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Preface

This monograph is an expanded version of lecture notes I have used over the
past eight years. I first taught this subject at Harvard's Department of Statistics
1981-82 when a version of these notes were issued. I've subsequently taught the
subject at Stanford in 1983 and 1986. I've also delivered lecture series on this
material at Ohio State and at St. Flour.

This means that I've had the benefit of dozens of critics and proofreaders­
the graduate students and faculty who sat in. Jim Fill, Arunas Rudvalis and
Hansmartin Zeuner were particularly helpful.

Four students went on to write theses in the subject - Douglas Critchlow,
Peter Matthews, Andy Greenhalgh and Dan Rockmore. Their ideas have certainly
enriched the present version.

I've benefited from being able to quote from unpublished thesis work of Peter
Fortini, Arthur Silverberg and Joe Verducci. Andre Broder and Jim Reeds have
generously shared card shuffling ideas which appear here for the first time.

Brad Efron and Charles Stein help keep me aligned in the delicate balance
between honest application and honest proof. Richard Stanley seems ever willing
to translate from algebraic combinatorics into English.

My co-authors David Freedman, Ron Graham, Colin Mallows and Laurie
Smith helped debug numerous arguments and kept writing "our" papers while I
was finishing this project.

David Aldous and I have been talking about random walk on groups for a
long time. Our ideas are so intermingled, that I've found it impossible to give
him his fair share of credit.

My largest debt is to Mehrdad Shahshahani who taught me group represen­
tations over innumerable cups of coffee. Our conversations have been woven into
this book. I hope some of his patience, enthusiasm, and love of mathematics
comes through.

Shanti Gupta kept patiently prodding and praising this work, and finally sees
it's finished. Marie Sheenan typed the first version. My secretary Karola Decleve
has done such a great job of taking care of me and this manuscript that words
fail me. Norma Lucas ''IEX-ed' this final version beautifully.

A major limitation of the present version is that it doesn't develop the sta­
tistical end of things through a large complex example. I have done this in my
Wald lectures Diaconis (1989). Thoughts like this kept delaying things. As the
reader will see, there are endless places where "someone should develop a theory
that makes sense of this" or try it out, or at least state an honest theorem, or

v
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.... It's time to stop. After all, they're only lecture notes.

PERSI DIACONIS
Stanford, February 1987



Chapter 1. Introduction

This monograph delves into the uses of group theory, particularly non­
commutative Fourier analysis, in probability and statistics. It presents useful
tools for applied problems and develops familiarity with one of the most active
areas in modern mathematics.

Groups arise naturally in applied problems. For instance, consider 500 people
asked to rank 5 brands of chocolate chip cookies. The rankings can be treated
as permutations of 5 objects, leading to a function on the group of permutations
Ss (how many people choose ranking 1r). Group theorists have developed natural
bases for the functions on the permutation group. Data can be analyzed in these
bases. The "low order" coefficients have simple interpretations such as "how many
people ranked item i in position j." Higher order terms also have interpretations
and the benefit of being orthogonal to lower order terms. The theory developed
includes the usual spectral analysis of time series and the analysis of variance
under one umbrella.

The second half of this monograph develops such techniques and applies them
to partially ranked data, and data with values in homogeneous spaces such as the
circle and sphere. Three classes of techniques are suggested - techniques based
on metrics (Chapter 6), techniques based on direct examination of the coefficients
in a Fourier expansion (spectral analysis, Chapter 8), and techniques based on
building probability models (Chapter 9).

All of these techniques lean heavily on the tools and language of group rep­
resentations. These tools are developed from first principles in Chapter 2. For­
tunately, there is a lovely accessible little book - Serre's Linear Representations
of Finite Groups - to lean on. The first third of this may be read while learning
the material.

Classically, probability precedes statistics, a path followed here. Chapters 3
and 4 are devoted to concrete probability problems. These serve as motivation
for the group theory and as a challenging research area. Many of the problems
have the following flavor: how many times must a deck of cards be shuffled to
bring it close to random? Repeated shuffling is modeled as repeatedly convolving
a fixed probability on the symmetric group. As usual, the Fourier transform
turns the analysis of convolutions into the analysis of products. This can lead to
very explicit results as described in Chapter 3. Chapter 4 develops some "pure
probability" tools - the methods of coupling and stopping times - for random walk
problems.

Both card shuffling and data analysis of permutations require detailed knowl­
edge of the representation theory of the symmetric group. This is developed in
Chapter 7. Again, a friendly, short book is available: G. D. James' Representation

1



2 Chapter IB

Theory of the Symmetric Group. This is also must reading for a full appreciation
of the issues encountered.

Most of the chapters begin with examples and a self-contained introduction.
In particular, it is possible to read the statistically oriented Chapters 5 and 6 as
a lead in to the theory of Chapters 2 and 7.

A BRIEF ANNOTATED BIBLIOGRAPHY

Group representations is one of the most active areas of modern mathematics.
There is a vast literature. Basic supplements are:

J. P. Serre (1977). Linear Representation of Finite Groups. Springer-Verlag: New
York.

G. D. James (1978). Representation Theory of the Symmetric Groups. Springer
Lecture Notes in Mathematics 682, Springer-Verlag: New York.

There is however the inevitable tendency to browse. I have found the follow­
ing sources particularly interesting. Journal articles are referenced in the body of
the text as needed.

ELEMENTARY GROUP THEORY

Herstein, I. N. (1975). Topics in Algebra, 2nd edition. Wiley: New York.
- The classic, best undergraduate text.

Rotman, J. (1973). The Theory of Groups: An Introduction, 2nd edition. Allyn
and Bacon: Boston.
- Contains much hard to find at this level; the extension problem, generators
and relations, and the word problem.

Suzuki, M. (1982). Group Theory I, 11. Springer-Verlag: New York.
- Very complete, readable treatise on group theory.

BACKGROUND, HISTORY, CONNECTIONS WITH LIFE AND THE
REST OF MATHEMATICS.

Weyl, H. (1950). Symmetry. Princeton University Press: New Jersey.
- A wonderful introduction to symmetry.

Mackey, G. (1978). Unitary Group Representations in Physics, Probability, and
Number Theory. BenjaminfCummings.

Mackey, G. (1980). Harmonic analysis as the exploitation of symmetry. Bull.
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Amer. Math. Soc. 3,543-697.
- A historical survey.

GENERAL REFERENCES

Hewitt, E. and Ross, K. A. (1963, 1970). Abstract Harmonic Analysis, Vols. I, 11.
Springer-Verlag.
- These are encyclopedias on representation theory of abelian and compact
groups. The authors are analysts. These books contain hundreds of carefully
worked out examples.

Kirillov, A. A. (1976). Elements of the Theory of Representations.
- A fancy, very well done introduction to all of the tools of the theory. Basically
a set of terrific, hard exercises. See, for example, Problem 4, Part 1, Section
2; Problem 8, Part 1, Section 3; Example 16.1, Part 3. Part 2 is readable on
its own and filled with nice examples.

Pontrijagin, I{. S. (1966). Topological Groups. Gordon and Breach.
- A chatty, detailed, friendly introduction to infinite groups. Particularly nice
introduction to Lie theory.

Naimark, M. A. and Stern, D. I. (1982). Theory of Group Representations.
Springer-Verlag: New York. Similar to Serre (1977) but also does continu­
ous groups.

GROUP THEORY IN PROBABILITY AND STATISTICS.

Grenander, U. (1963). Probability on Algebraic Structures. Wiley: New York.
- Fine, readable introduction in "our language." Lots of interesting examples.

Hannen, E. J. (1965). Group Representations and Applied Probability. Methuen.
Also in Jour. Appl. Probe 2, 1-68.
- A pioneering work, full of interesting ideas.

Heyer, H. (1977). Probability Measures on Locally Compact Groups. Springer­
Verlag: Berlin.

Heyer has also edited splendid symposia on probability on groups. These
are a fine way to find out what the latest research is. The last 3 are in Springer
Lecture Notes in Math nos. 928, 1064, 1210.

SPECIFIC GROUPS.

Curtis, C. W. and Reiner, I. (1982). Representation of Finite Groups and Asso-
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ciative Algebra, 2nd edition. Wiley: New York.
- The best book on the subject. Friendly, complete, long.

Littlewood, D. E. (1958). The Theory of Group Characters, 2nd edition. Oxford.
- "Old-fashioned" representation theory of the symmetric group.

James, G. D. and Kerber, A. (1981). The Representation Theory of the Symmetric
Group. Addison-Wesley, Reading, Massachusetts.
- A much longer version of our basic text. Contains much else of interest.



Chapter 2. Basics of Representations and Characters

A. DEFINITIONS AND EXAMPLES.

We start with the notion of a group: a set G with an associative multiplication
s, t --t st, an identity id, and inverses S-.-l. A representation p of G assigns an
invertible matrix p(s) to each s E G in such a way that the matrix assigned to the
product of two elements is the product of the matrices assigned to each element:
p(st) == p(s)p(t). This implies that p(id)== I, p(s-l) = p(S)-l. The matrices we
work with are all invertible and are considered over the real or complex numbers.
We thus regard p as a homomorphism from G to GL(V) - the linear maps on a
vector space V. The dimension of V is denoted dp and called the dimension of p.

If W is a subspace of V stable under G (i.e., p(s)W C W for all s E G),
then p restricted to W gives a subrepresentation. Of course the zero subspace
and the subspace W == V are trivial subrepresentations. If the representation p
admits no non-trivial subrepresentation, then p is called irreducible. Before going
on, let us consider an example.

Example. Sn the permutation group on n letters.
This is the group Sn of 1- 1 mappings from a finite set into itself; we ,viII use

the notation [1I"ll) 11"(2) • • • 1I"(n)]' Here are three different representations. There
are others.
(a) The trivial representation is I-dimensional. It assigns each permutation to

the identity map p(tr)x == x.
(b) The alternating representation is also I-dimensional. To define it, recall the

sign of a permutation tr is +1 if 1r can be written as a product or an even
even # of factors

A



6 Chapter 2A

Under the permutation representation this last equation transforms into

Observe that the permutation representation has subspaces that are sent into
themselves under the action of the group: the I-dimensional space spanned by el +
· . · + en, and its complement W = {f E Rn: ~Xi = O} both have this property.
A representation p is irreducible if there is no non-trivial subspace W C V with
p(s)W C W for all s E G. Irreducible representations are the basic building blocks
of any representation, in the sense that any representation can be decomposed
into irreducible representations (Theorem 2 below). It turns out (Exercise 2.6
in Serre or "a useful fact" in 7-A below) that the restriction of the permutation
representation to W is an irreducible n - I-dimensional representation. For 83 ,

there are only three irreducible representations; the trivial, alternating, and 2­
dimensional representation (Corollary 2 of Proposition 5 below).

EXPLICIT COMPUTATION OF THE 2-DIMENSIONAL
REPRESENTATION OF 53

Let W = {x E R3: Xl + X2 + X3 = O}. Let WI = el - e2, W2 = e2 - e3.
Clearly Wi E W. They form a basis for W, for if v = xel + ye2 + ze3 E W, then
v = xel +ye2 +( -x-y)e3 = x(el-e2)+(x+y)(e2 -e3). In this case, it is easy to
argue that the restriction of the permutation representation to W is irreducible.
Let (x, y, z) be nonzero in W (suppose, say x =1= 0) and let W I be the span of this
vector. We want to show that WI is not a subrepresentation. Suppose it were.
Then, we would have (1, y', z') and so (y', 1, z') and so (1 - y', y~ - 1, 0) in Wl. If
y' f:. 1, then el - e2 and so e2 - e3 and el - e2 are in Wl. So W l = W. If y' = 1,
then (1, 1, -2) E Wl. Permuting the last two coordinates and subtracting shows
e2 - e3 and so el - e2 are in Wl , so Wl = W.

Next consider the action of 1r on this basis
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1r p(1r )Wt p( 1r )W2 p(1r)

id Wt W2 (~ ~)

(1 2) -Wt Wt + W2 ( ~1 ~ )
(2 3) Wl + W2 -W2 (i ~1)

(1 3) -W2 -Wl ( ~1 ~1 )

(1 2 3) -(Wl + W2) (~ -1)W2
-1

(1 3 2) -(Wt + W2) ( -1 ~ )Wl -1

CONVOLUTIONS AND FOURIER TRANSFORMS

Throughout we will use the notion of convolution and the Fourier transform.
Suppose P and Q are probabilities on a finite group G. Thus pes) 2:: 0, L;sP(s) =
1. By the convolution P *Q we mean the probability P *Q( s) == 'EtP(st-1 )Q( t) :
"first pick t from Q, then independently pick u from P and form the product ut."
Note that in general P * Q =1= Q * P. Let the order of C be denoted ICI. The
uniform distribution on Gis U(s) == l/IGI for all s E G. Observe that U *U == U
but this does not characterize U-the uniform distribution on any subgroup satisfies
this as well. However, U * P == U for any P and this characterizes U.

Let P be a probability on G. The Fourier transform of P at the representa­
tion p is the matrix

pep) == 'EsP(s)p(s).

The same definitions works for any function P. In Proposition 11, we will show
that as p ranges over irreducible representations, the matrices Pep) determine P.

EXERCISE 1. Let p be any representation. Show p7Q(p) == F(p)Q(p).

EXERCISE 2. Consider the following probability (random transpositions) on S3

P(id) == p, P(12) == P(13) == P(23) = (1 - p)/3.

Compute T(p) for the three irreducible representations of S3. (You'll learn some­
thing.)

B. THE BASIC THEOREMS.

This section follows Serre quite closely. In particular, the theorems are num­
bered to match Serre.
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Tlleorem 1. Let p: G ~ GL(V) be a linear representation of G in V and
let W be a subspace of V stable under G. Then there is a complement WO (so
V = W + Wo, W n WO = 0) stable under G.

Proof. Let <, >1 be a scalar product on V. Define a new inner product by
< u,V >= ~s < p(s)u, p(s)v >1. Then <,> is invariant: < p(s)u, p(s)v> = <
u, v > . The orthogonal complement of W in V serves as Wo. 0

Remark 1. We will say that the representation V splits into the direct sum of W
and WO and write V = W EB Wo. The importance of this decomposition cannot
be overemphasized. It means we can study the action of G on V by separately
studying the action of G on Wand Wo.

Remark 2. We have already seen a simple example: the decomposition of the
permutation representation of Sn. Here is a second example. Let Sn act on R2

by p(1r)(x, y) = sgn(1r)(x, y). The subspace W = {(x, y): x = y} is invariant.
Its complement, under the usual inner product, is WO = {(x, y): x = -y} is
also invariant. Here, the complement is not unique. For example, Woo == {(x, y) :
2x = -y} is also an invariant complement.

Remark 3. The proof of Theorem 1 uses the "averaging trick;" it is the standard
way to make a function of several variables invariant. The second most widely
used approach, defining < u,v >2= maxg < p(g)u, p(g)v >1, doesn't work here
since <, >2 is not still an inner product.

Remark 4. The invariance of the scalar product <, > means that if ei is chosen
as an orthonormal basis with respect to <, >, then < p(s)ei, p(s)ej > = bij .
It follows that the matrices p(s) are unitary. Thus, if ever we need to, ,ve may
assume our representations are unitary.

Remark 5. Theorem 1 is true for compact groups. It can fail for noncompact
groups. For example, take G = IR under addition. Take" V as the set of linear
polynomials ax + b. Define p(t)f(x) = f(x + t). The constants form a non-trivial
subspace with no invariant complement. Theorem 1 can also fail over a finite
field.

Return to the setting of Theorem 1 by induction we get:

Theorem 2. Every representation is a direct sum of irreducible representations.

There are two ways of taking two representations (p, V) and (TJ, W) of the
same group and making a new representation. The direct sum constructs the
vector space V EB W consisting of all pairs (v, w), v E V, w E W. The direct sum
representation p EB 1](s)(v, w) = (p( s )v, 1](s)w). This has dimension d p + dTJ and
clearly contains invariant subspaces equivalent to V and W.

The tensor product constructs a new vector space V ® W of dimension dpdTJ
which can be defined as the set of formal linear combinations v ® w subject to
the rules (avl + bV2) ® w = a(VI ® w) + b(v2 ® w) (and symmetrically). If VI,
..• , Va and W1, ••• , Wb are a basis for V and W, then Vi ® Wj is a basis for
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v 0 W. Alternatively, V 0 W can be regarded as the set of a by b matrices were
v 0 W has ij entry AifLj if v = :EAivi, W = :EJ.LjWj. The representation operates as
P ® 7](s)(v ® w) = p(s)v ® 7](s)w.

The explicit decomposition of tensor products into direct sums is a booming
business. New irreducible representations can be constructed from known ones
by tensoring and decomposing.

The notion of the character of a representation is extraordinarily useful. If P
is a representation, define Xp( s) = Tr p(s). This doesn't depend on the basis
chosen for V because the trace is basis free.

PROPOSITION 1. If X is the character of a representation P of degree d then

(1) X(id) = d; (2) X(S-I) = X(s)*; (3) X(tst- I
) = X(s).

Proof. (1) p(id) = id. (2) First p(sa) = I for a large enough. It follows that the
eigenvalues Ai of p(s) are roots of unity. Then, with * complex conjugation,

X(s)* = Tr p(s)* = ~Ai = ~l/Ai == Tr p(s)-I == Tr pes-I) = X(s-I).

(3) Tr(AB) = Tr(BA). o

PROPOSITION 2. Let PI : G --* GL(VI ) and P2 : G --* GL(V2) be representations
with characters Xl and X2· Then (1) the character of PI EB P2 is Xl + X2 and (2)
the character of PI 0 P2 is Xl · X2·

Proof. (1) Choose a basis so the matrix of PI EB P2 is given as (ti1 p~). (2) The
matrix of the linear map PI (s) 0 P2( s) is the tensor product of the matrices PI (s)
and P2(S). This has diagonal entries p~lil(S)p~2j2(S). 0

Consider two representations P based on V and T based on W. They are called
equivalent if there is a 1-1 linear map f from V onto W such that T s 0 f == fops.
For example, consider the following two representations of the symmetric group:
p, the I-dimensional trivial representation (so V = IR and p(7r)x = x) and T, the
restriction of the n-dimensional permutation representation to the subspace W
spanned by the vector el +···+en. Here r( 1r )x(et +···+ en) = x(et +···+en).
The isomorphism can be taken as I( x) = x(el + · · .+ en).

The following "lemma" is one of the most used elementary tools.

SCHUR'S LEMMA

Let pI: G --* GL(VI ) and p2 : G ~ GL(V2 ) be two irreducible representa­
tions of G, and let f be a linear map of VI into V2 such that

p~ 0 f = f 0 p~ for all s E G.

Then
(1) If pI and p2 are not equivalent, we have f = o.
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(2) If VI == V2 and pI == p2, f is a constant times the identity.

Proof. Observe that the kernel and image of f are both invariant subspaces. For
the kernel, if f(v) == 0, then fp~(v) == p;j(v) == 0, so p~(v) is in the kernel. For
the image, if w = f( v), then p;(w) = f p~(v) is in the image too. By irreducibility,
both kernel and image are trivial or the whole space. To prove (1) suppose f f:. o.
Then Ker = 0, image == V2 and / is an isomorphism. To prove (2) suppose / =I 0
(if / = 0 the result is true). Then / has a non-zero eigenvalue A. The map
fl == / - AI satisfies p;/1 == /1 p~ and has a non-trivial kernel, so /1 == O. 0

EXERCISE 3. Recall that the uniform distribution is defined by U(s) = l/IGI,
where IGI is the order of the group G. Then at the trivial representation fJ(p) == 1
and at any non-trivial irreducible representation fJ(p) = o.

There are a number of useful ways of rewriting Schur's lemma. Let IGI be
the order of G.

COROLLARY 1. Let h be any linear map of VI into V2 • Let

ho 1 ~( 2)-lh 1== fGT~ Pt Pt·

Then
(1) If pI and p2 are not equivalent, hO == O.
(2) If VI == V2 and pI == p2, then h° is a constant times the identity, the constant
being Trh/d p •

P f F 2 hO 1 - 1 ~ 2 h 1 - 1 ~( 2 )-1 h 1 - hO Ifroo. or any s, Ps-l Ps - TGT~Ps-lt-l Pts - TGT~ Pts Pts - ·
pI and p2 are not isomorphic then hO = 0 by part (1) of Schur's lemma. If
VI == v2 , PI == P2 == p, then by part (2), hO == cl. Take the trace of both sides
and solve for c. 0

The object of the next rewriting of Schur's lemma is to show that the matrix
entries of the irreducible representations form an orthogonal basis for all functions
on the group G. For compact groups, this sometimes is called the Peter-Weyl
theorem.

Suppose pI and p2 are given in matrix form

The linear maps hand hO are defined by matrices Xi2 i
1

and X?2 i l. We have

In case (1), hO == 0 for all choices of h. This can only happen if the coefficients of
x i2il are all zero. This gives
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COROLLARY 2. In case (1)

COROLLARY 3. In case (2)

if i 1 == i 2 and j1 == j2

otherwise.

Since h is arbitrary, we get to equate coefficients of x j2jl • o

ORTHOGONALITY RELATIONS FOR CHARACTERS.

Corollaries 2 and 3 above assume a neat form if the representations involved
are unitary, so that r(s)* == r(S-l) where * indicates conjugate transpose. Re­
mark 4 to Theorem 1 implies this can always be assumed without loss of generality.
Introduce the usual inner product on functions

(4)I,,p) = I~I I;4>( t)"p( t) *.

With this inner product, Corollaries 2 and 3 say that the matrix entries of the
unitary irreducible representations are orthogonal as functions from G into C.

Theorem 3. The characters of irreducible representations are orthonormal.

Proof. Let P be irreducible with character X and given in matrix form by
Pt == rij(t). So X(t) == Erii(t), (xix) == Ei,j(riifrjj). From Corollary 3 above
(riilrjj) == d1 Dij. If X, X' are characters of non-equivalent representations, then

p

in obvious notation

(xIx') = I)riilrjj)'
ij

Corollary 2 shows each term (riilrjj) == o. o

Theorem 4. Let p, V be a representation of G with character cP. Suppose V
decomposes into a direct sum of irreducible representations:



12 Chapter 2C

Then, if W is an irreducible representation with character X, the number of W i

equivalent to W equals (1)1 X).

Proof. Let Xi be the character of W i • By Proposition 2,1> = Xl + · · ·+ Xk, and
(xilx) is 0 or 1 as Wi is not, or is, equivalent to W. 0

COROLLARY 1. The number of Wi isomorphic to W does not depend on the
decomposition (e.g., the basis chosen).

Proof. (1)lx) does not depend on the decomposition. o

COROLLARY 2. Two representations with the same character are equivalent.

Proof. They each contain the same irreducible representations the same number
of times. 0

We often write V = ml W I EB · · · Et) m n W n to denote that V contains W i mi

times. Observe that (1)11>) = ~mr. This sum equals 1 if and only if 1> is the
character of an irreducible representation.

Theorem 5. If 1> is the character of a representation then (1)11>) is a positive
integer and equals 1 if and only if the representation is irreducible.

EXERCISE 4. Do exercises 2.5 and 2.6 in Serre. Use 2.6 to prove that the n - 1­
dimensional part of the n-dimensional permutation representation is irreducible.
(Another proof follows from "A useful fact" in Chapter 7-A.)

c. DECOMPOSITION OF THE REGULAR REPRESENTATION

AND FOURIER INVERSION.

Let the irreducible characters be labelled Xi. Suppose their degrees are die
The regular representation is based on a vector space with basis {e s}, sEC.
Define ps(et) = est. Observe that the underlying vector space can be identified
with the set of all functions on C.

