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Definitions:
Let 𝜋 and 𝜎 be permutations on Zn = {1,2, … ,n}. 

An adjacent transposition (bubble sort operation) exchanges two adjacent 
symbols. For example, 1 2 3 4 5 à 1 2 4 3 5 and 1 2 3 4 5 à 2 1 3 4 5.

The Kendall-𝜏 distance between 𝜋 and 𝜎, denoted by d(𝜋, 𝜎), is the minimum 
number of adjacent transpositions to transform 𝜋 into 𝜎. 

For a set (array) of permutations A, i.e. PA, the distance of A, denoted d(A), is 
the minimum Kendall-𝜏 distance between any two permutations in A.



Definitions and Preliminaries:

For positive integers n and d, let P(n,d) denote the maximum size of any 
PA A of permutations on Zn with distance d.

It is known that, for any n, P(n,1) = n! and P(n,2)=n!/2.

Exact values of P(n,d) are not known generally. Research has focused 
on obtaining good lower bounds and upper bounds on P(n,d).



Lower Bounds

Theorem 1 (Wang, Zhang, Yang, and Ge; Designs, Codes and Crypto. 2017) 

Let m = ("#$)
!"##&

"#'
, where n-2 is a prime power, then

P(n,2t+1) ≥ "!
$)*& +

Examples of Theorem 1: 
(a) P(9,7) ≥ 129.6       (We show P(9,7) ≥ 1,008, by a Random/Greedy alg.)
(b) P(9,11) ≥ 1.62 (We show P(9,11) ≥ 101, by a Random/Greedy alg.)
(c) P(7,9) ≥ 14.39 (We show P(7,9) ≥ 16, using an automorphism alg.)



Using automorphisms

It is known that if P is a permutation polynomial (PP) on 𝐹!, i.e. P: 𝐹!à 𝐹! is a 
permutation, where 𝐹! is a field of order q, then
(a) Multiplying by a non-zero constant ‘a’, i.e. ‘a’ times P(x),
(b) Adding a constant ‘b’ to the argument, i.e. P(x+b), and
(c) Adding a constant ‘c’, i.e. P(x)+c,
yields another PP. 

We use a program to search for representative PPs of equivalence classes defined 
by combinations of operations (a)-(c). The program finds the largest set of 
representatives for which the entire class has the stipulated Kendall-𝜏 distance.
(This was also done by Buzaglo and Etzion in “Bounds on the size of permutation 
codes with the Kendall-𝜏 metric”, IEEE Trans. on Info. Theory, 2015. They showed 
P(7,3) ≥588.)



Example

Use operations aP(x)+c on the following 14 representatives found for 𝐹! at 
Kendall-𝜏 distance 7:

0 1 2 4 8 3 7 5 6 0 1 2 7 8 5 3 4 6 0 1 3 4 7 2 8 6 5 0 1 3 8 2 6 7 4 5
0 1 3 8 4 6 5 7 2 0 1 4 5 6 7 3 8 2 0 1 4 5 8 2 7 6 3 0 1 6 2 3 4 7 8 5
0 1 6 2 8 7 5 4 3 0 1 6 4 5 2 3 8 7 0 1 6 7 3 4 8 5 2 0 1 7 2 4 6 8 5 3
0 1 7 4 8 3 5 2 6 0 1 8 5 7 4 6 3 2

Since there are 8 choices for ‘a’ and 9 choices for ‘b’, this yields 8∗9∗14=1,008 
permutations. Thus, we have P(9,7) ≥ 1,008.



Using a Greedy program with randomness

Kl𝜙ve, Lin, Tsai, Tzeng in “Permutation arrays under the Chebyshev distance”, 
IEEE Trans. On Info. Theory, 2010 described the following Greedy algorithm:

Let the identity permutation be the 1st permutation
in C. For any set C chosen, choose the next permutation
in C to be the lexicographically next permutation in 𝑆"
with distance at least d to all in C, if one exists.

We modified this program to initially choose randomly a specified number of 
permutations at distance at least d to put into C. We call the program 
“Random/Greedy”. We used Random/Greedy with Kendall-𝜏 distance to get 
improved lower bounds for P(n,d).



