Improved Permutation Arrays for Kendall- τ Metric

(Ivan) Hal Sudborough Emeritus Professor Department of Computer Science University of Texas at Dallas

Co-authors: Sergey Bereg, William Bumpass, Mohamadreza Haghpanah, and Brian Malouf

Definitions:

Let π and σ be permutations on $Z_n = \{1, 2, ..., n\}$.

An *adjacent transposition* (bubble sort operation) exchanges two adjacent symbols. For example, 1 2 3 4 5 \rightarrow 1 2 4 3 5 and 1 2 3 4 5 \rightarrow 2 1 3 4 5.

The *Kendall-t distance* between π and σ , denoted by $d(\pi, \sigma)$, is the minimum number of adjacent transpositions to transform π into σ .

For a set (array) of permutations A, *i.e.* PA, the *distance of A*, denoted d(A), is the minimum Kendall- τ distance between any two permutations in A.

Definitions and Preliminaries:

For positive integers n and d, let *P(n,d)* denote the maximum size of any PA A of permutations on Z_n with distance d.

It is known that, for any n, $P(n,1) = n!$ and $P(n,2)=n!/2$.

Exact values of P(n,d) are not known generally. Research has focused on obtaining good lower bounds and upper bounds on P(n,d).

Lower Bounds

Theorem 1 (Wang, Zhang, Yang, and Ge; Designs, Codes and Crypto. 2017) Let m = $\frac{(n-2)^{t+1}-1}{n}$ $\frac{27}{n-3}$, where n-2 is a prime power, then $P(n, 2t+1) \geq \frac{n!}{(2t+1)!}$ $2t+1)m$

Examples of Theorem 1:

(a) $P(9,7) \ge 129.6$ (We show $P(9,7) \ge 1,008$, by a Random/Greedy alg.)

(b) $P(9,11) \ge 1.62$ (We show $P(9,11) \ge 101$, by a Random/Greedy alg.)

(c) $P(7,9) \ge 14.39$ (We show $P(7,9) \ge 16$, using an automorphism alg.)

Using automorphisms

It is known that if P is a permutation polynomial (PP) on F_q , *i.e.* P: $F_q \rightarrow F_q$ is a permutation, where $F_{\bm q}$ is a field of order q, then

- (a) Multiplying by a non-zero constant 'a', *i.e. '*a' times P(x),
- (b) Adding a constant 'b' to the argument, *i.e.* P(x+b), and
- (c) Adding a constant 'c', *i.e.* P(x)+c,

yields another PP.

We use a program to search for representative PPs of equivalence classes defined by combinations of operations (a)-(c). The program finds the largest set of representatives for which the entire class has the stipulated Kendall- τ distance.
(This was also done by Buzaglo and Etzion in "Bounds on the

Example

Use operations aP(x)+c on the following 14 representatives found for $F₉$ at Kendall- τ distance 7:

Since there are 8 choices for 'a' and 9 choices for 'b', this yields 8∗9∗14=1,008 permutations. Thus, we have $P(9,7) \ge 1,008$.

Using a Greedy program with randomness

Kl ϕ ve, Lin, Tsai, Tzeng in "Permutation arrays under the Chebyshev distance", *IEEE Trans. On Info. Theory*, 2010 described the following Greedy algorithm: *Let the identity permutation be the 1st permutation in C. For any set C chosen, choose the next permutation in C to be the lexicographically next permutation in* S_n *with distance at least d to all in C, if one exists.*

We modified this program to initially choose randomly a specified number of permutations at distance at least d to put into C. We call the program "Random/Greedy". We used Random/Greedy with Kendall- τ distance to get improved lower bounds for P(n,d).

Example:

Using Random/Greedy we found 16 permutations for P(7,9):

So, $P(7,9) \ge 16$.

Table: Some Current Lower Bounds for P(n,d)

Computing Lower Bounds for P(n,d), for larger n and d

To compute a lower bound for a (n,d)-array A, say by a Random/Greedy iterative algorithm, all n! permutations are considered, and, for each one, its distance to every permutation in the current set A is computed.

For example, to compute a (18,15)-array A, this means 18! > 6.4 x 10^{15} permutations + distances.

This is not feasible. We now describe more efficient methods.

Example: To compute a lower bound for P(13,11).

By Theorem 1, with m =
$$
\frac{(11)^6 - 1}{10} \approx 177,166
$$
, P(13,2*5+1) $\ge \frac{13!}{11*m} \approx 3,195$.