PROPOSITION 5. The character rG of the regular representation is given by

TG(l) = ICI
TG(S) = 0, S =11.

Proof. PI(es) = es so Tr PI = ICI. For s f: 1, pset = est f; et so all diagonal
entries of the matrix for Ps are zero. 0

COROLLARY 1. Every irreducible representation W i is contained in the regular
representation with multiplicity equal to its degree.

Proof. The number in question is

(rGIXi) = I~I L rG(s)xi(s) = Xi(l) = di .
sEG

o
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Remark. Thus, in particular, there are only finitely many irreducible represen­
tations.

COROLLARY 2.
(a) The degrees di satisfy ~d; == fGf.
(b) If s E G is different from 1, ~diXi(S) == o.
Proof. By Corollary 1, Ta(S) == ~diXi(S). For (a) take s == 1, for (b) take any
other s. 0

In light of remark 4 to Theorem 1, we may always choose a basis so the
matrices Tij( s) are unitary.

COROLLARY 3. The matrix entries of the unitary irreducible representations
form an orthogonal basis for the set of all functions on G.

Proof. We already know the matrix entries are all orthogonal as functions.
There are ~d; == IGI of them, and this is the dimension of the vector space of all
functions. 0

In practice it is useful to have an explicit formula expressing a function in
this basis. The following two results will be in constant use.

PROPOSITION.

(a) Fourier Inversion Theorem. Let f be a function on G, then

(b) Plancherel Formula. Let f and h be functions on G, then

-1 1 ,.,.
'L.f(S )h(s) = ICI'L.di Tr(f(pi)h(pi)).

Proof. Part (a). Both sides are linear in f so it is sufficient to check the formula
for f(s) == bst . Then !(Pi) == pi(t), and the right side equals

1 -1
jGf'L.diXi(S t).

The result follows from Corollary 2.

Part (b). Both sides are linear in f; taking f(s) == bst, we must show

This was proved in part (a). o
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Remark 1. The inversion theorem shows that the transforms of f at the irre­
ducible representations determine f. It reduces to the well known discrete Fourier
inversion theorem when G == Zn.

Remark 2. The right hand side of the inversion theorem gives an explicit recipe
for expressing a function f as a linear combination of the basis functions of Corol­
lary 3. The right hand side being precisely the required linear combination as can
be seen by expanding out the trace.

Remark 3. The Plancherel Formula says, as usual, that the inner product
of two functions equals the "inner product" of their transforms. For real func­
tions and unitary representations it can be rewritten as "£f( s)h(s) == Ibl"£di

Tr(h(pi)j(pi)*). The theorem is surprisingly useful.

EXERCISE 5. The following problem comes up in investigating the distribution
of how close two randomly chosen group elements are. Let P be a probability on
G. Define pes) == P(s-l). Show that U == P * P if and only if P is uniform.

EXERCISE 6. Let H be the eight element group of quarternions {±1, ±i, ±j, ±k}
i

with i2 == j2 = k2 == -1 and multiplication given by /~. so ij == k, ji = -k,
k+--J

etc. How many irreducible representations are there? What are their degrees?
Give an explicit construction of all of them. Show that if P is a probability on H
such that P *P == U, then P == U. Hint: See Diaconis and Shahshahani (1986b).

D. NUMBER OF IRREDUCIBLE REPRESENTATIONS.

Conjugacy is a useful equivalence relation on groups: sand t are called
conjugate if usu-1 = t for some u. This is an equivalence relation and splits
the group into conjugacy classes. In an Abelian group, each class has only one
element. In non-Abelian groups, the definition lumps together sizable numbers
of elements. For matrix groups, the classification of matrices up to conjugacy is
the problem of "canonical forms." For the permutation group, Sn, there is one
conjugacy class for each partition of n: thus the identity forms a class (always),
the transpositions {(ij)} form a class, the 3 cycles {(ijk)}, products of 2-2 cy­
cles {(ij)(k£)}, and so on. The reason is the following formula for computing
the conjugate: if'TJ, written in cycle notation is (a ... b)(c ... d) ... (e ... f), then
1r'TJ1r-1 == (1r(a) ... 1r(b))(1r(c) ... 1r(d)) .. . (1r(e) .. .1r(f)). It follows that two per­
mutations with the same cycle lengths are conjugate, so there is one conjugacy
class for each partition of n.

A function f on G that is constant on conjugacy classes is called a class
function.

PROPOSITION 6. Let f be a class function on G. Let p: G ~ GL(V) be an
irreducible representation of G. Then j(p) == AI with
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Proof. Psl(p)p;l = ~f( t)p( 8 )p(t)p(8-1 ) = ~f( t)p(sts-1 ) = l(p). So, by part 2
of Schur's lemma l(p) = AI. Take traces of both sides and solve for A. 0

Remark. Sometimes in random walk problems, the probability used is constant
on conjugacy classes. An example is the walk generated by random transpositions:
this puts mass I/n on the class of {id} and 2/n2 on {(id)}. Proposition 6 says
that the Fourier transform j(p) is a constant times the identity. So P*k(p) = AkI
and there is every possibility of a careful analysis of the rate of convergence. See
Chapter 3-D.

EXERCISE 7. Show that the convolution of two class functions is again a class
function. Show that f is a class function if and only if f *h == h*f for all functions
h.

Theorem 6. The characters of the irreducible representations: Xl, ... , Xh form
an orthonormal basis for the class functions.

Proof. Proposition 1 shows that characters are class functions and Theorem 3
shows that they are orthonormal. It remains to show there are enough. Suppose
(flxt) == 0, for f a class function. Then Proposition 6 gives l(p) == 0 for every
irreducible p and the inversion theorem gives f == O. 0

Tlleorem 7. The number of irreducible representations equals the number of
conjugacy classes.

Proof Theorem 6 gives the number h of irreducible representations as the
dimension of the space of class functions. Clearly, a class function can be defined
to have an arbitrary value on each conjugacy class, so the dimension of the class
function equals the number of classes. 0

Theorem 8. The following properties are equivalent
(1) G is Abelian.
(2) All irreducible representations of G have degree 1.

Proof We have ~d~ == IGI. If G is Abelian, then there are IGI conjugacy classes,
and so G terms in the sum, each of which must be 1. If all dp == 1, then there
must be IGI conjugacy classes, so for each s, t, sts- 1 == t, or G is Abelian. 0

Example. The irreducible representations of Zn - the integers mod n.
This is an Abelian group, so all irreducible representations have degree 1.

Any p is determined by the image of 1: p(k) == p(l)k, and p(l)n == 1, so p(1)
must be an nth root of unity. There are n such: e21rij/n. Each gives an ir­
reducible representation: pj(k) == e21rijk/n (any I-dimensional representation is
irreducible). They are in-equivalent, since the characters are all distinct (not al­
lowed) or pI (k) == p2 (k). The Fourier transform is the well known discrete Fourier
transform and the inversion theorem translates to the familiar result: If f is a
function on Zn, and l(j) == ~kf(k)e21rijk/n, then f(k) = ~~jj(j)e-21rijk/n.
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E. PRODUCT OF GROUPS.

If G I and G2 are groups, their product is the set of pairs (91,92) with mul­
tiplication defined coordinate-wise. The following considerations show that the
representation theory of the product is determined by the representation theory
of each factor.

Let pI: G1 ~ GL(V1 ) and p2: G2 ~ GL(V2) be representations. Define
pI 0 p2: GI X G2~ GL(VI 0 V2) by

pI ® Pts,t)(VI ® V2) = p~(VI) ® p~(V2).

This is a representation with character Xl (s) · X2 (t).

Theorem 9.
(1) If pI and p2 are irreducible, then pI ® p2 is irreducible.
(2) Each irreducible representation of G I X G2 is equivalent to a representation
pI 0 p2 1vhere pi is an irreducible representation of G i •

Proof.
(1) (xllxl) = (x2Ix2) = 1, but the norm of the character of PI ® P2 is

IGIIIG21~Xl(S)X2(t)XI(S)*X2(t)* = (xllxl)·(X2Ix2) = 1. So Theorem 5 gives
irreducibility.

(2) The characters of the product representation are of the form Xl · X2. It is
enough to show these form a basis for the class functions on G I X G2 • Since
they are all characters of irreducible representations, they are orthonorlnal,
so it must be proved that they are it all of the possible characters. If f( s, t)
is a class function orthogonal to all XI(S)X2(t), then

Then for each t, ~f(s, t)XI(S)* = 0, so f(s, t) = 0 for each t. o

EXERCISE 8. Compute all the irreducible representations of Z~, explicitly.
We now leave Serre to get to applications, omitting the very important topic

of induced representations. The most relevant material is Section 3.3, Chapter 7,
and Sections 8.1,8.2. A bit of it is developed here in Chapter 3-F.



Chapter 3. Random Walks on Groups

A. EXAMPLES

A fair number of real world problems lead to random walks on groups. This
section contains examples. It is followed by more explicit mathematical formula­
tions and computations.

1. RANDOM WALK ON THE CIRCLE AND RANDOM NUMBER GENERATION

Think of Zp (the integers mod p) as p points wrapped around a discrete
circle. The simplest random walk is a particle that moves left or right, each with
probability t. We can ask: how many steps does it take the particle to reach a
given site? How many steps does it take the particle to hit every site? After how
many steps is the distribution of the particle close to random? In Section C, we
show that the answer to all of these questions is about p2.

A class of related problems arises in computer generation of pseudo random
numbers based on the recurrence X k+l = aXk + b(mod p) where p is a fixed
number (often 232 or the prime 231 - 1) and a and b are chosen so that the
sequence X o = 0, Xl, X 2 , ••• , has properties resembling a random sequence. An
extensive discussion of these matters is in Knuth (1981).

Of course, the sequence X k is deterministic and exhibits many regular as­
pects. To increase randomness several different generators may be combined or
"shuffled." One way of shuffling is based on the recurrence X k+1 = akXk + bk
(mod p) where (ak' bk) might be the output of another generator or might be the
result of a "true random" source as produced by electrical or radioactive noise.
We will study how a small amount of randomness for a and b spreads out to
randomness for the sequence X k •

If ak == 1 and bk takes values ±1 with probability t, we have a simple random
walk. If ak =1= 1 is fixed but nonrandom, the resulting process can be analyzed by
using Fourier analysis on Zp. In Section C we show that if ak == 2, then about
log p loglog p steps are enough to force the distribution of Xk to be close to
uniform (with bk taking values 0, ±1 uniformly). This is a great deal faster than
the p2 steps required when ak == 1. If ak == 3, then log p steps are enough.

What if ak is random? Then it is natural to study the problem as a random
walk on Ap - the affine group mod p. This is the set of pairs (a, b) with a, b E
Zp, a ~ 0, gcd(a, p) = 1. Multiplication is defined by

(a,b)(c,d) = (ac, ad +b).

Some results are in Example 4 of Section C, but many simple variants are unsolved.

17
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A different group arises when considering the second order recurrence Xk+l =
akXk+bkXk-l (mod p) with a and b random. It is natural to define Yk = (x:~),

then

This leads to considering a product of random matrices, and so to a random walk
on GL2(Zp). See Diaconis and Shahshahani (1986a) for some results.

2. CARD SHUFFLING

How many times must a deck of cards be shuffled until it is close to random?
Historically, this was a fairly early application of probability. Markov treated it
as one of his basic examples of a Markov chain (for years, the only other example
he had was the vowel/consonant patterns in Eugene Onegin). Poincare devoted
an appendix of his 1912 book on probability to the problem, developing methods
similar to those in Section C. The books by Doob (1935) and Feller (1968) each
discuss the problem and treat it by Markov chain techniques.

All of these authors show that any reasonable method of shuffling will eventu­
ally result in a random deck. The methods developed here allow explicit rates that
depend on the deck size. As will be explained, these are much more accurate than
the rates obtained by using bounds derived from the second largest eigenvalue of
the associated transition matrix.

Some examples of specific shuffles that will be treated below:
a) Random transpositions. Imagine n cards in a row on a table. The cards

start in order, card 1 at the left, card 2 next to it, ..., and card n at the right of
the row. Pairs of cards are randomly transposed as follows: the left had touches
a random card, and the right hand touches a random card (so left = right with
probability ~). The two cards touched are interchanged. A mathematical model
for this process is the following probability distribution on the symmetric group:

T(id) = !.
n

T(T) = ~ for T any transposition
n

T(1r) = 0 otherwise.

Repeatedly transposing cards is equivalent to repeatedly convolving T with itself.
It will be shown that the deck is well mixed after tn log n + en shuffles.

Some variants will also be discussed: repeatedly transposing a random card
with the top card (la Librairie de la Marguerite), or repeatedly interchanging a
card with one of its neighbors.

b) Borel's shuffle. In a book on the mathematics of Bridge, Borel and Cheron
(1955) discuss the mathematics of shuffling cards at length. They suggest several
open problems; including the following shuffle: The top card of a deck is removed
and inserted at a random position, then the bottom card is removed and inserted
at a random position. This is repeated k times. We will analyze such procedures
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in Chapter 4, showing that k = n log n + en "moves" are enough. The same
techniques give similar rates for the shuffle that repeatedly puts a random card
on top, or the shuffle that repeatedly removes a card at random and replaces it
at random.

c) Riffle shuffles. This is the usual way that card players shuffle cards,
cutting off about half the pack and riffling the two packets together. In Chapter
4 we will analyze a model for such shuffles due to Gilbert, Shannon, and Reeds.
We will also analyze records of real riffle shuffles. The analysis suggests that 7
shuffles are required for 52 cards.

d) Overhand shuffles. This is another popular way of shuffling cards. The
following mathematical model seems reasonable: the deck starts face down in the
hand. Imagine random zeros and ones between every pair of cards with a zero
under the bottom card of the deck. Lift off all the cards up to the first zero and
place them on the table. Lift off all the cards up to the second zero and place this
packet on top of the first removed packet. Continue until no cards remain. This
is a single shuffle. It is to be repeated k times. Robin Pemantle (1988) has shown
that about 2500 shuffles are required for 52 cards.

3. RANDOM WALK ON THE d-CUBE zt
Regard zt as the vertices of a cube in d dimensions. The usual random walk

starts at a point and moves to one of the d neighbors with probability ~. This is
repeated k times. This is a nice problem on its own. It has a surprising connection
with a classical problem in statistical mechanics: in the Ehrenfest's urn model, d
balls are distributed in two urns. A ball is chosen at random and moved to the
other urn. This is repeated k times and the problem is to describe the limiting
distribution of the process. For a fascinating description of the classical approach
see M. Kac (1947). Kac derives the eigenvalues and eigenvectors of the associated
transition matrix by a tour de force. The following approach due to Siegert (1949)
suggests much further research:

Let the state of the system be described by a binary vector of length d, with
a 1 in the ith place denoting that ball i is in the right hand urn. The transition
mechanism translates precisely to a random walk on the d cube! Indeed, the state
changes by picking a coordinate and changing to its opposite mod 2. This changes
the problem into analyzing the behavior of a random walk on an Abelian group.
As we will see, this is straightforward; Fourier analysis gives all the eigenvalues
and eigenvectors of the associated Markov chain.

Originally the state of the system in the Ehrenfest's urn was the number
of balls in the right hand urn. The problem was "lifted" to a random walk on
a group. That is, there was a group G (here Z1) and a probability P on G
(here move to the nearest neighbor) and a function L: G --* state space (here the
number of ones) such that the image law under L of the random walk was the
given Markov chain. There has been some study of the problem of when the image
of a Markov chain is Markov. HelIer (1965) contains much of interest here. Mark
Kac was fascinated with this approach and asked: When can a Markov chain
be lifted to a random walk on a group? Diaconis and Shahshahani (1987b) give
results for "Gelfand Pairs." The following exercise comes out of discussions with
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Mehrdad Shahshahani.

EXERCISE 1. Let P be a probability on the symmetric group Sn. Think of the
random walk generated by P as the result of repeatedly mixing a deck of n cards.
For a permutation 1r, let L(1r) = 1r(1). The values of L are the result of following
only the position of card 1. Show that the random walk induces a Markov chain
for L. Show that this chain has a doubly stochastic transition matrix. Conversely,
show that for any doubly stochastic matrix, there is a probability P on Sn which
yields the given matrix for L.

Remark. It would be of real interest to get analogs of this result more generally.
For example: find conditions on a Markov chain to lift to a random walk on an
Abelian group. Find conditions on a Markov chain to lift to a random walk with
a probability P that is constant on conjugacy classes. When can a Markov chain
on the ordinary sphere be lifted to a random walk on the orthogonal group 0 3?

Returning to the cube, David Aldous (1983b) has applied results from random
walk on the d cube to solve problems in the theory of algorithms. Eric Lander
(1986) gives a very clear class of problems in DNA gene mapping which really
involves this process. Diaconis and Smith (1986) develop much of the fluctuation
theory of coin-tossing for the cube. There is a lot going on, even in this simple
example.

4. INFINITE GROUPS

For the most part, these notes treat problems involving finite groups. How­
ever, the techniques and questions are of interest in solving applied problems
involving groups like the orthogonal group and p-adic matrix groups. Here is a
brief description.

1. The "Grand Tour" and a walk on On. Statisticians often inspect high­
dimensional data by looking at low-dimensional projections. To give a specific
example, let Xl, ••• , Xsoo f R20 represent data on the Fortune 500 companies.
Here Xl, the data for company 1, might have coordinates XII == total value,
Xl2 == number of women employed, etc.. For / f R20 , the projection in direction /
would be a plot (say a histogram) of the 500 numbers I· Xl, ••• ,/. Xsoo. Similarly
the data would be projected onto various two-dimensional spaces and viewed as
a scatterplot. Such inspection is often done interactively at a computer's display
screen, and various algorithms exist for changing the projection every few seconds
so that a scientist interested in the data can hunt for structured views.

Such algorithms are discussed by D. Asimov (1983). In one such, the direction
I changes by a small, random rotation. Thus, one of a finite collection fi of 20 X 20
orthogonal matrices would be chosen at random, and the old view is rotated by
f i . This leads to obvious questions such as, how long do we have to wait until
the views we have seen come within a prescribed distance (say 5 degrees) of any
other view. A good deal of progress on this problem has been made by Peter
Matthews in his Stanford Ph.D. thesis. Matthews (1988a) uses Fourier analysis
on the orthogonal group and diffusion approximations to get useful numerical and
theoretical results.
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2. Salmon fishing and GL2(Q2). Consider a binary tree

Let us describe a homogeneous random walk on such a tree. A particle starts at a
fixed vertex. An integer distance is picked from a fixed measure, and the particle
moves to one of the finite sets of vertices at this distance at random. The particle
continues to move in this way. Questions involving recurrence (does the particle
ever get back to where it started?) and the distribution of the distance of the
walk from its starting position were raised by population geneticists studying life
along a river system.

Sawyer (1978) gives background and much elegant analysis. It turns out that
the tree is a coset sp~ce (homogeneous space) of the 2 X 2 matrices with entries in
the 2-adic rationals, with respect to the subgroup of matrices. with 2-adic integer
entries. Number theorists have worked out enough of the representation theory
to allow a dedicated probabilist to get elegant formulas and approximations.

3. Other groups. There is of course vast literature on random walks on Rn.
This is summarized in Feller (1971) or in Spitzer (1964). Much of this material
has been generalized to non-commutative groups. Heyer (1977) contains a thor­
ough survey. Recently there has been a really successful attack on random walk
problems on Lie groups. The work of Furstenberg and Guivarclh is beautifully
summarized in Bougerol-Lacroix (1985).

B. THE BASIC SETUP

We now formally define what we mean by "close to random" and introduce
an inequality that allows a good bound on the distance to uniformity in terms
of Fourier transforms. Let G be a finiie group. Let P and Q be probability
distributions on G. Define the variation distance between P and Q as

liP - QII = Pta IP(A) - Q(A)/.

Because we will use it heavily, we pause to discuss some basic properties.

EXERCISE 2. Prove that

liP - QII = ~L IP(s) - Q(s)1 = ~ Imi~lIPU) - QU)I,
s
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where, in the last expression, f is a function from G to IR with If( s)1 :::; 1, and
P(f) = 'EsP(s)f(s) is the expected value of f under P. Also, prove the validity
of the following interpretation of variation distance suggested by Paul Switzer:
Given a single observation, coming from P or Q with probability t, you are to
guess which. Your chance of being correct is t + t 11 P - Q11·

EXERCISE 3. Show that if U is uniform, and h: G ---T G is 1 - 1, then

liP - UII = IIPh- l - UII where Ph-leA) = P(h-l(A)).

EXERCISE 4. Let G = Sn. Part (a): let P be defined by "card 1 is on top,
all the rest are random." Thus, P(1r) = 0 if 1r(1) ~ 1 and P(1r) = 1/(n - 1)!
otherwise. What is IIP-UII? Part (b): suppose P is defined by "card 1 is randomly
distributed in a fixed set A of positions, all the other cards are random?" What
is liP - UII?

Further properties of the variation distance are given in the following remarks
and in lemma 4 of Chapter 3, lemma 4 of Chapter 4 and lemma 5 of Chapter 4.

Remark 1. The variation distance can be defined for any measurable group. It
makes the measures on G into a Banach space. For G compact, the measures
are the dual of the bounded continuous functions and 1I 11 is the dual norm. For
continuous groups, the variation distance is often not suitable, since the distance
between a discrete and continuous probability is 1. In this case, one picks a
natural metric on G, and uses this to metrize the weak-star topology. Of course,
for finite groups, all topologies are equivalent and the variation distance is chosen
because of the natural interpretation given by (1): if two probabilities are close
in variation distance, they give practically the same answer for any question.

Remark 2. Consider a random walk on Sn. In the language of shuffling cards, it
might be thought that the following notion would be a more suitable definition of
when cards are close to uniformly well shuffled: suppose the cards are turned face
up one at a time and we try to guess at the value of each card before it is shown.
For the uniform distribution, as in Diaconis and Graham (1977), we expect to get
H n = 1 + ~ + t + ··.+*right on average. If the deck is not well mixed, the
increase in the number of cards we can guess correctly seems like a useful measure
of how far we are from uniform. Formally, one may define a guessing strategy for
each possible history. Its value on a given permutation 1r defines a function f( 1r)
and (1) shows that, on average, /P(f)-Hn / < nIlP-UII no matter what guessing
strategy is used. This may serve as a guide for how small a distance liP - UII to
aim for.

Remark 3. The variation distance is closely related to a variety of other metrics.
For example, two other widely used measures of distance between probabilities
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are

s

I(P, Q) =L pes) log[P(s)/Q(s)] - Kullback-Leibler separation.
s

These satisfy

d; ~ 11 11 ~ VdH(1- dH/4) ~ .jJ;

V211 If ~ VI.
It follows that when dH or I are small, the variation distance is small. The
converse can be shown to hold under regularity conditions.

Metrics on probabilities are discussed by Dudley (1968), Zolatorev (1983)
and Diaconis and Zabell (1982). Rachev (1986) is a recent survey.

THE BASIC PROBLEM.

We can now ask a sharp mathematical question: Let P be a probability on
G. Given c > 0, how large should k be so that IIp*k - UII < e?

It is not hard to show that p*k tends to uniform if P is not concentrated on
a subgroup or a coset of a subgroup. Here is a version of the theorem due to Koss
(1959):

Theorem 1. Let G be a compact group. Let P be a probability on G such that
for some no and c, 0 < c < 1, for all n > no,

(*)

Then, for all k,

p*n(A) > cU(A) for all open sets A.

