ON SHARP CHARACTERS OF TYPE $\{-1, 0, 2\}$

Alireza Abdollahi, Javad Bagherian, Mahdi Ebrahimi, Maryam Khatami, Zahra Shahbazi, Reza Sobhani, Isfahan

Received September 25, 2021. Published online October 6, 2022.

Abstract. For a complex character χ of a finite group G, it is known that the product $\operatorname{sh}(\chi) = \prod_{l \in L(\chi)} (\chi(1) - l)$ is a multiple of |G|, where $L(\chi)$ is the image of χ on $G - \{1\}$. The character χ is said to be a sharp character of type L if $L = L(\chi)$ and $\operatorname{sh}(\chi) = |G|$. If the principal character of G is not an irreducible constituent of χ , then the character χ is called normalized. It is proposed as a problem by P. J. Cameron and M. Kiyota, to find finite groups G with normalized sharp characters of type $\{-1, 0, 2\}$. Here we prove that such a group with nontrivial center is isomorphic to the dihedral group of order 12.

Keywords: sharp character; sharp pair; finite group *MSC 2020*: 20C15

1. INTRODUCTION

Let G be a finite group, χ be a (complex) character of G, and $L(\chi)$ be the image of χ on $G - \{1\}$. Put $\operatorname{sh}(\chi) = \prod_{l \in L(\chi)} (\chi(1) - l)$. It is known that for any complex character χ of a finite group G, the order of G divides $\operatorname{sh}(\chi)$, see [3]. The pair (G, χ) (or briefly, the character χ) is called *sharp* of type L if $L = L(\chi)$ and $\operatorname{sh}(\chi) = |G|$. It is obvious that χ is faithful whenever (G, χ) is sharp. The pair (G, χ) (or briefly, the character χ) is said to be normalized if $(\chi, 1_G)_G = 0$, where 1_G is the principal character of G and the product $(\chi, \theta)_G$ of two characters χ and θ of G is defined as:

$$(\chi,\theta)_G := \frac{1}{|G|} \sum_{g \in G} \chi(g)\theta(g^{-1}).$$

DOI: 10.21136/CMJ.2022.0356-21

1081

The research of the third author was supported in part by a grant from School of Mathematics, Institute for Research in Fundamental Sciences (IPM).

In [5], Cameron and Kiyota posed the problem of classifying normalized sharp pairs (G, χ) of type L for a given set L of algebraic integers. The case that Lcontains at least an irrational value has been settled by Alvis and Nozawa, see [2]. However, there are few results for the case that L contains only rational integers, see [4], [5], [9], [10].

By [5], Propositions 1.2 and 1.3, if (G, χ) is sharp of type $\{l\}$ and normalized, then l = -1 and $\chi = \rho_G - 1_G$, where ρ_G is the regular character of G and if (G,χ) is normalized and sharp of type $L = \{l_1, l_2\}$, where l_1 and l_2 are distinct rational integers, then $(\chi, \chi)_G = 1 - l_1 l_2$ and $l_1 < 0 \leq l_2$. This implies that $(\chi,\chi)_G = 1$ if and only if (G,χ) is of type $\{l,0\}$, where l < 0; $(\chi,\chi)_G = 2$ if and only if (G, χ) is of type $\{-1, 1\}$; and $(\chi, \chi)_G = 3$ if and only if (G, χ) is of type $\{-1,2\}$ or $\{-2,1\}$. For the first case, some properties of G and χ have been stated in [5], [11], and the sharp pairs of the second case have been given in [4]. Also the last case was settled for groups with nontrivial centers in [10], which was generalized to the case $(\chi, \chi)_G = p$, where p is an odd prime and $L(\chi) = \{l, l+p\},\$ for l = -1 or 1 - p, see [12]. Furthermore, the normalized sharp pairs (G, χ) of type $L = \{\varepsilon, -3\varepsilon\}$, where $\varepsilon = \pm 1$ and the center Z(G) of G is nontrivial, have been studied in [1]. In Problem 7.5 of [5], it is proposed to find finite groups Ghaving a normalized sharp character χ of type $L = \{-1, 0, 2\}$. In this paper, we study these groups G under the additional hypothesis Z(G) > 1, and we prove the following theorem:

Main Theorem. Suppose that (G, χ) is normalized and sharp of type $L = \{-1, 0, 2\}$ and Z(G) > 1. Then G is isomorphic to the dihedral group D_{12} of order 12.