Example:

Using Random/Greedy we found 16 permutations for P(7,9):

2 4 6 7 5 3 1 1 3 6 7 4 5 2 4 5 2 1 7 3 6 6 5 3 2 1 4 7
1 5 4 6 7 3 2 2 3 5 6 7 4 1 5 3 1 7 2 4 6 6 7 5 4 3 1 2
1 2 3 4 5 6 7 3 4 2 7 1 6 5 5 7 2 6 1 4 3 7 3 6 2 1 5 4
1 2 6 7 5 4 3 3 4 5 6 7 1 2 6 4 2 1 3 5 7 7 4 1 6 2 3 5

So, P(7,9) ≥ 16.



Table: Some Current Lower Bounds for P(n,d)

n\d 3 4 5 6 7 8 9 10 11

5 20 12 6 5 2 2 2 2

6 102 64 26 20 11 7 4 4 2

7 588 336 126 84 42 28 16 13 8

8 3,752 2,240 672 448 168 115 57 48 26

9 26,831 15,492 3,882 2,497 1,008 608 288 195 101

10 233,421 133,251 29,113 18,344 5,629 3,832 1,489 1,066 492

11 1,330,560 700,263 247,014 153,260 42,013 28,008 9,747 6,890 2,861

12 13,305,600 6,652,800 899,809 595,160 129,298 85,091 73,068 50,649 19,227



Computing Lower Bounds for P(n,d),
for larger n and d
To compute a lower bound for a (n,d)-array A, say by a Random/Greedy 
iterative algorithm,  all n! permutations are considered, and, for each 
one, its distance to every permutation in the current set A is computed.

For example, to compute a (18,15)-array A, this means 
18! > 6.4 x 10&, permutations + distances.

This is not feasible. We now describe more efficient methods.



Example: To compute a lower bound for 
P(13,11).
By Theorem 1, with m = ($$)

!&$
$'

≈ 177,166, P(13,2*5+1) ≥ $(!
$$∗+

≈ 3,195.

Jiang, Schwartz, and Bruck in “Correcting charge-constrained errors in the rank-
modulation scheme”, IEEE Trans. on Info. Theory, 2010, gave the following:
Theorem 2. For all n,d >1, we have P(n+1,d) ≥ ",$

-
∗ P(n,d).

This gives P(13,11) ≥ $(
$$

∗ P(12,11) ≥ 2*19,227 = 38,454.

This is good, but we can do better.



Example: To compute a lower bound for 
P(13,11)    (continued)
(By the previous Theorem 2). Create a (13,11)-PA from two copies of (12,11)-PA:

x 13 x x x x x x x x x x x                                     P(12,11)
x x x x x x x x x x x x 13                    

Let us generalize:
Let 𝑆",$ denote the set of all permutations on 𝑍"=[1 … n] with the restriction that the first 
n-m symbols are in sorted order, for any given m < n. A set A ⊆ 𝑆",$ with Kendall-𝜏
distance d is called a (n,m,d)-PA or (n,m,d)-array. Let P(n,m,d) be the maximum cardinality 
of any (n,m,d)-array.

𝜋% = x 13 x x x x x x x x x x x                        
𝜋& = x x x x x x x x x x x x 13               is a (13,1,11)-array ( with symbols 1-12 replaced by x’s )



Example: To compute a lower bound for 
P(13,11)    (continued)
For any permutation 𝜋 in a (n,m,d)-array A, let 𝑃.(n,d) denote the maximum 
cardinality of any (n,d)-array with the highest m symbols in the same 
positions as in 𝜋, but where the other n-m symbols can be in any order.

Theorem 3. For any (n,m,d)-array A, P(n,d) ≥ ∑.∈0𝑃.(n,d).

𝜋 = x 13 x x x x x x x x x x x 𝑃.(13,11) (≥ 31,809)
𝜎 = x x x x x x x x x x x x 13 . 𝑃1(13,11).               (≥ 19,227)

So, P(13,11) ≥ 51,036.    Let us now compute a lower bound for P(14,11).