Remarks. Condition * rules out periodicity. The conclusion shows that eventually
the variation distance tends to zero exponentially fast. The result seems quanti­
tative, but it's hard to use it to get bounds in concrete problems: as an example,
consider simple random walk on Zn. How large must k be to have the distance
to uniform less than lo? To answer, we must determine a suitable no and c. This
seems difficult. A short proof of the theorem is given here in Chapter 4.

There is a huge literature relating to this theorem. Heyer (1977) contains an
extensive survey. Bhattacharya (1972) and Major and Shlossman (1979) contain
quantitative versions which are more directly useable. Csiszar (1962) gives a
proof which indicates "why it is true": briefly, convolving increases entropy and
the maximum entropy distribution is the uniform. Bondesson (1983) discusses
repeated convolutions of different measures.

Remark. The following "cut off" phenomena occurs in most cases ,vhere the
computations can be done: the variation distance, as a function of k, is essentially
1 for a time and then rapidly becomes tiny and tends to zero exponentially fast
past the cut off. Thus a graph might appear
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k
k*

We will determine these cut off points k* in most of the examples discussed in
Theorem 1. In such a case we will say that k* steps suffice.

One purpose of this chapter is to discuss several ways of approximating the
variation distance that give sharp non-asymptotic results. The basic tool used
in the analytical approach of this section is the following inequality first used in
Diaconis and Shahshahani (1981):

LEMMA 1. (Upper bound lemma). Let Q be a probability on the finite group G.
Then

IIQ - UI1 2 ~ l~*dp Tr(Q(p)Q(p)*)

where the sum is over all non-trivial irreducible representations.

Proof. From (1),

411Q - UI1 2 = {~sIQ(s) - U(s)I}2 ~ IGI~IQ(s) - U(s)1 2

= ~*dp Tr(Q(p)Q(p)*).

The inequality is Cauchy-Schwarz. The final equality is the Plancherel Theorem,
and Q(p) = 1 for p trivial, U(p) = 0 for p non-trivial. 0

Remark 1. The Cauchy-Schwarz inequality is not as crude as it may first appear.
It is applied when Q is close to uniform, so IQ(s) - U(s)1 is roughly constant. In
the examples of Section 11 below, and in all other "real" examples, the lemma
gives the right answer in the sense that the upper bound matches a lower bound
to one or two terms. The following exercise gives a lower bound of similar form.
For some groups it shows the rate is off by at worst loglGI. Exercise 14 gives a
natural example, and Exercise 6 a contrived example, where this occurs.

EXERCISE 5. With the notation of the upper bound lemma, show that

1 A A

IIQ - UII ~ 21GI ~*dp Tr(Q(p)Q(p)*).

Also show

IIQ - uI1 2 ~ 41~1 ~*dp Tr(Q(p)Q(p)*).
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EXERCISE 6. Let G be a finite group. Define a probability P on G by

P(id) = 1 - ~, P(s) = 2(1G; _ 1) for s # id, 0 ~ c ~ 2.

Show that
P*kCd) =~ IGI-1(1 _ ~ IGI )k

1 IGI + IGI 2 IGI - 1

*k lIe IGI k
P (s) = jGj - jGj(1- 2" IGI- 1) ·

Using this, show that II p *k - UII = 1~t11 11 - ~ IJfi1l k
• Show that

E*d Tr(P(p)kp) = (IGI- 1)(1 _ ~ IGI )2k
p 21GI- 1 ·

Remark 2. Lower bounds can be found by choosing a set A C G and using
IQ(A) - U(A)I ~ IIQ - UII· Often A can be chosen so that it is possible to
calculate, or approximate, both Q(A) and U(A), and show that the distance
between them is large. Several examples are given in the next section.

Remark 3. Total variation is used almost exclusively for the next two chapters.
It is natural to inquire about the utility of the mathematically tractable L2 norm

2 1 2
liP - Ulb = E(P(s) - IGI) ·

This has a fatal flaw: Suppose IGI is even, and consider P uniformly distributed
over half the points and zero on the others. liP - UI'2 == -b is close to zero

vlGI
for IGllarge. Thus the interpretability of the L2 norm depends on the size of the
group. This makes it difficult to compare rates as the size of the group increases.

The norm IGI!IIP - UI12 corrects for this. It seems somewhat artificial, and
in light of the upper bound lemma and exercise 5, it is essentially the same as the
variation distance.

c. SOME EXPLICIT COMPUTATIONS

Example 1. Simple random walk on the circle. Consider Zp, the additive group
of integers mod p. Define P(l) == P( -1) == ~, P(j) == 0 otherwise. The follow­
ing result shows that somewhat more than p2 steps are required to get close to
uniform.

Theorem 2. For n ~ p2, with p odd and greater than 7,

IIP*n - uti ~ e-on/ p2
with a = 1("2 /2.
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Conversely, for p ~ 7 and any n

Proof. The Fourier transform of P is

The upper bound lemma yields

1 p-l 1 (p-l)/2

\Ip*n - uW ::; 4L cos(27rjjp)2n = 2" L cos(7rjjp?n.
j=l j=l

To bound this sum, use properties of cosine. One neat way to proceed was sug­
gested by Hansmartin Zeuner: use the fact

This follows from h(x) == log(ex2 /2cos x), h'(x) == x - tan x ~ 0; so h(x) ~ h(O) =
0, for x f [0, 1r /2].

This gives

(p-2)/2 00

IIP*n - UI1 2 ::; ~ L e-7[2j2 n / p2::; ~e-7[2n/p2L e-7[2(j2-1)n/
p2

j=l j=l

00

< !.e-1r2n/p2~ e-31r2 jn/p2
- 2 LJ

j=O

1 e-1r2n/p2

== 2' 1 - e-31r2n/p2 .

This works for any n and any odd p. If n 2:: p2, [2(1 - e-
31r2

)] -1 < 1 and thus we
have proved more than we claimed for an upper bound.

Observe that the sum in the upper bound is dominated by the term with
k = p;l. This suggests using the function cos(21rkj/p) alone to give a function
bounded by 1 which has expected value zero under the uniform distribution. Using
the symmetry of P,

Now, (1) in section B above yields
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If x ~ t, cos x 2:: e- x2
/2-x

4
/11 say. This yields the lower bound with no conditions

on n, for p ~ 7. 0

Remark 1. The same techniques work to give the same rate of convergence
(modulo constants) for other simple measures P such as P(D) = P(l) = P( -1) =
t or P uniform on Ijl ~ a. Use of primitive roots and the Chinese remainder
theorem gives rates for the multiplicative problem X n = anX n- 1 (mod p) where
X o = 1, and ai are LLd. random variables taking values mod p. For example,
suppose p is a prime and a is a primitive root mod p. Then the multiplicative
random walk taking values a, 1 or a-1 (mod p), each with probability 1/3, takes
c(p)p2 steps to become random on the non-zero residues (mod p).

Remark 2. If nand p tend to infinity so n/p2 ~ c, the sum in the upper bound
lemma approaches a theta function, so

IIP*n - uW S ~ f e--rr
2

j2
c+0(1).

j=l

Spitzer (1964), pg. 244) gives a similar result. Diaconis and Graham (1985b) show
a similar theta function is asymptotically equal to the variation distance.

Remark 3. There are two other approaches to finding a lower bound in Theorem
1. Both result in a set having the wrong probability if not enough steps are
taken.

Approach 1. For any set A, IIP*n-UII ~ IP*n(A)-U(A)I. Take A == {j: Ijl ~
p/4}. Use the inversion theorem directly to calculate (and then approximate)
p*n(A).

Approach 2. Consider a random walk on the integers Z taking steps ±1 with
probability t. Let Sn be the partial sum. The process considered in Theorem 1
is Sn (mod p). Using the central limit theorem, if n is small compared to p2, Sn
has only a small chance to be outside {j: IjI ::; p/4}. This can be made rigorous
using the Berry-Esseen theorem.

EXERCISE 7. Write out an honest proof, with explicit constants, for one of the
two approaches suggested above. Show IIP*n - UII ~ 1 if n == c(p)p2, c(p) ~ o.
Remark 4. The random walk based on P(j) = P( - j) = t where (j, p) = 1
converges at the same rate as when j == 1 because of the invariance of variation
distance under 1- 1 transformations (Exercise 3 above). Andrew Greenhalgh has
shown that it is definitely possible to put 2k + 1 points down carefully, so that
the random walk based on P(j1) = ... = P(j2k+1) = 1/(2k + 1) converges much
faster (c(p)p1/k steps needed) than the random walk based on P(j) = 1/(2k + 1)
for Ijl ~ k.

It would be of interest to know the rate of convergence for "most" choices of
k points.

The following exercises give other results connected to random walk on Zp.
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EXERCISE 8. Consider the random walk on Zp generated by P(I) = P( -1) == t.
It is intuitively clear (and not hard to prove) that the walk visits every point.
There must be a point which is the last point visited (the last virginal point).
Prove that this last point is uniform among the n - 1 non-starting points.

I do not know how to generalize this elegant result. Avrim Blum and Ernesto
Ramos produced computation-free proofs of this result. Both showed that it fails
for simple random walk on the cube Z?
EXERCISE 9. (Fan Chung). Prove that the convolution of symmetric unimodal
distributions on Zn is again symmetric unimodal.

EXERCISE 10. Let n be odd. Consider the random walk on Zn generated by
P(I) = P( -1) = t. Prove that after an even number of steps, the walk is most
likely to be at zero. More generally, show that the walk is monotone in the sense
that p*2n(j) ~ p*2n(j + 2i) where 0 ~ j ~ j + 2i ~ n/2.

This exercise originated in a statistical problem posed by Tom Ferguson. A
natural way to test if an X taking values in Zp is drawn from a uniform distribution
is to look in a neighborhood of a prespecified point and reject uniformity if the
point falls in that neighborhood. Consider the alternative HI: P = p*n for simple
random walk starting at the prespecified point. The exercise, combined with the
Neyman-Pearson lemma implies classical optimality properties for this test.

Ron Graham and I showed that the same type of result holds for nearest
neighbor walk on Z'2, but fails for nearest neighbor walks on a discrete torus
like Zr3. Monotonicity also fails for the walk originally suggested by Ferguson,
namely random transpositions in the symmetric group (see Section D of this
chapter) with neighborhoods given by Cayley's distance - the minimum number
of transpositions required to bring one permutation into another (see Chapter
6-B).

Example 2. Nearest neighbor walk on zt. Define P(O) == P(O ... 01) == P(O ... 10)
= ... = P(lO .. .0) == diI. The random walk generated by P corresponds to
staying where you are, or moving to one of the d nearest neighbors, each with
chance (dtl). The following result is presented as a clear example of a useful
lower bound technique.

Theorem 3. For P as defined above, let k == t(d + l)[log d + cl,

As d -tOO, for any E > 0 there is a C < 0 such that c < C and k as above imply

(2) IIp*k - UII ~ 1 - E.

Proof. There is a I-dimensional representation associated to each x ( zt; F(x) =
L:y(-1) X oyP(y) = 1- 2:J~) where w(x) is the number of ones (or weight) ofx.
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The upper bound lemma gives

IIp*k - uW ~ ~ I)p(X»2k = ~ t(1)(1- d~ 1 )2k
x~O j=1

2 d / 2 dj 1 d / 2 - j c 1

L -;"logd-jc L e (e- c
)< - -e == - -- < - e - 1 .

- 4. O! 2 . O! - 2
;=1 J ;=1 J

For the lower bound observe that the dominating terms in the upper bound
come from x of weight 1. Define a random variable z: zt ~ R by Z(x) ==

d
2:(-l)Xi == d - 2w(x). Under the uniform distribution, Xi are independent fair
i=1
coin tosses so EuZ == 0, Varu(Z) == d, and Z has an approximate normal distri-
bution. Under the distribution p*k, arguing as in Example 1 shows

2 k 2 4 k
Ek(Z) =d(1 - d + 1) , Ek(Z) = d +d(d - 1)(1 - d + 1) ·

4 k 2 2 2kVark(Z) == d +d(d - 1)(1 - -) - d (1 - -) .
d+l d+l

With k == tC(d + l)log d +cd + c), as d ~ 00,

Ek(Z) =vlde-c/ 2(1 + O(lo~ d»,

d(d - 1)(1- d; 1)k = (d - 1)e-c(1 + O(lo~ d))

d2(1 - d ~ 1 )2k = de- c(1 + O(lo~ d)).

So Vark(Z) == d+O(e-Clog d) uniformlyforc == o(log d). Note that asymptotically
Vark(Z) f'V d, independent of c of order O(log d). This is crucial to what follows.

For the lower bound, take A = {x: IZ(x)/ ~ f3Vd}. Then we have

From (3) and Chebychev,
1

U(A) 2: 1 - (32

P*k(A) < p*k{IZ - E (Z)/ > E (Z) _ avid} < VarkCZ)
- k - k fJ - (EkCZ) _ f3y'd)2

1
f'V (r c/ 2 _ (3)2 as d ~ 00.

Choosing (3 large, and c suitably large (and negative) results in /IP*k - UII --+ 1.
D
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Remark 1. In this example, the set A has a natural interpretation as the set of
all binary vectors with weight close to ~. Since the random walk starts at 0, if it
doesn't run long enough, it will tend to be too close to zero.

Remark 2. It is somewhat surprising that td log d steps are enough: It takes
td log d steps to have the right chance of reaching the opposite corner (11 ... 1).

Example 3. Simple random walk with randomness multiplier. Let p be an odd
number. Define a process on Zp by X o = 0, X n = 2Xn - l + cn(mod p) where Ci

are independent and identically distributed taking values 0, ±1 with probability
1. Let Pn be the probability distribution of X n . In joint work with Fan Chung
and R. L. Graham it was shown that n = clog p loglog p steps are enough to get
close to uniform. Note that X n is based on the same amount of random input as
simple random walk discussed in Example 1. The deterministic doubling serves as
a randomness multiplier speeding convergence from p2 to log p loglog p steps.

Theorem 4. For Pn defined above, if

loglog2P
n ~ log2P[ log 9 +s],

then

Proof· Since X o = 0, Xl = £1, X 2 = 2£1 + c2, ... , X n == 2n-tct + ... +
cn(mod p). This reduces the problem to a computation involving independent
random variables. The Fourier transform of Pn at frequency j is

n-t 1 2 21r2 a jIT(- + - cos --).
a=O 3 3 p

Since

(-31 + _2
3

cos(21fx))2:s h(x) ~ {1~ if x f [t, t)
otherwise.

It will be enough to bound

IT h( { 2
a
j } ),

a=O p

where {.} denotes fractional part. Observe that if the (terminating) binary ex­
pansion of x is x = ·at a2a3 ... , then

h(x) = {t if at f; a2
if at == a2.
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Let A(x, n) denote the number of alternations in the first n binary digits of
x: A(x, n) == 1{1 ~ i < n: Qi f: Qi+l}l. Successively multiplying by powers of
2 just shifts the bits to the left. It follows that

IT h({2
a
j }) ~ g-AU/p,n).

a=O p

Suppose first that p is of the special form p == 2t - 1. The fractions j/p
become

t t
~~

l/p==00 0100 01

2/p == 00 10 00 10

3/p == 00 11 00 11

p-1/p==11 10 11 10

If n == rt, the number of alternations in the first n places of row j / p is no
smaller than r times the number of alternations in the first t places of j / p. It
follows that

(1)

p-l n-l a . p-l

L IT h{~} ~ Lg-rAU/p,t)
j=l a=O p j=l

t

~ 2 L(t)9-kr = 2[(1 +g-r)t - 1]
k=l

~ 2[et9
-

r
- 1].

The second inequality in (1) used the easily proved bound Ij: A(~, t) = kl ~ 2(t).

Now, if n = rt with r = !2K.! + s, the upper bound lemma givesrogg

2 1 9- 8

IIPn - UII ~ 2"[e - 1]

as claimed.
For general odd p, define t by wt - 1 < p < 2t . For r as chosen above,

partition the initial n == rt digits in the binary expansion of j / pinto r blocks of
length t: B( i, j)l ~ i ~ r:

B(l,j) B(2,j) B( r,j)
~ r tAt "

j/p == al·· .at Qt+l·· ·Q2t··· Q(r-l)t+l·· .art·

Thus,

(2)
p-ln-l a. p-l

L IT h({~}) ~ Lg-A(B(l,j»-... -A(B(r,j)).
j=la=O p j=l
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By the choice of t, all the blocks B(I, j), 1 ~ j ~ p - 1 in the first column are
distinct and have at least one alternation. Furthermore, since (2,p) = 1, the set
of blocks in the ith column does not depend on i. This information will be used
together with the following interchange lemma: If 0 < a < 1, and a ~ a', b ~ b',
then

aa+b' + aa'+b ~ aa+b + aa'+b'.

To prove this, simply expand (aa - aa')(ab - ab') ~ o. The lemma implies that
collecting together terms with the same blocks in the exponent only increases the
upper bound. Thus, the right side of (2) is no bigger than

p-l2: 9- r A(j/Z' -l,t),

j=l

the sum that appears in equation (1) above! Using the bound there completes
the proof. 0

Remark 1. A more careful version of the argument implies that for any odd p,
the cutoff is at c*log2P loglog2P with c* = 1/log27T"1 where

00 1 2
11"1 = IT (3" + 3" COS (211" /2 a ))z.

a=l

Chung, Diaconis and Graham (1987) show that for P of form 2t - 1, c*t log t
steps are required. The lower bound technique again uses the "slow" terms in
the upper bound lemma to define a random variable Z(j) == Elkl=le21rijk/p where
the sum is over k's with a single 1 in their binary expression. Under the uniform
distribution Z has mean 0 and "variance" (== E(ZZ)) == t. Under Pn , Z has

1.
mean approximately t7T"l and variance of order Vi.

Chung, Diaconis and Graham also prove that for most odd P, 1.02 log2P steps
are enough. A curious feature of the proof is that we do not know single explicit
sequence of p's such that 2 log p steps suffice to make the variation distance
smaller than 110 •

Remark 2. There is a natural generalization of this problem which may lead
to further interesting results. Let G be an Abelian group. Let A: G ~ G be
an automorphism (so A is 1-1, onto and A(s + t) == A(s) + A(t)). Consider the
process

X n == A(Xn - l ) + f n

where Xo == id and fi are iid. This can be represented as a convolution of inde­
pendent random variables

X n == An-l(fl) + A n
-

2(f2) +... + fn·

If Ak == id, these can be further grouped in blocks of k (when k divides n) to
give a sum of iid variables. Then, methods similar to those used in the present
example may provide rates.
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It is not necessary to use an autoffiorphisffi; f( s) == A(s) + t, with tcG fixed
and A an autoffiorphism works in a similar way. It is not necessary that G be
Abelian. If the Law of Ei is constant on conjugacy classes so is the law of A(Ei)

and the random variables commute in distribution (see exercise 2.7).
One natural example to try has G == l~, A a 2 X 2 matrix, and Ei the nearest

neighbor random variable taking values (00), (01), (0 - 1), (10), (-10) each with
probability t.
Remark 3. Fourier techniques can be used to bound other distances. This
remark gives a result for the maximum over all "intervals" of Zp. The next
remark discusses arbitrary compact groups. The techniques are close to work of
Joop Kemperman (1975).

Let P and Q be probabilities on Zp. Define D(P,Q) = supP(J) - Q(J)
J

where the sup is over all "intervals" in Zp.

p-l,. ,.

LEMMA. D(P, Q) ~ ~ E IP(j) - Q(j)l/ j* where j* == min(j, p - j).
v2 j=l

Proof For J an interval on the circle, IP(J) - Q(J)I == IP(JC) - Q(JC)I, where of
course JC is an interval too. It follows that only intervals not containing zero need
be considered. Let [.e1 , £2] be such an interval, with £1 < .e2 (clockwise). Then

Now
i i p-l

P([O, R]) = 2: P(a) = ~2: 2: P(j)e- 2";;<1
a=O P a=O j=O

p-l

= ~ 2: P(j)(l - e-21ri(l+l)i/p)/(l - e-21rij /
p).

P j=O

This implies that P - Q equals

Thus D(P, Q) is bounded above by

y'2P-l
~2: IP(j) - Q(j)I/v1 - cos(21rj/p).
p j=1

Now for 0 ~ x ~ f, 1 - cos x ~ ~2, so for 1 ~ j ~ p/4, 1(1­

cos(21rj/p»-t ~ V6/21rj ~ j~' For f ~ x ~ 1r, 1- cos x ~ 1, so for p/4 ~ j ~

p/2, ~(1- cos(bj/p))-t ~ ~ ~ 2
1
j" For the rest, cos(21rj/p) = cos(21r(p- j)/p).

o
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EXERCISE 11. Using this lemma, with Pn as defined in Example 3, show there
are constants a and b such that for every odd p,

Remark 4. There must be similar bounds for any compact group. To see
the use of such results let T be the unit circle: T = {z f C: Izl = I}. Fix an
irrational afT and consider simple random walk with step size a, thus X o = 0,
and X n == X n - 1 ± a. Since X n is concentrated on a discrete set, the variation
distance to uniform is always 1. Nonetheless, the distribution of X n converges
to the uniform distribution in the weak star topology. To discuss rates, a metric
must be chosen. A convenient one is

D(P, Q) = sup IP(!) - Q(!)I
I

for I ranging over intervals of T. This metrizes weak star convergence.
Kemperman (1975) proves two useful inequalities that give bounds on D

involving the Fourier transform for P a probability on T, and mfZ,

00 "

(1) D(P, U) == supP(I) - U(I)I ~ {12 2: IP(m)1 2 /(21rm)2}!.
I m=l

00

(2) D(P, U) ~ ~ 2: IP(m)l/m.
m=l

Niederreiter and Philipp (1973) discuss multivariate versions.

EXERCISE 12. Consider simple random walk on the unit circle, as in remark 3
above, with a a quadratic irrational. Use bounds (1) and (2) above to estimate
rates of convergence. A direct combinatorial argument can be used to show that
D(p*n, U) ~ c(log n)/v'n.

It seems quite possible to carry over bounds like (2) in Remark 4 to any com­
pact group G. Choose a bi-invariant metric d(x, y) on G and consider D(P, Q) ==
supIP(I)-Q(I)1 where I ranges over all translates of balls centered at the identity.
Then D(P, Q) can be bounded as in remark 2; Lubotzky, Phillips, and Sarnak
(1986) give results for the sphere. Their paper makes fascinating use of deep num­
ber theory which must be useful for other problems. Chapter 6 below discusses
bi-invariant metrics.

Example 4. Random walks on the affine group A p • (An elaborate exercise).
Let p be a prime. Random numbers are often generated by the recursive scheme
X n = aXn - 1 + b(mod p). This sequence of exercises allows estimates of the rate
of convergence when a and b are random. The transformation x -7 ax + b with
a non-zero (mod p) will be written Tab(x). The set of such transformations form
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a finite group Ap • We write (a,b) for the typical group element. The product is
(a, b)(c, d) == (ac, ad + b), the identity is (1,0) and (a, b)-1 == (a-I, -ba-I). This
group has p(p - 1) elements. The subgroups {(I, b)} ~ Zp and {(a, O)} ~ Z; are
useful.
(1) Identify the p distinct conjugacy classes. Explain why measures constant .on

conjugacy classes are not very interesting.
(2) From part (1) there are p distinct irreducible representations; p - 1 of these

are the I-dimensional representations given by choosing a character Xi of
Z; and defining Pi(a,b) == Xi(a). Show that these are distinct irreducible
representations. Show t~at there is one other irreducible representation P
of degree p - 1. Use Serre's exercise 2-6 to construct this representation by
considering the action of Ap on Zp. By explicitly choosing a basis, show

Xp(I,O) == p - 1,

Xp(I,b)==-I, bf=O

Xp(a,b)==O, af=I.

