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Abstract
For a finite group G and its character χ , let Lχ be the image of χ on G−{1}. The pair
(G, χ) is said to be sharp of type L if |G| = �a∈L(χ(1) − a), where L = Lχ . The
pair (G, χ) is said to be normalized if the principal character ofG is not an irreducible
constituent of χ . In this paper, we study normalized sharp pairs of type L = {−1, 1, 3}
proposed by Cameron and Kiyota in [J Algebra 115(1):125–143, 1988], under some
additional hypotheses.
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1 Introduction

Let G be a finite group with center Z(G). It is known that for any complex character
χ of G, the order of G divides �a∈Lχ (χ(1) − a), where Lχ := {χ(g) | 1 �= g ∈ G}
(see [4, 12]). The pair (G, χ) (or briefly, the character χ ) is called sharp of type L or
L-sharp if |G| = �a∈L(χ(1) − a), where L = Lχ . Clearly, χ is faithful whenever
(G, χ) is L-sharp. The pair (G, χ) is said to be normalized if 〈χ, 1G〉 = 0.

The notion of sharpness was first introduced for permutation characters by Ito and
Kiyota in [11], as a generalization of sharply t-transitive permutation representations.
Cameron and Kiyota extended this concept to arbitrary group characters and posed
the problem of determining all the L-sharp pairs (G, χ) for a given set L ([5]). The
case that Lχ contains an irrational number has been settled by Alvis and Nozawa in
[3]. The case Lχ = {l}, where l is a rational integer, and the case Lχ = {−1, 1}
are determined in [5, 6]. The sharp pairs of type {−1, 2} and {−2, 1} with non-trivial
centers have been studied by Nozawa and Uno in [16]. In [18], Yogochi has classified
the finite groups with sharp characters of type {l, l + p} for an odd prime p, under
the additional hypotheses Z(G) > 1 and 〈χ, χ〉 = p. Moreover, the sharp pairs of
type {−1, 3} and {−3, 1} has been studied in [2]. In [1], Abdollahi et al. proved that
if (G, χ) is a normalized sharp pair and Lχ contains at least one irrational value, then
the inner product 〈χ, χ〉 is uniquely determined by Lχ .

In Problem 7.5 of [5], it is proposed to find finite groups G having a sharp character
of type {−1, 1, 3}. If (G, χ) is sharp of type {−1, 1, 3}, then 〈χ, χ〉 ≤ 3 and so
〈χ, χ〉 ∈ {1, 2, 3} (see [5, Proposition 1.3(ii)]). Since χ(g) = 3 for some g ∈ G
and χ(1) > 1, it follows from [10, Theorem 3.15] that χ is not irreducible. Thus,
〈χ, χ〉 ∈ {2, 3}. Therefore, χ is the sum of two or three distinct irreducible characters
of G. In this paper, we consider the case that 〈χ, χ〉 = 2, and characterize solvable
groups with non-trivial center having sharp character χ of type {−1, 1, 3}. In fact, we
prove the following theorem:

Main Theorem: LetG be a finite solvable group with a normalized sharp character
χ of type {−1, 1, 3}. If Z(G) �= 1 and 〈χ, χ〉 = 2, then one of the following cases
occur:

1. G is isomorphic to one of the groups C2 × S4 or (((C2 × D8) : C2) : C3) : C2;
2. |G| = 8(k −1)k(k +1), where k = 2l −1 for some integer l ≥ 3 and Z(G) ∼= C2

is the unique minimal normal subgroup of G. Moreover, if 3 � k, then the prime
graph of G/Z(G) is disconnected.

2 Preliminary Results

Suppose that (G, χ) is a normalized sharp pair with Lχ = {−1, 1, 3}. Let n := χ(1).
Since χ is sharp, |G| = (n−1)(n+1)(n−3) and n ≥ 4. Note that 〈χ, χ〉 ∈ {2, 3}, so
we shall distinguish as χ = χ1 + χ2 or χ = χ1 + χ2 + χ3, for some pairwise distinct
irreducible characters χ1, χ2 and χ3 of G.

Lemma 2.1 Let � = 〈χ, χ〉. Then
(1) Z(G) = ∩�

i=1Z(χi ).
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(2) Z(G) is the direct product of at most � cyclic subgroups.

Proof Since χ is faithful, the intersection of kernels of irreducible constitutes of χ is
trivial. Now, (1) follows from the proof of [10, Corollary 2.28]. Moreover, from (1),
we conclude that G can be embedded into ��

i=1
G

ker(χi )
and so Z(G) is isomorphic to

a subgroup of ��
i=1Z

( G
ker(χi )

)
. Now, from [10, Lemma 2.27 (f)], we have

Z(G) ↪→ ��
i=1

Z(χi )

ker(χi )
.

Now, [10, Lemma 2.27 (d)] completes the proof. ��
Lemma 2.2 Let p, q and r be arbitrary odd prime divisors of n − 1, n + 1, and n − 3,
respectively. Then

(1) If g ∈ G is of order p, then χ(g) = 1.
(2) If h ∈ G is of order q, then χ(h) = − 1.
(3) If x ∈ G is of order r , then χ(x) = 3.
(4) There is no element of order pq, pr , or qr in G.

Proof We use the fact that, if s is a prime, θ is a rational valued character of a finite
group G, and y ∈ G then θ(ys) ≡ θ(y) (mod s) [18,Proposition 3(1)].