To prove our main theorem, we show that χ is the sum of two distinct real valued irreducible characters of G, and $\chi(1)$ is odd.

For groups with trivial center in Problem 7.5 of [5], we just consider simple groups having a normalized sharp irreducible character. In Lemma 2.1, simple groups with normalized sharp irreducible character of type $L = \{-1, 0, 2\}$ are characterized, using the fact that there exist exactly three simple groups having a faithful irreducible character χ with exactly four distinct values $\chi(1)$, -1, 0, 2, see [10].

2. Main results

Throughout this paper, G is a finite group having a normalized sharp character χ of type $L = \{-1, 0, 2\}$. Set $n := \chi(1)$. Since χ is sharp, $|G| = n(n+1)(n-2) = n^3 - n^2 - 2n$ and $n \ge 3$.

Lemma 2.1. Suppose that G is a simple group. If χ is irreducible, then n is even and G is isomorphic to either PSL(2,7) or A_7 .

Proof. By [10], proof of Claim B6, there exist exactly three simple groups having a faithful irreducible character χ which takes exactly four distinct values $\chi(1)$, -1, 0, 2. Those are PSL(2,7) with $\chi(1) = 6$, alternating group A_7 with $\chi(1) = 14$ and PSL(3,3) with $\chi(1) = 26$. The character χ is sharp of type $\{-1, 0, 2\}$, for groups PSL(2,7) and A_7 .

Lemma 2.2. Let $g \in G$ and o(g) = 2.

- (1) If *n* is even, then $\chi(g) \in \{0, 2\}$.
- (1) If n is odd, then $\chi(g) = -1$.

Proof. By [4], proof of Proposition 3, if θ is a rational valued character of a finite group $G, y \in G$ and s is a prime, then $\theta(y^s) \equiv \theta(y) \mod s$.

(1) Since o(g) = 2, we have $\chi(g) \equiv \chi(1) = n \mod 2$. Therefore, $\chi(g) \in \{0, 2\}$.

(2) Note that $\chi(g) \equiv \chi(1) = n \mod 2$. Now since n is odd, it follows that $\chi(g) = -1$.

Lemma 2.3. If Z(G) > 1, then χ is a sum of two distinct real valued irreducible characters of G.

Proof. Note that by [5], Proposition 1.3 (ii), $(\chi, \chi)_G \leq 2$. First assume that χ is an irreducible character of G. Since χ is faithful, it follows from [7], Lemma 2.27 (f) that $Z(G) = Z(\chi) := \{g \in G : |\chi(g)| = \chi(1)\}$. Therefore, $\chi(g) = -n$ for every nontrivial element $g \in Z(G)$, which implies that n = 1. This is a contradiction and so $(\chi, \chi)_G = 2$. Hence, $\chi = \chi_1 + \chi_2$, where χ_1 and χ_2 are distinct irreducible characters of G.