(3) Let p+ and p* be the restriction of p in Part 2 to Zp and Z; respectively.
Using the character of p and the inner product machinery, show that p* is
the regular representation of Z; and p+ contains each non-trivial irreducible
representation of Zp once.

(4) Let P+ be a probability on Zp and P* a probability on Z;. Let xt and xi
be characters of Zp and Z;. Let P(a, b) = P*(a) · P+(b). Show

(a) F(p) = P+(p+) · F*(p*).
(b) The eigenvalues of the matrix F*(p*) are the p-I numbers P*(xi); the

eigenvalues of P+(p+) are the p-I numbers P+(xt), xt non-trivial.
(5) Let p be an odd prime such that 2 is a primitive root mod p. Consider

the random walk on A p which starts at 0 and is based on P*, P+, with
P*(I) == P*(2) == P*((p + 1)/2) = t and P+(O) == P+(I) == P+( -1) == t.
Show that k == c(p)p2 log steps are enough to get arbitrarily close to random
if c(p) ~ 00 as p does. Use this to argue that the random point TXn (0) is
close to uniformly distributed on Zp after this many steps.
One way through the computations uses the following fact. Let r(A) be the

spectral radius (== maxleigenvaluel) of the matrix A. If A and Bare diagonalizable
matrices then r(AB) ~ r(A)r(B).
(6) Show by considering the first coordinate of (a, b) that k == cp2 steps are not

enough if c is fixed.

Remark. The argument sketched above gives c(p)p2 log p. I presume that c(p)p2
is the correct answer. Actually, numerical computation strongly suggests that the
random walk X n = aXn - 1 + b, where (a, b) has the distribution described in part
5, becomes uniform in order (log p)A steps for A = 1 or 2.

When p is composite there are more conjugacy classes. It is an interesting
exercise to determine these. I have not succeeded in finding a natural "small"
measure constant on conjugacy classes which permits analysis.
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D. RANDOM TRANSPOSITIONS: AN INTRODUCTION TO THE REPRESENTATION

THEORY OF THE SYMMETRIC GROUP.

As described in Section A, repeated random transpositions of n cards in a
row can be modeled as repeatedly convolving the following measure:

(1) P(id) = .!., Per) = ~2 for r a transposition, P(1r) == 0 otherwise.. n n

This section presents a proof of the following theorem

Theorem 5. Let k = tn log n + en. For e > 0,

for a universal constant a. Conversely, for c < 0, as n tends to infinity

k 1 -2cIIP* - UII ~ (- - e-e ) +0(1).
e

The proof introduces some basic results about the representation theory of the
symmetric groups. Most all of these will be treated in greater detail in Chapter 7.
This problem was first treated by Diaconis and Shahshahani (1981). The present
argument is based on simplifications suggested by Leo Flatto, Andrew Odlyzko,
and Hansmartin Zeuner. After the proof, several further problems, to which the
same analysis applies, are described.

Discussion The measure P is constant on conjugacy classes: P(TJ1rTJ-l) = P(1r).
Thus Schur's lemma implies, for any irreducible representation p, p(p) =
constant · I. Taking traces, the constant equals (~ + n~1 r(p)) with r(p) =
Xp(r)/d p. Here Xp(r) denotes the character of p at any transposition rand
dp denotes the dimension of p (see proposition 6 of Chapter 2). Now, the upper
bound lemma yields

The following heuristic discussion may help understanding. Table 1 gives
dp and Xp(r) for n == 10. There are 42 irreducible representations of S10. For
example, the first entry is dp == 1, Xp(r) == 1 for the trivial representation. The
second entry is dp == 9, Xp(r) == 7 for the 9-dimensional permutation representa­
tion. Except for a few representations at the ends, the ratio IXp(r)/dpl is small.
Suppose it could be shown that Xp( r)/dp ~ t for most p, then, approximately for
n large, I~ + n~1 r(p)1 ~ t and the upper bound above would be smaller than
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Table 1
Characters of BIO (from James and Kerber (1981, pg. 354))

Partition dim Xp(r)
[10] 1 1
[9,1] 9 7
[8,2] 35 21
[8,1,1] 36 20
[7,3] 75 35
[7,2,1] 160 64
[7,1,1,1] 84 28
[6,4] 90 34
[6,3,1] 315 91
[6,2,2] 225 55
[6,2,1,1] 350 70
[6,1,1,1,1] 126 14
[5,5] 42 14
[5,4,1] 288 64
[5,3,2] 450 70
[5,3,1,1] 567 63
[5,2,2,1] 525 35
[5,2,1,1,1] 448 0
[5,1,1,1,1,1] 126 -14
[4,4,2] 252 28
[4,4,1,1] 300 20
[4,3,3] 210 14
[4,3,2,1] 768 0
[4,3,1,1,1] 525 -35
[4,2,2,2] 300 -20
[4,2,2,1,1] 567 -63
[4,2,1,1,1,1] 350 -70
[4,1,1,1,1,1,1] 84 -28
[3,3,3,1] 210 -14
[3,3,2,2] 252 -28
[3,3,2,1,1] 450 -70
[3,3,1,1,1,1] 225 -55
[3,2,2,2,1] 288 -64
[3,2,2,1,1,1] 315 -91
[3,2,1,1,1,1,1] 160 -64
[3,1,1,1,1,1,1,1] 36 -20
[2,2,2,2,2] 42 -14
[2,2,2,2,1,1] 90 -34
[2,2,2,1,1,1,1] 75 -35
[2,2,1,1,1,1,1,1] 35 -21
[2,1,1,1,1,1,1,1,1] 9 -7
[1,1,1,1,1,1,1,1,1,1] 1 -1
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Now using Stirling's formula,

It follows that if k is n log n, the upper bound will tend to zero. To complete
this heuristic discussion, consider the term arising from the n - 1 dimensional
representation: dp = n -1, and Xp(r) = n - 3. This is easy to see: the trace
of the permutation representation for a transposition is n - 2. The permutation
representation is the direct sum of the trivial representation and the n - 1 dimen­
sional representation so n - 2 = Xp(r) + 1. Here (~+ n~Ir(p))2k = (1- ~)2k.

This is a far cry from (t )2k. Persevering, in the upper bound lemma k has to be
chosen large enough to kill

(n - 1)2(1- ~)2k = e2k log(1-:-)+2 109(n-l) = e-~+2 log n+O(-!-r).
n

For k = tn log n + en this is asymptotic to e- 4c
• Taking square roots gives the

e-2c of the theorem.
It will turn out that this is the slowest term, the other terms being geomet­

rically smaller, and most terms being smaller than (t )2k.
This argument is somewhat similar to the bounds for simple random walk on

Zp: terms near the trivial representation needed to be summed up carefully, terms
far away were geometrically small and easily dealt with. Putting in the details for
Zp required properties of cosine. For the symmetric group, the representations
are usefully thought of as 2-dimensional shapes. Properties of dp and Xp( r) will
have to be developed.

To begin a more detailed discussion, consider a partition of n, say A =
(AI, .. . Am) with Al ~ A2 ... ~ Am positive integers with Al + ... + Am = n.
There is a one to one correspondence between irreducible representations of Sn
and partitions of n. This is carefully described in Chapter 7. For present pur­
poses, the notion of the diagram associated to a partition is helpful. An example
says things best: the diagram corresponding to (5,3,1,1) is

The first row of the diagram contains Al squares, etc. A diagram containing
numbers 1, 2, ... , n is called a tableaux. Two tableaux are considered equivalent
if they have the same row sets:
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2
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9 8 7 10 5

364

2

1

An equivalence class of tableaux is called a called a tabloid. There are
n! / A1! ... Am! distinct tabloids of a given shape. These are used to build a repre­
sentation called M.A as follows. Consider a vector space with basis vectors {et}
where t runs over all tabloids of shape A. For 1r a permutation, define p(1r) by
defining on basis vectors:

where for example, 1r applied to the tabloid

5 10 7 8 9 1r(5) 1r(10) 1r(7) 71"(8) 71"(9)
6 3 4 is the 71"(6) 1r(3) 1r(4)
2 tabloid 71"(2)
1 1r(1)

Here are some examples: the partition (n - 1,1) has n!/(n - I)! == n distinct
tabloids, all of shape

These are evidently completely determined by the one number in the second
row. Hence the vector space Mn-1,1 is just the n-dimensional space spanned
by the usual basis e1, . .. en with p( 1r )ei == e7t"(i)' The partition n - 2, 1, 1 gives
rise to a vector space Mn-2,1,1 with basis {e( i,j)} and p( 71" )e( i,j) == e( 7t"( i),rr(j))' The
partition n-2, 2 gives rise to Mn-2,2 with basis {e{i,j}} where {i,j} runs through
all unordered pairs.

The representations MA are all reducible except of course for A == n. It will
be argued that each MA contains a well-defined irreducible subspace SA, and as
A varies the SA range over all the irreducible representations of Sn' The following
two facts are all that is needed to prove Theorem 5.

FACT 1. The dimension of the irreducible representation corresponding to
partition A is the number of ways of placing the numbers 1,2, ... , n into the
diagram of A such that the entries in each row and column are increasing.

This fact is Theorem (8.4) in James (1978) who discusses other formulas for
the dimension. These are also described in Chapter 7 below. A useful computa­
tional corollary is
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(D - 1) The dimension d). of the irreducible representation corresponding

to the partition A satisfies d). :s; (~1 )d).* with A* ==

(A2' A3, ... , Am) a partition of n - Al.

Proof The first row may be chosen in (~1) ways. For each choice of first row, the
number of ways of placing the n - Al remaining numbers is d)..*. Of course not all
of these combine with the choice of first row to give a monotone total placement.
This gives the inequality. 0

FACT 2. Let r(A) == x).(r)/d). where x)..(r) is the character at a transposition
and d). is the dimension of the irreducible representation corresponding to the
partition A of n. Then

(D - 2)
1 2 1 ,""",).. ).'.

reA) = n(n _ 1)~[Aj - (2j - l)Aj] = (2) ~(2') - (2')
J

with A' the transpose of A.

This is a special case of a result due to Frobenius who essentially determined
formulas for all of the characters. These become unwieldly for complex conjugacy
classes. An accessible proof of (D-2) is given in Ingram (1950).

Using Frobenius' formula, Shahshahani and I proved a simple monotonicity
result: Call partition Al larger than partition A2 if it is possible to get from the
diagram of A2 to the diagram of Al by moving boxes up to the right. This is a
partial order. For example (5, 1) 2: (4, 2) 2: (3, 3), but (3, 3) and (4, 1, 1) are not
comparable, though both are larger than (3,2,1). This order is widely used in
statistics under the name of majorization (see e.g. Marshall and Olkin (1979)).
James (1978, pg. 8) contains further examples.

LEMMA 1.
(D-2).

If A 2:: A', then r(A) ~ r(A' ) where r(A) = x).(r)/d). is given by

Proof It suffices to consider the case where one box is switched from row b to
a(b > a), Le. Aa = A~ +1, Ab == A~ - 1, Ac = A~ for c =I a, b. Formula (D-2) shows·
that

1
reA) - reA') = n(n _ 1)p; - (2a - l)Aa - A~ + (2a - l)A~+

A~ - (2b - l)Ab - A~2 + (2b - l)A~}

1 {' ( In(n-1) 2Aa +l- 2a-l)-(2Ab- 1)+(2b-l)}

1 {' I } 4
( ) Aa - Ab +b - a +1 ~ ( ) > 0nn-1 nn-1

since A~ 2: A~ and b - a 2: 1. This argument is correct even if Ab = o. 0



LEMMA 2.

(a)

(b)
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Let .A be a partition of n. Then

reA) ~ 1 - 2(n ~(:~~l)+ 1) if Al ~ n/2,

reA) ~ Al - 1.
n-I

Proof·
(a) By assumption .A ~ (.AI, n - .AI), so it follows from Lemma 1 and (D-2) that

1 22 2
reA) ~ n(n -1) {Al - Al +n - 2nAl +Al - 3n +3AIl

2(Ai+A1- nAl- n)
= 1 + ----------...-..-.----

n(n - 1)
= 1 _ 2(Al + 1)(n - Al)

n(n - 1)
m m m

(b) reA) = n(nl_l) ~ (A; - (2j - l)Aj) ~ n(n1_l) ~ Aj(Aj - 1) ~ n(~=~) ~ Aj =
J=1 J=l J=1

Al-1 0
n-l·

COROLLARY. Let A be such that reA) 2: o. Then

1 n - 1 { 1 _ 2(Al+l~n-Al)
I; + -n-r(A)1 ~ ~ n

n

if .AI ~ n/2
for all .A.

Proof of Theorem 5: If At denotes the transpose of A we certainly have either
reA) ~ 0 or r(At) > 0, because XA = -X~ (see James 1978, p. 25). Hence

( )

2k ( ) 2k2 1 n-l * 2 1 n-1
~~d). ;; + -n-r(A) ~ L d). ; + -n-r(A)

'\:r('\)?:O

( )

2k* 2 1 n-I t+ L d). ;; - -n-r(A )
A:r(A»O

,,* 1 n - 1
~ 2 LJ d~l- + __r(A)1 2k

.
n n

A:r('\)20

For A = (n), which is contained in the next to last, but not the last sum, this
used

2 1 n - 1 2k 2 1 n - 1 2k
d 1- - --r(n)1 + d( _ )1- - --r(n - 1,1)1

n n n n 1,1 n n

= (1- ~)2k + (n -1)2(1- !)2k ~ (n _ 1)2(1- ~)2k
n n n

2 n - 1 2k= dn-1lI + --r(n - 1,1)1 ·
n



42 Chapter 3D

In order to bound this sum we split it into two parts according as'xl ~ (l-a)n
(where a E (0, t) will be chosen below)

2:* dl (~+ n: 1 r(A))2k =t 2: dl (~+ n: 1r(A))2k
A:r(A)~O j=1 A:r(A)~O

A1=n-j

<~("!') n! (_ 2j (n_ j +1))2k ~(n) n! ( j)2k
- L-t J ( 0)' 1 2 + L-t j (n _ )O)! 1 - -:;; .

j=1 n -) . n j>an

To obtain this we used the corollary to (D-2) above and

(where the A' are the irreducible representations of Sn-i).
In order to give a bound for the first sum shown in (*) above recall that

k - !!.log n + en·- 2 ,

an
""(1!') n! -4k( ~- j:2

j
)

~ J (n_j)!e
J=1

an ( 1)'2 .> 2. -4k/n. "" n - . . -2 log n o(1- *")(j-1)
_ n e L-t ( _ 0)'2 0' e ,. n ).).

J=1

we observe that the factor in front of the sum is exactly e-4c and so all we have
. an 2(j-1) Loan 2j(j-l)

to do IS to bound E _n_._,-. n-2(1- n )(J-1) == E ~. n n for large values of
j=1 Jo j=1 Jo

n. The ratio between two consecutive terms in this sum is j~l . n4j /n, which, as
a function of j, is decreasing if j < In and increasing if j > In. So if

4 og n 4 og n
both the first and the last ratio are less than q < 1 we may bound the sum by
1~q. But the first ratio is < 1 if n ~ 17 and the last one is < 1 if a

1
n n 4a < 1, Le.

n > (~)1/1-4a. This works well if a < 1/4.
Now let's consider the second sum

The factor in front of the sum is ~ e-4c if n ~ 7 and a is close enough to t.
Hence it is sufficient to bound the sum for large values of n. The ratio between
two consecutive terms is

(n.- j)2 (1- _1_
0

)n log n,
)+1 n-)
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which is decreasing in j. So, if the first of these ratios,

(n - an)2 (1 l)n log n (1- a)2 1---.1-.- < n I-a
an + 1 n - an - a

is less than one (this happens if n ~ ((1_",,)2) (1:0») we may bound the sum by n
times the first term, that is, by

,
n . (n) n. . (1 _ a)n log n.

an (n - an)!

Using Stirling's formula one can show that this tends to 0 (very slowly) if n tends
to 00 and so it must be bounded. This completes the proof of the upper bound
part of Theorem 5.

The following argument for the lower bound produces an explicit set A where
the variation distance is large. Intuitively, if not enough transpositions have been
made, there wil~ be too many cards that occupy their original positions. Let A be
the set of all permutations with one or more fixed points. Under U, the chance of
one or more fixed points is well known under the name of the matching problem.
Feller (1968, Sec. IV.4) implies

1 1
U(A) = 1 - - + Q( -).

e n!

To bound P*k(A), consider the process for generating p*k using random
transpositions (L1 , RI)' ... , (Lk, Rk). Let B be the event that the set of labels
{Li, Ri}f=l is strictly smaller than {I, ... , n}. Clearly A :) B. The probability
of B is the same as the probability that when 2k balls are dropped into n boxes,
one or more of the boxes will be empty. Arguments in Feller (1968, Sec. IV.2)
imply that the probability of B equals .

-2k/n
1 - e-ne +0(1) uniformly in k, as n -+ 00.

With k == ~n log n +en, P*k(A) ~ 1 - e-e-
2c

+o(1). Thus

IIp*k - UII ~ IP*k(A)'- U(A)I ~ (P*k(A) - U(A))
1 -2c

~ (- - e- e ) +o(1).
e

o

Remarks.
1) On Lower Bounds. The argument for the lower bound is satisfying in that

it produces a simple set that "explains" why tn log n steps are needed. On
the other hand, the computation involved two classical results which would
not generally be available for other random walk problems. It is therefore of
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some interest to see how the general approach to lower bounds works out in
this case.
The general approach begins with the upper bound argument and chooses

the difficult or "slowest" representations to construct a random variable to work
with. In the present case, the difficult representation is sn-l,l. A reasonable
candidate for a random variable is thus the character X of this representation.
Observe that this is exactly the number of fixed points minus one. Under the
uniform distribution

1 2 IEU(X(1I")) = 0, Varu(x) = fGf~1rX (11") = (X X) = 1.

Under the convolution measure, with p the n - 1 dimensional representation,

Observe that in order to drive this to its correct value zero, k must be
tn log n+en for e large. However, this is not enough to lower bound the variation
distance since there are random variables with large means which are small with
high probability. A second moment is needed. To compute this E k (X2 ) is needed.
Now X2 is the character of the tensor product of X with itself. It is not difficult
to argue that

sn-l,l ® sn-l,l = sn Ee sn-l,l E9 sn-2,2 E9 sn-2,l,l

dim (n - 1)2 1 n - 1 n(n
2
-3) (n-l)i n - 2 )

An explicit proof of this result can be found on page 97 of James and Kerber
(1981).

EXERCISE 13. Using the data above, compute Vark(X) and use Chebychev's
inequality to show that tn log n - en steps are not enough.

2) While limited, the approach developed above gives precise results for some
other problems. To begin with, consider random transpositions. The iden­
tity is chosen much more frequently than any specific transposition. It is
straightforward to carry out the analysis for the probability

If Pn = 1/(1 + (2))' all possible permutations are equally likely. In this
case the argument shows that k = e(n)n2 transpositions are needed where
e(n) ~ 00 with n. This is somewhat surprising; usually, for a given support
set, the probability that approaches the uniform most rapidly is uniform on
the support set.
Similarly, any simple probability on Sn which is constant on conjugacy classes

can be worked with. A key tool is a uniform bound on° the characters developed by
Vershik and Kerov (1981). A readable account of this is given by Flatto, Odlyzko
and Wales (1985). They work out details for probabilities uniform on a fixed
conjugacy class e (e.g., all 3 cycles). Their results imply that tn log n steps are
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always sufficient. This is not surprising - choosing a random 3-cycle mixes more
cards each time and should result in faster convergence.

A simple problem not covered by available techniques is the rate of con­
vergence for a random involution (1r 2 = id).· There are ~pdp of these, which is
asymptotically (; )n/2 · eVn/V2e t. For this and other properties of involutions
see Stanley (1971, pg. 267). Such a measure is constant on conjugacy classes, but
the asymptotics haven't been worked out. It is not hard to show that any non
trivial conjugacy class generates Sn' See Arad and Herzog (1985). Thus there are
many open problems.

Finally, it is straightforward to handle random walks based on measures
constant on conjugacy classes of the alternating group An. The characters of An
are available as simple functions of the characters of Sn' James and Kerber (1981)
Chapter 2 give these results.

EXERCISE 14. Let n be odd. Let Q be uniform on the set of n cycles in An.
Show that Q*2 is close to uniform for large n. (Hint: See formula 2.3.17 in James
and Kerber (1981) or Stanley (1983).)

3) Connections with Radon Transforms. The analysis developed in this section
has been applied to the study of uniqueness and inversion of the Radon
transform by Diaconis and Graham (1985a). Here is a brief description: let
G be a group with des, t) a bi-invariant metric: d(rs, rt) = d(sr, tr) = des, t).
Let I: G ~ IR be a function. Suppose we are told not I(s) but

/(s) = L J(t) for all s and fixed a.
d( s,t) $a

When do these averages determine I? If S = {s: d(id, s) ~ a} the Radon
transform is l(s) = 15* f( s). Taking Fourier transforms, the Radon transform
is unique if and only if is(p) is invertible for every irreducible representation
p.
The study of this problem leads to interesting questions of probability and

computational complexity even for groups as simple as Zr. In this case, with d
as Hamming distance, when a = 1, f --t I is 1 - 1 iff n is even; when a = 2, iff n
is not a perfect square; for a 2:: 4 iff n is not in a finite set of numbers.

John Morrison (1986) derived exact results for this problem using Gelfand
pair tools (Section F below). Jim Fill (1987) gives comprehensive results for Zn.
For applications to data analysis, see Diaconis (1983). For general background,
see Bolker (1987).

For G = Sn, choose d( 1r , 'fJ) as the minimum number of transpositions needed
to bring 1r to 1]. This metric is further discussed in Chapter 6-B. For any bi­
invariant metric, Is is constant on conjugacy classes, so is(p) = cl. For a =
l,c = (1+(2') rep)). Diaconis and Graham use this result and Frobenius' formula
for r(p) to argue that f ~ 7 is invertible iff n E {I, 3, 4,5,6,8, 10, 12}.

4) Perfect codes. Very similar computations occur in a seemingly different prob­
lem treated by Rothaus and Thompson (1966). Let G be a group and T be a
subset of G. Say that T divides G if there is a set S in G such that each 9 E G
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has a unique representation st == 9 with s in Sand t in T. For example, if
T is a subgroup, then T divides G. If G == 8 3 and T == {id, (12), (13), (23)},
then T does not divide 8 3 •

The construction of codes leads naturally to questions of divisibility: Let G
be a group and d(s,t) a G invariant metric on G (Le., d(s,t) == d(gs,gt)). For
example, G might be Z2 and d might be the Hamming distance, or G might be
Sn and d( s, t) might be Cayley's distance: the minimum number of transpositions
required to bring s to t (see Chapter 6-B).

A subset S C G is called a code; S corrects k errors if any two code words
are at distance more than 2k apart; 8 is perfect if G is the disjoint union of balls
of fixed radius centered at the elements of 8.

Perfect codes are elegant efficient ways of coding data with minimum waste.
On Z2 the perfect codes have been classified; see MacWilliams and Sloane (1977).
The search for codes in other groups is an active area of research.

To see the connection with group divisibility, consider Sn with Cayley's dis­
tance. Take T to be a (solid) ball of radius k about the identity. Observe that T
divides Sn if and only if there is a perfect code S of this radius - indeed, balls
centered at points of S would be disjoint if T S == Sn uniquely.