Example: To compute a lower bound for 
P(14,11)
By iteration of Theorem 2, P(14,11) ≥ %'

%%
∗ %(

%%
∗ P(12,11)= 4 ∗ P(12,11) ≥ 76,908.

An improvement, using Theorem 3:  by a modification of the Random/Greedy program, we 
computed a (14,2,11)-array with 5 permutations, where the first 12 symbols in each 
permutation are here replaced by 0’s for ease of reading:

0 0 0 0 0 0 13 0 14 0 0 0 0 0          
0 0 0 0 0 0 0 0 0 0 0 0 13 14          
0 0 14 0 0 0 0 0 0 0 0 0 0 13                                        P(12,11)
13 14 0 0 0 0 0 0 0 0 0 0 0 0          
13 0 0 0 0 0 0 0 0 0 0 0 0 14          

Thus, we get P(14,11) ≥ 5 ∗ P(12,11).  Since, P(12,11) ≥ 19,227, P(14,11) ≥ 96,135.



Example: To compute a lower bound for 
P(14,11)        (continued)
𝛼 = 0 0 0 0 0 0 13 0 14 0 0 0 0 0                    𝑃-(14,11) ( ≥ 47,851)
𝛽 = 0 0 0 0 0 0 0 0 0 0 0 0 13 14                    𝑃.(14,11) (≥ 19,227 )
𝛾 = 0 0 14 0 0 0 0 0 0 0 0 0 0 13                    𝑃/(14,11) (≥ 36,250 ) 
𝛿 = 13 14 0 0 0 0 0 0 0 0 0 0 0 0                    𝑃0 14,11 ( ≥ 19,227 )
𝜃 = 13 0 0 0 0 0 0 0 0 0 0 0 0 14                    𝑃1(14,11) ( ≥ 19,227 )

So, P(14,11) ≥ 141,782. 

We can do better.



Example: To compute a lower bound for 
P(14,11)        (continued)
Use a (14,8,11)-array instead of a (14,2,11)-array.

There are, in general, n!/(n-m)! permutations in 𝑆",+. 
In particular, there are 17,297,280 permutations in 𝑆&3,4. So, this is 
feasible.

We computed a (14,8,11)-array of 7,909 permutations by a 
modification of a Random/Greedy algorithm. That is, there is a set A of 
7,909 permutations in 𝑆&3,4 with pairwise Kendall-𝜏 distance 11.



Example: To compute a lower bound for 
P(14,11)        (continued)
For each of the 7,909 permutations 𝜋 in A, compute a lower bound for 
𝑃5 14,11 , denoted by LB(𝑃5 14,11 ). 

We computed lower bounds for each 𝑃5 14,11 , 𝜋𝜖𝐴, by a 
modification of a Random/Greedy algorithm. The algorithm takes as 
input the file A and outputs the sum of { LB(𝑃5 14,11 ) | 𝜋 in A } 

The sum of { LB(𝑃5 14,11 ) | 𝜋 in A } is 177,098.

So, P(14,11) ≥ 177,098.



Example: To compute a lower bound for 
P(18,15) 

By Theorem 1, with m = ($2)
)&$
$3

≈ 2.86 x 104, P(18,2*7+1) ≥ $4!
$3∗+

≈
1,490,669

By computation, P(18,8,15) ≥ 9,856. That is, there is a set A of 9,856 
permutations in 𝑆$4,4 with pairwise Kendall-𝜏 distance 15.

For each of the 9,856 permutations 𝜋 in A, compute a lower bound for 
𝑃. 18,15 . The sum of { LB(𝑃. 18,15 ) | 𝜋 in A } is 19,618,333.

So, P(18,15) ≥ 19,618,333.



Additional results

Since P(18,15) ≥ 19,618,333, by Theorem 2, i.e.
Theorem 2 (Jiang, Schwartz, Bruck). For all n,d >1, P(n+1,d) ≥ "#$

%
∗ P(n,d).

We have P(19,15) ≥ $&
$' ∗ P(18,15) = 2*19,618,333 = 39,236,666.

Whereas, by Theorem 1, i.e.
Theorem 1 (Wang, Zhang, Yang, and Ge): Let m = (")*)

!"#)$
"),

, where n-2 is a prime 
power, then P(n,2t+1) ≥ "!