Since χ is rational valued, it follows that $\chi_1 + \chi_2 = \overline{\chi_1} + \overline{\chi_2}$. As complex conjugate of an irreducible character is also irreducible and irreducible characters are linearly independent, it follows that either $\overline{\chi_1} = \chi_2$ or both χ_1 and χ_2 are real valued. First suppose that $\chi = \chi_1 + \overline{\chi_1}$ is the sum of two complex conjugate irreducible characters of G. We show that χ_1 is faithful. Let $g \in \ker(\chi_1)$. Therefore, $\chi(g) = \chi_1(g) + \overline{\chi_1(g)} =$ $\chi_1(1) + \chi_1(1) = \chi(1)$, and so g = 1 since χ is faithful. Hence, χ_1 is faithful. Now by [7], Theorem 2.32 (a), Z(G) is cyclic. Suppose that $Z(G) = \langle z \rangle$ and o(z) = r > 1. As $\chi = \chi_1 + \overline{\chi_1}$, by [7], Lemma 2.27 (c), we have $\chi(z) = \chi_1(1)(\xi + \overline{\xi})$, where ξ is a primitive *r*th root of unity since χ is faithful. As $\chi(z)$ is rational, it follows that $r \in \{2,3,4,6\}$. If r = 2, then $\chi(z) = -2\chi_1(1) \in \{-1,0,2\}$, which is impossible. If r = 3, then $\xi + \overline{\xi} = 2\cos(\frac{2}{3}\pi) = -1$ and $\chi(z) = -\chi_1(1) \in \{-1,0,2\}$, which contradicts $n \ge 3$. Now suppose r = 6. Then $\xi + \overline{\xi} = 2\cos(\frac{1}{3}\pi) = 1$ and $\chi(z) = \chi_1(1) \in \{-1,0,2\}$. Therefore, $\chi_1(1) = 2$, n = 4 and |G| = 40. It is easy to check all groups of order 40 by GAP (see [6]) to see none of them have the requested property. Hence, r = 4 and $Z(G) = \langle z \rangle \cong C_4$. Then $\chi(z^2) = \chi_1(1)(\eta + \overline{\eta})$, where η is the primitive square root of unity. Therefore, by Lemma 2.2, $\chi(z^2) = -2\chi_1(1) \in \{0, 2\}$, which is a contradiction. Hence, both χ_1 and χ_2 are real valued and this completes the proof.

In the sequel of the paper, we assume that χ is the sum of two distinct real valued irreducible characters χ_1 and χ_2 of G.

Lemma 2.4.

(1) $Z(G) = \bigcap_{i=1}^{2} Z(\chi_i).$

(2) Z(G) is the direct product of at most two cyclic subgroups.

Proof. (1) Since χ is faithful, the intersection of kernels of irreducible constitutes of χ is trivial. Now (1) follows from the proof of [7], Corollary 2.28.

(2) Since $\bigcap_{i=1}^{2} \ker(\chi_{i}) = 1$, it follows that G can be embedded into $\prod_{i=1}^{2} G/\ker(\chi_{i})$ and so Z(G) is isomorphic to a subgroup of $\prod_{i=1}^{2} Z(G/\ker(\chi_{i}))$. By Lemma 2.27 (f) of [7], $Z(G) \hookrightarrow \prod_{i=1}^{2} Z(\chi_{i})/\ker(\chi_{i})$. Now Lemma 2.27 (d) of [7] completes the proof. \Box

Lemma 2.5.

- (1) Z(G) is an elementary abelian 2-group of order at most 4.
- (2) If z is a nontrivial element of Z(G), then

$$(\chi_1(z),\chi_2(z)) \in \{(\chi_1(1),-\chi_2(1)),(-\chi_1(1),\chi_2(1))\}.$$

Proof. (1) By Lemma 2.4(1), $Z(G) = Z(\chi_1) \cap Z(\chi_2)$. Since both χ_1 and χ_2 are real valued, it follows from [7], Lemma 2.27(c) that $\chi_i(z) = \pm \chi_i(1)$ and so $\chi_i(z^2) = \chi_i(1)$ for all $z \in Z(G)$ and $i \in \{1, 2\}$. Thus, $\chi(z^2) = \chi_1(z^2) + \chi_2(z^2) = \chi(1)$ and so $z^2 = 1$ since χ is faithful. Now Lemma 2.4(2) completes the proof.

(2) By the proof of part (1) we have $\chi_i(z) = \pm \chi_i(1)$ for a nontrivial element $z \in Z(G)$ and i = 1, 2. Since $\chi(z) = \chi_1(z) + \chi_2(z) \ge -1$ and $\chi(z) \ne \chi(1) = \chi_1(1) + \chi_2(1)$ (χ is faithful), the result follows.

Lemma 2.6. $|Z(G)| \leq 2$.

