

k− ≤ n− 1− k−
k+ + k−
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and since 0 < k− < k+, it follows that k− ≤ n− 2.

Case 2. If i �= j, then xi �= xj .

Therefore, the number of distinct xi’s is at most the size of their integer

interval and, therefore,

n− 1 ≤
⌊
n(k+ + k−) + 1

k− + 1

⌋
− k+.

This implies that

k− ≤ n− 1 +
1

k+ − 1
.

If k+ > 2, then by the above, we have that k− ≤ n−1. If, however, k+ = 2,

then k− = 1 and, obviously, k− ≤ n− 1.

Corollary 12.3. For any n ≥ 3, if there exists a lattice tiling of Z
n by

(k+, k−, n)-quasi-crosses and k > n
2 − 1, then

k+ ≤
{

3n2

8 n is even,
3n2−4n+1

4 n is odd.

Proof. By Theorem 12.11, a necessary condition for such a lattice tiling

to exist is that

2k+(k− + 1)− k2−
k+ + k−

≤ n,

which implies that

k+(2(k− + 1)− n) ≤ k2− + nk− .

If k− > n
2 − 1, the left-hand side of this equation is positive and hence

k+ ≤
k2− + nk−

2(k− + 1)− n
.

We need to maximize k+ and by Theorem 12.12 we can restrict ourselves

to k− ≤ n − 1. The maximum is attained at k− = n
2 for n even, and

at k− = n−1
2 for n odd. Substituting the bound on k+ gives the desired

result.
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12.5 Tiling with Notched Cubes

After the discussion on tilings with crosses and semi-crosses in Section 12.2,

and the generalization to quasi-crosses in Section 12.4, the concept of semi-

cross will be generalized to another concept that can be called a chair or a

notched cube . We present tilings of Zn with notched cubes by using gener-

alized splitting first and by using lattice tiling later. The constructed tilings

using the two methods is done without applying the translation between

the two concepts implied by Lemmas 12.1 and 12.2, and Corollary 12.1.

An n-dimensional notched cube SL,K ⊂ R
n, L = (�1, �2, . . . , �n),

K = (k1, k2, . . . , kn) ∈ R
n, 0 < ki < �i for each i, 1 ≤ i ≤ n, is an

n-dimensional �1 × �2 × · · · × �n box from which an n-dimensional

k1 × k2 × · · · × kn box was removed from one of its corners. Note

that this definition implies that the n-dimensional notched cube SL,K is

not necessarily a discrete shape. Formally, it is defined by

SL,K = {(x1, x2, . . . , xn) ∈ R
n : 0 ≤ xi < �i ,

and there exists a j, 1 ≤ j ≤ n, such that xj < �j − kj}.

The following lemma on the volume of SL,K , |SL,K |, is an immediate

consequence of the definition.

Lemma 12.5. If L = (�1, �2, . . . , �n), K = (k1, k2, . . . , kn) are two vectors

in R
n, where 0 < ki < �i for each i, 1 ≤ i ≤ n, then

|SL,K | =
n∏

i=1

�i −
n∏

i=1

ki . (12.2)

If L = (�1, �2, . . . , �n), K = (k1, k2, . . . , kn) ∈ Z
n, then the

n-dimensional notched cube SL,K is a discrete shape that is contained in Z
n.

Remark 12.1. It is important to note that if L = (�1, �2, . . . , �n),

K = (k1, k2, . . . , kn) ∈ R
n are two integer vectors, then the two definitions,

with the real numbers R and the integers Z, coincide only if SL,K is

viewed as a collection of n-dimensional unit cubes that are connected by

(n− 1)-dimensional unit cubes, i.e., SL,K is a discrete shape.

For n = 2, if �1 = �2 = � and k1 = k2 = � − 1, then the notched

cube coincides with a (k− 1, 2)-semi-cross. Examples of a two-dimensional

semi-cross and a three-dimensional notched cube are given in Fig. 12.4.

Now we present a construction of a tiling with n-dimensional notched

cubes based on generalized splitting. The n-dimensional notched cubes that
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Fig. 12.4 A (3, 2)-semi-cross (a notched cube with � = 4) and a three-dimensional
notched cube with L = (5, 4, 3) and K = (3, 3, 1).

are considered are discrete, i.e., L,K ∈ Z
n. We start with a construction

in which all the �i’s are equal to �, and all the ki’s are equal to � − 1. We

generalize this construction to a case in which all the ki’s, with a possible

exception of one, have multiplicative inverses in the related Abelian group.

Lemma 12.6. Let n ≥ 2, � ≥ 2, be two integers and let G be the ring of

integers modulo �n − (�− 1)n, i.e., Z�n−(�−1)n . Then,

(P1) �− 1 and � are elements of G−.
(P2) α = �(�− 1)−1 is an element of order n in G−.
(P3) 1 + α+ α2 + · · ·+ αn−1 equals zero in G.

Proof.

(P1) By definition, �n−(�−1)n is zero in G = Z�n−(�−1)n . We also have that

�n − (�− 1)n =
∑n−1

i=0

(
n
i

)
(�− 1)i = 1 + (�− 1)

∑n−1
i=1

(
n
i

)
(�− 1)i−1. It

follows that (�− 1)(−
∑n−1

i=1

(
n
i

)
(�− 1)i−1) = 1 in G, and hence,

�− 1 ∈ G−. Since �n−(�−1)n is zero in G, it follows that �n = (�−1)n,

and hence � ∈ G− if and only if �− 1 ∈ G−.
(P2) Clearly, αn = �n((� − 1)−1)n and since �n = (� − 1)n, it follows that

αn = (�− 1)n(�− 1)−n = 1. This also implies that α has a multiplica-

tive inverse and hence α = �(� − 1)−1 ∈ G−. Note that for each i,

1 ≤ i ≤ n − 1, we have 0 < �i − (�− 1)i < �n − (�− 1)n. Therefore,

�i �= (�− 1)i in G and hence αi = �i((�− 1)−1)i �= 1. Thus, the order

of α in G− is n.

(P3) Clearly, 0 = αn − 1 = (α − 1)(1 + α + α2 + · · · + αn−1). By

definition we have that α = �(� − 1)−1 and hence α(� − 1) = �,

α�− α = �, α − α�−1 = 1, α− 1 = α�−1, α − 1 = (� − 1)−1.

Therefore, 0 = (�− 1)−1(1 + α+ α2 + · · ·+ αn−1), which implies that

1 + α+ α2 + · · ·+ αn−1 = 0.
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Theorem 12.13. Let n ≥ 2, � ≥ 2, be two integers, G = Z�n−(�−1)n , and

α = �(�− 1)−1. Then SL,K , L = (�, �, . . . , �), K = (�− 1, �− 1, . . . , �− 1),

splits G with the splitting sequence β = β1, β2, . . . , βn, defined by

βi = αi−1, 1 ≤ i ≤ n .

Proof. We show by induction that every element in G can be expressed in

the form E · β, for some E ∈ SL,K .

The basis of induction is 0 = 0 · β.
For the induction step we have to show that if x ∈ G can be presented as

x = E · β for some E ∈ SL,K (i.e., E = (ε1, ε2, . . . , εn) ∈ Z
n, 0 ≤ εi ≤ �− 1,

1 ≤ i ≤ n, and for some j, εj = 0), then also x+ 1 can be presented in the

same way. In other words, x+1 = Ê · β, where Ê = (ε̂1, ε̂2, . . . , ε̂n) ∈ SL,K .

If ε1 < �− 1 and there exists j �= 1 such that εj = 0, then

x+ 1 = Ê · β,
where Ê = E + e1, 0 ≤ ε̂i ≤ �− 1, ε̂j = 0 and the induction step is proved.

If ε1 = 0 and there is no j �= 1 such that εj = 0, then by (P3) of

Lemma 12.6 we have that
∑n

i=1 βi = 0 and hence

x+ 1 = (E + e1 − 1) · β ,

i.e., Ê = E + e1 − 1 is the required element of SL,K and the induction step

is proved.

Assume now that ε1 = � − 1. Let j, 2 ≤ j ≤ n be the smallest index

such that εj = 0.

x+ 1 = �β1 +

n∑
i=2

εiβi.

Note that for each i, 1 ≤ i ≤ n− 1,

�βi = ��i−1((�− 1)−1)i−1 = (�− 1)�i((�− 1)−1)i = (�− 1)βi+1.

Therefore,

x+ 1 = (�− 1 + ε2)β2 +
n∑

i=3

εiβi.

If j = 2, then Ê = (0, � − 1, ε3, . . . , εn) and the induction step is proved.