(1) Since χ(g) ≡ χ(1) = n (mod p), and p does not divide (n+1)(n−3), it follows
that χ(g) = 1.

(2) Since χ(h) ≡ χ(1) = n (mod q), and q does not divide (n − 1)(n − 3), it is
obvious that χ(h) = −1.

(3) Since χ(x) ≡ χ(1) = n (mod r), and r does not divide (n − 1)(n + 1), we get
that χ(x) = 3.

(4) Let y be an element of order pq. Then, χ(y) ≡ χ(yq) (mod q) and so by (1)
χ(y) ≡ 1 (mod q). Thus, q divides χ(y) − 1, and since q is odd and χ(y) ∈
{−1, 1, 3}, it follows that χ(y) = 1. Now, (2) implies that χ(y) ≡ χ(y p) = −1
(mod p) and so p divides χ(y) + 1. Thus, χ(y) = −1 as p is odd and χ(y) ∈
{−1, 1, 3}. This is a contradiction. A similar argument shows thatG has no element
of order pr or qr .

��
Lemma 2.3 (1) If G is solvable, then at least one of the integers n− 1, n+ 1, or n− 3

is a 2-power.
(2) n is odd.

Proof (1) Suppose on the contrary that there exist odd primes p, q and r dividing
n − 1, n + 1, and n − 3, respectively. By Lemma 2.2 (4), G has no element of order
pq, pr , or qr . This contradicts [14].

(2) If n is even, then |G| is odd and so G is solvable by Feit–Thompson odd order
Theorem ([7]). This contradicts part (1). ��
Lemma 2.4 If n �= 5, 7, then at most one of the integers n − 1, n + 1, or n − 3 is a
2-power.
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Proof Note that for n ≥ 9, the smallest 2-power greater than or equal to n−3 is 8, and
for integers greater than or equal to 8, the difference in 2-powers is at least 8. Since
the difference between n + 1 and n − 3 is 4, the set {n − 3, n − 1, n + 1} includes at
most one 2-power. ��
Corollary 2.5 If G is solvable and n �= 5, 7, then exactly one of the integers n − 1,
n + 1, or n − 3 is a 2-power.

Proof Using Lemma 2.3(1) and Lemma 2.4, we are done. ��
Remark 2.6 By Lemma 2.3(2), we may assume that n = 2k + 1, for some integer
k ≥ 2. Thus, |G| = 8(k − 1)k(k + 1).

Lemma 2.7 If k = 2, then G ∼= C2 × S4, where S4 is the symmetric group of order 4.

Proof Let k = 2. Then, by Remark 2.6, |G| = 48. Using GAP [17] shows that
G ∼= C2 × S4. ��
Lemma 2.8 Suppose that there exists i ∈ {−1, 1, 3}, such that G has a non-trivial
normal p-subgroup P for some odd prime p ∈ π(n − i). Then, for all odd primes
q ∈ ⋃

j∈{−1,1,3}\{i} π(n − j), every Sylow q-subgroup of G is cyclic.

Proof Take an arbitrary Sylow q-subgroup Q of G, where q is an odd prime in⋃
j∈{−1,1,3}\{i} π(n − j). Consider the subgroup H = PQ. Then, H is solvable

and Lemma 2.2(4) shows that every element of H is a prime power order. Now, it
follows from [9, Theorem 1] that H/P ∼= Q is cyclic, as desired. ��

3 Proof of theMain Theorem

Throughout this section, we assume that (G, χ) is a normalized sharp pair of type
{−1, 1, 3}, such that 〈χ, χ〉 = 2. Then, χ = χ1+χ2 for distinct irreducible characters
χ1 and χ2 of G.

Lemma 3.1 χ1 and χ2 are real valued.

Proof Since χ is rational valued, we conclude that χ1 + χ2 = χ1 + χ2. As complex
conjugate of an irreducible character is also irreducible and irreducible characters are
linearly independent, it follows that either χ1 = χ2, or both χ1 and χ2 are real valued.
If χ1 = χ2, then χ(1) = 2χ1(1) which contradicts Lemma 2.3. Therefore, the result
follows. ��
Lemma 3.2 (1) The center Z(G) of G is an elementary abelian 2-group of order at

most 4.
(2) If z is a non-trivial element of Z(G), then

(χ1(z), χ2(z)) ∈ {(χ1(1),−χ2(1)), (−χ1(1), χ2(1))}.
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Proof It follows from Lemma 2.1(1) that Z(G) = Z(χ1) ∩ Z(χ2). Since both χ1 and
χ2 are real valued, it follows from [10, Lemma 2.27(c)] that χi (z) = ±χi (1) and so
χi (z2) = χi (1), for all z ∈ Z(G) and i ∈ {1, 2}. Thus, χ(z2) = χ1(z2) + χ2(z2) =
χ(1) and thus z2 = 1, since χ is faithful. Now, Lemma 2.1(2) completes the proof of
(1). Let z be a non-trivial element of Z(G). Note that χi (z) = ±χi (1) for i = 1, 2,
by [10, Lemma 2.27(c)]. Since χ(z) = χ1(z) + χ2(z) ≥ −1 and χ(z) �= χ(1) =
χ1(1) + χ2(1) (as χ is faithful), it follows that (χ1(z), χ2(z)) = (χ1(1),−χ2(1)), or
(χ1(z), χ2(z)) = (−χ1(1), χ2(1)). This completes the proof of (2). ��
Lemma 3.3 |Z(G)| ≤ 2.