Proof. We first claim that there exists at most one element $z \in Z(G)$ such that $(\chi_1(z), \chi_2(z)) = (\chi_1(1), -\chi_2(1))$. Suppose that there exist elements $z_1, z_2 \in Z(G)$ such that

$$(\chi_1(z_1),\chi_2(z_1)) = (\chi_1(z_2),\chi_2(z_2)) = (\chi_1(1),-\chi_2(1)).$$

1084

Now we have $\chi(z_1z_2) = \chi_1(z_1z_2) + \chi_2(z_1z_2)$. By [7], Lemma 2.27 (c), there exists linear character λ_1 of $Z(\chi_1)$ such that

$$\chi_1(z_1z_2) = \chi_1(1)\lambda_1(z_1z_2) = \chi_1(1)\lambda_1(z_1)\lambda_1(z_2) = \chi_1(1)\lambda_1(z_2) = \chi_1(z_2) = \chi_1(1)\lambda_1(z_2) = \chi_$$

Similarly, we have $\chi_2(z_1z_2) = \chi_2(1)$. Therefore, $\chi(z_1z_2) = \chi(1)$ and so $z_1z_2 = 1$. Hence, $z_1 = z_2$ by Lemma 2.5(1), as we claimed.

By a similar argument one can prove that there exists at most one element $z' \in Z(G)$ such that $(\chi_1(z'), \chi_2(z')) = (-\chi_1(1), \chi_2(1)).$

Now Lemma 2.5(2) implies that $|Z(G)| \leq 3$ and so by Lemma 2.5(1) we have $|Z(G)| \leq 2$.

Remark 2.7. In view of Lemmas 2.5 (2) and 2.6, whenever $Z(G) \neq 1$, we shall assume without loss of generality that there exists a (unique) nontrivial element $z \in Z(G)$ such that $\chi_1(z) = \chi_1(1), \chi_2(z) = -\chi_2(1)$.

Lemma 2.8. Suppose that *n* is even and Z(G) > 1. Then (1) $\chi_1(g) \in \{0, \pm 1, 2\}$ and $\chi_2(g) \in \{0, \pm 1\}$ for all $g \in G \setminus Z(G)$. (2) $\ker(\chi_1) = Z(G)$. (3) $\ker(\chi_2) = 1$.

Proof. (1) By Remark 2.7 assume that there exists a nontrivial element $z \in Z(G)$ such that $\chi_1(z) = \chi_1(1), \ \chi_2(z) = -\chi_2(1)$. Note that if \mathcal{X}_i is a representation corresponding to χ_i for i = 1, 2, then $\mathcal{X}_1(z) = I_{\chi_1(1)}$ and $\mathcal{X}_2(z) = -I_{\chi_2(1)}$ by [7], Lemma 2.27. Therefore, $\chi(gz) = \chi_1(g) - \chi_2(g)$ for all $g \in G$. Thus, $\chi(g) + \chi(gz) = 2\chi_1(g)$ and $\chi(g) - \chi(gz) = 2\chi_2(g)$ for all $g \in G$. Now $L(\chi) = \{-1, 0, 2\}$ implies that $\chi_1(g) \in \{0, \pm 1, 2\}$ and $\chi_2(g) \in \{0, \pm 1\}$ for all $g \in G \setminus Z(G)$.