If ε2 > 0, i.e., j > 2, then

x+ 1 = (ε2 − 1)β2 + �β2 +

n∑
i=3

εiβi
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= (ε2 − 1)β2 + (�− 1 + ε3)β3 +

n∑
i=4

εiβi.

By iteratively continuing in the same manner we obtain

x+ 1 =

j−1∑
i=2

(εi − 1)βi + (�− 1 + εj)βj +

n∑
i=j+1

εiβi

and since εj = 0, we have that

Ê = (0, ε2 − 1, . . . , εj−1 − 1, �− 1, εj+1, . . . , εn)

and the induction step is proved.

Since |G| = |SL,K |, it follows that the set {E · β : E ∈ SL,K} has |SL,K |
elements.

Corollary 12.4. For each two integers n ≥ 2 and � ≥ 2 there exists a lattice

tiling of Zn with SL,K , L = (�, �, . . . , �), K = (�− 1, �− 1, . . . , �− 1).

The next theorem and its proof are generalizations of Theorem 12.13

and its proof.

Theorem 12.14. Let L = (�1, �2, . . . , �n), K = (k1, k2, . . . , kn) be two

vectors in Z
n such that 0 < ki < �i for each i, 1 ≤ i ≤ n. Let τ =

∏n
i=1 �i,

κ =
∏n

i=1 ki, G = Zτ−κ and assume that for each i, 2 ≤ i ≤ n, ki ∈ G−.
Then SL,K splits G with the splitting sequence β = β1, β2, . . . , βn, defined

by

β1 = 1

βi+1 = k−1
i+1�iβi 1 ≤ i ≤ n− 1 .

Proof. First we show that k1β1 = �nβn. Since τ − κ equals zero in G, it

follows that τ = κ inG and hence k1 = �1�2 · · · �nk−1
2 k−1

3 · · · k−1
n . Therefore,

�nβn = �nk
−1
n �n−1βn−1 = · · ·

= �n�n−1 · · · �1k−1
n k−1

n−1 · · · k−1
2 β1 = k1β1 .

As an immediate consequence of the definition we have that for each i,

1 ≤ i ≤ n− 1,

�iβi = ki+1βi+1 .

We now show that

(L−K) · β = 0. (12.3)



February 21, 2022 16:26 ws-book9x6 Perfect Codes and Related Structures Perfect˙Codes˙Main page 372

372 Perfect Codes and Related Structures

(L−K) · β =

n∑
i=1

(�i − ki)βi =

n∑
i=1

(�iβi − kiβi)

= �nβn − knβn +
n−1∑
i=1

(ki+1βi+1 − kiβi)

= �nβn − knβn + knβn − k1β1 = 0.

Since |SL,K | = |G|, it follows that to prove Theorem 12.14, it is sufficient

to show that each element in G can be expressed as E ·β, for some E ∈ SL,K .

The proof will be done by induction.

The basis of induction is 0 = 0 · β.
In the induction step we show that if x ∈ G can be presented as E ·β for

some E ∈ SL,K , then the same is true for x+1. In other words, x+1 = Ê ·β,
where Ê = (ε̂1, ε̂2, . . . , ε̂n) ∈ SL,K .

Assume

x = E · β,

where E = (ε1, ε2, . . . , εn), 0 ≤ εi < �i for each i, and there exists a j such

that εj < �j − kj .

If ε1 < �1 − k1 − 1 or if ε1 < �1 − 1 and there exists j �= 1 such that

εj < �j − kj , then since β1 = 1 it follows that

x+ 1 = Ê · β,

where Ê = E + e1. Clearly, 0 ≤ ε̂i ≤ �i − 1; ε̂1 < �1 − k1 if ε1 < �1 − k1 − 1

and otherwise ε̂j < �j − kj . Hence, the induction step is proved.

If ε1 = �1− k1− 1 and there is no j �= 1 such that εj < �j − kj , then by

(12.3) we have that (L−K) · β = 0 and hence

x+ 1 = (E + e1 − (L−K)) · β ,

i.e., Ê = E + e1 −L+K is the required element of SL,K and the induction

step is proved.

Assume now that ε1 = �1− 1. Let 2 ≤ j ≤ n be the smallest index such

that εj < �j − kj .

x+ 1 = �1β1 +

n∑
i=2

εiβi = (k2 + ε2)β2 +

n∑
i=3

εiβi.



February 21, 2022 16:26 ws-book9x6 Perfect Codes and Related Structures Perfect˙Codes˙Main page 373

Tiling with a Cluster of Unit Cubes 373

If j = 2, then Ê = (0, k2 + ε2, ε3, . . . , εn) and the induction step is

proved. If ε2 ≥ �2 − k2, then

x+ 1 = �2β2 + (ε2 − (�2 − k2))β2 +

n∑
i=3

εiβi

= (ε2 − (�2 − k2))β2 + (k3 + ε3)β3 +

n∑
i=4

εiβi.

By iteratively continuing in the same manner we obtain

x+ 1 =

j−1∑
i=2

(εi − (�i − ki))βi + (kj + εj)βj +

n∑
i=j+1

εiβi ,

and since εj < �j − kj , we have that

Ê = (0, ε2 − �2 + k2, . . . , εj−1 − �j−1 + kj−1, kj + εj , εj+1, . . . , εn)

is the element of SL,K , and the induction step is proved.

Corollary 12.5. Let L = (�1, �2, . . . , �n), K = (k1, k2, . . . , kn) be two vec-

tors in Z
n such that 0 < ki < �i for each i, 1 ≤ i ≤ n. Let τ =

∏n
i=1 �i and

assume that gcd(ki, τ) = 1 for at least n− 1 of the ki’s. Then there exists

a lattice tiling of Zn with SL,K .

Next, we consider a lattice tiling of R
n with SL,K ⊂ R

n, where

L = (�1, �2, . . . , �n), K = (k1, k2, . . . , kn) ∈ R
n. For the proof of the next

theorem we need the following lemma.

Lemma 12.7. If X = (x1, x2, . . . , xn) ∈ R
n, then, SL,K ∩ (X + SL,K) �= ∅

if and only if |xi| < �i, for 1 ≤ i ≤ n, and there exist integers j and r,

1 ≤ j, r ≤ n, such that xj < �j − kj and −(�r − kr) < xr.

Proof. Assume first that SL,K ∩ (X + SL,K) �= ∅, i.e., there exists

(a1, a2, . . . , an) ∈ SL,K ∩ (X + SL,K). By the definition of SL,K it follows

that

0 ≤ ai < �i , for each i, 1 ≤ i ≤ n , (12.4)

and there exists a j such that

aj < �j − kj . (12.5)

Similarly, for X + SL,K we have

xi ≤ ai < xi + �i , for each i, 1 ≤ i ≤ n , (12.6)
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and there exists an r such that

ar < xr + �r − kr . (12.7)

It follows from (12.4) and (12.6) that xi ≤ ai < �i and −�i ≤ ai − �i < xi

for each i, 1 ≤ i ≤ n. Hence, |xi| < �i for each i, 1 ≤ i ≤ n. From (12.5)

and (12.6) it follows that that xj ≤ aj < �j − kj . Finally, (12.4) and (12.7)

imply that xr > ar − (�r − kr) ≥ −(�r − kr).

Now let X = (x1, x2, . . . , xn) ∈ R
n such that |xi| < �i for each i,

1 ≤ i ≤ n, and there exist j, r such that xj < �j − kj and xr > −(�r − kr).

Consider the point A = (a1, a2, . . . , an) ∈ R
n, where ai = max{xi, 0}.

By definition, for each i, 1 ≤ i ≤ n,

0 ≤ ai < �i

and aj < �j − kj . Hence, A ∈ SL,K .

Clearly, if xi < 0, then ai = 0 and if xi ≥ 0, then ai = xi. In both

cases, since 0 < xi + �i, it follows that we have

xi ≤ ai < xi + �i .

We also have 0 < xr + �r − kr, and, therefore, xr ≤ ar < xr + �r − kr.

Hence, A ∈ X + SL,K .

Thus, A ∈ SL,K ∩ (X + SL,K), i.e., SL,K ∩ (X + SL,K) �= ∅.

The next theorem is a generalization of Corollary 12.5.

Theorem 12.15. Let L = (�1, �2, . . . , �n), K = (k1, k2, . . . , kn) ∈ R
n,

0 < ki < �i, for all 1 ≤ i ≤ n. If Λ is the lattice generated by the matrix

G �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�1 −k2 0 0 . . . 0

0 �2 −k3 0 . . . 0
...

...
. . .

. . .
. . .

...

0 . . . 0 �n−2 −kn−1 0

0 0 . . . 0 �n−1 −kn
−k1 0 . . . 0 0 �n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

then Λ is a lattice tiling of Rn with SL,K .