Proof We first prove that there exists at most one element z ∈ Z(G), such that
(χ1(z), χ2(z)) = (χ1(1),−χ2(1)). Suppose that there exist elements z1 and z2 of
Z(G), such that

(χ1(z1), χ2(z1)) = (χ1(z2), χ2(z2)) = (χ1(1),−χ2(1)).

For i = 1, 2, we have χi (z1z2) = λi (z1z2)χi (1) for some linear character λi of Z(G)

([10, Lemma 2.27(c)]). However, by Lemma 3.2, Z(G) is an elementary abelian 2-
group; thus, λi (z1z2) = λi (z1)λi (z2) = 1. It follows that χ(z1z2) = χ1(z1z2) +
χ2(z1z2) = χ1(1) + χ2(1) = χ(1) and so z1z2 = 1. Thus, z1 = z2 by Lemma 3.2.

A similar argument shows that there exists at most one element z′ ∈ Z(G), such
that (χ1(z′), χ2(z′)) = (−χ1(1), χ2(1)). Now, Lemma 3.2 implies that |Z(G)| ≤ 3,
and since Z(G) is a 2-group, we have |Z(G)| ≤ 2. This completes the proof. ��
Remark 3.4 In the case that Z(G) �= 1, by Lemma 3.2 (2) and Lemma 3.3, without
loss in generality, we may assume that there exists a (unique) non-trivial element
z ∈ Z(G), such that Z(G) = 〈z〉 and χ1(z) = χ1(1), χ2(z) = −χ2(1).

Lemma 3.5 The group G is not nilpotent.

Proof Suppose on the contrary that G is nilpotent. Since |G| = 8(k − 1)k(k + 1),
there exists an odd prime p dividing |G| and so p divides |Z(G)|. This contradicts
Lemma 3.2. ��
Lemma 3.6 Let Z(G) = 〈z〉, for some non-trivial element z ∈ G. Then

(1) If χ(z) = 1, then (χ1(1), χ2(1)) = (k + 1, k);
(2) If χ(z) = −1, then (χ1(1), χ2(1)) = (k, k + 1);
(3) If χ(z) = 3, then (χ1(1), χ2(1)) = (k + 2, k − 1).

Proof By the equations 2k + 1 = χ(1) = χ1(1) + χ2(1) and χ(z) = χ1(1) − χ2(1),
we are done. ��
Lemma 3.7 Let 1 �= z ∈ Z(G) and χ(z) = 3. Then

1. |G| = 7920 or 85008.
2. G has no normal abelian Sylow 3-subgroups.
3. If k = 10 and N is a minimal normal abelian subgroup of G, then |N | = 11 or

N = Z(G).
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4. If k = 22 and N is a minimal normal abelian subgroup of G, then |N | = 23 or
N = Z(G).

Proof (1) By Lemma 3.6(3), we have χ1(1) = k + 2 and by [10, Theorem 6.15],
χ1(1) | |G : Z(G)|. Therefore, k + 2 | 4(k − 1)k(k + 1) and

4(k − 1)k(k + 1)

k + 2
= 4k2 − 8k + 12 − 24

k + 2

is an integer. Thus, k = 0, 1, 2, 4, 6, 10 or 22. But n ≥ 5, therefore k ≥ 2. Thus,
|G| = 48, 480, 1680, 7920 or 85008.

If |G| = 48, then χ must have two irreducible constituents of degrees 1 and 4.
On the order hand, by Lemma 2.7, only group of order 48 with sharp character of
type {−1, 1, 3} is C2 × S4. However, one can see that this group has not irreducible
character of degree 4.

If |G| = 480, then by Lemma 2.2, G does not have an element of order 15.
Moreover, |Z(G)| = 2, and by Lemma 3.1, χ must have two irreducible constituents
of degrees 3 and 6 with integer values. Using GAP (see the following commands)
shows that there is no group of order 480 with sharp character of type {−1, 1, 3} with
the mentioned properties.

b:=AllSmallGroups(480,IsNilpotent,false);;
F:=Filtered(b,i->Size(Center(i))=2);;
of:=List(F,i->Set(List(i,j->Order(j))));;
c:=Filtered(of,i->Size(Intersection(i,[15]))=0);;
S:=Filtered(F,i->Set(List(i,j->Order(j)))=c[1]);
Irr(S[1]);

If |G| = 1680, then by Corollary 2.5, G is nonsolvable and Lemma 2.2 shows
that G does not have an element of order 15 or 21 or 35. Using GAP shows that each
nonsolvable group of order 1680 has at least an element of order 15 or 21 or 35.

(2) Suppose on the contrary that G has a normal abelian Sylow 3-subgroup of order
3 f , where f ∈ N. By Theorem 6.15 in [10], we have

χ2(1) = k − 1 | 8(k − 1)k(k + 1)

3 f
;

thus,
8k(k + 1)

3 f
is integer. Therefore, 3 | k or 3 | k + 1. Then, 3 � k − 1. However,

from (1), k − 1 = 9 or k − 1 = 21, a contradiction.
(3) Suppose N is a minimal normal abelian subgroup of G, such that |N | �= 11.