(2) By Lemma 2.6, we may assume that z is the unique nontrivial element of Z(G). Since by Remark 2.7 we have $z \in \ker(\chi_1)$, it follows that $Z(G) \leq \ker(\chi_1)$. Suppose, for a contradiction, that there exists an element $x \in \ker(\chi_1) \setminus Z(G)$. As in the proof of part (1), $\chi(x) + \chi(xz) = 2\chi_1(1)$ and so regarding $L(\chi)$ we have $\chi_1(1) \in \{1, 2\}$. On the other hand, by Remark 2.7 and Lemma 2.2, $\chi(z) = \chi_1(1) - \chi_2(1)$ and $\chi(z) \in \{0, 2\}$. Hence, $\chi_2(1) \in \{1, 2\}$. Since $n \ge 4$ is even, the only possibility is $(\chi_1(1), \chi_2(1)) = (2, 2)$. Therefore, n = 4 and |G| = 40. It is easy to check all groups of order 40 by GAP (see [6]) to see that none of them has the requested property, a contradiction. Hence, $\ker(\chi_1) = Z(G)$. (3) First we show that $\ker(\chi_2) \leq Z(G)$. Suppose, for a contradiction, that there exists an element $x \in \ker(\chi_2) \setminus Z(G)$. Then as in the proof of part (1) for the unique nontrivial element $z \in Z(G)$ we have $\chi(x) - \chi(xz) = 2\chi_2(1)$ and so $\chi_2(1) = 1$. Since $\chi(z) = \chi_1(1) - \chi_2(1) \in \{0, 2\}$ by Remark 2.7 and Lemma 2.2, it follows that $\chi_1(1) \in \{1, 3\}$. Since $n \geq 4$ is even, it follows that $(\chi_1(1), \chi_2(1)) = (3, 1), n = 4$ and |G| = 40. But $\chi_1(1) = 3$ must divide |G|, a contradiction. It follows that $\ker(\chi_2) \leq Z(G)$. If $\ker(\chi_2) = Z(G)$, then by part (2) we have $Z(G) = \ker(\chi_1) \cap \ker(\chi_2) = \ker(\chi) = 1$, a contradiction. Hence, Lemma 2.6 implies that $\ker(\chi_2) = 1$.

Lemma 2.9. If n is even and z is the nontrivial element of Z(G), then $\chi(z) = 0$.

Proof. Let $n = \chi_1(1) + \chi_2(1) = 2k$ for a positive integer k. Therefore, by Lemmas 2.2 and 2.6, $\chi(z) \in \{0, 2\}$ for the nontrivial element $z \in Z(G)$. Suppose that $\chi(z) = 2$. On the other hand, $\chi(z) = \chi_1(1) - \chi_2(1)$, by Remark 2.7. Therefore, $\chi_1(1) = k + 1$ and $\chi_2(1) = k - 1$. Note that $\chi_1(1) \mid |G : Z(G)|$, by [7], Theorem 6.15. Using Lemma 2.6, it follows that k + 1 is a divisor of $4k^3 - 2k^2 - 2k$ and so $k + 1 \mid 4$. Therefore, k = 1, 3. Note that $n = 2k \ge 3$. Hence, k = 3, n = 6 and |G| = 168. Now it is easy to check all groups of order 168 by GAP (see [6]) to see that the groups of order 168 have no sharp character of type $L = \{-1, 0, 2\}$ with the requested property, a contradiction. Therefore, $\chi(z) = 0$.

Lemma 2.10. If n is odd and Z(G) > 1, then $G \cong D_{12}$.

Proof. Let n = 2k+1 for a positive integer k. Therefore, by Lemmas 2.2 and 2.6, |Z(G)| = 2 and $\chi(z) = -1$ for the nontrivial element $z \in Z(G)$. On the other hand, $\chi(z) = \chi_1(1) - \chi_2(1)$, by Remark 2.7. Therefore, $\chi_1(1) = k$ and $\chi_2(1) = k+1$ are divisors of $|G| = 8k^3 + 8k^2 - 2k - 2$. Hence, k = 1, 2.

If k = 1, then |G| = 12. Now using GAP (see [6]), it is easy to see that $G \cong D_{12}$. If k = 2, then |G| = 90. By using GAP (see [6]), one can see that the groups of order 90 have no sharp character of type $L = \{-1, 0, 2\}$ with the requested property. \Box