Proof. It is easy to verify that | detG| =
∏n

i=1 �i −
∏n

i=1 ki and hence

V (Λ) = |SL,K |. We will use Lemma 11.2 to show that Λ is a tiling of Rn

with SL,K . For this, it is sufficient to show that Λ is a packing of R
n

with SL,K .
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Let X ∈ Λ, X �= 0, and assume to the contrary that

SL,K ∩ (X + SL,K) �= ∅. Since X ∈ Λ, it follows that there exist inte-

gers λ0, λ1, λ2, . . . , λn = λ0, not all zeros, such that xi = λi�i − λi−1ki, for

every i, 1 ≤ i ≤ n. By Lemma 12.7, we have that for each i, 1 ≤ i ≤ n,

−�i < λi�i − λi−1ki < �i ,

i.e.,

λi−1ki
�i

− 1 < λi <
λi−1ki

�i
+ 1 .

Since λi is an integer, it follows that λi =
⌊
λi−1ki

�i

⌋
or λi =

⌈
λi−1ki

�i

⌉
. For

each i, 0 ≤ i ≤ n− 1, if λi = ρ ≥ 0, then since ki+1 < �i+1 we have that

0 ≤
⌊
ρki+1

�i+1

⌋
≤ λi+1 ≤

⌈
ρki+1

�i+1

⌉
≤ ρ .

Hence,

0 ≤ λi+1 ≤ λi . (12.8)

Similarly, if λi ≤ 0, we have that

λi ≤ λi+1 ≤ 0 .

If λ0 ≥ 0, then by (12.8) we have

λ0 = λn ≤ λn−1 ≤ · · · ≤ λ1 ≤ λ0 ,

and hence λi = ρ for each i, 1 ≤ i ≤ n. Similarly, we have λi = ρ for

each i, 1 ≤ i ≤ n if λ0 ≤ 0. If ρ > 0, then since ρ is an integer we have

that xi = ρ(�i − ki) ≥ �i − ki, for each i, 1 ≤ i ≤ n. Hence, there is no j

such that xj < �j − kj , which contradicts Lemma 12.7. Similarly, if ρ < 0,

then for each i, 1 ≤ i ≤ n, xi = ρ(�i − ki) ≤ −(�i − ki), and hence there is

no r such that xr > −(�r − kr), which contradicts Lemma 12.7. Therefore,

ρ = 0, i.e., for each i, 0 ≤ i ≤ n, λi = 0, a contradiction. Hence, Λ is a

lattice packing of Rn with SL,K

Thus, by Lemma 11.2, Λ is a lattice tiling of Rn with SL,K .

Remark 12.2. Note that the construction, implied by Theorem 12.15 and

based on lattices, covers all the parameters of integers that are not covered

by generalized splitting.
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12.6 Notes

Tiling is a geometric concept and a comprehensive excellent book on this

topic is [Stein and Szabó (1994)]. Two-dimensional tiling of various shapes

are analyzed in [Grünbaum and Shephard (1987)]. The two-dimensional

shapes which consists of squares of the same size (unit) connected in

their a complete unit edge are called polyominoes. A fascinating book on

their related mathematical problems, puzzles, and packings, was written

by [Golomb (1996)]. This book was the motivated by the combinatorics of

Lee spheres. This book has motivated the popular computer game known

as Tetris. Solomon W. Golomb received the American National Medal of

Science for his advances in mathematics and communications at an awards

ceremony held at the White House. In his speech before the ceremony

President Barack Obama mentioned that the combinatorics of Solomon W.

Golomb inspired the game of Tetris.

Section 12.1. The idea of group splitting was defined in [Hajós (1942)]

and discussed in [Stein (1967a,b); Hickerson (1983); Stein (1984, 1986)].

Generalized splitting was defined in [Buzaglo and Etzion (2013a)]. The

methods were used for cross and semi-cross [Stein (1967a, 1984)], and quasi-

cross [Schwartz (2012)]. Similar sequences known as Bh[�] sequences (and

related to v-modular Bh(M) sequences) were defined in [Kløve, Bose, and

Elarief (2011)] and further discussed in this paper and in [Kløve, Luo, Nay-

denova, and Yari (2011)] for construction of codes that correct asymmetric

errors with limited magnitude. These Bh[�] sequences are modification of

the well-known Sidon sequences and their generalisations [O’Bryant (2004)].

Finally, generalized splitting is also a generalization of a method discussed

in [Varshamov (1964, 1965)].

Section 12.2. Packings and tilings with semi-crosses were considered

in [Stein (1967a, 1984); Hickerson and Stein (1986)] and further analyzed for

error-correction of asymmetric errors in flash memories in [Kløve, Bose, and

Elarief (2011)]. In [Stein (1967b, 1984)], the packings and tilings of crosses

were considered. Theorem 12.1 was given by [Stein (1967b)]. Theorem 12.4

was formulated by [Szabó (1984)] and the proof provided in this section of

the chapter was taken from [Stein and Szabó (1994)]. Lemma 12.4 and

Theorem 12.5 are the work of [Stein (1985)] with some of the proof done

by Hickerson. More recent work of tilings with crosses was done by [Horak

and AlBdaiwi (2012a); Horak and Hromada (2014)].

Section 12.3. The analysis for quasi-crosses was presented by [Schwartz
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(2012)], where the connection to coding for flash memories was considered.

The material in this section was taken from [Schwartz (2012)].

Section 12.4. The term quasi-cross was given by [Schwartz (2012)] who

also considered the lattice tilings based on this shape and the results that

are presented in this chapter are taken from this paper. Nonexistence re-

sults for tilings with quasi-crosses were presented in [Schwartz (2014)]. The

quasi-cross was further generalized by [Wei and Schwartz (2020)] to ac-

commodate other shapes that represent errors in the asymmetric limited-

magnitude channel. A comprehensive work on the related tilings for these

shapes were presented in this paper. Some nonexistence lattice tilings for

some of these shapes were proved in [Buzaglo and Etzion (2013a)]. A proof

for Dirichlet’s Theorem used in Theorem 12.8 can be found in [Selberg

(1949)]. A very simple and short proof to the instance of the theorem which

was used in the chapter can be found in [Niven and Zuckerman (1980),

p. 226]. Finally, Theorem 12.10 was also proved in [Schwartz (2012)].

Section 12.5. The problem of lattice tiling for Z
n by notched cubes

was considered first in [Stein (1990)] and later in [Schmerl (1994)]

and [Kolountzakis (1998)]. The tilings presented in this section of the

chapter, which are based on generalized splitting and lattice tiling, are due

to [Buzaglo and Etzion (2013a)].

There are other interesting shapes that can be considered in this context.

The last interesting shape that we want to mention is the (0.5, n)-cross, also

called a half-cross. This shape is like a cross, but instead of having arms

of integer length, it has arms of length 0.5 in its n dimensions, one in the

negative direction and one in the positive direction. In order to make it

a discrete shape, it is scaled by two in each dimension to obtain a shape

denoted by Υn in which the center of the (0.5, n)-cross is transferred into

an n-dimensional cube with sides of size two. The size of this cube is 2n,

and each arm of length 0.5 is transferred into 2n−1 unit cubes. Therefore,

the size of Υn is 2n(n + 1). Examples of a (0.5, 3)-cross and Υ3 are given

in Fig. 12.5.

Tiling Zn by half-crosses is highly related to perfect codes. The following

results were obtained in [Buzaglo and Etzion (2013b)].

Theorem 12.16. If T is an integer lattice tiling with translates of Υn,

then either n = 2t − 1 or n = 3t − 1 for some t > 0.

Theorem 12.17. There exists an integer tiling of Υn, where n = 2t − 1,
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constructed from a binary 1-perfect code of length n = 2t−1. There exists an
integer tiling of Υn, where n = 3t− 1, constructed from a ternary 1-perfect

code of length n
2 = 3t−1

2 . Lattice tilings, in these cases, are constructed

from the related linear codes.

Corollary 12.6. The (0.5, n)-cross has a tiling if and only if either

n = 2t − 1 or n = 3t − 1 for some t > 0.
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Fig. 12.5 A (0.5, 3)-cross on the left side and Υ3 on the right side.