Then, N is a p-group and χi (1)| | G : N | for i = 1, 2. If p = 3, then by (2),
we have |N | = 3. Therefore, k − 1 = 9 | 24.3.5.11, a contradiction. If p = 5,
then |N | = 5. Suppose H is a Sylow 11-subgroup of G. Then, H is a Sylow 11-
subgroup of HN . Therefore, 11s + 1 | |N | = 5. Thus, s = 0 and HN has only
one Sylow 11-subgroup. Then, HN = H × N ∼= C5 × C11 ∼= C55 and G has an
element of order 55. This contradicts Lemma 2.2(4). If p = 2, then |N | = 2α and
χ1(1) = 12 | |G : N | = 24−α.9.5.11. Therefore, α = 1 or 2. If α = 2, |N | = 4
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and since N is a minimal normal abelian subgroup of G, we have Z(G)
⋂

N = 1.
Therefore, Z(G)N = Z(G) × N and |Z(G)N | = 8. Therefore, χ1(1) = 12 | |G :
Z(G)N | = 2.9.5.11, a contradiction. Thus, α = 1 and |N | = 2. Then, N is a central
subgroup of G and, therefore, N = Z(G).

(4) Suppose that N is a minimal normal abelian subgroup ofG, such that |N | �= 23.
Then, N is a p-group and χi (1)| | G : N | for i = 1, 2. By part (2), p �= 3. If p = 7,
then |N | = 7 and χ2(1) = 21 | 16.3.11.23, a contradiction. If p = 11, then |N | = 11.
Let H be a Sylow 23-subgroup of G. Then, H is a Sylow 23-subgroup of HN . So
23s + 1 | |N | = 11. Thus, s = 0 and HN has only one Sylow 23-subgroup. Hence,
HN = H × N ∼= C11 × C23 ∼= C253 and G has an element of order 253. This
contradicts Lemma 2.2(4). If p = 2, then |N | = 2α and χ1(1) = 24 | 24−α.3.7.11.23.
Therefore, α = 1 and |N | = 2. Thus, N is a central subgroup of G and so N = Z(G).

��
Lemma 3.8 Suppose that Z(G) is non-trivial. Then

(1) χ1(g) ∈ {0,±1, 2, 3} and χ2(g) ∈ {0,±1,±2} for all g ∈ G \ Z(G).
(2) If n �= 5, 7, then ker(χ1) = Z(G).
(3) If ker(χ2) � Z(G), then G ∼= C2 × S4, where S4 is the symmetric group of degree

4.
(4) If G � C2 × S4, then ker(χ2) = 1.
(5) If n �= 5, 7, then Z(χ1) = Z(χ2) = Z(G).

Proof By Remark 3.4, assume that there exists a non-trivial element z of Z(G), such
that χ1(z) = χ1(1), χ2(z) = −χ2(1). Therefore, using Lemma 3.3, Z(G) ≤ ker(χ1).

(1) Note that if Xi is a representation corresponding to χi , for i ∈ {1, 2}, then
X1(z) = Iχ1(1) and X2(z) = −Iχ2(1) by [10, Lemma 2.27]. Therefore, χ(gz) =
χ1(g)−χ2(g) for all g ∈ G. Thus,χ(g)+χ(gz) = 2χ1(g) andχ(g)−χ(gz) = 2χ2(g)
for all g ∈ G. It follows that χ1(g) ∈ {0,±1, 2, 3} and χ2(g) ∈ {0,±1,±2} for all
g ∈ G \ Z(G).

(2) Suppose on the contrary that there exists x ∈ ker(χ1) \ Z(G). Then, by
part (1), χ1(1) = χ1(x) ∈ {1, 2, 3}. Since χ(z) = χ1(1) − χ2(1), it follows that
(χ1(1), χ2(1)) ∈ {(1, 2), (2, 1), (2, 3), (3, 2), (3, 4)}. Thus, n = χ(1) ≤ 7, a contra-
diction. Therefore, ker(χ1) ≤ Z(G), and we are done.

(3) Let x ∈ ker(χ2) \ Z(G). Then, by part (1), χ(x) − χ(xz) = 2χ2(1) and
χ2(1) ∈ {1, 2}. Since χ(z) = χ1(1) − χ2(1), it follows that:

(χ1(1), χ2(1)) ∈ {(2, 1), (4, 1), (3, 2), (5, 2), (1, 2)}.

As n > 4, (χ1(1), χ2(1)) ∈ {(4, 1), (3, 2), (5, 2)}. If (χ1(1), χ2(1)) = (5, 2),
then |G| = 192 and χ1(1) = 5 must divide |G|, a contradiction. It follows that
(χ1(1), χ2(1)) ∈ {(4, 1), (3, 2)}. Thus, n = 5, so that |G| = 48. Now, using GAP
[17], one can see that G ∼= C2 × S4.

(4) By (3), ker(χ2) ≤ Z(G). It follows from Lemma 3.3 that ker(χ2) = Z(G)

or 1. Suppose, for a contradiction, ker(χ2) = Z(G). Since Z(G) ≤ ker(χ1), we get
1 = ker(χ) = ker(χ1) ∩ ker(χ2) = Z(G), a contradiction. Hence, ker(χ2) = 1.