Jiang, Schwartz, and Bruck in "Correcting charge-constrained errors in the rank- modulation scheme", *IEEE Trans. on Info. Theory, 2010*, gave the following:

Theorem 2. For all n,d >1, we have P(n+1,d) $\geq \left[\frac{n+1}{4}\right]$ \overline{d} ∗ P(n,d).

This gives
$$
P(13,11) \ge \left[\frac{13}{11}\right] * P(12,11) \ge 2 * 19,227 = 38,454.
$$

This is good, but we can do better.

Example: To compute a lower bound for P(13,11) (continued)

(By the previous Theorem 2). Create a (13,11)-PA from two copies of (12,11)-PA:

Let us generalize:

Let $S_{n,m}$ denote the set of all permutations on Z_n =[1 ... n] with the restriction that the first n-m symbols are in sorted order, for any given m^{''} \leq n. A set A $\subseteq S_{n,m}$ with Kendall- τ distance d is called a (n,m,d)-PA or (n,m,d)-array. Let P(n,m,d) be the maximum cardinality
of any (n,m,d)-array.

π_1 = x 13 x x x x x x x x x x x x

 π_2 = x x x x x x x x x x x x 13 is a (13,1,11)-array (with symbols 1-12 replaced by x's)

Example: To compute a lower bound for P(13,11) (continued)

For any permutation π in a (n,m,d)-array A, let P_{π} (n,d) denote the maximum cardinality of any (n,d)-array with the highest m symbols in the same positions as in π , but where the other n-m symbols can be in any order.

Theorem 3. For any (n,m,d)-array A, P(n,d) $\geq \sum_{\pi \in A} P_{\pi}(n,d)$.

 $\pi = x 13 x x x x x x x x x x x x \longrightarrow P_{\pi}(13,11)$ (≥ 31,809) $\sigma = x x x x x x x x x x x x x 13$ $P_{\sigma}(13,11).$ $(\geq 19,227)$

So, $P(13,11) \ge 51,036$. Let us now compute a lower bound for $P(14,11)$.

Example: To compute a lower bound for P(14,11)

By iteration of Theorem 2, P(14,11) $\geq \left[\frac{14}{11}\right]$ 11 ∗ 13 11 ∗ P(12,11)= 4 ∗ P(12,11) ≥ 76,908.

An improvement, using Theorem 3: by a modification of the Random/Greedy program, we computed a (14,2,11)-array with 5 permutations, where the first 12 symbols in each permutation are here replaced by 0's for ease of reading:

0 0 0 0 0 0 13 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 14 0 0 14 0 0 0 0 0 0 0 0 0 0 0 13 13 14 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 14

Thus, we get $P(14,11) \ge 5 * P(12,11)$. Since, $P(12,11) \ge 19,227$, $P(14,11) \ge 96,135$.

Example: To compute a lower bound for P(14,11) (continued)

- $\alpha = 0\,0\,0\,0\,0\,0\,13\,0\,14\,0\,0\,0\,0\,0$ $\longrightarrow P_{\alpha}(14,11)$ $(\geq 47,851)$
- $\beta = 0 0 0 0 0 0 0 0 0 0 0 13 14$ $P_\beta(14,11)$ $(\geq 19,227)$
- $\gamma = 0.014000000000013$ $P_{\nu}(14,11)$ $(\geq 36,250)$
- $\delta = 13 14 0 0 0 0 0 0 0 0 0 0 0$ $\leftarrow P_{\delta}(14,11)$ ($\geq 19,227$)
- $\theta = 13000000000000014$ $P_{\theta}(14,11)$ $(\ge 19,227)$
-
-
- -
	-

So, $P(14,11) \ge 141,782$.

We can do better.

Example: To compute a lower bound for P(14,11) (continued)

Use a (14,8,11)-array instead of a (14,2,11)-array.

There are, in general, n!/(n-m)! permutations in $S_{n,m}$.

In particular, there are 17,297,280 permutations in $S_{14,8}$. So, this is feasible.

We computed a $(14,8,11)$ -array of 7,909 permutations by a modification of a Random/Greedy algorithm. That is, there is a set A of 7,909 permutations in $S_{14,8}$ with pairwise Kendall- τ distance 11.

Example: To compute a lower bound for P(14,11) (continued)

For each of the 7,909 permutations π in A, compute a lower bound for $P_{\pi}(14,11)$, denoted by LB($P_{\pi}(14,11)$).