The half-cross can be viewed as a generalization of a Lee sphere. A se-

quence of such generalizations for which one is the half-cross were presented

in [Etzion (2002)]. The tiling of Zn by translates of Υn is a perfect domi-

nating set in the n-cube Qn (which is equivalent to F
n
2 ). The definition of

a perfect dominating set can be found in [Weichsel (1994)] and was further

generalized and investigated in [Araujo, Dejter, and Horak (2014)], where

the connection to Υn was explored.
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Chapter 13

Codes in Other Metrics

This chapter is devoted to perfect codes in various metrics that are com-

pletely unrelated. Moreover, each metric is completely different from the

metrics discussed so far. Each of these metrics has some special proper-

ties that motivate its presentation in this book. Section 13.1 is devoted to

the deletion channel. If both deletions and insertions are permitted in the

channel, then a metric is defined based on the minimum number of dele-

tions and insertions. If only deletions (insertions, respectively) can occur in

the channel, there is no metric associated with this scenario, although the

set of codes defined by deletions (insertions, respectively) is a subset of the

codes defined by both deletion and insertions. Moreover, a code C corrects

e deletions if and only if C corrects e insertions. Nevertheless, surprisingly,

1-perfect codes with different sizes exist in the deletion channel (but not

the insertion channel). The Hamming scheme can be generalized to many

different metrics called poset metrics and these metrics are discussed in

Section 13.2. All 1-perfect codes for this very large family of metrics will

be fully characterized. In computer systems errors can come in bursts. For

such errors, burst-correcting codes were designed. Section 13.3 considers

perfect codes that can correct one such burst of length two. Other types of

bursts are also considered in this section. In Section 13.4 we briefly discuss

the Kendall τ -metric defined on the set of permutations Sn. This metric is

right distance invariant but not left distance invariant.

13.1 Perfect Deletion-Correcting Codes

The deletion channel is one of the most important channels in coding theory.

Assume that a word x = (x1, . . . , xn) of length n, over Zq, was transmit-

ted and during transmission the symbol at position i was not received,

379
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i.e., the received word of length n − 1 was (x1, . . . , xi−1, xi+1, . . . , xn).

This is the behavior of the deletion channel, i.e., some symbols can be

dropped during transmission. Alternatively, there is a possibility that af-

ter (x1, . . . , xn) was transmitted, a new symbol z was inserted between

position i and position i+ 1, i.e., the received word of length n + 1 was

(x1, . . . , xi, z, xi+1, . . . , xn), demonstrating to us the behavior of the inser-

tion channel. The first scenario is for one deletion and the second scenario

is for one insertion. Clearly, this can be generalized when in the deletion

channel we have more than one deletion and in the insertion channel we

have more than one insertion. Both the deletion channel and the insertion

channel do not define a metric. This is immediately observed since for a

given two words x and y, the word y is not necessarily can be obtained

from the word x by a sequence of deletions (or insertions). For example x

can be the all-zero word of length n and y can be the set of all-one word of

length m. Clearly, y cannot be obtained from x by a sequence of deletions

(or insertions). It can be obtained by a sequence of n deletions and m in-

sertions. It is possible, however, to define a metric based on the minimum

number of deletions and insertions that are required to change a word x of

length n1 into a word y of length n2, 0 ≤ n1, n2 ≤ n for some integer n (it

can be also defined without a restriction on the length of the words). In

such a channel, containing both deletions and insertions, we can define a

distance on the space
⋃n

i=0 Z
i
q, where the distance between x, y ∈

⋃n
i=0 Z

i
q

is the minimum number of deletions and insertions required to change x

into y. This definition of distance is a metric that is interesting on its own

and has many applications. It is not difficult to show that there are no

nontrivial perfect codes in this metric. Nevertheless, in this section we are

interested in and consider only deletion errors, where perfect codes can be

defined although no metric is defined. Finally, it is worth to mention that a

code C ⊂ F
n
q can correct e deletions if and only if C can correct e insertions.

In the deletion channel, where only deletion can occur, if a codeword x

was sent and a word y was received after a sequence of deletions, our goal

is to recover the codeword x from the received word y. There is no deletion

metric, but there are deletion balls and deletion spheres. The deletion

sphere with radius e centered at x ∈ Z
n
q , De(x), contains all the words of

length n − e that can be obtained from x using exactly e deletions. The

deletion ball Be(x) is a union of deletion spheres Be(x) �
⋃e

i=0Di(x). As

a consequence, using simple counting arguments on the covered words of

each length, one can easily verify that there is no nontrivial perfect code if

at most e deletions occurred. When exactly e deletions occurred, by abuse
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of notation the deletion ball with radius e around x will be equal to the

deletion sphere De(x). Therefore, we define the deletion sphere (ball)

with radius e around a word x of length n to be De(x). A set of words of

length n forms a code C that can correct e deletions if the deletion balls

(spheres) with radius e are pairwise disjoint. A code C of length n is an

e-perfect code in the deletion channel if the balls (spheres) with radius e

around the codewords of C form a partition of Z
n−e
q . Before presenting

a construction for 1-perfect codes, it should be noted that the size of a

deletion sphere with radius one around a word x depends on the word x.

In the rest of this section, we restrict ourselves to binary codes. The

following code, VTt(n), is called the Varshamov–Tenengolts code.

Definition 13.1. For 0 ≤ t ≤ n, the code VTt(n) consists of binary vectors

(x1, x2, . . . , xn) defined by

VTt(n) �
{
(x1, x2, . . . , xn) ∈ Z

n
2 :

n∑
i=1

i · xi ≡ t (mod n+ 1)

}
. (13.1)

Theorem 13.1. For each t, 0 ≤ t ≤ n, and each word y ∈ Z
n−1
2 , there

exists exactly one codeword x ∈ VTt(n) such that y ∈ D1(x).

Proof. The proof is given by presenting a decoding of each received word y

of length n−1 into the unique codeword x of length n from which one symbol

was deleted to receive y.

Suppose a codeword x = (x1, x2, . . . , xn) ∈ VTt(n) is transmitted, the

symbol xj from the j-th coordinate was deleted, and y = (y1, y2, . . . , yn−1)

was received. Let �0 be the number of zeroes to the left of the j-th coordi-

nate in x, �1 be the number of ones to the left of the j-th coordinate in x,

r0 be the number of zeroes to the right of the j-th coordinate in x, and

r1 be the number of ones to the right of the j-th coordinate in x. Clearly,

j = �0 + �1 + 1, n = �0 + �1 + 1 + r0 + r1, and wt(x) = �1 + r1 + xj .

Let w = �1 + r1 be the weight of y and let Υ �
∑n−1

i=1 i · yi. If xj = 0,

then this definition implies that

Υ =

n−1∑
i=1

i · yi =
j−1∑
i=1

i · yi +
n−1∑
i=j

i · yi =
j−1∑
i=1

i · xi + j · xj +

n∑
i=j+1

(i− 1) · xi

=

n∑
i=1

i · xi −
n∑

i=j+1

xi =

n∑
i=1

i · xi − r1 .



February 21, 2022 16:26 ws-book9x6 Perfect Codes and Related Structures Perfect˙Codes˙Main page 382

382 Perfect Codes and Related Structures

Similarly, if xj = 1, then

Υ =
n−1∑
i=1

i · yi =
j−1∑
i=1

i · yi +
n−1∑
i=j

i · yi =
j−1∑
i=1

i · xi +

n∑
i=j+1

(i− 1) · xi

=

n∑
i=1

i · xi − j −
n∑

i=j+1

xi =

n∑
i=1

i · xi − (j + r1) .

Clearly, the sum j + r1 = 1+ �0 + �1 + r1 = 1+w+ �0 is larger than w,

but not larger than n+ 1.

The difference between
∑n

i=1 i·xi (from which (13.1) is computed) and Υ

is at most w if xj = 0. This difference is larger than w, but at most n+1, if

xj = 1. Moreover, difference between different values of Υ is less than n+1.

This implies that each deletion yields another value of Υ modulo n+ 1.

Therefore, given any received word y ∈ Z
n−1
2 , there exists a unique

codeword x ∈ Z
n
2 from which y was received.

Corollary 13.1. For each t, 0 ≤ t ≤ n, the code VTt(n) is a 1-perfect code

of length n.

The proof of Theorem 13.1 can be used to know which codeword x was

submitted given the received word y, i.e., to define a decoding algorithm.

Since w = �1 + r1, it follows that if the difference between
∑n

i=1 i · xi and

Υ modulo n+ 1 is less than or equal to w, then a zero was deleted. If the

difference is greater than w modulo n+1, then a one was deleted. Moreover,

since this difference is r1 if xj = 0 and 1 + w + �0 if xj = 1, it follows that

�0, �1, r0, r1 can be computed and the position of the deleted symbol can

be located. Additionally, the definition of the code VTt(n), 0 ≤ t ≤ n, and

Corollary 13.1 imply that the set of 1-perfect codes, {VTt(n) : 0 ≤ t ≤ n}
forms a partition of Zn

2 . This is very similar to codes in other metric, where

a perfect code and its translates form a partition of the space.