Rothaus and Thompson considered k == 1, Le. T as the identity together
with the set of all transpositions in Sn' To explain their result, observe that a
necessary condition for divisibility is (1 + (2') )In! (after all, disjoint balls of radius
1 have to cover). This rules out n == 3,4,5 but not 6 for example. They proved
that if (1 + (2)) is divisible by a prime exceeding vn+2, then T does not divide
Sn.

Their argument is very similar to the argument for analyzing repeated ran­
dom transpositions. Interpret the equation ST == G as an equation about the
convolution of the indicator functions of the sets Sand T(ls * IT = 1 say). Tak­
ing Fourier transforms at an irreducible representation leads to c(p)js(p) = 0,
where c(p) = 1 + (2')Xp(r)/dp. Now one must study when c(p) vanishes (see the
previous remark). One really new thing in the Rothaus-Thompson paper is the
skillful use of transforms at non-irreducible representations to give checkable di­
visibility constraints on n. The argument is fairly detailed and will not be given
here. Sloane (1982) connects this work with the modern coding literature and
gives many further applications. Chihara (1987) extends the results to Chevalley
groups.

EXERCISE 15. Rothaus and Thompson report 1,2,3,6,91, 137,733, and 907
as the only integers less than 1,000 which fail to satisfy the theorem. The naive
criterion does 3, (and 8 2 is divisible). Show that 8 6 is not divisible.

5) Varying the measure. The ideas developed above can be used for some re­
lated problem like transpose a random card with the top card, or switch the
top k cards with k randomly chosen cards. Here we have a measure on Sn
invariant under conjugation by Sk and bi-invariant under Snk. The Fourier
transform can be shown to be diagonal with explicitly computable elements.
See Diaconis (1986) or Greenhalgh (1988) for further details.

6) Random reflections. Similar analyses are possible for other random walks
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constant on conjugacy classes. For example, let G == Gp - the p-dimensional
orthogonal group. One practical problem involves algorithms for choosing a
random element of G when p is large (e.g. p = 256). The usual algorithm
begins with p2 standard normal random variables Xij, forms a matrix M ==
{Xij} and makes M orthogonal using the Gram-Schmidt algorithm. It is easy
to show that this results in a random orthogonal matrix uniformly distributed
on G. Diaconis and Shahshahani (1987a) discuss this and other algorithms.
In carrying out the Gram-Schmidt algorithm, the ith row of M must be
modified by subtracting out the inner product of all rows above it. This
entails computation of i-I inner products. Each inner product involves p

p

multiplications and additions. The whole procedure takes order p L: i ==
i=l

O(p3) operations. This is often too large for practical use.
Sloane (1983) contains a fascinating application to encrypting telephone con­
versations. Sloane suggested generating a matrix by using random reflections.
Geometrically this involves choosing a random point U in the p-sphere and
reflecting in the hyperplane orthogonal to U. Algebraically the matrix is
f == (I - 2UU'). Observe that the distribution of r is constant on conjugacy
classes because fI(l - 2UU')r~ == (1 - 2rI U(r1U)'). If U is uniform on the
p-sphere, r 1 U is uniform as well. There is a straightforward extension of the
upper bound lemma to compact groups. The analysis can be carried out to
show that tp log p + cp steps are enough (while tp log p - cp steps are too
few). Some details can be found in Diaconis and Shahshahani (1986a).
In this problem, P is singular with respect to the uniform distribution, but
p*k has a density for k 2: p. Thus variation distance bounds make sense. For
random walks on continuous compact groups involving a discrete measure,
the distribution is always singular and only bounds in a metic for the weak
star topology can be hoped for.

7) Random walks on linear groups over finite fields. The problem described
above can be carried out over other fields such as C (to generate a random
unitary matrix) or Fq - a finite field with q == pd elements. Here is another
problem which should lead to interesting mathematics. Let V be a vector
space of dimension d over Fq • Let SLd(V) be the dxd invertible matrices with

determinant 1. This is a finite group of order q(g)IIf=2(qi -1). A transvection
is a linear transformation in S Ld(V) which is not the identity but fixes all
elements of a hyperplane. Suzuki (1982, Sec. 9) shows that if d 2: 3, the
transvections form a single conjugacy class that generates SLd(V). Thus,
the question "how many random transvections are required to get close to
the uniform distribution on S Ld(V)?" can be attacked by the method of this
section.
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E. THE MARKOV CHAIN CONNECTION.

1. INTRODUCTION.

There is another approach to random walks on groups: treat them as Markov
chains with state space G and IGI X IGI transition matrix Q(s, t) = Q( ts- I

).

In early attempts to understand the problem of random transpositions Joseph
Deken did exact computations of the second largest eigenvalue for decks of size
n = 2, 3, ... ,10. He found it to be (1 - 2/n). This is precisely the constant in
the Fourier transform at the "slow" representation (see Theorem 5 of Section D)..
This striking numerical coincidence suggested that (a) the (1 - 2/n) result must
hold for all n, and (b) there is a close connection between the Markov chain and
group representation approach. Some of this was worked out by Diaconis and
Shahshahani (1981), who showed that the eigenvalues of the transition matrix are
precisely the eigenvalues of Q(p), each appearing with multiplicity dp •

The following discussion uses work of Matthews (1985). It results in a sort of
diagonalization of the transition matrix and an exact determination of eigenvalues
and eigenvectors where these are available. This allows us to use results from
classical Markov chain theory.

2. A SPECTRAL DECOMPOSITION OF THE TRANSITION MATRIX.

Let G be a finite group with elements {SI,.'" SN}, N = IGI. For a probability
Q on G, construct Q(i,j) = Q(SjS;I) - the chance that the walk goes from Si
to Sj in one step. Suppose that the irreducible representations are numbered
PI,·· ., PI(· Define

(1)

a d~ X d~ block matrix with Q(Pk) the Fourier transform of Q at Pk.

(2) Let M be the N X N block diagonal matrix (MI 0 )

o MI(

Suppose that a basis has been chosen so that each irreducible representation
is given by a unitary matrix. Define

a column vector of length d~. Let <p(s) = ('l/Jl(s)T,'l/J2(S)T, ... ,'l/J/«s)T)T be a
column vector of length N obtained by concatenating the 'l/Jk( s) vectors.

(4) Let <p be the N X N matrix (<p(St), ... ,4J(SN)) and 4J* its conjugate

transpose.
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Theorem 6. The transition matrix Q( i, j) can be written

(5) Q = ~*Af*~

Remarks. The Schur orthogonality relations show that ~ is a unitary matrix.
So (5) is a decomposition similar to the traditional eigenvalue, eigenvector de­
composition. It implies that each eigenvalue of tJ(p) is an eigenvalue of Q( i, j)
with multiplicity dp. Together these are all the eigenvalues of Q( i, j). If Af is
diagonal (e.g. Q constant on conjugacy classes or bi-invariant on a Gelfand pair
(Section F below)), then (5) is the spectral decomposition of Q with respect to
an orthonormal basis of eigenvectors.

Proof of Theorem 6: The Fourier inversion theorem gives

1 K 1 K
Q(i,j) = N LdkTr[Q(Pk)Pk(Si)Pk(sjl)] = N LdkTr[Pk(sjl)Q(Pk)Pk(Si)].

k=l k=l

Expanding the trace, this equals

!(

L 'l/Jk(Sj)* Mk'l/Jk(Si)'
k=l

o

3. THE FIRST HIT DISTRIBUTION.

Let G be a finite group and Q a probability on G. For s, t E G, define
Fit = the probability that t is first hit at time n starting at s. For Izl < 1 let

00

Fst(z) = L: F:t zn .
n=l

Theorem 7. For Izl < 1, (1 - zQ(p)) is invertible and

Fst(z) = ~pdpTr[p(srl)(1 -=- zQ(p»-l] .
I;pdpTr[I - zQ(p)]-l

00

Proof. Using the notation of Section 2, Q(z) = L: znQn = {4J*(I - zM*)-l4J}.
n=!

Kemperman (1961, pg. 18-19) gives the standard result

The result follows from this and (5) above. It is given a direct independent proof in
Section H. It is mentioned here to underscore the availability of the Markov chain
machine in situations where all the eigenvalues and eigenvectors of the transition
matrix are known.
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4. ON GENERALIZED CIRCULANTS.

The technique we have developed for analyzing random walks gives rise to
a class of "patterned matrices" for which we can explicitly determine all the
eigenvalues and eigenvectors. Let G be a finite group of order g. Let 81, ... ,8g be
an enumeration of the elements of G. Let P be a probability measure on G. The
transition matrix associated with P is the 9 X 9 matrix with i, j entry P(s jS:;I).
If a random walk on G is thought of as a Markov chain with G as state space, the
i, j entry is the probability of a transition from state Si to state Sj' We have been
working with measures which are constant on conjugacy classes. Generalizing this
somewhat define a G-circulant as a 9 X 9 matrix with i, j entry I( Sjs:;l) with f
constant on conjugacy classes.

Examples. If G is Abelian, then the equivalence classes consist of single el­
ements. If G is cyclic, then a G circulant is an ordinary circulant: a 9 X 9
matrix in which each row is a cyclic shift of the first row. For G = 53 the
equivalence classes are {id}, {(1 2), (1 3), (2 3)}{(1 2 3), (1 3 2)}. If f(id) =
a,f(l 2) = b,f(l 2 3) = c and the group is labelled in order (using (~~~)
notation) (1 2 3)(1 3 2)(2 1 3)(2 3 1)(3 1 2)(3 2 1), we get

dim
1
1
4

typical vector
(1 1 1 1 1 1)
(1 -1 -1 1 1 -1)
(200 -1 -1 0)

value
a +3b + 2c
a - 3b +2c

a-c

a b bee b
b a ebb c
b cab b c
ebb a c b
ebb cab
bee b b a

Let G be the 8 element quarternion group G = {±1, ±i, ±j, ±k} with multiplica­
i

tion given by /' ~ .. Thus ij = k, kj = -i, etc. There are five conjugacy classes:
k +-- J

{+l},{-l},{±i},{±k}. Let them have weight a, b, c, d, e. Label the group 1,
-1, i, -i, j, -j, k, -k. We get

abccddee
baccddee
ccabeedd
ccbaeedd
ddeeabcc
ddeebacc
eeddccab
eeddccba

value
a + b + 2c +2d + 2e
a + b + 2c - 2d - 2e
a + b + 2d - 2c - 2e
a + b + 2e - 2c - 2d

a-b

typical vector
(1 1 1 1 1 1 1 1)
(1 1 11 -1 -1 -1 -1)
(1 1 -1 -1 1 1 -1 -1)
(1 1 -1 -1 -1 -1 1 1)
(1 -1 0 0 0 0 0 0)

dim
1
1
1
1
2

Theorem 8. Let M be a G-circulant. Then M has an eigenvalue Ap for each
irreducible representation p of G,
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the eigenvalue Ap occurs with multiplicity d~.

Proof. The spectral decomposition of Section 2 above proves a stronger result:
it gives the eigenvectors as an explicit arrangement of the matrix entries of the
irreducible representations.

Remarks.
1. There is a lovely book called Circulant Matrices by Phillip Davis (1979). It

seems like a nice project to go through the book and generalize all the results
to G-circulants.

2. Note that the character vector (Xp( SI) ... Xp( Sg)) is always an eigenvector for
Ap •

3. The argument generalizes easily to a transitive action of G on a finite set X. If
P is a probability on G, then P induces a Markov chain on X. The transition
matrix of this chain has the same eigenvalues as the matrices Pep), where p
runs over the irreducible representations of G that appear in the permutation
representation of G on X. This is developed in Section F which follo\vs.

4. Example 3 of Section C suggests some further extensions. This begins with
the Markov chain X n = 2Xn - 1+ En (mod p) with Ei LLd. taking values
0, ±1 with probability t. The transition matrix M of this chain is not a
circulant, but the argument shows that its ath power is a circulant, where a
is the order of 2 (mod p). Thus one knows, up to an ath root of unity, all the
eigenvalues of M. Remark 2 of the example suggests many further situations
where a similar analysis is possible.

F. RANDOM WALKS ON HOMOGENEOUS SPACES AND GELFAND PAIRS.

1. HOMOGENEOUS SPACES.

There is an extension of the basic set up which is useful. It involves the
Markov chain induced by a random walk under the action of a group. This arises
in some of the introductory examples: for instance, in considering the recurrence
X n = an X n - 1 +bn X n - 2 (mod p), a random walk on 2 X 2 matrices was considered.
The matrices act on pairs (Xn , X n - 1 ). To understand the behavior of X n it is
not necessary to bound the rate of convergence on the group of matrices, but only
on the set of non-zero pairs. Similarly, the grand tour example in section A4 only
involved the action of the orthogonal group on lines or planes.
Definition. Let G be a finite group and X be a finite set. An action of G on X
is a mapping from G X X --+ X which we will denote (s, x) --+ s · x or simply sx.
It must satisfy: id·x = x and S • (t · x) = (st) · x. Define an equivalence on X
by x rv y if for some s E G, sx = y. The equivalence classes are called orbits. G
operates transitively on X if there is only one orbit. A set with a group acting
transitively is called a homogeneous space.

When G operates transitively, the following canonical representation of X
is useful. Fix Xo EX. Let N - the isotropy subgroup of Xo - be the set of
s E G with sXo = xo. The group G acts on the coset space G/ N. There is an
isomorphisim between X and G/ N respecting the action of G. We will identify



52 Chapter 3F

X with xo, xl, ... , X n , a set of coset representatives for N in G. It will always be
assumed that Xo = id.

Example 1. The symmetric group Sn acts on {I, 2, .. . n} transitively. The
isotropy subgroup is isomorphic to Sn-l - as all permutations fixing 1. Coset
representatives can be chosen as the identity and the transpositions (12), ... , (In).

A probability P on G induces a probability P on X = GIN by P(Xi) =
P( Xi N ). Similarly, if p*k denotes the convolution of P with itself k times, p*k
induces a probability on X. We can think of a process with values in G, say id,
81, 82 81, 83 8 2 81, .... The induced process in X is XO, 8IXO, S2 8 I X O,· •• •

EXERCISE 16. Let the finite group G act on the finite set X, partitioning X
into orbits (Ji. If P and Q are probabilities on X which are G-invariant, then

Thus, the variation distance between P and Q equals the distance between their
restrictions to the set of orbits. This is a special case of the following result: if
P and Q are probabilities on a a-algebra F and if a sub-a-algebra B C F is
sufficient for P and Q, then liP - QIIF = liP - QIIB. See Diaconis and Zabell
(1982) for details and applications.

LEMMA 3. Let G act transitively on X. Let P be a probability on G. The
induced process is a doubly stochastic Markov chain on X with transition matrix
Px(y) = P(yNX-I).

Proof. For the induced processes, the chance of going from X to y in one step is
Px(y) defined as P{s:sx = y} = P{yNx- I }. For a Markov chain, the chance of
going from x to y in two steps is of course

z

The chance that the chain in question is at y in two steps is

P * P(yN) = L P(yNs-1 )P(s).
s

Let s = xn, we get

x,n x

The last computation is essentially the inductive step of a proof that the measure
induced by p*k on X equals P:o(y). 0

To state the next result, introduce L(X) - the set of all functions from X
into the complex numbers. The action of G on X induces an action of G on L(X)
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by sf(x) = f(s-lx). This is a 1 - 1 linear mapping of L(X), and so yields a
representation of G. The representation splits into a direct sum of irreducible
representations p.

LEMMA 4. (Upper bound lemma). Let G operate transitively on the finite set
X. Let N be the isotropy subgroup. Let P be a right N invariant probability on
G, P the induced probl6bility on X, and U the uniform distribution on X. Then

where the sum is over all nontrivial irreducible representations that occur in
L(X).

Proof. Let (; be the uniform probability on G.

(~xIP(x) - U(x)I)2 :::; IXI~xIP(x) - U(x)12 == IXIINI~s(P(s) - U(s)(2

== ~;dpTr(P(p)P(p)*).

In the last step, the Plancherel theorem was used together with the facts that a
right N invariant function has zero Fourier transform if p does not occur in L(X).
This follows from the following lemma and remark. 0

LEMMA 5. Let p, V be an irreducible representation of the finite group G. Let
N c G be a subgroup ~nd X = G/ N the associated homogeneous space. The
number of times that p appears in L(X) equals the dimension of the space of N
fixed vectors in p, V(= dim{ v E V: p(n)v = v for all n E N}).

Proof. Let {ox(')} be a basis for L(X). The character X for the representation
of G on L(X) is

x(s) == ({x: 6x (s-ly) = 6x (y)}1 = I.x: sx = xl

== Ix: x-1sx E NI.

Now, the number of times p appears in this representation is

1 1
(xplx) = iGi L Xp(s)X(s) = iGi L Xp(s)

s s

= I~I ~Xp(n) ~
x-1sx=n

But, for any fixed n,

L l=IXI·
s,x

x-1sx=n

1

To see this observe that for fixed n, x, s = xnx- 1 is determined. Further, if
x-1sx == n, then (tX)-ltst-1(tx) = n for all t E G. Since G operates transitively
on X, for every y E X there is a unique s* such that y-l s*y == n.
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Since IGI/IXI = 1Nl,

The right side is the number of times the trivial representation appears in XP
restricted to N. This is just the dimension of the space of N fixed-vectors. 0

Remarks. Lemma 5 is a special case of Frobenius' reciprocity formula. The
representation L(X) is the trivial representation of N induced up to G. Frobenius'
formula says the number of times a representation p of G appears in the induction
of A (a representation of N) to G equals the multiplicity of A in p restricted to
N. Chapters 3 and 7 of Serre (1977) give further development. The general result
is proved by essentially the same combinatorial argument. For present purposes,
Lemma 5 is all that is needed.

Using Lemma 5, if p does not occur in L(X), the trivial representation does
not occur in p restricted to N. Now, the orthogonality relations (Corollary 2 of
Schurs lemma in Chapter 2) yield ~nP(n) = o. For a right N invariant function
f on G,

j(p) = ~x f(x) p(x)~n pen) = o.
This completes the proof of the upper bound Lemma 4.

The next section discusses a collection of examples where a huge simplification
occurs.

2. Gelfand pairs

This is a class of examples where the Fourier analysis becomes simple. Con­
sider, as above, a group G acting transitively on a finite set X with isotropy
subgroup N. A function f: G ~ C is called N-bi-invariant if f(nlsn2) = f(s) for
all s E G, nl ,n2 EN.
Definition. G, N is called a Gelfand pair if the convolution of N hi-invariant
functions is commutative.

One value of this definition comes from a long list of examples. Some of these
are discussed later in this section. Letac (1981, 1982) or Bougerol (1983) present
very readable surveys of available results. The following theorem is basic:

Theorem 9. The following three conditions are equivalent
(1) G, N is a Gelfand pair.
(2) The decomposition of L(X) is multiplicity free.
(3) For every irreducible representation (p, V) there is a basis of V such that

j(p) = (~g) (a matrix with zero entries except perhaps in the (1, 1) position)

for all N -bi-invariant functions f.

Proof Assume (2), so L(X) = VI 61 V2 61 ... 61 Vm say. This is multiplicity free, so
by Lemma 5 above, each Vi has a non-trivial one-dimensional space of N invariant
functions. Choose so called spherical functions Si E Vi to be left N -invariant and
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normalized so si(id) = 1. Complete Si to a basis for Vi chosen so pi(n) = (~~)

for all n E N (the top block is 1 X 1, the bottom block is (d i - 1) X (d i - 1)).
For / an N -bi-invariant function,

s x,n x n

But Pi restricted to N has a one-dimensional space of fixed vectors. By the
orthogonality relations for the matrix entries, the (a, b) entry satisfies

L pib(n) = {1 N l if a = ~ = 1
o otherwIse.

n

Thus ](Pi) has the form E/(x )(: 0) = (: 0). This argument works for any right
invariant function I. For left invariant I, a similar argument shows that !(Pi)
has form (......0·· ... ). From Lemma 5, if P does not appear in L(X), j(p) = o. This
shows (2) implies (3).

Clearly (3) implies (1) by taking Fourier transforms. To finish off, suppose
(1) but some Pi has multiplicity j > 1 in L(X). Pick a basis of Vi with first j co­
ordinates spanning the N -invariant space. Take M 1 , M 2 any two non-commuting
j X j matrices. Define /1, /2 on G by

By Fourier inversion, these are non-zero, N -bi-invariant functions and fl * 12 f;
/2 * fl. 0

COROLLARY. Let (G, N) be a Gelfand pair with L(X) = VI EB ••. EB Vm • Each
Vi contains a unique N -invariant function Si with SiC id) = 1. If the Fourier
transform of an N invariant probability P on X is defined by

P(i) = Exsi(x)P(x),

then, for U the uniform distribution on X

IW~o - UI1 2 ~ l td i l.P(i)1 2k
.

i=1

Remarks. The corollary follows from the theorem above and the upper bound
lemma of the last section. The Si are called spherical functions. They have been
explicitly computed for many groups. From part (3) of the theorem Si(X) =
Pie X )11. This sometimes serves as a definition, or as a way of computing spherical
functions: take (pi, Vi), a unitary representation that appers in L(X). By the
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theorem, Vi contains a one-dimensional space of N fixed vectors. Let u be a unit
N-fixed vector. Then Si(X) =< pi(X)U,U >. The Si are left N invariant functions
on X. They are also N-bi-invariant functions on G. Turning things around, if
the spherical functions are known, the * in Theorem 9-3 can be computed as
l: f( t)s( t).

tEG

EXERCISE 17. Let Xi be the character of a representation Pi that appears in
L(X). Show

Thus the spherical functions are determined by characters.

3. Example: The Bernoulli-Laplace model of diffusion.

As a specific example of the techniques discussed above consider the following
model of diffusion suggested originally by Daniel Bernoulli and Laplace. Feller
(1968, p. 378) contains the history. There are two urns, the first containing n
red balls, the second containing n white balls. At each stage, a ball is picked at
random from each urn and the two are switched. Evidently, many switches mix
things up and it is not difficult to show that once things reach equilibrium they
evolve (approximately) as an Ornstein-Uhlenbeck process (at least for large n).
The problem is, how many switches are required to reach equilibrium? In what
follows, we show that !J' log n + en switches suffice.

It is just as simple to solve the same problem with r red balls in the first urn
and b black balls in the second urn. Let n = r + b. A convenient mathematical
model for this has X == Sn/ Sr X Sb; thus X can be thought of as the set of
r element subsets of a set with n elements. For x, y E X define the distance
d(x, y) == r - Ix n yl. This is a metric (see Chapter 6-D), and the random walk
problem becomes the following: start at Xo == {I, 2, ... , r}. Choose an element
inside Xo and an element outside Xo and switch them. This chooses a set x at
distance one from Xo at random. The following result is proved by Diaconis and
Shahshahani (1987b).

Theorem 10. For nearest neighbor random walk on the r sets of an n set, if
k = ~(1 - ;) log n + er then

for positive universal constants a and d.

Proof. Without loss, take r :::; n/2. The space decomposes as L(X) = Vo EB
VI EB · .. EB Vr where Vi is the irreducible representation of the symmetric group
Sn corresponding to the partition (n - i, i). James (1978) gives this result as well
as dim(Vi) = (r) - (i~l). In particular, the pair (Sn,Sr X Sb) is a Gelfand pair.