We computed lower bounds for each $P_{\pi}(14,11)$, $\pi\epsilon A$, by a modification of a Random/Greedy algorithm. The algorithm takes as input the file A and outputs the sum of { $LB(P_{\pi}(14,11)) | \pi$ in A }

The sum of { $LB(P_{\pi}(14,11)) | \pi$ in A } is 177,098.

So, $P(14,11) \ge 177,098$.

Example: To compute a lower bound for P(18,15)

By Theorem 1, with m = $\frac{(16)^8-1}{15}$ 15 $\approx 2.86 \times 10^8$, P(18,2*7+1) $\geq \frac{18!}{15 \times 10^8}$ $15* m$ ≈ 1,490,669

By computation, $P(18,8,15) \ge 9,856$. That is, there is a set A of 9,856 permutations in $S_{18,8}$ with pairwise Kendall- τ distance 15.

For each of the 9,856 permutations π in A, compute a lower bound for $P_{\pi}(18,15)$. The sum of { LB($P_{\pi}(18,15)$) | π in A } is 19,618,333.

So, $P(18,15) \ge 19,618,333$.

Additional results

Since P(18,15) ≥ 19,618,333, by Theorem 2, *i.e.*

Theorem 2 (Jiang, Schwartz, Bruck). For all n,d >1, P(n+1,d) $\geq \left[\frac{n+1}{d}\right]$ \boldsymbol{d} ∗ P(n,d).

We have
$$
P(19,15) \ge \left[\frac{19}{15}\right] * P(18,15) = 2 * 19,618,333 = 39,236,666.
$$

Whereas, by Theorem 1, *i.e.* Theorem 1 (Wang, Zhang, Yang, and Ge): Let m = $\frac{(n-2)^{t+1}-1}{n}$ $\frac{27}{n-3}$, where n-2 is a prime power, then $P(n,2t+1) \geq \frac{n!}{(2t+1)!}$ $\frac{n!}{2t+1)m}$.

We have m =
$$
\frac{17^8-1}{16}
$$
 \approx 4.36 x 10⁵, and P(19,15) $\ge \frac{19!}{15*m} \approx$ 18,600,815.

Additional theorems

Theorem 4 (Jiang, Schwartz, Bruck) For all $n \geq 1$ and even $d \geq 2$, $P(n,d) \geq \frac{1}{2}$ $\overline{2}$ $P(n - 1, d)$.

Theorem 5 (Jiang, Schwartz, Bruck) For all $n,d \geq 1$, $P(n+1,d) \leq (n+1)^* P(n,d),$ i.e., $P(n,d) \geq \frac{P(n+1,d)}{n+1}$ $n+1$

These can also be used to obtain good lower bounds.

Table: Current Lower Bounds for P(n,d)

What else can be done?

- One can modify the Random/Greedy algorithm (which is described next).
- One can modify the recursive algorithm, so that one computes good lower bounds for P(n,m,d) by a sequence $m_1 < m_2 < ... < m$. That is, first compute a (n, m_1 ,d)-array A. For each $\pi \in A$, compute an (n, m_2 ,d) array B (for P_{π} (n, m_2 ,d)). … Continue the process until obtaining a (n,m,d)array. This makes it feasible to compute P(n,d) for large n.
- Create a graph whose nodes correspond to permutations π in $S_{n,m}$ and whose edges connect nodes at distance at least d. Assign each node π a weight corresponding to $P_{\pi}(n,d)$. Find a maximum weighted clique in this graph to compute a lower bound for P(n,d).

Modifying the Random/Greedy program

Random/Greedy:

Let the identity permutation be the 1st permutation in C. For any set C chosen, choose the next permutation in C to be the lexicographically next permutation in S_n *with distance at least d to all in C, if one exists.*

"Lexicographic" order may not be an obvious choice. For example, consider the order given by the "Steinhaus-Johnson-Trotter" algorithm to enumerate all permutations, where the ith permutation is obtained from the (i-1)th permutation, for all i>1, by a single adjacent transposition.

Example (of SJT order of S_4):

Modified Random/Greedy

Modified Random/Greedy:

Let the identity permutation be the 1st permutation in C. For any set C chosen, choose the next permutation in C to be next permutation in the SJT sequence with distance at least d to all in C, if one exists.

There are advantages to this modification. Specifically, if the i^{th} element of the SJT sequence, say π , is put in C, then one can skip the next d-1 permutations, as they are at distance at most d-1 from π .

Thank you for your attention.

Questions?