Example 13.1. When n = 2, then we have that VT0(2) = {00, 11},
VT1(2) = {10}, and VT2(2) = {01}. Note, the VT0(2) is also a 1-perfect

insertion code, but there is no other such code for n ≥ 2.

Problem 13.1. Do there exists other binary 1-perfect deletion-correcting

codes?

Problem 13.2. Do there exists q-ary 1-perfect deletion-correcting codes

for some q > 2?
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13.2 Perfect Poset-Correcting Codes

The poset (partially ordered set) metric is a generalization of the Hamming

metric. Let (P,≤) be an arbitrary finite poset, where the number of points

in P is n, and the partial order relation is denoted by ≤. Let [n] be the

the set of points in P . If A ⊆ [n], then 〈A〉 denotes the smallest ideal in P

that contains A, i.e.,

〈A〉 � {α : (∃β)(β ∈ A, α ≤ β)}.
Note that the notation is the same as for linear span, but the notation

for the smallest ideal is used only in this paragraph. We define the

P -weight of x, wtP (x), x ∈ F
n
q , to be the cardinality of 〈supp(x)〉, i.e.,

wtP (x) = |〈supp(x)〉|. For two words x, y ∈ F
n
q , the P -distance, dP (x, y),

is defined by dP (x, y) = wtP (x− y). An (n,M, d) P -code C over Fq is a

subset of size M in F
n
q , such that for each two codewords x, y ∈ C, we have

that dP (x, y) ≥ d, i.e., the minimum P -distance of the code is d. If P is an

antichain (isolated points), then these definitions coincide with those of the

Hamming metric. For each n, there are finitely many posets, but in total

there are infinitely many posets to handle and it is impossible to partition

them into a finite number of types, where all the posets in one type can be

handled together for the analysis of the related perfect codes. We restrict

ourselves to 1-perfect codes for all metrics defined by posets.

Each poset defines a metric and also some of them, but not all of

them, define association schemes. It is not difficult to verify that some

poset metrics do not define a scheme. For example, consider the poset

defined on F
n
2 by P � [n], where n ≥ 4, 1 ≤ 2, x ≤ x for each x ∈ P ,

and the other pairs of elements are unrelated. Consider the three words

x = (0, 0, 0, . . . , 0, 0, 0), y = (0, 1, 0, . . . , 0, 0, 0), and z = (0, 0, 0, . . . , 0, 1, 1).

Clearly, dP (x, y) = dP (x, z) = 2. There is no u ∈ F
n
2 such that dP (u, x) = 1

and dP (u, z) = 2. If, however, u = (1, 0, 0, . . . , 0, 0, 0), then dP (u, x) = 1

and dP (u, y) = 2, implying the nonexistence of unique intersecting numbers

and hence P is not an association scheme.

As we will see, a 1-perfect code for each poset metric P defined by a

poset P , called a P-metric, is easily characterized by the number of words

of weight one in P . Let m be the number of such words of weight one

in P . Such words are called minimal elements in the partially ordered

set. Each of these m words is associated with exactly one element of [n].

For each such element α ∈ [n] there is no β ∈ [n], β �= α, such that α ≥ β.

Lemma 13.1. The size of a 1-ball, in a P -metric over Fq with m words of
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weight one, does not depend on the center of the ball, and this size is equal

to 1 + (q − 1)m.

Proof. The fact that the size of the ball does not depend on its center

is easily verified from the simple fact that dP (x, y) = wtP (x− y) which

implies that the sphere of radius e around a word x1 ∈ F
n
q has the same

size as the size of the sphere of radius e around a word x2 ∈ F
n
q . Hence,

w.l.o.g. we can compute the size of a ball centered at the all-zero word.

There is exactly one word with P -weight zero. Each nonzero alphabet

symbol can be used in the m positions. There are m positions associated

with the words of weight one and q−1 nonzero alphabet symbols for a total

of (q− 1)m words of weight one. Thus, the size of a ball with radius one is

1 + (q − 1)m.

If a 1-perfect P -code C exists, then the size of the ball with radius one

should divide the size of the space F
n
q , where

∣∣Fn
q

∣∣ = qn. It follows that

1 + (q − 1)m = pt, where q = p� and p is a prime. This implies that

(p� − 1)m = pt − 1, i.e., m = pt−1
p�−1

and hence � must divides t. Therefore,

pt = p�r = qr, i.e., the size of a ball with radius one is 1 + (q − 1)m = qr

and the size of C is qn−r. Thus, we have

Theorem 13.2. If C is a 1-perfect P -code over Fq of length n with m words

of weight one in the metric P , then m = qr−1
q−1 and |C| = qn−r.

Finally, we characterize 1-perfect P -codes. The first lemma is a simple

observation.

Lemma 13.2. If C is a 1-perfect P -code with minimum P -distance three,

then the balls with radius one centered at the codewords of C are disjoint.

Theorem 13.3. Let C be a 1-perfect P -code of length n with m words of

weight one in the metric P , where m = qr−1
q−1 and C has qn−r codewords. If

the minimum P -distance of C is three, then C is a 1-perfect P -code.

Proof. By Lemma 13.2, in a P -code C with minimum P -distance three,

the 1-balls centered at the codewords of C are disjoint. By Theorem 13.2,

we have that a 1-perfect P -code C of length n has qn−r codewords. Since

by Lemma 13.1, the size of a ball with radius one does not depend on its

center, it follows that a P -code C of length n with m words of weight one

in the metric P , where m = qr−1
q−1 and C has qn−r codewords and minimum

P -distance three is a 1-perfect code.
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Constructions of a 1-perfect code for a poset P with m words of weight

one in the P -metric, is rather simple. We construct a linear 1-perfect

Hamming code C of length m over Fq on the coordinates that correspond

to these m elements of [n] associated with the words of weight one. Let

T be the set of all qn−m words whose support is contained in the n −m

points which are not associated with words of weight one. Clearly, T is a

linear code and 〈C〉∩〈T 〉 = {0}, where 〈C〉 is the linear span of C and 〈T 〉 is
the linear span of T . The set C + T � {c+ t : c ∈ C, t ∈ T } is a 1-perfect

code in the metric P . The parity-check matrix of the code consists of m

columns of the 1-perfect code over Fq and n−m columns of zeroes.

Example 13.2. Let q = 2, m = 15, and n = 25, and consider any poset P

that consists of three points associated with words of weight one with ones

in positions 1, 4, 6, 7, 8, 11, 14, 15, 16, 18, 20, 21, 22, 23, and 25. The

4× 25 parity-check matrix of any such 1-perfect P -code is

⎡
⎢⎢⎣
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 1 1 0 1

0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 1 1 1 0 1

0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 1

1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 1 0 0 1

⎤
⎥⎥⎦ .

We have chosen to analyze 1-perfect codes on poset metric. The analysis

of e-perfect codes, where e > 1, in poset metric is more complicated and

will not be considered in this section.

Problem 13.3. Can the set of perfect codes in the poset metric be classified

in a finite number of types? Any nontrivial classification will be of some

interest.

13.3 Perfect Burst-Correcting Codes

In many memory systems an error is not restricted to one position and

an error event can cause a burst of errors in adjacent positions. In this

section we consider linear codes that can correct one burst whose length is

at most b, called a b-burst , i.e., the first symbol and the last symbol in

the sequence of errors occur in a window whose size is at most b, where

some symbols in this window can be in error and some are not. A code

that corrects a b-burst is a code that is capable of correcting a set of errors

that occur within b consecutive positions.
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A code is called a b-burst-correcting code if it can correct any single

burst of length b (or shorter). When the burst can occur between symbols

at the end of the codeword and symbols at the start of the codeword, it is

called a cyclic burst . A code is called a cyclic b-burst-correcting code

if it can correct any single burst (including a cyclic burst) of length b (or

shorter). Combining the definitions of a linear code and a b-burst correcting

code, we have the following simple observation.

Lemma 13.3. A linear code can correct any burst of length at most b if

and only if no codeword is the sum of two bursts of length at most b.

Proof. Assume first that a code C can correct any burst of length at most b.

Assume the contrary, that a codeword c ∈ C is the sum of two such bursts

β1 and β2, i.e. c = β1 + β2. If such a burst is the received word, then both

0 and c could have been the submitted codewords, a contradiction. Thus,

no codeword is a sum of two bursts.

Assume now that in a code C no codeword is a sum of two bursts of

length at most b. Now assume the contrary, that the code cannot correct

some burst of length at most b. This implies that there exists a codeword

c ∈ C and a burst β for which c + β cannot be decoded. Hence, there

exists another burst β′ such that c + β + β′ is another codeword c′ ∈ C.
Therefore, c′ − c = β + β′ and since c′ − c ∈ C, the sum of the two bursts

is a codeword, a contradiction. Thus, the code C can correct any burst of

length at most b.