Proof of the Main Theorem. By Lemma 2.3, χ is the sum of two distinct real valued irreducible characters χ_1 and χ_2 of G. First suppose $n = \chi_1(1) + \chi_2(1) = 2k$ for a positive integer k. By Remark 2.7 and Lemmas 2.6 and 2.9, we have $\chi(z) = \chi_1(1) - \chi_2(1) = 0$ for the unique nontrivial element $z \in Z(G)$. Therefore, $\chi_2(z) = -\chi_2(1) = -k$. On the other hand, $\chi_2(g) \in \{0, \pm 1\}$ for all $g \in G \setminus Z(G)$, by Lemma 2.8. Hence, $L(\chi_2) \subseteq \{0, \pm 1, -k\}$ and by [5], Theorem 1.1, $|G| \mid \prod_{l \in L(\chi_2)} (\chi_2(1) - l)$. Thus, $2k(2k+1)(2k-2) \mid 2k^2(k^2-1)$. Therefore, $4k+2 \mid k(k+1)$. It is easy to see that (4k+2,k) = 1 or (4k+2,k+1) = 1. Hence, $4k+2 \mid k$ or $4k+2 \mid k+1$, which is a contradiction. Thus, n is odd, and Lemma 2.10 completes the proof. Acknowlegements. We are grateful to the referee for his/her valuable comments and suggestions.

References

- S. R. Adhami, A. Iranmanesh: On sharp characters of type {-1,3} or {-3,1}. J. Algebra Appl. 16 (2017), Article ID 1750004, 10 pages.
- [2] D. Alvis, S. Nozawa: Sharp characters with irrational values. J. Math. Soc. Japan 48 (1996), 567–591. zbl MR doi
- [3] *H. F. Blichfeldt*: A theorem concerning the invariants of linear homogeneous groups, with some applications to substitution groups. Trans. Am. Math. Soc. 5 (1904), 461–466. zbl MR doi
- [4] P. J. Cameron, T. Kataoka, M. Kiyota: Sharp characters of finite groups of type {-1,1}.
 J. Algebra 152 (1992), 248–258.
- [5] P. J. Cameron, M. Kiyota: Sharp characters of finite groups. J. Algebra 115 (1988), 125–143.
 zbl MR doi
- [6] GAP Group: GAP Groups, Algorithms, Programming: A System for Computational Discrete Algebra: Version 4.11.0. Available at https://www.gap-system.org/ (2020).
- [7] I. M. Isaacs: Character Theory of Finite Groups. AMS Chelsea Publishing, Providence, 2006.
 Zbl MR doi
- [8] M. Kiyota: An inequality for finite permutation groups. J. Comb. Theory, Ser. A 27 (1979), 119.
 zbl MR doi
- [9] S. Nozawa: Sharp character of finite groups having prescribed values. Tsukuba J. Math. 16 (1992), 269–277.
 Zbl MR doi
- [10] S. Nozawa, M. Uno: On sharp characters of rank 2 with rational values. J. Algebra 286 (2005), 325–340.
- [11] T. Yoguchi: On determining the sharp characters of finite groups. JP J. Algebra Number Theory Appl. 11 (2008), 85–98.
- [12] *T. Yoguchi*: On sharp characters of type $\{\ell, \ell + p\}$. Kyushu J. Math. 65 (2011), 179–195. zbl MR doi

Authors' addresses: Alireza Abdollahi, Department of Pure Mathematics, Faculty of Mathematics and Statistics, University of Isfahan, Isfahan 81746-73441, Iran, and School of Mathematics, Institute for Research in Fundamental Sciences (IPM), 19395-5746 Tehran, Iran, e-mail: a.abdollahi@math.ui.ac.ir; Javad Bagherian, Maryam Khatami (corresponding author), Zahra Shahbazi, Department of Pure Mathematics, Faculty of Mathematics and Statistics, University of Isfahan, Isfahan 81746-73441, Iran, e-mail: bagherian@sci.ui.ac.ir, m.khatami@sci.ui.ac.ir, z.shahbazi@sci.ui.ac.ir; Mahdi Ebrahimi, School of Mathematics, Institute for Research in Fundamental Sciences (IPM), 19395-5746 Tehran, Iran, e-mail: m.ebrahimi.math@ipm.ir; Reza Sobhani, Department of Applied Mathematics and Computer Science, Faculty of Mathematics and Statistics, University of Isfahan, 81746-73441, Iran, e-mail: r.sobhani@ sci.ui.ac.ir.

zbl MR doi