The spherical functions have been determined by Karlin and McGregor (1961)
in studying an equivalent formulation in a genetics example (Moran's model).
Stanton (1984) contains this result in modern language. The spherical functions
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turn out to be classically studied orthogonal functions called the Dual Hahn or
Eberlein polynomials. The function 8i(X) only depends on the distance d(x,xo)
and is a polynomial in d given by

-(d) - ~ (-i)m(i - n - l)m( -d)m 0 .
81, - L...J (_) (_)' ::; t ::; r,

m=O r n m r mm.

where (j)m = j(j + 1) ... (j +m-I). Thus,

1~d
so(d) = 1, sl(d) = 1- ( )'rn-r

(d)
- 1 _ 2(n - l)d (n - l)(n - 2)d(d - 1)

82 - + ·r(n-r) (n-r)(n-r-l)r(r-l)

The basic probability P for this problem is supported on the r(n - r) sets of
distance one from the set {I, ... , r}. Thus the Fourier transform of P at the ith
spherical function is

(3)
" . i(n - i +1) .
P( t) = si(l) = 1 - ( ) 0::; t ::; r.rn-r

Now the corollary to Theorem 9

lipk - unz ::; ~ t{(~) - (. n )Hl- i(n- i + 1))2k.
4 i=l t t - 1 r(n - r)

To bound this sum, consider first the term for i == 1,

n 2k
(n-l)(l- ( )).rn-r

This is essentially
-~+ logne r(n-r) •

Thus k must be ~(1 - ;;) log n at least to kill this term. If r = n/2, this becomes
i log r. If r = o(n), this becomes ~ log n.

Next consider the final term

((~) _ ( n ))(_1 )2k.
r-l n-r

This is certainly bounded above by

n
r
_1_ _ -2k log ~+r log n- log r!

, (!1)2k - e ·r. 2

In any case, if k is of order ~(l - ~) log n, this tends to zero exponentially
fast. The intermediate terms are always geometrically smaller than the extreme
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terms, just as with the argument for random transpositions. Further details are
in Diaconis and Shahshahani (1987b). 0

Remark 1. As described in Section E, the analysis gives a precise formula for
the eigenvectors and eigenvalues of the transition matrix of this problem treated
as a Markov chain. Karlin and McGregor (1961) essentially derived this result
without using group theory. Their application was to a similar problem arising
as a genetics model due to Moran. A clear discussion of Moran's model can be
found in Ewens (1979, Sec. 3.3). Diaconis and Shahshahani give applications to
a learning problem discussed by Piaget.

Remark 2. As usual with approximation, some precision has been lost to get
a clean statement. The basic result is the bound of the corollary to Theorem 9.
When r = 1 for example there is only one term: (n - 1)( n~I )2k. For k = 1 taking

square roots gives tV~-I as an upper bound for the variation distance. Elemen­
tary considerations show that the exact distance in this case is l/n. Here, when
n is large, use of the upper bound lemma gives the right answer for the number
of steps required (namely 1) to make the distance small but an overestimate for
the distance itself.

EXERCISE 18. Consider two urns, the left containing n red balls, the right
containing n black balls. At each stage "a" balls are chosen at random from each
urn and the two sets are switched. Show that this is bi-invariant. Show that for
fixed a, as n ~ 00, this speeds things up by a factor of a (so 4

I
a n log n moves

suffice).

Remark 3. A reasonable number of other problems allow very similar analysis.
Stanton (1984) contains a list of finite homogeneous spaces arising from Chevalley
groups where (a) the associated L(X) is a Gelfand pair, and (b) the spherical
functions are explicitly known orthogonal polynomials. One case of particular
interest is a walk in the set of r-dimensional subspaces of an s dimensional vector
space over a finite field. See Greenhalgh (1988) for details. In all cases, there is a
natural metric so that nearest neighbor walks on X allow a I-dimensional analysis.
For the example of r-dimensional subspaces the distance is d(x, y) = r-dim(xny).

A special case of this analysis is nearest neighbor walk on the cube X = Z2.
Here G can be represented as the semi-direct product of Z;r with Sn. This is the
group of pairs (x,7t") for x E Z2' 7t" E sn. It acts on y E Z2 by (x,7t")(y) =
7t"y +x. Multiplication in G is composition of repeated transformations. Choosing
Xo = 0, the isotropy subgroup is N = {(0,1r):7t" E Sn} ~ Sn. It is easy to
verify that L(X) = Vo EB VI EB ... EB Vn where Vj is the subspace spanned by
the functions {fy(x)}IYI=j and fy(x) = (_l)Xoy. Thus G, N is a Gelfand pair
and dim Vj = ("]). The spherical functions S j(x) again only depend on d( x, 0)
(with d(x, y) = #places(xi f:. Yi)) and are polynomials in d called I{rawtchouk
polynomials:

j

sj(d) = (~) L (-l)m(~)G:::J·
J m=O
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The upper bound found by treating this problem as a Gelfand pair is the same as
the upper bound by treating the problem on the group Z2' (Example 2 of Section
C).

Remark 4. The theory of Gelfand pairs can be developed without using group
theory. One advantage of the present program is that it offers a route to follow for
problems where the representation is not multiplicity free. For example, consider
the Bernoulli-Laplace urn model with 3 urns; the first containing n red, the second
containing n white, the third containing n blue balls. At each stage, a pair of urns
is chosen at random, then a randomly picked pair of balls is switched. Analysis
of the contents of even the first urn is complicated by the fact that the associated
representation of S3n on L(X), with X == S3n/ Sn X Sn X Sn, has multiplicity.
(See Young's rule in Chapter 7.) This is an open problem.

There is a useful sufficient condition for showing that (G, N) is Gelfand with­
out explicitly determining the decomposition of L(X).

LEMMA 6. (Gel/and's lemma). Let r be 1 - 1 homomorphism r: G ~ G with
the property s-l E Nr(s)N for all s E G. Then (G, N) is a Gel/and pair.

Proof. Note first that for bi-invariant functions f(S-l) = f(r(s)) and r(N) C N.
If f is bi-invariant, define 1(s) = f(s-l), fT(S) == f(r(s)). Thus 1 = fT. Now
f * get) = ~sl(ts-l )g(s), so

1*get) == ~sl(t-1s-1)g(s) = ~zl(z-1)g(zt-1) = ~zj(z)g(tz-1) = !J * jet),

(I * g)T(t) = 'E sf(r(t)s-l)g(s) = Ef(r(t)r(s)-l)g(r(s)) == fT * gT(t).

It thus follows that for all bi-invariant I, 9

so f *9 = 9 * f· o

Example 1. Let N be any group, A an Abelian group and suppose N acts
on A. Form the semi-direct product G = N X s A as the set of pairs (n, a)
with (n2,a2)(n1,al) = (n2nl,n2al + a2);(n,a)-1 = (n- 1,-n-1a). These are
all Gelfand pairs as one sees by considering the 1 - 1 homomorphisms r(n, a) =
(n,-a). This satisfies (n,a)-l = (n-1,O)(n,-a)(n-1,O).

As examples we have the dihedral groups, the group of the cube (Sn X s Z'2),
the affine group Z:n X s Zm. The Euclidean group SOd X s IRd is also a Gelfand
pair.

Example 2. (Groups of isometries). Let (X, d) be a finite metric space on
which G acts. Suppose d is G invariant. Say G acts 2 point homogeniously if for
all (X1,Yl), (X2,Y2) with d(Xl,Y1) = d(X2,Y2) there is an s such that SXI = X2,
SYl = Y2. Observe that G operates transitively (take Xl = Y1, X2 == Y2, then
SXI = X2 for some s). Pick Xo E X, let N = {s E G: sXo = xo}. Then (G, N) is
Gelfand with res) = s. To see this observe d(xo,sxo) = d(xo,s-lxo). Thus there
is an n so nsxo = s-lxO. This implies sns E N, so S-l E NsN.
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There are many special cases for this construction - most notably graphs
whose automorphism groups act 2 point homogeniously. Biggs (1984) gives an
extensive list, and a detailed recipe for determining the associated spherical func­
tions. As a special case, consider X as the k sets of an n set with distance
d(x, y) = k - Ix n yl. The symmetric group Sn operates 2 point homogeniously.
The isotropy subgroup is Sk X Sn-k, and we have recaptured the Bernoulli-Laplace
model. A continuous example has X = sn (the n-sphere), G = SO(n).

It is interesting to know when (G, N) can be shown Gelfand by the existence
of a homomorphism T. Diaconis and Garsia (1988) show that r(s) = s works if and
only if the representation of G in the space of real functions on X is multiplicity
free. They also present counter examples (a Gelfand pair that doesn't admit an
automorphisim) and discussion.

We have seen that Fourier analysis of bi-invariant functions on a Gelfand pair
offers a rich theory and collection of examples. The commutativity, which makes
life so easy here, is also present in the analysis of functions that are constant on
conjugacy classes. It is not surprising that one can be regarded as a special case
of the other.

EXERCISE 19. Let G be a finite group. Let G X G act on G by (s, t)x = s-Ixt.
The isotropy subgroup N in G X G is isomorphic to G as is the quotient space X.
Show that (G X G, N) is a Gelfand pair. The decomposition of L(X) is into p ffi P
with pes) = p*(s-I) as p varies over irreducible representations of G. These are
all distinct irreducible representations of G X G. Find the spherical functions in
terms of the characters and show how Fourier analysis of N invariant functions
on X via Gelfand pair techniques is the same as Fourier analysis of functions
constant on conjugacy classes as developed in section D.

There are two generalizations of Gelfand pairs worth mentioning here: asso­
ciation schemes and Hypergroups.

An association scheme is a finite set X with a collection of relations Ra, RI,
... , Rd. Take Ri as a zero-one matrix indexed by X with a 1 in position (x, y) if
x and y are related in the ith relation. The Ri'S satisfy axioms: (1) Ro = Id, (2)
~Ri = J (matrix of all ones), (3) for every i there is an i' such that R~ = Ri" (4)
RiRj = ~pfjRk for non-negative integers pfj. If RiRj = RjRi , the association
scheme is called commutative.

Commutative association schemes have an interesting elementary theory.
MacWilliams and Sloane (1981) give an efficient development. Bannai and Ito
(1986, 1987) give a very well done encyclopedic treatment.

- Because of (4) the set of all linear combinations of the Ri form an algebra.
For commutative association schemes the Ri can be simultaneously diagonalized.
For many examples, this diagonalization is very explicit.

As one example, take G a group, H a subgroup with X = G/H and (G,H) a
Gelfand pair. Then G acts on X X X by g(x, y) = (gx, gy). Take the orbits of this
action as relations on X. These relations form a commutative association scheme
with algebra isomorphic to the convolution algebra L(X).

In the other direction, consider a commutative association scheme X. The
axioms imply that every row and column of Ri have the same number ki of ones
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in each row and column. Thus Ri/ki is a doubly stochastic matrix. If Wi ~ 0 sum
to 1,

is doubly stochastic and so defines a Markov chain on X. The point is, for hun­
dreds of examples, this Markov chain is explicitly diagonalizable using available
information. Classical Markov chain techniques can then be used to derive answers
to the usual questions. Diaconis and Smith (1987) derive an appropriate upper
bound lemma and carry through some examples that don't arise from groups.

Association schemes were originally developed by statisticians for analysis of
variance problems. Speed (1987) shows how they have come to life recently for
new statistical applications. Coding theorists, combinatorialists, and finite group
theorists have been the principal developers of assocation schemes in recent years.
Bannai and Ito (1986, 1987) survey these developments and examples.

A Hypergroup begins with a set X and introduces a product on probabilities
on X - so the product of two pointmasses is a probability (which is not usually a
point mass). For example, a product ,can be introduced on the conjugacy classes
of a group: e.g. in the symmetric group, the product of two transpositions can be
the identity, a 3-cycle on the product of two 2-cycles. These occur with certain
mass. As a second example, the set of irreducible representations on a compact
group can be made into a Hypergroup using the Tensor product and its associated
weights.

A reasonable amount of theory and examples have been developed. There has
started to be a payoff to more classical areas. For example, Bochner's theorem for
Gelfand pairs or class functions follows from Hypergroup Theorems of Johanson
(1981). It is still unknown in general cases. Gallardo (1987) presents a nice
example of Fourier analysis for a class of birth and death processes that is available
by interpreting the decomposition of Tensor products on SU(2) as rules for births
and deaths. Zeuner (1987) gives a unified treatment of central limit problmes on
Hypergroups and pointers to related literature.

Hypergroups offer a continuous generalization of association schemes. They
appear to offer an extension worth keeping track of.

There are many further topics to discuss relating to Gelfand pairs. The
interested reader is referred to the annotated bibliography in Section G.

G. SOME REFERENCES ON GELFAND PAIRS.

The literature on Gelfand pairs is already sizeable. I hope the following anno­
tated bibliography will help. The articles by Bougerol and Stanton are very clear
and give details. The articles by Sloane and Heyer have extensive bibliographies.

Bailey, R. and Rowley, C. A. (1987). General balance and treatment permu-
tations. Techical Report, Statistics Department, Rothamsted Experimental
Station. Harpenden, Herts, AL5 2JQ, United Kingdom.

This paper is important in offering a bridge betwen the mathematics of
Gelfand pairs and an important component of designed experiments - gener-
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alized balance. Many experimental designs are constructed using group theory.
The paper shows that many such designs automatically have nice statistical prop­
erties.

Biggs, N. (1974). Algebraic Graph Theory. Cambridge University Press, London.

Chapters 20, 21 discuss "distance transitive graphs." These are what we
called two-point homogeneous. Graph theorists have derived lots of facts about
the eigenvalue, eigenvectors of these groups redeveloping the tools of Gelfand
pairs.

Bougerol, P. (1983). Un Mini-Cours Sur Les Couples de Guelfand. Pub. du Labora­
toire de Statistique et Probabilities, Universite Paul Sabatier, Toulouse.

A terrific set of lectures with complete proofs and no "baloney," manyexam­
ples.

Bougerol, P. (1981). Theoreme Central Limite Local. Sur Certains Groupes de Lie.
Ann. Scient. Ec. Norm. Sup. 4th Ser. 1, 14, 403-432.

A serious application in probability, showing how general results (not re­
stricted to hi-invariant functions) can he derived using the machinery of Gelfand
pairs.

Cartier, P. (1972). Fonctions Harmoniques Sur Un Arbe. Symposia Math. 9, 203­
270.

An elegant combinatorial derivation of all properties of this Gelfand pair. See
Sawyer (1978) for an application.

Diaconis, P. and Graham, R. L. (1985). The Radon Transform Zf. Pacific Jour.
118, 323-345.

This can all be carried over to bi-invariant neighborhoods on Gelfand pairs.

Diaconis, P. and Shahshahani, M. (1987). Time to reach stationarity in the Bernoulli­
Laplac~ diffusion model. SIAM Jour. Math. Anal. 18, 208-218.

A longer version of Section F-3 above.

Dieudonne, J. (1978). Treatise on Analysis VI. Academic Press, New York.

A reasonably self-contained single source. Weighted toward the analyst, but
it's possible to read.

Farrell, R. (1976). Techniques of Multivariate Calculation. Lecture Notes in Math,
No. 520. Springer-Verlag, Berlin.

The only attempt at a beginning to end treatment of the mathematics of
multivariate analysis that really does zonal polynomials.

Gangolli, R. (1972). Spherical functions on semi-simple Lie groups. In Symmetric
Spaces, W. Boothby and G. Weiss. Marcel Dekker, New York.

Gangolli's article is a well written introduction to computations on continuous
groups involving the Laplacian and its generalizations. The whole book consists
of survey articles, roughly on the same topic.

Guillemin, V. and Sternberg, S. (1984). Multiplicity free spaces. J. Differential
Geometry 19, 31-56.
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This is included to show this area is still under active development.

Helgason, S. (1978). Differential Geometry Lie Groups and Symmetric Spaces. Aca­
demic Press, New York.

Helgason, S. (1984). Groups and Geometric Analysis: Integral Geometry Invariant
Differential Operators, and Spherical Functions. Academic Press, New York.

These two books give a comprehensive modern treatment of continuous
Gelfand Pairs.

Helgason, S. (1973). Functions on symmetric spaces, pp. 101-146 in Harmonic Anal­
ysis on Homogeneous Spaces. Proc. Symposia Math. 24, American Mathematical
Society. Providence.

This entire volume shows how "grown-ups" use Gelfand pairs to do general
representation theory.

Heyer, H. (1983). Convolution semigroups of probability measures on Gelfand pairs.
Expo. Math. 1,3-45.

Contains a 62 item bibliography (mainly analytic, but useful).

James, A. T. (1975). Special functions of matrix and single argument in statistics.
Theory and Application of Special Functions, R. Askey ed.

This is a summary of years of work on the example GLn/On. This is a
central example in the piece of math statistics known as multivariate analysis. The
spherical functions, known as zonal polynomials, are used to derive distributions
of things like the largest eigenvector in the covariance matrix of a normal sample.

Karlin, S. and McGregor, J. (1961). The Hahn polynomials, formulas and an appli­
cation. Scripta Math. 23, 33-46.

One of the earliest derivations of the special functions of Sn/Sk X Sn-k. The
applications are to a genetics model for random mating in a population with two
alleles due to Moran. Many useful properties of the spherical functions are derived
without mention of group theory.

Kramer, M. (1979). Spharische Untergruppen in Kompacten Zusammenhangenden
Lie Gruppen. Composito Math. 38, 129-153.

He classifies, for G compact, simple, connected, Lie, all subgroups l( such
that (G, l() is Gelfand.

Letac, G. (1981). Problemes classiques de probabilite sur un couple de Gelfand. In
Lecture Notes in Math. 861 (Springer-Verlag).

A very clear, elementary survey explaining a dozen applications in probability.
Highly recommended.

Letac, G. (1982). Les fonctions spheriques d'un couple de Gelfand symetrique et les
chaines de Markov. Advances Appl. Probe 14, 272-294.

A very clear, useful survey, explaining in particular a method of computing
the spherical functions in "small" cases, so one can hope to guess at the answer.

Saxl, J, (1981). On multiplicity - free permutation representations. In Finite Ge­
ometries and Designs, London Math. Soc. Lecture notes, Series 48, Cambridge
University Press, 337-353.
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This classifies all subgroups of Sn which yield a Gelfand pair. Aside from
Sk X Sn-k and small twists like Ak X An-k (Ak the alternating groups) the only
"interesting" example is S2 WrSn which gives the Zonal Polynomials. See Diaconis
(1987).

Saw, J. G (1977). Zonal polynomials: an alternative approach. Jour. Multivariate
Analysis 7, 461-467.

Derives properties of the spherical functions of GLn/On without any group
theory (but lots of "standard" properties of the Wishart distribution).

Sawyer, S. (1978). Isotropic random walks in a tree. Zeit. Wahr. 42, 279-292.

A fascinating application of Gelfand pairs and p-adic numbers to salmon
fishing!

Sloane, N. J. A. (1975). An introduction to association schemes and coding theory.
Theory and Applications of Special Functions, R. Askey, ed.

Long, friendly introduction to the use of the tools of interest to coding theory.

Sloane, N. J. A. (1982). Recent bounds for codes, sphere packings and related prob­
lems obtained by linear programming and other methods. Contemp. fl,fath 9,
153-185.

Great, friendly article on the use of Gelfand pairs. Bibliography of 163 items.

Soto-Andrade, J. (1985). En torna alas funciones esfericas (caso finito). Notas de la
Sociedad de Matematica de Chile IV, 71-94.

There is an active group working in Chile on Gelfand pairs. There are several
other papers in this volume on this subject. A valuable thesis: Caracteres de
Espacios de Gelfand Finitos by S. Garcia Zambrano (1984), also contains much of
interest, in particular a careful discussion of spherical functions for the "orthogonal
group" over a finite field.

Stanton, D. (1984). Orthogonal polynomials and Chevalley groups. In R. Askey et
al (eds.) Special Functions: Group Theoretical Aspects and Applications, 87-92.

An important, clear, friendly survey of a dozen explicit calculations of spher­
ical functions for finite spaces. Highly recommended.

Takemura, A. (1984). Zonal Polynomials. Institute of Mathematical Statistics. Hay­
ward.

The best introduction to zonal polynomials for statisticians. No group theory,
but lots of Wishart distributions.

H. FIRST HITTING TIMES

Fourier analysis has been used to bound rates of convergence through the
upper bound lemma. In this section a different application is presented. This
permits sharp approximation of first passage probabilities and first return times
for random walk. As an application, the classical gambler's ruin is given a new
presentation. The arguments lean heavily on Good (1951).

Let Q be a probability on a finite group G. The random walk determined by Q
starting at x is denoted Q;k. Thus Q;O(y) = 6x (Y), Q;l(y) = Q(yx- 1 ), Q;2(y) =
~zQ(y(zx )-1 )Q(z). In general, Q;k = Q:: * fJx '



Random Walks on Groups 65

Let 8 c G be a set of elements called "sinks." We consider the random walk,
starting at x and absorbed the first time it hits S. To rule out trivialities, assume
x ~ S.

Let ak( t) be defined as the probabililty of arriving at the group element t
at time k. If t ~ 8, this is the chance of the walk being at t at time k, without
having hit any sites in 8. If t E 8, this is the chance of first being absorbed at t
at time k.

Let bk(t) be defined as the probability of arriving at t, at time k, in the
unrestricted random walk (8 = </». The a's and b's are related via

LEMMA 7.
k

bk(t) = ak(t) t5se(t) + L L aj(s)bk_j{ts-1x).
sES j=O

Proof. Divide the set of paths of length k from x to t into 1+ (k + 1)181 classes.
The first consists of paths that avoid all sinks. A typical path in one of the other
classes hits a sink s for the first time at j (Probability aj(s)) and then goes from
s to t in the next k - j steps (Probability bk _ j (ts- 1 x)). By finite additivity, bk(t)
is the sum of the probabilities of the classes. 0

The convolution suggests generating functions (Fourier analysis on Z). Let
A(t, z), B(t, z) be the generating functions

00 00

Lak(t)Zk, Lbk(t)zk.
k=O k=O

COROLLARY.

k

B( t, z) = 'Ebk(t)zk = 'E (ak(t)t5se(t) +L L aj{s )bk-j(ts-1x)) zk
sES j=O

=t5se(t)a(t, z) +L A(s, z)B(ts-1x, z).
sES

Remark. Here is the way this formulation works: usually, we have a closed form
expression for B(t,z) for all t. Letting t run through 8, the corollary gives ISI
equations in the ISI unknowns A(s, z). These can be solved (if ISI is not too large,
or is "symmetric") and then the corollary gives an expression for A( t, z) for all t.
The group theory enters as follows:

LEMMA 8. With notation as above, B(t,z) equals

1 -1 "-1jGf'EpdpTr(p(xt ). (I - zQ(p)) ).
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The inverse exists, at least for Izl < 1. The sum is over all'irreducible represen­
tations of G.

Proof·
B(t,z).

This is just the Fourier inversion theorem applied to the definition of
o

Classical Gambler's Ruin: Peter and Paul flip a fair coin, Peter wins $1 if the
coin comes up heads; Paul wins $1 if the coin comes up tails. Peter starts with $£,
Paul starts with $m. The game stops at time T when one of them has no money
left.

This can be analyzed as simple random walk on Zn,. where n = £+ m. The
particle starts at f, and the game ends the first time zero is hit. For example,
suppose Peter has 1 and Paul has 4

o
4 CD
3 2

A walk starting at 1 stops after 1 step to the left (Peter wiped out) or 4 steps
to the right (Paul wiped out), etc.