Corollary 13.2. An [n, k] b-burst-correcting code satisfies n− k ≥ 2b.

Proof. The column vectors of the r × n parity-check matrix H contain

distinct nonzero column vectors that span a subspace whose dimension

is r = n− k. Any b columns of H that correspond to a b-burst span a

b-subspace. If a nonzero column vector v is in the span of two disjoint

b-bursts x and y, then we will not be able to distinguish in which one of

them the burst of errors occurred. Hence, two disjoint b-bursts should form

two disjoint b-subspaces. Two b-subspaces in a (2b − 1)-space cannot be

disjoint and, therefore, n− k = r ≥ 2b.

For the rest of this section we consider only binary codes. First, we

consider the number of possible distinct errors that can be caused by a

b-burst. Note that for each b consecutive positions, there are 2b−1 possible

errors, which implies that there are 2b − 1 different syndromes that are

associated with any b-burst in the parity-check matrix of the code. For
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a binary [n, n − r] cyclic b-burst-correcting code, to count the number of

possible errors that can be caused by b-bursts, consider the first position

of each possible b-burst. Each of the n positions can be the first position

in the b-burst. With this first position in the b-burst, each of the next

b − 1 positions can be in error. Therefore, there are 2b−1 possible errors

associated with each of these n positions that start a b-burst. Hence, there

are n2b−1 distinct errors associated with all the cyclic b-bursts, each of

which corresponds to a distinct nonzero syndrome of the code’s parity-

check matrix. Since the number of nonzero vectors of length r is 2r − 1, it

follows that 2r − 1 ≥ n2b−1. This inequality, along with the fact that n is

an integer, implies that

n ≤ 2r−b+1 − 1. (13.2)

A cyclic b-burst-correcting code that attains (13.2) with equality is said

to be an optimum code . If b ≥ 2, then n2b−1 �= 2r−1, i.e., n < 2r−b+1−1,

and hence such a code cannot be perfect. A simple parity-matrix for such

a [2r − 1, 2r − r − 2] code can be obtained for b = 2. For any primitive

element α in F2r we form the following (r + 1) × (2r − 1) parity-check

matrix.

H =

[
α0 α1 α2 · · · α2r−2

1 1 1 · · · 1

]
,

Note that all column vectors of length r+1 ending with a one are distinct

and the sum of any two distinct adjacent columns ends with a zero. These

sums are distinct since αi + αi+1 �= αj + αj+1 for 1 ≤ i < j ≤ 2r − 2.

The only column vector of length r + 1, ending with a one, which is not a

syndrome associated with a 2-burst is the vector that starts with r zeroes

and ends with a one.

This idea can be easily generalized for an even redundancy r + 2

and b = 3. Let α be a primitive element in F2r such that 1+α �= α3i+2 for

each i. It is known that such a primitive element always exists. Consider

now the following (r + 2)× (2r − 1) parity-check matrix.

H =

⎡
⎣α0 α1 α2 α3 α4 α5 · · · α2r−4 α2r−3 α2r−2

0 1 1 0 1 1 · · · 0 1 1

1 0 1 1 0 1 · · · 1 0 1

⎤
⎦ ,

To prove that the code C for which H is its parity-check matrix form

a [2r − 1, 2r − r − 3] 3-burst-correcting code, we have to show that all the
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2r+2 − 4 cyclic syndromes associated with bursts of length 3 of H are

distinct. First, note that αi+αi+1 �= αj+αj+1, αi+αi+2 �= αj+αj+2, and

αi+αi+1+αi+2 �= αj+αj+1+αj+2 for 1 ≤ i < j ≤ 2r−2. All the syndromes

ending with two zeroes are constructed by summing all combinations of

three consecutive columns from H. Next, it can be verified from the cyclic

appearances of columns ending with 01, or 10, or 11, that to avoid a repeat

in a syndrome we must have that 1 + α = α�, where � �≡ 2 (mod 3) and

1 + α2 = α�, where � �≡ 1 (mod 3). These two requirements are equivalent

in F2r and are satisfied by the choice of α. Thus, C is an optimum cyclic

3-burst-correcting code. This idea can be generalized further to construct

optimum cyclic b-burst-correcting code for each b > 3.

For an [n, n− r] b-burst-correcting code (which is not cyclic), there are

(n − b + 1)2b−1 possible distinct errors associated with b-bursts that start

in any of the first n− b+ 1 positions. There are another possible 2b−1 − 1

errors associated with the (b−1)-burst of the last b−1 positions. Therefore,

the total number of distinct syndromes should be exactly

(n− b+ 1)2b−1 + 2b−1 − 1 = (n− b+ 2)2b−1 − 1 .

Again, since the number of nonzero vectors of length r is 2r − 1, it follows

that 2r − 1 ≥ (n− b+ 2)2b−1 − 1, i.e.,

n ≤ 2r−b+1 + b− 2 . (13.3)

A b-burst-correcting code that attains (13.3) with equality is a perfect

b-burst-correcting code . Now, we show that for each r ≥ 5, there exists

a perfect [2r−1, 2r−1−r] 2-burst-correcting code. For a parity-check matrix

H = [h1, h2, · · · , hn] of an [n, k] code, let S(H) denote the set of syndromes

obtained from a single column and two adjacent columns of H, i.e.,

S(H) = {hi : 1 ≤ i ≤ n } ∪ {hi + hi+1 : 1 ≤ i ≤ n− 1}.

By Corollary 13.2 there is no 2-burst-correcting code for redundancy

less than 4. It can easily be verified by simple backtracking that an [8,4]

2-burst-correcting code does not exist. Perfect 2-burst-correcting codes for

redundancies 5 and 6, i.e., a perfect [16, 11] 2-burst-correcting code and

a perfect [32, 26] 2-burst-correcting code, respectively, were obtained by

computer search. Their parity-check matrices are given below.
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H5 �

⎡
⎢⎢⎢⎢⎣
1000101010000101

0100001001101011

0010101000110010

0001000110101101

0000010101010110

⎤
⎥⎥⎥⎥⎦ ,

H6 �

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

10001001110101110011110010011100

01000101000110110000100101101111

00101001000000001011011010101010

00010100100100000101101011011111

00000010010010101010111011111110

00000000001001010101010101010101

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Given an r×2r−1 parity-check matrix H for a perfect 2-burst-correcting

code, we construct the following four matrices.

H̃1 =

[
H

T1

]
where T1 =

[
1 1 1 1 · · · 1 1

0 1 0 1 · · · 0 1

]

H̃2 =

[
H

T2

]
where T2 =

[
0 0 0 0 · · · 0 0

0 0 0 0 · · · 0 0

]

H̃3 =

[
H

T3

]
where T3 =

[
1 0 1 0 · · · 1 0

1 1 1 1 · · · 1 1

]

H̃4 =

[
H

T4

]
where T4 =

[
0 1 0 1 · · · 0 1

1 0 1 0 · · · 1 0

]

Lemma 13.4. Each column vector of length r + 2 that does not start with

r zeroes appears exactly once either as a column vector of one of the H̃i’s

or as a sum of two adjacent column vectors from one of the H̃i’s.

Proof. The proof follows immediately from the following observations.

• In each position, for the related column vector, the four Ti’s have ex-

actly all the four possible 2-tuples.
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• In each pair of adjacent positions, the adjacent column vectors in the

four Ti’s sum exactly to all the four possible 2-tuples.

• Each column vector of length r appears exactly once either as a column

or as a sum of two adjacent columns from H.

For the r × n matrix

F =
[
f1 f2 f3 · · · fn−2 fn−1 fn

]
,

let

μ(F ) =
[
f1 + f2 f2 f3 · · · fn−2 fn−1 fn

]
,

γ(F ) =
[
f1 f2 f3 · · · fn−2 fn−1 fn−1 + fn

]
,

λ(F ) =
[
f1 + f2 f2 f3 · · · fn−2 fn−1 fn−1 + fn

]
.

For the r × n parity-check matrix H = [h1 h2 · · · hn], let HR denote

the reverse of the matrix, i.e.,

HR =
[
hn · · · h2 h1

]
.

The following lemma is a simple observation

Lemma 13.5. For any r× n parity-check matrix H, where n ≥ 4 we have

that

S(H) = S(μ(H)) = S(γ(H)) = S(λ(H)) = S(HR).

We are now in a position to state the main result of this section.