(5) It follows from [10, Lemma 2.27(f)] that Z(χ2)/ ker(χ2) = Z(G/ ker(χ2)).
By (4), Z(χ2) = Z(G). Now, we put A = {g ∈ G | χ1(g) = −χ1(1)}. Let g ∈ A.
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From (2), g /∈ Z(G). Thus, χ1(g) = −χ1(1) and χ2(g) ∈ {0,±1,±2}. We have
χ1(1) = χ2(g)−χ(g) ≤ 3. However, n = 2k+1 ≥ 9, and by Lemma 3.6, χ1(1) ≥ k.
This is a contradiction. Therefore, A = ∅ and Z(χ1) = Z(G). ��
Theorem 3.9 Let Z(G) = 〈z〉 for some non-trivial element z ∈ G. Then, χ(z) ∈
{−1, 1}.
Proof Let χ(z) = 3. Then, by Lemma 3.7, we have |G| = 7920 (k = 10) or |G| =
85008 (k = 22). Suppose N is a non-abelian minimal normal subgroup of G. Then,
N = Sb, where S is a non-abelian simple group and b is a positive integer.We consider
the following cases:

Case 1: Suppose that k = 10. By GAP ([17]), S ∼= A5, A6 or PSL(2, 11). Since
|G| = 7920 = 24.32.5.11, we must have b = 1 and so N is simple. Using Lemma 3.6,
we have χ1(1) = 12 and χ2(1) = 9. Moreover, by Lemma 3.8, χ1(x) ∈ {0,±1, 2, 3}
and χ2(x) ∈ {0,±1,±2}, for every x ∈ N \ {1}. For i = 1, 2, Clifford’s theorem
shows that (χi )N = mi

∑
g∈Ti θ

g
i , where θi ∈ Irr(N ) and Ti is a transversal for the

right cosets of IG(θi ) in G. If S ∼= A5, then using the character table of A5, we obtain
a contradiction, since (χ2)N = m2

∑
g∈T2 θ

g
2 ∈ {0,±1,±2}. Similarly, if S ∼= A6

or S ∼= PSL(2, 11) again, we obtain a contradiction. Hence, all minimal normal
subgroups of G are abelian. From Lemma 3.7 and [13,Corollary 1], we conclude that
G has exactly two minimal normal subgroups N1 and N2, such that N1 = Z(G)

and N2 ∈ Syl11(G). Moreover, by Lemma 2.8 and this fact that N2 � G, 3-Sylow
subgroups ofG are cyclic. Now, let R(G) be the solvable radical ofG, R(G) < M�G
and M/R(G) be a chief factor of G. Note that by Lemma 2.3, G is nonsolvable.
An argument similar to that given above shows that S := M/R(G) ∼= A5, A6 or
PSL(2, 11). If S ∼= PSL(2, 11), then as 11 | |R(G)|, we have a contradiction. If
S ∼= A6, then as 3-Sylow subgroups of A6 are non-cyclic, we obtain a contradiction.
Hence, S ∼= A5. Let C/R(G) := CG/R(G)(S) and T := L/R(G) be a chief factor
of G/R(G) contained in C/R(G). Then, as S × T is a normal subgroup of G and
S = T ∼= A5, we have 25 | |G|, this is a contradiction. Thus, C = R(G) and
S ≤ G/R(G) ≤ Aut(S). Therefore, 33 | |R(G)|, and then, G has an element of order
33 which is impossible.

Case 2: Suppose that k = 22. By GAP ([17]), S ∼= PSL(2, 7) or PSL(2, 23). Since
|G| = 85008 = 24.3.7.11.23, one can see that b = 1 and N is simple. Using Lemma
3.6, χ1(1) = 24 and χ2(1) = 21. An argument similar to that given in case (1) shows
that all minimal normal subgroups of G are abelian and G has exactly two minimal
normal subgroups N1 and N2, such that N1 = Z(G) and N2 ∈ Syl23(G). Moreover,
if R(G) be the solvable radical of G, R(G) < M � G and M/R(G) be a chief
factor of G then, similarly, we have S := M/R(G) ∼= PSL(2, 7) or PSL(2, 23). If
S ∼= PSL(2, 23), then as 23 | |R(G)|, we have a contradiction. Hence S ∼= PSL(2, 7).
Now, let C/R(G) := CG/R(G)(S) and T := L/R(G) be a chief factor of G/R(G)

contained inC/R(G). Since S×T is a normal subgroup ofG and S = T ∼= PSL(2, 7),
we get 49 | |G|. This is a contradiction. Then, C = R(G) and S ≤ G/R(G) ≤
Aut(S). Hence, G/R(G) ∼= S and |R(G)| = 2.11.23, and |R(G)/Z(G)| = 11.23. So
R(G)/Z(G) ∼= C11 × C23 or C11 : C23. If R(G)/Z(G) ∼= C11 × C23, then G has an
element of order 11×23 which is impossible. Moreover, if R(G)/Z(G) ∼= C11 : C23,
then by using the character table of C11 : C23, we have a contradiction. ��
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Remark 3.10 Let Ḡ = G/Z(G) and n �= 5, 7. By Lemma 3.8, Z(χ1) = ker(χ1) =
Z(G), and so, [10, Lemma 2.27 (f)] implies that Z(Ḡ) = Z(χ1)/ker(χ1) = 1.

Lemma 3.11 Let 1 �= z ∈ Z(G) and k �= 2, 3.