*.#$ /.

We have m = $0
$)$
$1

≈ 4.36 x 10', and P(19,15) ≥ $&!
$'∗/

≈ 18,600,815.



Additional theorems

Theorem 4 (Jiang, Schwartz, Bruck) For all n ≥ 1 and even d ≥ 2, 

P(n,d) ≥ &
$
P n − 1, d .

Theorem 5 (Jiang, Schwartz, Bruck) For all n,d ≥ 1, 

P(n+1,d) ≤ (n+1)*P n, d , 𝑖. 𝑒., P n, d ≥ 6("*&,7)
"*&

These can also be used to obtain good lower bounds.



Table: Current Lower Bounds for P(n,d)
n\
d

5 6 7 8 9 10 11 12 13

12 899,800 595,160 129,298 85,091 73,068 50,649 19,227 13,935 6,087

13 9,363,942 4,681,971 629,301 520,253 236,764 158,208 51,046 29,859 14,158

14 47,638,410 6,522,803 3,693,495 595,728 525,427 178,009 112,338 52,565

15 78,491,859 39,245,930 6,846,611 3,423,306 1,182,803 706,114 190,218

16 33,255,910 18,752,670 8,413,437 4,977,819 1,665,481

17 282,675,240 66,863,784 38,745,418 12,013,962

18 27,520,040



What else can be done?
• One can modify the Random/Greedy algorithm (which is described next).
• One can modify the recursive algorithm, so that one computes good 

lower bounds for P(n,m,d) by a sequence 𝑚&< 𝑚$< … < m. That is, first 
compute a (n, 𝑚&,d)-array A. For each 𝜋 𝜖 𝐴, compute an (n, 𝑚$,d) array 
B (for 𝑃5(n, 𝑚$,d)). … Continue the process until obtaining a (n,m,d)-
array.  This makes it feasible to compute P(n,d) for large n.
• Create a graph whose nodes correspond to permutations 𝜋 in 𝑆",+ and 

whose edges connect nodes at distance at least d. Assign each node 𝜋 a 
weight corresponding to 𝑃5(n,d). Find a maximum weighted clique in this 
graph to compute a lower bound for P(n,d).



Modifying the Random/Greedy program

Random/Greedy:
Let the identity permutation be the 1st permutation
in C. For any set C chosen, choose the next permutation
in C to be the lexicographically next permutation in 𝑆"
with distance at least d to all in C, if one exists.

”Lexicographic” order may not be an obvious choice. For example, consider 
the order given by the “Steinhaus-Johnson-Trotter” algorithm to enumerate 
all permutations, where the ith permutation is obtained from the (i-1)th

permutation, for all i>1, by a single adjacent transposition. 



Example (of SJT order of S4):

1 2 3 4        Start
1 2 4 3       1 4 2 3       4 1 2 3       ‘4’ moves right-to-left
4 1 3 2       ‘3’ moves left
1 4 3 2        1 3 4 2       1 3 2 4 ‘4’ moves left-to-right
3 1 2 4       ‘3’ moves left
3 1 4 2        3 4 1 2       4 3 1 2    ‘4’ moves right-to-left
4 3 2 1 ‘2’ moves left
3 4 2 1        3 2 4 1        3 2 1 4 ‘4’ moves left-to-right
2 3 1 4 ‘3’ moves right
2 3 4 1        2 4 3 1        4 2 3 1 ‘4’ moves right-to-left
4 2 1 3 ‘3’ moves right
2 4 1 3        2 1 4 3         2 1 3 4 ‘4’ moves left-to-right



Modified Random/Greedy

Modified Random/Greedy:
Let the identity permutation be the 1st permutation
in C. For any set C chosen, choose the next permutation
in C to be next permutation in the SJT sequence 
with distance at least d to all in C, if one exists.

There are advantages to this modification. Specifically, if the 𝑖)8
element of the SJT sequence, say 𝜋, is put in C, then one can skip the 
next d-1 permutations, as they are at distance at most d-1 from 𝜋.



Thank you for your attention.

Questions?