Theorem 13.4. If H is an r × 2r−1 parity-check matrix of a perfect

2-burst-correcting code, then the matrix

H̃ =
[
H̃1 γ(H̃R

2 ) λ(H̃3) μ(H̃
R
4 )

]
(13.4)

is an (r+2)×2r+1 parity-check matrix of a perfect 2-burst-correcting code.
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Proof. Clearly, it is sufficient to prove that every nonzero column vector

of length r+2 is either a column of H̃ or the sum of two adjacent columns

of H̃.

Let x̃ = (x1, . . . , xr, xr+1, xr+2) be a nonzero vector of length r + 2

and let x = (x1, . . . , xr) be the related vector of length r. We distinguish

between two cases depending on whether x is the all-zero vector or not.

Case 1. If x is a nonzero vector.

This implies by Lemmas 13.4 and 13.5 that x̃tr is either a column of H̃

or the sum of two adjacent columns of H̃.

Case 2. x is the all-zero vector.

• If (xr+1 xr+2) = (1 1), then x̃tr is the sum of the last column of H̃1

and the first column of γ(H̃R
2 ).

• If (xr+1 xr+2) = (1 0), then x̃tr is the sum of the last column of γ(H̃R
2 )

and the first column of λ(H̃3).

• If (xr+1 xr+2) = (0 1), then x̃tr is sum the last column of λ(H̃3) and

the first column of μ(H̃R
4 ).

Combining Theorem 13.4, the perfect [16, 11] 2-burst-correcting code,

and the perfect [32, 26] 2-burst-correcting code, respectively, whose parity-

check matrices are H5 and H6, respectively, we have that

Corollary 13.3. For each r ≥ 5, there exists a perfect [2r−1, 2r−1 − r]

2-burst-correcting code.

Having presented perfect 2-burst-correcting codes, it is natural to ask

whether there exist perfect b-burst-correcting codes for b > 2.

Problem 13.4. Do there exist perfect b-burst-correcting codes for b > 2?

As noted before, there are no perfect [8, 4] 2-burst-correcting codes.

This leads to another interesting question.

Problem 13.5. Do there exist perfect [n, n − r] b-burst-correcting codes

for some r = 2b?

Finally, we return to nonbinary codes and consider the following natural

question.

Problem 13.6. Generalize the results and the problems in this section for

a nonbinary alphabet or prove that such perfect b-burst-correcting codes,
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where b > 1, do not exist.

There are other problems concerning perfect codes which are arising

from burst errors. Assume that the channel accepts binary words of a given

length n and the most common error is a sequence of positions which are all

in errors. In other words, if k errors occur, then they occur in k consecutive

locations. Assume further that the errors can be occurred cyclically, i.e.,

such a sequence of k errors can start at the end of a codeword and can end

at the beginning of the codeword. Such a burst of errors will be called a

full-burst. A code capable of correcting such a burst of up to b errors will

be called a b-full-burst-correcting code and if it can correct also such cyclic

errors, then it will be called a cyclic b-full-burst-correcting code. The sphere

packing bound for such a linear code is given in the following theorem.

Theorem 13.5. If C is a cyclic [n, k] code correcting one full-burst of

length b then n ≤ 2n−k−1
b .

Proof. Clearly, the full-burst can start in n possible distinct positions of

the codeword and it length can be any integer between 1 and b. Therefore,

the number of distinct syndromes must be n·b, while the number of possible

nonzero syndromes is 2n−k− 1. Thus, n · b ≤ 2n−k− 1 and the claim of the

theorem follows.

A cyclic b-full-burst correcting code is a perfect code if it attains the

bound of Theorem 13.5 with equality. Are there such perfect codes? Note,

that b must be odd and also the length of such a code must be odd. The

first set of parameters which form a candidate for such a perfect code is

when n− k is even and b = 3.

Problem 13.7. Does there exist a perfect cyclic [n, k] b-full-burst-

correcting code? In particular does there exist such a code when b = 3

and n− k is even?

A second set of possible parameters for a perfect cyclic [n, k] b-full-

burst-correcting code is when n = 2r + 1, b = 2r − 1, and n − k = 2r.

Unfortunately, for such set of parameters there is no perfect code.

Theorem 13.6. There is no perfect cyclic [n, k] b-full-burst-correcting code

when n = 2r + 1 and b = 2r − 1.

Proof. Assume the contrary that such a perfect code exists and let

H = [h1h2 · · · hn] be its parity-check matrix. Let t =
∑n

i=1 hi and dis-

tinguish now between two cases depending whether t = 0 or t �= 0.
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Case 1. If t = 0, then
∑n−2

i=1 hi = hn−1+hn and hence we have a repeated

syndrome, a contradiction.

Case 2. If t �= 0, then we can pair the set of syndromes in a set

{{sj , s�} : sj + s� = t}. Consider s1 = h1 and the pair {s1, si} such

that s1 + si = t. If the columns of the full-burst associated with si con-

tain the column h1, then the sum of all the columns not in si form a full-

burst whose syndrome equals to the all-zero vector, a contradiction. Hence,

si does not contain h1 which implies that the sum of the � columns which

do not contain h1 and also do not contain any column which are associated

with si, is the all-zero vector. Now, these columns contains either consecu-

tive columns in H or two sequences of consecutive columns in H. If these

columns are consecutive, then they are associated with a full-burst whose

syndrome equals to the all-zero vector, a contradiction. If these columns

are not consecutive, then they are associated with two full-bursts with the

same syndrome, a contradiction.

Thus, the contradictions in the two cases implies that there is no perfect

cyclic [n, k] b-full-burst-correcting code when n = 2r+1 and b = 2r−1.

13.4 Notes

The three distance measures which are discussed in this chapter are just

a drop in the sea of distance measures. An encyclopedia of distances was

written by [Deza and Deza (2009)]. Many of these distance measures are

metrics and on many of them perfect codes were discussed throughout the

years. As there is no preference to some of them on the other we will not

mention any of them. We just say that the field of perfect codes is con-

siderably richer than what was presented in this book. Our target was to

introduce the most important metrics with respect to perfect codes. There

are many metrics on spaces which were introduced and got lot of atten-

tion due to modern application. One such example is the set Sn of all n!

permutations on [n]. There are several metrics defined on this space. This

space has several applications in coding theory, but it got lot of attention in

the introduction of flash memories and the rank-modulation scheme intro-

duced in [Jiang, Mateescu, Schwartz, and Bruck (2009)]. Coding for rank

modulation was considered in several papers, e.g., [Jiang, Schwartz, and

Bruck (2010); Barg and Mazumdar (2010); Tamo and Schwartz (2010); En

Gad, Langberg, Schwartz, and Bruck (2011); Mazumdar, Barg, and Zémor

(2013); Buzaglo and Etzion (2015); Buzaglo, Yaakobi, Etzion, and Bruck
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(2016)]. One of the metric defined on Sn is the Kendall τ -metric.

We denote a permutation σ ∈ Sn by σ = [σ(1), σ(2), . . . , σ(n)]. For

two permutations σ, π ∈ Sn, their multiplication π ◦ σ is defined as the

composition of σ on π, namely, π ◦ σ(i) = σ(π(i)), for all 1 ≤ i ≤ n.

Under this operation, the set Sn is a noncommutative group, known as

the symmetric group of order n!. We denote by ε � [n] the identity

permutation of Sn. Given a permutation σ ∈ Sn, an adjacent trans-

position , (i, i + 1), for some 1 ≤ i ≤ n − 1, is an exchange of the two

adjacent elements σ(i) and σ(i + 1) in σ. The result is the permutation

π = [σ(1), . . . , σ(i− 1), σ(i+ 1), σ(i), σ(i+ 2), . . . , σ(n)]. Observe that the

notation (i, i+ 1) is also used for the cycle decomposition of the permuta-

tion [1, 2, . . . , i− 1, i+ 1, i, i+ 2, . . . , n] and the permutation π can also be

written as π = (i, i+ 1) ◦ σ. In other words, left multiplication by (i, i+1)

exchanges the elements in positions i, i+1. Right multiplication by (i, i+1)

exchanges the elements i, i+ 1. Two adjacent transpositions (i, i+ 1) and

(j, j + 1) are called disjoint if either i + 1 < j or j + 1 < i. For two per-

mutations σ, π ∈ Sn, the Kendall τ -distance between σ and π, dK(σ, π), is

defined as the minimum number of adjacent transpositions needed to trans-

form σ into π. For σ ∈ Sn, the Kendall τ -weight of σ, wK(σ), is defined

as the Kendall τ -distance between σ and the identity permutation ε. The

following expression for dK(σ, π) is well known

dK(σ, π) = |{(i, j) : σ−1(i) < σ−1(j) ∧ π−1(i) > π−1(j)}|. (13.5)

For a permutation σ = [σ(1), σ(2), . . . , σ(n)] ∈ Sn, the reverse of σ is

the permutation σR � [σ(n), σ(n−1), . . . , σ(2), σ(1)]. It follows from (13.5)

that for every σ, π ∈ Sn, dK(σ, π) ≤
(
n
2

)
and dK(σ, π) =

(
n
2

)
if and only

if π = σR. The following lemma is an immediate consequence from the

expression to compute the Kendall τ -distance given in (13.5).