Here there is one sink, namely, zero. From Lemmas 7, 8

n-1 21rij i ln

B(O) ~ 1-: cos( ~)
A(O ) = ,z = J=O n

,z B(£,z) n-1

~ 1-2 C~s(~)
J=O n

Note that the numerator and denominator both have simple poles at z = 1. It
follows that the left side is analytic in Izl ~ 1. Writing

1 n-1 e21rijl./n 1 n-1 1
-+'"" 2' ={-+'"" 2,}{A(O,1)
1 - z ~ 1 - z cos(~) 1 - z ~ 1 - z cos(~)

J=1 n J=1 n

- (1 - z)A'(O, 1) + ...}

Here A' denotes differentiation with respect to the second argument. Comparing
coefficient as z --+ 1 (set 1 - z = £) gives

Result 1. A(O, 1) = 1 so absorption is certain.

Result 2.

E(T) = A'(O, l) = ~t1 t:;~;~j;:;') = ~t\l - cose:j £)) (1 - cos(~))-1. Here
J=1 n J=1

is a curious consequence. By an elementary argument (Feller (1968, Chapter 14)
E(T) = f( n - f). This gives a curious trigonometric identity. Pass to the limit,
with £ fixed, n --+ 00, the following emerges:

[1 1 - cos(21r.et) _ .e
lo 1 - cos(27rt) - ·
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It is also straightforward to pass to the limit in the original generating func­
tion:

Result 3.

Case 1. Let f be fixed and let n -+ 00:

~
1 COS(21T"ti) 1

O 1 COS(2 t)
== (1 - (l

z
- z2) 2' ) i.A(O,z) -+ 1 -z 1T"

10 l-z CbS(21T"t)

The second identity is derived as follows: by expanding both sides, verify

J;1r l-z ~os t = 211"(1 - z2)-t. Then, for .e = 1, A(O, z) = ~~;~ with D - zN = 1.
This gives the right side when f == 1. The general case follows from the convolution
interpretation of the left side.

Case 2. Let f == On for 0 < () < 1 fixed. Make the change of variables z == e->../n
2

•

Then as n tends to 00, E{e>..T/n
2

} tends to

This last function is the Laplace transform of a probability measure on R+.

EXERCISE 20. Consider nearest neighbor walk on the cube Z:r as described
in Example 2 of Section C. Let T be the first return time to zero. Prove that
E(T) == 2n

, and show that T /2 n has a limiting exponential distribution.

Remarks. Flatto, Odlyzko, and Wales (1985) carried out similar computations
for random transpositions. All of these computations use only 1 sink. Using 2
sinks, one can derive the chance that Peter wins in gambler's ruin, or the law
of the maximum of random walk, given that its first return is at time 2k; see
Smith and Diaconis (1988) for references to the literature. Similar results on the
cube would give results for fluctuations and excursions of the Ornstein-Uhlenbeck
process, or any of the birth and death chains described in Section F.

An elegant application of first hitting distributions for simple random walk
on the n-cube to the analysis of algorithms appears in Aldous (1983b). Consider
finding the minimum of a function f: Z2 -+ IR. Clearly general functions take
order 2n steps for any algorithm on average. People in operations research hoped
that "local-global" functions with the property that if f( x) is not a minimum,
then f(y) < f( x) for some neighbor y of x, would be a useful special class.

The obvious algorithm is: start someplace, and take your smallest neighbor
as your next place, etc. Craig Tovey showed there were some exponentially bad
examples, but naturally created functions seemed to work in order n 2 steps.

Aldous treated the problem as a two-person game: nature picks a function,
we pick an algorithm. We pay nature the number of steps it takes our algorithm
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to find the minimum. Because both sets of possibilities are finite (things only
depend on the relative values) the game has a value v. Aldous showed that the
value was approximately 2n / 2 •

The two strategies are easy to describe: your (randomized) strategy is to pick
vertices Xl,X2 ... ,XJ at random (J == 2n / 2) and then use the obvious algorithm
starting at min(f(xi)).

Nature's strategy involves choosing a random local-global function as follows.
Start simple random walk at a random point Xo. Let f(x) be the number of steps
until the walk first hits x. Thus f(xo) == 0, and for any other x there is a neighbor
y of x which was visited first. Thus f is local-global. By careful analysis of random
walk, Aldous is able to show it takes order 2n / 2 steps to find the minimum with
any algorithm.



Chapter 4. Probabilistic Arguments

A. INTRODUCTION ~ STRONG UNIFORM TIMES.

There are a number of other arguments available for bounding the rate of
convergence to the uniform distribution. This chapter discusses the method of
strong uniform times and coupling. Let's begin with a simple example, drawn
from Aldous and Diaconis (1986).

Example 1. Top in at random. Consider mixing a deck of n cards by repeatedly
removing the top card and inserting it at a random position. This corresponds to
choosing a random cycle:

(1) P(id) = P(21) = P(321) = P(4321) = '" = P(nn -1 ... 1) = .!:-.
n

The following argument will be used to show that n log n shuffles suffice to mix up
the cards. Consider the bottom card of the deck. This card stays at the bottom
until the first time a card is inserted below it. This is a geometric waiting time
with mean n. As the shuffles continue, eventually a second card is inserted belo\v
the original bottom card (this takes about n/2 further shuffles). The two cards
under the original bottom card are equally likely to be in relative order low-high
or high-low.

Similarly, the first time a third card is inserted below the original bottom
card, each of the six possible orders of the three bottom cards is equally likely.
Now consider the first time T that the original bottom card comes to the top. By
an inductive argument, all (n - I)! arrangements of the lower cards are equally
likely. When the original bottom card is inserted at random, all n! possible
arrangements of the deck are equally likely.

When the original bottom card is at position k from the bottom, the waiting
time for a new card to be inserted is geometric with mean n/k. Thus the waiting
· Th n n n· ItIme as mean n + '2 + 3 +···+ n = n og n.

To make this argument rigorous, introduce strong uniform times. Let G be
a finite group. Intuitively, a stopping time is a rule which looks at a sequence of
elements in G and says "stop at the jth one." The rule is allowed to depend on
what appears up to time j, but not to look in the future. Formally, a stopping
time is a function T: Coo ~ {I, 2, ... ,(X)} such that if T(.z) = j then T(.z') = j for
all 2' with s~ = Si for 1 ~ i ~ j. Let Q be a probability on G, X k the associated
random walk, P the associated probability on Coo. A strong uniform time T is a
stopping time T such that for each k < 00,

(2) P{T = k, Xk = s} is constant in s.

69
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Note that (2) is equivalent to independence of the stopping time and the stopped
process:

(3)

or to

(4)

P{Xk = siT = k} = l/IGI

P{Xk = siT ~ k} = l/IGI.

In Example 1, the time T that the first card takes to reach the top and has
been inserted into the deck is certainly a stopping time. The inductive argument
given shows that, given T = k, all arrangements of the deck are equally likely, so
T is a strong uniform time. Many other examples will be given in the remainder
of this chapter. The following lemma relates strong uniform times to the distance
between Q*k and the uniform distribution U.

LEM M A 1. Let Q be a probability on the finite group G. Let T be a strong
uniform time for Q. Then for all k ~ 0

IIQ*k - UII ~ PiT > k}.

Proof. For any A c G,

Q*k(A) = P{Xk E A}

=LP{Xk E A,T = j} +P{Xk E A,T > k}
i'5:k

=L U(A)P(T = j) +P{Xk E AIT > k} P{T > k}
i5:k

= U(A) + [P{Xk E AIT > k} - U(A)] PiT > k}.

Thus,
IQ*k(A) - U(A)I ~ P{T > k}.

o

Using this result we can deduce a sharp bound for the first example:
n log n steps are both necessary and sufficient to drive the variation distance
to zero.

Theorem 1. For the top in at random shuffle defined in (1), let k = n log n+cn.
Then,

(5) IIP*k - UII ~ e- c for c ~ 0, n ~ 2,

(6) IIp*k - UII ~ 1 as n ~ 00, for c = c(n) ~ -00.
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Proof. As argued above, T = Tl +(T2-Tl )+ ...+(Tn-l-Tn-2)+(T-Tn-l) where
Tl is the time until the 1st card is placed under the bottom card and Ti+l - Ti

has a geometric distribution P{Ti+1 - Ti = j} = i¥(I- i¥)j-l; j ~ 1. Further,
these differences are independent.

The time T has the same distribution as the waiting time in the coupon
collector's problem; to define this, consider a random sample with replacement
from an urn with n balls. Let V be the number of balls required until each ball
has b~en drawn at lea:~t. once. Let m = n log n + en. For each ball b, let Ab be
the event "ball b is not drawn in the first m draws." Then,

(7)

Now V can be written

where Vi is the number of draws required until i distinct balls have been drawn
at least once. After i distinct balls have been drawn, the chance that a draw
produces a new ball is n~i, so Vi+l - Vi is geometric,

n-i n-i'l
P{Vi+l - Vi == j} = --(1 - __)J- , j 2: 1.

n n

It follows that the laws of T and V are the same. So (7) and lemma 1 (the upper
bound lemma) combine to give a proof of (5).

To prove (6), fix j and let A j be the set of configurations of the deck such
that the bottom j original cards remain in their original relative order. Plainly
U(A j ) == 1/j!. For k == n log n + cnn, Cn --t -00, we argue that

(8)

Then IIp*k - UII 2: mC;1x{p*k(Aj ) - U(Aj )} --t 1 as n --t 00, establishing (6).
J .

To prove (8), observe that P*k(A j ) ~ peT - Tj - l > k). For T - Tj - 1 is
distributed as the time for the card initially jth from bottom to come to the top
and be inserted; and if this has not occurred by time k, then the original bottom
j cards must still be in their original relative order at time k. Thus it suffices to
show

(9) peT - Tj - 1 ~ k) --t 0 as n --t 00; j fixed.

We shall prove this using Chebyshev's inequality:

P(IZ - EZI 2: a) ~ var(2Z ), h 0 cl Z · cl · blwere a ~ ,an IS any ran om varla e.
a
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For a geometric variable

and so
n-l

E(T - Tj ) = ~ i ~ 1 = n log n +O(n),
1,=J

n-l .

var(T- T j ) = "'(~)2(1_ z+ 1) = 0(n2
),

~ ~+1 n
1,=J

and Chebyshev's inequality applied to Z = T - T j - 1 readily yields (9). 0

B. EXAMPLES OF STRONG UNIFORM TIMES.

Example 2. Simple random walk on zt. For simplicity we work with the following
probability

1 1
Q(O .. . 0) = 2' Q(10. 000) = Q(Ol. .. 0) = ... =Q(O .. . 1) = 2d'

(10) Q = 0 otherwise.

The following simple stopping time has been developed by Andre Broder. It
involves "checking off coordinates" according to the following scheme: at each
time, pick one of the d coordinates at random and check it off. Then flip a
fair coin. If the coin comes up heads, take a step in the direction of the chosen
coordinate. If the coin comes up tails, the random walk stays where it is. Stop at
time T when all coordinates have been checked.

Clearly the particle evolves according to the probability (10). To see that T
is a strong uniform time, observe that because of the randomized coin toss, the
particle is equally likely to have a zero or one in each checked coordinate.

Tlleorem 2. For simple random walk on zt (10), and k == n log n + en,

Proof. This follows from the upper bound lemma and the bound from the coupon
collector's waiting time (7). 0

Remark 1. Fourier analysis and the lower bound arguments of Chapter 3 show
that tn log n +en steps is the right answer for this version of random walk. The
discrepancy is explained in Section C (exercise 4) below.

Remark 2. In Example 2, the uniform time depends on added, external, ran­
domization. It was not constructed just by looking at the past of the process. The
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upper bound, lemma 1, holds for such randomized strong uniform times without
change.

EXERCISE 1. Give a strong uniform time for random walk on zt determined by
Q(OO . .. 0) = Q(10 . .. 0) = ... = Q(O . .. 01) = dil.
Example 3. General random walk on a finite group.

Theorem 3. Let G be a finite group and Q a probability on G such that for some
c(O < c < 1) and ko,

(11)

for all A C G, k 2: ko. Then

IIQ*k - UII ~. (1- c)lk/koJ.

Proof. Suppose first that ko = 1. Define a probability Ql on G by

Ql(S) = Q(s) - cU(s).
l-c

Thus
Q(s) = cU(s) +(1 - C)Q1(S).

This gives the following recipe for choosing steps according to Q: flip a coin with
probability of heads equal to c. If the coin comes up heads, step according to U,
if tails, step according to Q1. Let T be the first time a head occurs. This T is
clearly a strong uniform time and

P{T> k} = (1 - c)k.

For general ko, apply the argument to Q*ko • o

Remarks. The argument above extends easily to compact groups with condition
(11) required to hold for all open sets. In this generality, the theorem appears in
Kloss (1959) whose proof is a Fourier version of the same argument Athreya and
Ney (1978) apply this idea to prove convergence to stationarity for general state
space Markov chains.

The simplicity of the proof, coupled with the generality of the argument,
should make the reader suspicious. While the result seems quantitative, all de­
pends on estimating c and ko. I do not know how to use this theorem to get the
right rate of convergence in a single example.

Example 4. Random transpositions. This problem was discussed at some length
in Chapter 3. Here are two constructions of strong uniform times. Both involve
the notion of "checking" the backs of certain cards as they are chosen successively
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in pairs. This argument is capable of use in a variety of other random walks. It
is due to Andre Broder.

Construction A (Broder). The basic mixing procedure involves switching pairs of
cards (L i, Ri). If either

a) both hands touch the same unchecked card; or
b) the card touched by the left hand is unchecked but the card touched by the

right hand is checked,
then check the card touched by the left hand. Stop at time T when all cards are
checked.
Construction B (Matthews). If both hands touch unchecked cards, then check the
card touched by the left hand.

In each construction stop at the time T that only one card remains unchecked.

Proof. Construction A. First consider the situation informally. The procedure
starts when both hands hit the same card (say card 1). This is checked. Nothing
happens until either both hands hit a different card (say 2) or the left hand hits
an unchecked card (say 2) and the right hand hits card 1 whereupon these cards
are switched. At this stage, conditional on the positions of the two checked cards
AI, A2 say, and the labels 1, 2, the positions are equally likely to correspond
(A I ,1)(A2 ,2) or (A I ,2)(A2 ,1). This is because the chance of choosing card 2 is
~ for both possibilities.

In general, the position may be described as follows:

Where

L = number of checked cards

{AI · · . AL } = set of positions of the checked cards

{Cl CL } = labels (or names) of the checked cards.

IlL: {Al A L} --+ {Cl .. .CL} records the card at each position.

o

Claim. At each time, conditional on L, {Al .. .AL}, {Cl .. .CL}, the permuta­
tion IlL is uniform.

The claim is proved by induction. It is clearly true for L = 0 and 1. Assume
it for L = p. The claim remains true until a new card c is checked. This can occur
by both hands hitting the same new card or by the left hand hitting c and the
right hand hitting one of the p checked cards. For any new card c, each of these
p + 1 possibilities has the same chance ;2. It follows that IlL+I is uniform.

The proof for Construction B is similar. The state at any time can again be
taken as above. This time the inductive step is that, given L,

a) {Al ... AL} and {Cl .. .CL} are independent and uniformly distributed
b) Given L, {Al ... AL } and {Cl .. .CL }, the permutation ilL is uniform.
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It can be verified that both a and b hold at each time for Construction B. Here,
(a) is needed to check (b) in the argument. Note that (a) is not valid (or needed)
for Construction A. ({Al ... AL} and {Cl .. .CL} are marginally uniform but not
independent. )

The analysis of T in Construction A is similar to that in Example 2. Write
n

T = 2: (Ti - Ti-l) where Ti is the number of transpositions until i cards are
i=l

checked. The random variables (Ti - Ti ) are independent with geometric distri-
butions of mean n2 /[(i + l)(n - i)]. Thus

n-l

E(T) = L n21[(i + 1)(n - i)] = (2 +O( !))n log n
i=O n

Var(T) = O(n2
).

Now the central limit theorem implies for k = 2n log n +c(n)n, with c(n) -+ 00.

IIp*k - UII ~ 0 as n -+ 00.

The T given by Construction B turns out to give k = O(n2 ) as required.
However, Construction B starts out by checking cards rapidly. Peter Matthews
(1986b) observes that the two constructions can be combined: use Construction B
until m cards have been checked (for fixed rn, say m = ¥-). Then use Construction
A. Because (a) and (b) are valid throughout the time involved for Construction B,
when A takes over, (b) remains valid until the time T that all cards are checked.
This time gives k = n log n sufficient to drive the variance distance to zero.
Matthews has suggested variants which give the correct number of steps tn log n.

EXERCISE 2. To emphasize the need for careful proof, show that checking each
card as it is touched or checking each card the left hand touches do not yield
strong uniform times in the random transposition problem. (Hint: consider a
three-card deck, and see what the distribution is given T = 3.)

Further examples (simple random walk on Zp or X k+1 = akXk +bk ) are given
in Aldous and Diaconis (1986, 1987a, 1987b) and Matthews (1986a,b).

c. A CLOSER LOOK AT STRONG UNIFORM TIMES.

The success of strong uniform times in the examples above and a variety
of other examples given below prompts obvious questions: can one always find
a useful strong uniform time? Are there strong uniform times that achieve the
variation distance? To answer these questions it is useful to introduce a different
notion of distance from uniformity.

Definition. Let Q be a probability on the finite group G. Define the n step
separation by
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Clearly, 0 ~ s(n) ~ 1 with s(n) == 0 iffQ*n == U,s(n) == 1 iffQ*n(s) == 0 for some
s. The separation is an upper bound for the variation distance:

IIQ*n - UII ~ s(n)

because

IIQ*n - UII = L { ~ - Q*n(s)}.
s:Q ..n(s)<l/IGI I I

Note that the two distances can be very different: If Q is uniform on G - {id}
then IIQ - UII = l/IGI but s(l) == 1. The following theorem improves the upper
bound of lemma 1.

Theorem 4. If T is a strong uniform time for the random walk generated by Q
on G, then for all k

(12) s(k) ~ P{T > k}.

Conversely, for every random walk there is a strong uniform time such that (12)
holds with equality.

Proof. Let ko be the smallest value of k such thatP{T ~ ko} > o. The result
holds vacuously if ko = 00 and for k < ko. For k ~ ko, s E G

1IGI{jGT - Q*k(s)} = l-IGIQ*k(s) ~ l-IGIP{Xk = sand T ~ k}

= 1-IGIP{Xk == siT ~ k} ·P{T ~ k}
= 1 - P{T ~ k} == P{T > k}.

This proves (12).
For the converse, the random time T will be defined as follows: at time k,

given that the random walk is at t, flip a coin with probability of heads

where Qk = minQ*k(s). If heads comes up, stop. If tails comes up, take another
s

step and flip again with probability Pk+l. Observe that Pk( t) ~ o. Let ko be the
smallest integer such that ako > o. Clearly Pk = 0 for k < ko, and

Pko(t) = P{T = kolXko = t} = P{X::
o=t}'

Thus, P{T = ko} == ~t P{T = kolXko == t} . P{Xko == t} = IGlako. Further,

P{Xko = s} 1
P{Xko = siT = ko} = P{T = kolXko = s}· P{T = k

o
} = jGT'
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This is the first step in an inductive argument to show that T is a strong uniform
time. For general k,

(13)

This follows because

P{Xk = s,T = k} = O'.k - O'.k-l.

P{Xk = s,T = k} = P{T = klXk = s,T ~ k}· P{Xk = s,T ~ k}
O'.k - O'.k-l= P{X} · [P{Xk = s} - P{Xk = s;
k = S - Qk-l

T~k-1}]

If (13) holds for all integers smaller than k, then

P{Xk = S, T ~ k - 1} = Qk-l.

This shows T is strong uniform. o

EXERCISE 3. Prove that the strong uniform time T* constructed in the course
of proving Theorem 4 is the stochastically fastest strong uniform: P{T* > k} ~

P{T> k} for all k. Now consider Example 1 (top in at random). The stopping
time defined there can be improved: consider T* - the first time that the card
originally second from the bottom comes up to the top. Show that T* is a fastest
strong uniform time.

EXERCISE 4. As an example of Theorem 4, consider the model for random
walk on the d-cube treated in Section B. The cutoff point for variation distance is
t d log d, and the stopping time argument gives d log d. Show that this is sharp:
it takes d log d +cd steps to have a reasonable probability of reaching the vertex
opposite Q, namely (1 ... 1). Hint: try Fourier analysis.

The following result, proved in Aldous and Diaconis (1987) shows that the
factor of 2 found above is no accident. Roughly, if the variation distance becomes
small after k steps, the separation becomes small after at most 2k steps. To make
this precise, let 4>(e) = 1- (1- 2e t )(1- et )2. Observe that 4>(e) decreases with
c and <jJ(e) rv 4e~ as e ~ o.
Theorem 5. For any probability Q on any finite group G, and all k ~ 1,

s(2k) ~ <p(21IQ*k - UII) provided I/Q*k - UII < ~.

Further discussion of separation can be found in Aldous and Diaconis (1986,
1987) or Diaconis and Fill (1988).

D. AN ANALYSIS OF REAL RIFFLE SHUFFLES.

How many ordinary riffle shuffles are required to bring a deck of cards close
to random? We will show that the answer is 7. The discussion proceeds in two
sections: (1) practical discussion and data analysis, (2) a model for riffle shuffling.
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(1) Practical shuffling. Of course, people shuffle cards all the time for card
games. We begin by asking "Does it matter?" That is, even if people don't shuffle
really well, will it make any practical difference? One answer to this question is
in Berger (1973). Berger uses the fact that tournament bridge went from hand
shuffling to computer shuffling in the late 1960's. Berger obtained records of
the suit distribution of the south hand in 2000 deals, one thousand before the
computer, one thousand after the computer. A summary is in Table 1.

Inspection of the table shows that hands with an even suit distribution occur
with higher than the expected frequency in hand shuffling. A chi-squared test re­
jects uniformity of the suit distribution in hand shuffling. Uniformity is accepted
for computer shuffling. Something is going on that does make a practical, observ­
able difference. Here is a first explanation: The way bridge tends to be played,
cards are collected in groups of 4, by suit. If the riffle shuffling was clumpy and
clustery, cards of the same suit would tend to clump together and then, when the
deck was dealt into 4 hands, tend to be separated.

Table 1
Frequency of Computer-dealt Hands Versus Theoretical

Expected Frequencies from Berger (1973)

Actual Frequencies Actual Frequencies
Distribution of Expected of Computer-dealt of Man-dealt
the 4 suits Frequencies Hands Hands

4,4,3,2* 216 198 241
5,3,3,2 155 160 172
5,4,3,1 129 116 124
5,4,2,2 106 92 105
4,3,3,3 105 103 129
6,3,2,2 56 64 46
6,4,2,1 47 53 36
6,3,3,1 34 40 41
5,5,2,1 32 40 19
4,4,4,1 30 35 25
7,3,2,1 and others 90 99 62

1,000 1,000 1,000

* by "4,4,3,2" we mean that the thirteen cards contained 4 cards in one suit, 4
cards in another suit, 3 cards in another suit, and 2 cards in the remaining suit.

This would make "even splits" like 4 3 3 3 occur more often than they should. One
objection to this is that the cards in duplicate bridge are not usually collected
in groups of 4 (they are in non-duplicate games). In duplicate, the cards are
collected into 4 piles of 13, each pile being roughly in the same suit order. If these
piles were placed on top of one another and riffle shuffled twice, the cards would
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tend to clump in suit groups of 4 and we are back to the previous case.
Ely Culbertson (1934) discusses ways of taking advantage of poor shuffling

in Bridge. Thorp (1973) discusses other card games.
A second practical view comes from considering the results of a single shuffle.

An example is presented in Table 2 below. This records a shuffle for which the
deck was cut 1 through 29, and 30 through 52. Card 29 was dropped first, then
28, then 52, then, ..., then 1, finally 30.