(1) If χ(z) = 1, then k is even.
(2) If χ(z) = −1, then k − 1 and k are not 2-powers.
(3) 4 � k − 1.

Proof (1) By Lemma 3.6, χ2(1) = k. We put L := Lχ2 = {χ2(g) | 1 �= g ∈ G}. By
Lemma 3.8, χ2(g) ∈ {0,±1,±2, } for g ∈ G \ Z(G). Hence, L ⊆ {0,±1,±2,−k}.
Since |G| | ∏

l∈L(χ2(1)− l), we have 8(k − 1)k(k + 1) is a divisor of 2k2(k − 1)(k +
1)(k − 2)(k + 2), and so, 4 | k(k − 2)(k + 2). Thus, k is even.

(2) Set Ḡ = G/Z(G). By Lemma 3.3, |Ḡ| = 4(k − 1)k(k + 1). If χ(z) = −1,
then by Lemma 3.6, χ1(1) = k. We put L := L(χ1)Ḡ

= {(χ1)Ḡ(g) | 1 �= g ∈ Ḡ}. By
Lemma 3.8, χ1(g) ∈ {0,±1, 2, 3} for g ∈ G \ Z(G). Hence, L ⊆ {0,±1, 2, 3}. Since
|Ḡ| | ∏

l∈L(χ1(1)− l), we have 4(k−1)k(k+1) divides k(k−1)(k+1)(k−2)(k−3)
and so 4 | (k − 2)(k − 3). Suppose that k − 1 is a 2-power. Then, k − 1 = 2q for
some 1 �= q ∈ N. Hence, k − 2 is odd, and 4 | k − 3 = 2q − 2 = 2(2q−1 − 1), a
contradiction. Now, suppose that k = 2q , for some 1 �= q ∈ N. Then, k − 3 is odd,
and 4 | k − 2 = 2(2q−1 − 1), a contradiction.

(3) Suppose k − 1 is even. Thus, by the proof of Theorem 3.9 and part (1), χ(z) =
−1, and so, χ1(1) = k. Then, an argument similar to that given in (2) shows that
4 | k − 3. However, (k − 3, k − 1) = 2; thus, 4 � k − 1. ��
Lemma 3.12 Let 1 �= z ∈ Z(G), Ḡ = G/Z(G) and k �= 2 be even. If p �= 3 is an
odd prime divisor of k + 1 or k − 1, then there is no element of order 2p in Ḡ.

Proof By Remark 3.10, Z(Ḡ) = 1. Hence, by Lemma 3.8, χ1(g) ∈ {0,±1, 2, 3} for
g ∈ Ḡ − {1}. Suppose on the contrary that there exists g ∈ Ḡ, such that o(g) = 2p,
where 3 �= p is an odd prime divisor of k + 1 or k − 1.

First, suppose that p | k+1. If χ(z) = 1, then k+1 = χ1(1) = χ1(g2p) ≡ χ1(g2)
(mod p). Therefore, χ1(g2) = 0. Moreover, χ1(g2) ≡ χ1(g) (mod 2). Hence,
χ1(g) ∈ {0, 2}. On the other hand, k + 1 = χ1(g2p) ≡ χ1(gp) (mod 2). Since k + 1
is odd, χ1(gp) ∈ {±1, 3}. However, χ1(gp) ≡ χ1(g) (mod p), a contradiction. If
χ(z) = −1, we have k = χ1(1) = χ1(g2p) ≡ χ1(g2) (mod p). Then, χ1(g2) = −1.
Also,χ1(g2) ≡ χ1(g) (mod 2). Thus,χ1(g) ∈ {±1, 3}. Also, k = χ1(g2p) ≡ χ1(gp)

(mod 2). Since k is even, it follows that χ1(gp) ∈ {0, 2}. Also, χ1(gp) ≡ χ1(g)
(mod p), which is a contradiction.

Now, suppose that p | k−1. If χ(z) = 1, then k+1 = χ1(1) = χ1(g2p) ≡ χ1(g2)
(mod p). Therefore,χ1(g2) = 2.Moreover,χ1(g2) ≡ χ1(g) (mod 2). Thus,χ1(g) ∈
{0, 2}. Note that k + 1 = χ1(g2p) ≡ χ1(gp) (mod 2). Since k + 1 is odd, χ1(gp) ∈
{±1, 3}. However, χ1(gp) ≡ χ1(g) (mod p), which is a contradiction. If χ(z) = −1,
we have k = χ1(1) = χ1(g2p) ≡ χ1(g2) (mod p). Therefore, χ1(g2) = 1. Since
χ1(g2) ≡ χ1(g) (mod 2), we get χ1(g) ∈ {±1, 3}. Now, k = χ1(g2p) ≡ χ1(gp)

(mod 2). Note that k is even; therefore, χ1(gp) ∈ {0, 2}. Also, χ1(gp) ≡ χ1(g)
(mod p), a contradiction. ��
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Let G be a finite group. The prime graph of G, denoted by 
(G), is a graph whose
vertices are the prime divisors of |G| and two vertices p, q are adjacent if and only ifG
contains an element of order pq. We denote the number of the connected components
of 
(G) by com(G).

Theorem 3.13 ([8]) If G is solvable with more than two prime graph components,
then G is either Frobenius or 2-Frobenius and G has exactly two components, one of
which consists of the primes dividing the lower Frobenius complement.