Lemma 13.6. For every σ, π ∈ Sn,

dK(σ, π) + dK(σr, π) = dK(σ, σr) =

(
n

2

)
.

The Kendall τ -metric is not left distance invariant, but it is right dis-

tance invariant and hence it satisfies the local inequality lemma which im-

plies that it also satisfies the code-anticode bound, which implies that we

can consider diameter perfect codes in Sn with the Kendall τ -metric. Sev-

eral interesting results on perfect codes in Sn with the Kendall τ -metric
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were proved in [Buzaglo and Etzion (2015)].

Theorem 13.7. There is no 1-perfect code in Sn with the Kendall τ -metric,

where n > 4 is a prime or n ∈ {4, 6, 8, 9, 10}.

Problem 13.8. Prove the nonexistence of 1-perfect code in Sn with the

Kendall τ -metric for parameters which are not covered by Theorem 13.7.

Problem 13.9. Prove the nonexistence of e-perfect code in Sn with the

Kendall τ -metric, where e > 1?

Contrary to Theorem 13.7, if we also add the transposition (n, 1) (cyclic

adjacent transposition) then there exists a 1-perfect code in S5 which con-

tains exactly 20 codewords.

(0, 1, 2, 3, 4), (0, 2, 4, 1, 3), (0, 3, 1, 4, 2), (0, 4, 3, 2, 1),

(1, 2, 3, 4, 0), (2, 4, 1, 3, 0), (3, 1, 4, 2, 0), (4, 3, 2, 1, 0),

(2, 3, 4, 0, 1), (4, 1, 3, 0, 2), (1, 4, 2, 0, 3), (3, 2, 1, 0, 4),

(3, 4, 0, 1, 2), (1, 3, 0, 2, 4), (4, 2, 0, 3, 1), (2, 1, 0, 4, 3),

(4, 0, 1, 2, 3), (3, 0, 2, 4, 1), (2, 0, 3, 1, 4), (1, 0, 4, 3, 2).

Theorem 13.8.

• For each σ ∈ Sn, the set {σ, σR} is a D-diameter perfect code in Sn

with the Kendall τ -metric, where σ ∈ Sn and D =
(
n
2

)
− 1.

• If 2e+1 =
(
n
2

)
, then {σ, σR} is an e-perfect code in Sn with the Kendall

τ -metric, where σ ∈ Sn.

We end this part of our discussion with the following list of research

problems.

Problem 13.10. Prove the nonexistence of perfect codes in Sn, using the

Kendall τ -metric, for more values of n and/or other distances.

Problem 13.11. Do there exist more D-diameter perfect codes in Sn with

the Kendall τ -metric, for 2 ≤ D <
(
n
2

)
− 1? We conjecture that the answer

is no.

Problem 13.12. What is the size of a maximum size anticode in Sn with

diameter D using the Kendall τ -metric?
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Section 13.1. The deletion channel has been considered extensively since

it has many applications in storage devices and other areas of information

theory. The Varshamov–Tenengolts codes were introduced in [Varshamov

and Tenengolts (1965)] for correction of asymmetric errors. It was observed

in [Levenshtein (1965a,b)] that these codes can be used for correction of

deletions or insertions and they are perfect deletion codes. The deletion

channel is one of the most difficult ones to analyze. We do not even know

whether the Varshamov–Tenengolts codes are optimal. A comprehensive

work on single-deletion-correcting codes was done by [Sloane (2002)]. There

are many interesting results in this paper and especially connections to

shift-register sequences and some important open problems. It was proved

in the paper that for each 2 ≤ i ≤ n,

VT0(n) ≥ VTi(n) ≥ VT1(n) .

Problem 13.13. Prove that the code VT0(n) is the largest single-deletion-

correcting code of length n, or disprove this conjecture.

Constructions of perfect deletion codes derived from combinatorial de-

signs and especially (n − 2)-perfect deletion codes of length n, where n

is very small, were constructed in [Bours (1995); Mahmoodi (1998); Yin

(2001); Shalaby, Wang and Yin (2002); Klein (2004); Wang and Yin (2006);

Wang (2008); Chee, Ge and Ling (2010); Wei and Ge (2015)]. Nevertheless,

e-perfect codes with small e > 1 and large length words are not known.

Finally, the metric based on deletions and insertions, where d�(x, y),

x, y ∈ Z
n
q is half the minimum number of deletions and insertions required

to change x into y is of a great interest. This distance is called the Lev-

enstein distance (note that in some papers the Levenstein distance is

defined differently and it is different from this metric). One interesting

property of this metric is that there exist a few balls of radius e that are

anticodes with diameter 2e, but they are not maximal anticodes and, as a

consequence, not maximum size anticodes. We remind the reader that the

code-anticode bound is not relevant for the deletion channel and hence we

will not elaborate more on this phenomenon.

Section 13.2. Posets codes were introduced in [Bruladi, Graves, and

Lawrence (1995)] based on previous work [Niederreiter (1987, 1991, 1992)].

A generalization of the posets to directed graphs was considered in [Etzion,

Firer and Machado (2018)]. The work of [Bruladi, Graves, and Lawrence

(1995)] also started the research on perfect poset codes. They considered

the case where the poset is one chain and the case where the poset consists
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of two chains of equal size. The distance measure defined by a poset is a

metric, but it is not always an association scheme [Barg, Felix, Firer, and

Spreafico (2014)].

Generally, perfect poset codes of various types were extensively studied.

For example, such codes were considered in [Ahn, Kim, Kim, and Kim

(2003); Hyun and Kim (2004); Lee (2004); Hyun and Kim (2008); Jang,

Kim, Oh, and Rho (2008); Dass, Sharma and Verma (2017); Hyun, Kim,

and Park (2019); Dass, Sharma, and Verma (2020)]. The posets in these

papers are of different types an the perfect codes have different radii.

Section 13.3. Corollary 13.2, known as the Reiger bound, was proved

in [Reiger (1960)]. This bound is a Singleton bound for b-burst correct-

ing codes. It was generalized for two-dimensional codes by [Bossert and

Sidorenko (1996)]. Codes that attain this two-dimensional bound for cor-

recting rectangles were constructed in [Boyarinov (2006)]. The first con-

struction of optimum codes was for b-burst-correcting codes, where b = 2

and any redundancy r ≥ 3, was presented in [Abramson (1959)]. This

result was extended for b = 3 and b = 4 by [Elspas and Short (1962)].

In [Abdel-Ghaffar, McEliece, Odlyzko, and van Tliborg (1986)], it was

proved that infinitely many optimum codes exist for each b ≥ 2. As ob-

served, it is clear that if a code attains (13.2), then 2r − 1 > n2b−1, i.e.,

not all nonzero column vectors of length r are syndromes obtained from the

bursts of length b. For example, when b = 2, not all nonzero column vec-

tors of length r are syndromes obtained either from a single column or from

two adjacent columns, i.e., one column vector of length r is not such syn-

drome. Therefore, these optimum codes are not perfect codes. In [Abdel-

Ghaffar, McEliece, Odlyzko, and van Tliborg (1986)] it is also proved that

for each even r, there exists a primitive element α in the field F2r such

that 1 + α �= α3i+2 for all i. Generalization for nonbinary alphabet was

done in [Abdel-Ghaffar (1988)]. Generalization of optimum codes, which

correct cyclic b-bursts, to multidimensional arrays were considered in [Breit-

bach, Bossert, Zyablov, and Sidorenko (1998); Etzion and Yaakobi (2009)].

The results on perfect b-burst-correcting codes were presented in [Etzion

(2001a)]. The b-burst-correcting codes can be generalized in such a way that

the bursts are inside bytes. Such perfect codes were considered also in [Et-

zion (2001a)]. Other optimal codes for correcting single errors and detecting

adjacent errors were presented and analyzed in [Etzion (1992); Biberstein

and Etzion (2000)]. For more information on byte-oriented error-correcting

codes, burst-correcting codes, and their applications, the reader is referred
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to [Chen (1983, 1986); Rao and Fujiwara (1989)].

Finally, the [16, 11] perfect 2-burst-correcting code and the [32, 26] per-

fect 2-burst-correcting code presented in [Etzion (2001a)] were found by

Marina Biberstein.
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