Lemma 3.14 Let Z(G) �= 1 and Ḡ = G/Z(G). If k �= 2 is even, then the prime graph
of Ḡ is disconnected.

Proof Since |Ḡ| = 4(k−1)k(k+1), then the result follows by Lemmas 2.2 and 3.12.
��

Proposition 3.15 Let Z(G) �= 1 and Ḡ = G/Z(G). If k �= 2 is even, then Ḡ is not a
Frobenius group.

Proof Let Ḡ be a Frobenius group with kernel H and complement C . By [15, Lemma
5], 
(H) and 
(C) are the connected components of 
(Ḡ), and 
(H) is complete.
Also, by Lemma 2.2, if k + 1 | |H |, then k − 1 � |H | and conversely. Therefore, we
consider the following cases.

Case 1: If 3 � k + 1, then by Lemma 2.2 and the fact that 
(H) is complete; if
k + 1 | |H |, then k − 1 � |H | and conversely. Also, 
(C) is connected, and by Lemma
3.12, prime divisors of k are not adjacent to the prime divisors of k + 1. Hence, one
of the following holds:

(a) |H | = 4k(k − 1) and |C | = k + 1;
(b) |H | = k + 1 and |C | = 4k(k − 1).

Suppose (a) holds. Then, k = 2m and k−1 = 3l form, l ∈ N. However, |C | | |H |−1.
Hence, k = 6, a contradiction. Now, suppose (b) is true. Hence, 4k(k − 1) | k, a
contradiction.

Case 2: If 3 � k − 1, then by Lemma 3.12, one of the following holds:

(a) |H | = 4k(k + 1) and |C | = k − 1;
(b) |H | = k − 1 and |C | = 4k(k + 1).

Suppose (a) holds. Then, k = 2m and k+1 = 3l form, l ∈ N. However, |C | | |H |−1;
hence, k = 8 and |H | = 25.32. Also, H is nilpotent. Let P be the Sylow 3-subgroup of
H . Since P is a characteristic subgroup of H and H is normal in Ḡ, then P is normal
in Ḡ. Also, P is abelian. However, by Lemma 3.11, χ(z) = 1 for 1 �= z ∈ Z(G) and
χ1(1) = k+1. Hence, 9 = χ1(1) | |Ḡ : P|, a contradiction. Now, suppose (b) is true.
Then, 4k(k + 1) | k − 2, a contradiction. ��
Proposition 3.16 Let Z(G) �= 1 and Ḡ = G/Z(G). If k �= 2 is even, then Ḡ is not a
2-Frobenius group.

Proof Suppose that Ḡ is a 2-Frobenius group. Then, Ḡ = ABC , where A and AB are
normal subgroups of Ḡ, and AB and BC are Frobenius groups with kernels A and
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B, respectively. By [15, Lemma 7], 
(B) and 
(AC) are connected components of

(Ḡ) and are both complete graphs and B is cyclic of odd order. If 3 | k, then by
Lemmas 2.2 and 3.12, we get that com(Ḡ) ≥ 3, a contradiction. Thus, 3 | k + 1 or
3 | k − 1.

Let 3 | k + 1. Then, |AC | = 4k(k + 1) and |B| = k − 1, because B is cyclic
of odd order. Since 
(AC) is complete, k = 2m and k + 1 = 3s for m, s ∈ N.
Therefore, k = 8 and |B| = 7. Also, since AB is a Frobenius group with kernel A and
complement B, we have |B| | |A|−1. Moreover, BC is a Frobenius group with kernel
B and complement C , so |C | | |B| − 1 = 6. Also, A is nilpotent, and if 3 divides
|A|, then A has a normal Sylow 3-subgroup Q of order 3 or 9, and QB is a Frobenius
group, which is a contradiction, since 7 does not divide 3−1 or 9−1. Thus, 9 divides
|C |; this is a contradiction, since |C | must divide 6.

Let 3 | k − 1. Then, |AC | = 4k(k − 1) and |B| = k + 1, because B is cyclic of
odd order. Since 
(AC) is complete, k = 2m and k − 1 = 3s for m, s ∈ N. Hence,
we have m = 2 and k = 4. Therefore, |B| = 5. Also, A is nilpotent, and if 3 divides
|A|, then A has normal Sylow 3-subgroup Q of order 3 and QB is a Frobenius group
which is a contradiction since 5 does not divide 3 − 1. Thus, 3 divides |C |. However,
since BC is a Frobenius group, this would imply that 3 divides 5 − 1 which is also a
contradiction. ��
Lemma 3.17 Let G be a solvable group and Z(G) �= 1. If k �= 2, then k = 2l − 1 for
some integer l ≥ 2. Moreover, if l = 2, then G ∼= (((C2 × D8) : C2) : C3) : C2.

Proof It follows from Corollary 3.13, Lemma 3.14, Proposition 3.15, and Proposition
3.16 that k is odd. If k = 3, then k = 22 − 1, and by Remark 2.6, |G| = 192. Using
GAP [17] shows that G ∼= (((C2 × D8) : C2) : C3) : C2. Therefore, we may assume
k ≥ 5. By Lemma 3.11(1), we have χ(z) �= 1 and Theorem 3.9 shows thatχ(z) = −1.
Now, it follows from Lemma 3.11(2) that k − 1 and k are not 2-powers. On the other
hand, from Corollary 2.5 one of the integers n − 3 = 2(k − 1), n − 1 = 2k, or
n+1 = 2(k+1) must be a 2-power. Therefore, we conclude that k+1 = 2l for some
l ≥ 3, and thus, k = 2l − 1. ��
Lemma 3.18 Let Z(G) �= 1, Ḡ = G/Z(G), and k be odd. If p �= 3 is an odd prime
divisor of k, then there is no element of order 2p in Ḡ.

Proof Since Z(Ḡ) = 1, it follows from Lemma 3.8 that χ1(g) ∈ {0,±1, 2, 3} for
every g ∈ Ḡ − {1}. Also, by Lemma 3.11, χ(z) = −1 for 1 �= z ∈ Z(G), and thus,
χ1(1) = k. Suppose there exists g ∈ Ḡ, such that o(g) = 2p, where p �= 3 is an
odd prime divisor of k. Then, we have k = χ1(1) = χ1(g2p) ≡ χ1(g2) (mod p).
Hence, χ1(g2) = 0. Also, χ1(g2) ≡ χ1(g) (mod 2). Hence, χ1(g) ∈ {0, 2}. Now,
k = χ1(g2p) ≡ χ1(gp) (mod 2). However, k is odd; therefore, χ1(gp) ∈ {±1, 3}.
Since χ1(gp) ≡ χ1(g) (mod p), we have a contradiction. ��
Lemma 3.19 Let Z(G) �= 1 and Ḡ = G/Z(G). If k is odd and 3 � k, then the prime
graph of Ḡ is disconnected.

Proof The result follows from Lemma 2.2 and Lemma 3.18. ��
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Theorem 3.20 Let G be a solvable group and Z(G) �= 1. If k �= 2, 3, then Z(G) is
the unique minimal normal subgroup of G.

Proof Let N be a minimal normal subgroup of G, such that N �= Z(G). By Lemma
3.6 and Lemma 3.11, (χ1(1), χ2(1)) = (k, k+1). Since N is an elementary abelian p-
group, it follows from [10,Theorem 6.15] that χi (1) | |G : N | for i = 1, 2. Therefore,
|N | | 8(k − 1).

If p �= 2, then p|k−1 and p|n−3. Then, by Lemma 2.2, χ(x) = 3 for x ∈ N \{1}.
We have χ(x) + χ(xz) = 2χ1(x) for each x ∈ G \ Z(G); thus, L(χ1)N\{1} ⊆ {1, 2, 3}.
By Clifford’s theorem, (χ1)N (x) = e

∑
1≤i≤t θi (x) where e is an integer. We put∑

1≤i≤t θi (x) = λ. If (χ1)N (x) = 1, then λ = 1/e. However, λ is an algebraic integer.
Therefore, e = 1. Since N is abelian, we have k = χ1(1) = ∑

1≤i≤t θi (1) = t .
Thus, N has at least k distinct irreducible characters. Hence, |N | ≥ k. However,
|N | | k − 1, a contradiction. Hence, L(χ1)N\{1} ⊆ {2, 3}. If (χ1)N (x) = 2, λ = 2/e,
then e = 1 or 2. A similar argument as above shows that e �= 1. Therefore, e = 2
and k = χ1(1) = 2

∑
1≤i≤t θi (1) = 2t , a contradiction. Thus, (χ1)N (x) = 3 for

x ∈ N \ {1}. However, |N | | �l∈Lχ1
(χ1(1) − l), where Lχ1 = {χ1(x) | 1 �= x ∈ N }.

Therefore, |N | | (χ1(1) − 3) = k − 3, a contradiction, because |N | | k − 1 and
|N | is odd. Thus, p = 2. Also, k − 1 is even and by Lemma 3.11, 4 � k − 1;
hence, |N | | 16. Suppose that |N | = 16. Since N is minimal normal subgroup of G,
Z(G) ∩ N = {1}. Therefore, Z(G)N = Z(G) × N and so |Z(G)N | = 32. However,
k + 1 = χ2(1) | |G : Z(G)N |, a contradiction. Thus, |N | | 8.

Since k = χ1(1) = e
∑

1≤i≤t θi (1) = et , it follows that e and t are odd. Thus,
χ1(x) �= 0 for each x ∈ N .

If e = 1, then k = χ1(1) = t . Hence, N has at least k distinct irreducible characters.
However, |N | | 8 and and by Lemma 3.17, k + 1 is 2-power; therefore, k = 7 and
|G| = 2688. Then, |Ḡ| = 1344. Note that Ḡ is solvable, and by Lemma 3.5, Ḡ is not
nilpotent. Also, χ1 is faithful in Ḡ and χ1(1) = k = 7. Using GAP [17] shows that
there is no group with the mentioned properties.

If e �= 1, then χ1(x) �= ±1 for each x ∈ N . If χ1(x) = 2 for some x ∈ N , then
e = 2, a contradiction. Thus, χ1(x) = 3 for each x ∈ N \ {1} and e = 3. Thus,
t = k/3, 3 | k and |N | | χ1(1) − 3 = k − 3 . Hence, N has at least k/3 distinct
irreducible characters. Thus, |N | ≥ k/3. Also, |N | | 8 and k+1 is 2-power; therefore,
k = 3, a contradiction. ��
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