Table 2
A Single Riffle Shuffle

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

7r(i) 2 3 5 7 9 11 13 14 16 18 20 22 24 26 27 29 31 33 35 36 38 39 41 42 45 46

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

48 51 52 1 4 6 8 10 12 15 17 19 21 23 25 28 30 32 34 37 40 43 44 47 49 50

A single riffle shuffle can have at most 2 rising sequences. There are 2n - n possible
arrangements of n cards after a single riffle shuffle. Similarly, there are at most 4
rising sequences after 2 riffle shuffles. This generalizes:

Theorem 6 (Shannon).
(1) Let 1r be a permutation with R rising sequences. 1r is the outcome of k riffle

shuffles if and only if R ~ 2k •

(2) Each 1r with exactly 2k rising sequences can be obtained by k riffle shuffles in
only one way.

This theorem appears in E. Gilbert (1955), "Theory of Shuffling," Bell Lab­
oratories Technical Memorandum. Part (1) has been used as the basis of a card
trick for many years. In this trick, a deck of cards is mailed to a spectator who is
instructed to riffle shuffle the deck 3 times, giving the deck any number of straight
cuts during the shuffling. Then the top card is removed, noted, and placed into
the center of the pack. This is followed by more cuts. The pack is mailed back
to the magician who unerringly finds the card. The secret is that there will be
eight rising sequences and 1 card in its own rising sequence. It is not hard to
show that a random permutation has about ~ rising sequences so a few shuffles
(on order log2 ¥-) will not be enough to randomize n cards.

These arguments yield a lower bound. In a bit more generaltiy, if P is a
probability on a finite group G supported and uniform on the set A c G, then

liP - UII ~ P(A) - U(A) = 1 - :~\.
This can be combined with the observations on rising sequences to give a lower
bound that works for a few shuffles. Let Fn(R) be the number of permutations of
n items with exactly R rising sequences. Thus Fn (l) = 1 and Fn (2) = 2n -(n+1).
A formula for Fn(R) is derived in Sade (1949); see also Riordan (1950):

Fn(R) = "£(-1)i (n ~ 1) (R _ j)n.
. 0 JJ=
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In k shuffles, the total number of permutations that can be achieved is Tn(k) =
2k

2: Fn(R). Thus 1 - Tn(k)jn! is a lower bound for the variation distance. For
R=I
n = 52, the lower bound is larger than .99 for 1 ~ k ~ 4. For k = 5 it is .38, for
k = 6 it is zero.

Observe that this approach makes no assumptions about the stochastic mech­
anism for shuffling, but the argument breaks down at 6 shuffles.
(2) A probability model. The following model for riffle shuffling was suggested by

Shannon and Gilbert, and Reeds.

1st description: Cut the n card deck according to a binomial distribution with
parameters t, n. Suppose k cards are cut off. Pick one of the (k') possible riffle
shuffles uniformly.

2nd description: Cut the n card deck according to a binomial distribution with
parameters t, n. Suppose k cards are cut off and held in the left hand and n - k
held in the right hand. Drop cards with probability proportional to packet size.
Thus the chance that a card is dropped first from the left hand is ~. If this
happens, the chance that the left hand drops a second card is ~=~; and so on.

3rd description: To generate the inverse shuffle, label the back of each card with
the result of an independent fair coin flip: {O, I}. Remove all cards labeled 0 and
place them on top of the deck, keeping the cards otherwise in the same relative
order.

LEMMA 2. The three descriptions yield the same probability distribution.

Proof. The 1st and 3rd descriptions are equivalent: indeed, the binary labeling
chooses a binomial number of zeros and conditional on this choice, all possible
placements of the zeros are equally likely. The 1st and 2nd descriptions are equiv­
alent: Suppose k cards have been cut off. Under the 2nd description, the chance
of a shuffle is the chance of the sequence of drops D I , D 2 , ••• , D n , where each Di
can be L or Rand k Di's must be Land n - k Di's must be R. The chance of
any such sequence is k!(n - k)!/nL 0

Remarks. This shuffling mechanism has some claim to being the "most random"
subject to the binomial cutting. It has the largest entropy, for example. As a
model for shuffling, it yields shuffles a bit "clumpier" than either the shuffles
of Diaconis or Reeds discussed in remark (e) below. Only half the packets are
expected to be of size 1, a quarter of size 2, etc. Of course, extremely neat shuffles
are not necessarily good for randomization. A perfect shuffle is completely non­
random for example, eight perfect shuffles bring the deck back to order. See
Diaconis, Graham, and Kantor (1983). Mellish (1973) discusses these issues.

To proceed further, we construct a strong uniform time for this model of
shuffling. To begin, observe that the variation distance is invariant under 1-1
transformations, so it is the same problem to bound the number of inverse shuffles
required to get close to random.

The results of repeated inverse shuffles of n cards can be recorded by forming
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a binary matrix with n rows. The first column records the zeros and ones that
determine the first shuffle, and so on. The ith row of the matrix is associated to
the ith card in the original ordering of the deck, recording in coordinate j the
behavior of this card on the jth shuffle.

LEMMA 3 (Reeds). Let T be the first time that the binary matrix formed from
inverse shuffling has distinct rows. Then T is a strong uniform time.

Proof. The matrix can be considered as formed by flipping a fair coin to fill
out the i, j entry. At every stage, the rows are independent binary vectors. The
joint distribution of the rows, conditional on being all distinct, is invariant under
permutations.

After the first inverse shuffle, all cards associated to binary vectors starting
with 0 are above cards with binary vectors starting with 1. After two shuffles,
cards associated with binary vectors starting (0,0) are on top followed by cards
associated to vectors beginning (1,0), followed by (0,1), followed by (1,1) at the
bottom of the deck.

Inductively, the inverse shuffles sort the binary vectors starting with 0 are
above cards with binary vectors starting with 1. After two shuffles, cards associ­
ated with binary vectors starting (0,0) are on top followed by cards associated to
vectors beginning (1,0), followed by (0,1), followed by (1,1) at the bottom of the
deck.

Inductively, the inverse shuffles sort the binary vectors (from right to left)
in lexographic order. At time T the vectors are all distinct, and all sorted. By
permutation invariance, any of the n cards is equally likely to have been associated
with the smallest row of the matrix (and so be on top). Similarly, at time T, all
n! orders are equally likely. 0

To complete this analysis, the chance that T > k must be computed. This
is simply the probability that if n balls are dropped into 2k boxes there are not
two or more balls in a box. If the balls are thought of as people, and the boxes
as birthdays, we have the familiar question of the birthday problem and its well
known answer. This yields:

Theorem 7. For Q the Gilbert-Shannon-Reeds distribution defined in Lemma 2,

n-l .

(14) IIQ*k - UII ~ P{T > k} = 1- IT(1- 2~k)'
i=l

Standard calculus shows that if k = 2log2(nfc),

n ~ c c2
P{T> k} "-J 1 - e- 2 "-J-.

00 0 2

In this sense, 2 log n is the cut off point for this bound. Exact computation of
the right side of (14) when n = 52 gives the bounds
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k upper bound
10 .73
11 .48
12 .28
13 .15
14 .08

Remark (a). The lovely new idea here is to consider shuffling as inverse sorting.
The argument works for any symmetric method of labelling the cards. For ex­
ample, biased cuts can be modeled by flipping an unfair coin. To model cutting
off exactly j cards each time, fill the columns of the matrix with the results of n
draws without replacement from an urn containing j balls labelled zero and n - j
balls labelled one. The first time all vectors are different is a strong uniform time.
These lead to slightly unorthodox birthday problems which turn out to be easy
to work with.

Observe that the shuffle in which only 1 card is cut off and randomly riffled
into the deck is the "top in at random" shuffle of example 1. The two stopping
times are the same!

Remark (b). The argument can be refined. Suppose shuffling is stopped slightly
before all rows of the matrix are distinct - e.g., stop after 2 log n shuffles. Cards
associated to identical binary rows correspond to cards in their original relative
positions. It is possible to bound how far such permutations are from uniform
and get bounds on llQ*k - Ull. Reeds (1981) has used such arguments to show
that 9 or fewer shuffles make the variation distance small for 52 cards.

Remark (e). A variety of ad hoc techniques have been used to get lower bounds.
One simple method that works well is simply to follow the top card after repeated
shuffles. This executes a Markov chain on n states with a simple transition matrix.
For n in the range of real deck sizes, n X n matrices can be numerically multiplied
and then the variation distance to uniform computed. Reeds (1981) has carried
this out for decks of size 52 and shown that IIQ*6 - UII ~ .1. Techniques which
allow asymptotic verification that k = 3/2 log2 n is the right cutoff for large n are
described in Aldous (1983). These analyses and the results quoted above suggest
that seven riffle shuffles are needed to get close to random.

Remark (d). Other mathematical models for riffle shuffling are suggested in Don­
ner and Uppuluri (1970), Epstein (1977), and Thorp (1973). Borel and Cheron
(1955) and Kosambi and Rao (1958) discuss the problem in a less formal way.
Where conclusions are drawn, 6 to 7 shuffles are recommended to randomize 52
cards.

Remark (e) some data analysis. Of course, our ability to shuffle cards depends on
practice and agility. The model produces shuffles with single cards being dropped
about 1/2 of the time, pairs of cards being dropped about 1/4 of the time, and i
card blocks being dropped about 1/2i of the time.

To get a feeling for the difference between shufflers, the following experiment
was performed: Diaconis and Reeds each shuffled a deck of 52 cards about 100
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times; every permutation was recorded. The following summary statistics are
relevant.

Diaconis - 103 Shuffles
# cut off top 23 24 25 26 27 28 29

2 4 22 32 33 9 1

In shuffling, the left hand dropped first 44 times. In all there were 4,376 "packets"
dropped. The counts and proportions were

1 2 3 4 5
3501 793 63 15 4

.80 .18 .01 .00 .00

The packet size distribution of first dropped packets was
1 234 5

.37 .37 .17 .1 .01

Reeds - 100 Shuffles
# cut off top 23 24 25 26 27 28 29 30 31

2 2 8 16 23 26 16 5 2

In shuffling, the left hand dropped first 18 times. In all there were 3,375 "packets"
dropped. The counts and proportions were

1 2 3 4 5 6 7 8 9 10 11 12 13
2102 931 228 68 24 12 3 3 2 0 0 1 1

.62 .28 .07 .02 .01 .00 .00 .00 .00 .00 .00 .00 .00

Diaconis does very neat shuffles and can be compared to aLas Vegas dealer. Reeds
shuffles like an "ordinary person." Observe that the first drops for Diaconis are
quite different from the average drop. Even though the two types of shuffiers are
fairly different, to a first approximation they are quite similar, both dropping 1,
2, or 3 cards most of the time.

Remark (I). There is another equivalent way to describe repeated riffle shuffles
under the Gilbert-Shannon-Reeds model that suggests much further research. The
following evolved in conversations with Izzy Katzp.elson and Jim Reeds. Begin
by dropping n points at random into the unit interval and labeling them, left to
right, as 1,2, ... , n. The transformation T(x) = 2x(mod 1) (sometimes called the
Baker's transformation) maps the unit interval into itself and so permutes the
points. T takes each of the two half intervals and stretches it out to cover [0, 1].
There are a binomial number of points in each half and T shuffles them together.
Arguing as in Lemma 1 above, it is easy to see that the induced permutation is
precisely a basic riffle shuffle. Further, successive shuffles are independent (they
depend on successive bits of the underlying uniform variables).

To complete the argument, consider k chosen so large that n points dropped
at random into [0, 1] fall into disjoint pieces of a partition with pieces of length
1/2k , with high probability. Picture a point in a piece of the partition. After k
shuffles, the piece is stretched out to cover [0, 1]. The point is randomly distributed
in the piece of the partition. After k shuffles it's randomly distributed in [0,1].
Further, points in disjoint pieces are independent. After k shuffles, the n points
are in random relative arrangement (given that they fall into disjoint pieces).
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This argument generalizes to some extent (x ---+ kjx(mod 1) on shuffle j for
integer kj ). It should be possible to take other measure preserving transformations
(toral endomorphisms of the unit square (see WaIters (1982)) and convert them
to other shuffles.

E. COUPLING.

There is a more widely known purely probabilistic argument called coupling.
Again, perhaps it is best to begin with an example, this one is due to David
Aldous.

Example l-Borel's shuffle. Borel and Cheron (1955) discuss several methods
of mixing up cards. They give the following as an open problem: begin with n
cards. Take the top card off and put it into the deck at a random position. Take
the bottom card off and put it into the deck at a random position. Continue
alternately placing top in at random, bottom in at random.

Observe that there is no longer an obvious stopping time. The following
elegant coupling argument has been suggested by David Aldous. It is better to
work with the inverse shuffle that removes a random card and places it alternately
on top or bottom. Because of the invariance of variation distance under 1-1 maps
(IIQ - UII = IIQh-1 - Uh-111 for any 1-1 function G ---+ G) the two shuffles have
the same rates of convergence (see exercise 3 of Chapter 3).

To describe a "coupling", consider a second deck of cards. The first deck
starts in order {I, 2, 3, ... , n}. The second deck starts in a random order. A
card is determined at each stage by shuffling a third deck and choosing a card at
random. Say the first card chosen is the six of hearts. Remove the six from deck
1 and place it on top. Remove the six from deck two and place it on top. Note
that from each deck's marginal vantage point, a card was removed at random and
placed on top.

The second step is to reshuffle the 3rd deck and choose a second card, say the
Ace of spades. This is removed and placed at the bottom of each deck. Continue
in this way, each time choosing a card at random from the third deck, removing
the card from decks one and two, and placing the card alternately on top and
bottom.

As this process continues, decks one and two match up. The same cards
being in the same order at top and bottom. If the same card is chosen again,
the procedure keeps the same number of matches. A new match is created for
each new card touched. Let T be the first time that each card has been touched.
Clearly, the two decks are in the same order, but deck two started at random, and
so remains random. It follows that deck one is random at time T. The bound on
the coupon collector's problem yields

Theorem 8. For Borel's shuffle, if k = n log n + en for e > 0,



Probabilistic Arguments 85

EXERCISE 5. Find a strong uniform time to get a bound in Borel's problem.
To discuss coupling more carefully, we need the following fact about variation

distance:

LEMMA 4. Let S be a finite set. Let PI and P2 be probability measures on S.
Let Q be a probability on S X S with margins PI and P2 • Let ~ be the diagonal:
~ = {(s,s):s E S} then,

Proof.

IPI(A) - P2(A)1 == IQ(A X S) - Q(S X A)I
== IQ(A X Sn~) +Q(A X S n ~C) - Q(S X A n~)

- Q(S X A n ~C)I.

The first and third numbers in the absolute value sign are equal. The second
and fourth give a difference between two numbers, both non-negative and smaller
than Q(LlC). D

Remarks. The inequality is sharp in the sense that there is a Q wh~ch achieves
equality. A proof and discussion may be found in V. Strassen (1965). This Q
allows the following interpretation of variation distance: II PI - P211 = e if and only
if there are two random variables, Xl distributed as PI and X 2 distributed as P2,
such that Xl = X 2 with probability 1 - e; Xl and X 2 may be arbitrarily different
with probability E. Another interpretation: the optimal Q is most concentrated
about the diagonal with these fixed margins.

Let us define a coupling for a Markov chain on state space I, with transition
probability Pi(j), and stationary distribution '!r. We will work with Markovian
couplings. These are processes on I X I with transition probability Q satisfying

L Qi,j(S, t) = Pi(s) for all j
t

L Qi,j(S, t) = Pj(t) for all i.
s

These conditions just say that the transition mechanism of each component of
the vector process is Pi(j). Call the vector process (Xf, X~). Suppose that Xl
starts in i and X 2 starts according to '!r. Let T == min{k: X~ == X~}. This T is a
stopping time. Suppose that T is finite with probability 1. Let

x 3 _ {X~ k~ T
k - Xf k > T.

The process (Xk, X2) is called a coupling, the interpretation being that the two
processes evolve until they are equal, at which time they couple, and thereafter
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remain equal. The usefulness of coupling depends on being able to get our hands
on T: Let pik be the law of the process after k steps started from i.

LEMMA 5. (Coupling inequality). Ilpi
k

- 11"11 ~ peT > k).

Proof. Take Q to be the distribution of (X~, XZ). This Q has marginal
distributions Pike ) and 11". Lemma 4 implies that

o

Remarks. It is instructive to note that while the distribution of XT is stationary
(and so uniform in our examples) the time T is not a strong uniform time as we
have defined it; for this requires P(Xk E AIT = k) = U(A) for all k.

Remarks. Example 1 gives an actual construction of Qij(kf). It might be
instructive to write down what Qij(kf) is for this example. Griffeath (1975),
Pitman (1976) or Goldstein (1979) show that the argument is tight in the sense
that there is a coupling that achieves the total variation distance. This coupling
cannot be taken as Markovian in general (that is, the bivariate process needn't
be Markov).

Example 2. Random walk on the d-cube. Here G = zt. Take

P(Q) = p, P(1 0 ... 0) = P(O 1 00 ... 0) ... = P(O .. . 1) = (1- p)/d.

Here is a coupling argument, due to David Aldous, for bounding convergence
to uniform. Consider two cubes. The process XJ starts at zero, XJ starts in
a uniformly distributed position. The pair (Xl, Xl) evolves as follows: if Xl
and xl differ in an odd number of places, the two processes take independent
steps according to P. If Xl and Xl differ in an even number of places, then
with probability p each remains unchanged. If they don't stay the same, then
pick an index j at random in {I, 2, ... , d}. If the jth component of Xl and Xl
agree, change that component to its opposite (mod 2) in both processes. If the jth
component of xl and Xl do not agree, complement the jth component of Xl and
the next non-agreeing component of xl from j counting cyclically. This forces
xl and xl to agree in two more coordinates. Once the number of disagreeing
places is even, it stays even, so the coupled process "gets together" very rapidly.
Of course, once Xl = Xl, they stay coupled.

EXERCISE 6. Analyze the coupling time T and get a bound on the rate of
convergence for Example 2. Compare this with the right rate derived from
Fourier analysis.

Matthews (1986b) has constructed non-Markovian couplings that give the
right rate of convergence for the cube.

Coupling is a very widely used tool which has many success stories to its
credit. Aldous (1983a) gives a number of card shuffling examples. Robin Pemantle
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(1989) has given a marvelous coupling analysis of the familiar over-hand shuffle.
For a range of reasonable models he shows that order n 2 shuffles are required to
mix up n cards. Thus about 2,500 shuffles are required for 52 cards. This should
be compared with 7 or 8 riffle shuffles, and the computation that a single riffle
and single over-hand shuffle produce the same number of distinct permutations.

Aldous and Diaconis (1987a) and Thorisson (1987) study the relation between
coupling and strong uniform times. Briefly, for any strong uniform time there is
a coupling with the same time. Thus couplings can occur faster in principle.

Theorem 5 of Section C shows that couplings can only speed things up by a
factor of at most 2. The example of simple random walk on the cube shows that
this actually happens: it takes t n log n +cn steps to make the variation distance
small; t n log n +cn steps are needed to make the separation small.

Despite the similarities, the connection is fairly formal. The way of thinking,
and basic examples, can be very different. There is no known direct coupling
argument to get anything better than n 2 for random transpositions, while strong
uniform times or Fourier analysis show the right rate is order n log n. Similarly,
there is no strong uniform time for the over-hand shuffle, or the shuffle that picks
a card at random and switches it with a neighbor. Coupling can handle these
problems.

F. FIRST HITS AND FIRST TIME TO COVER ALL.

(1) Introduction. Most of the work in this and the previous chapter has been
devoted to estimating rates of convergence to uniformity. There are many
other natural questions connectd to random walk. One may ask
• How long does it take to hit a fixed state (or set of states) from a given (or
random) start?
• How long does it take to hit every state?
• How long until the first return to the starting state? How far away is the
walk likely to get before first returning? flow many states does the walk hit
before first returning? What is the maximum number of times any state has
been visited at first return?
• How long does a walk take before it hits a point previously hit (the birthday
problem for random walk)?
David Aldous has introduced an important heuristic which suggests and ex­

plains answers to such questions, and sometimes allows a proof using only bounds
on convergence to stationarity.

The idea is as follows. Suppose a specific random walk on a group G is
rapidly mixing in the sense that the variation distance is less than t after k steps
with log k of order a polynomial in logJGI. Then, the random walk forgets where
it is rapidly, and successive steps may be thought about as the position of balls,
dropped at random, into JGI boxes.

Questions about balls in boxes are well understood. For example, the mean
waiting time T until a ball is dropped into a fixed box is IGI and

T
P{ iGT > t} -+ e-t as G -+ 00.



88 Chapter 4F

This suggests that a rapidly mixing random walk takes about ICI steps to hit a
fixed point and the waiting time is approximately exponential. A precise version
is given in (2) below.

As a second example, the waiting time V for all boxes to have at least one ball
is well studied as the coupon collector's problem. For balls dropped at random
into ICI boxes, it takes about IClloglCI balls to have a good chance of filling all
boxes. Results in Feller (1968, pg. 106) yield

P{ V - IClloglGI < } --t -e-~ IGI --tIGI - x e as 00.

This suggests that a rapidly mixing random walk takes about IG)logIG) steps to
cover all points. (3) below gives some precise results due to Aldous and Matthews.

Section 4 points to what little is known about other problems on the list
above.

(2) First hit distributions. The heuristics above are right "up to constants."
One remarkable finding of Aldous (1982, 1983b) is that only one other feature of
the walk enters. This is a measure of the amount of time the walk spends in its
starting state in a short time period. Consider throughout a random walk on a
finite group G. The transition mechanism is assumed to be aperiodic, and the
uniform distribution on G is the stationary distribution.

Standard renewal theory implies that R(s; t), the amount of time the walk
spends in a fixed state s up to time t, is asymptotically tlICI. Moreover

R = lim E{R(s; t)} - tllGI
t-+oo

exists and is finite. By homogeneity R doesn't depend on s. Aldous (1983b)
argues that for rapidly mixing walks, R can be interpreted as the mean number
of visits the random walk spends in its initial state in a short time. For most of
the examples in this and the previous chapter, R = 1.

With this notation, some careful results can be stated.

Theorem 9. (Aldous). Let Ts be the first time a random walk starting in a
uniformly chosen position hits state s. Then

(1) E(Ts ) = RIGI for all s E G.

Let T = i~f{\lp*k - U\\ ~ 1/2e}. Then

(2) sup IP{Ts > t} - e-t/RIGII ~ 1f'(T IRIGI),
t~O

with "p( x) tending monotonically to zero as x tends to O.

Remarks. Part (2) makes precise the heuristics of the previous section. Consider
a process like simple random walk on the d-cube. Then IGI = 2d , and T ==
td log d, R = 1, and (1) and (2) recapture the limiting results derived in Chapter
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3R. Aldous (1983b) gives similar results for the first hitting time to arbitrary sets
with any starting distribution.

Most random walks considered above have T /IGI ---* o. An exception is simple
random walk on Zn, where T is of order n2 • The wait to first hit a point has a
rather complicated distribution (see Chapter 3R). Flatto, Odlyzko, and Wales
(1985) use Fourier analytic methods to get higher order correction terms.

(3) Time to cover all. Let G be a finite group and P a probability with
convolutions that converge to uniform aperiodically. Let V be the first time that
a random walk hits every point in G. Note that the distribution of V doesn't
depend on the starting state. Let T and R be as defined in Section 2. Aldous
(1983a) proves

Theorem 10.
V ( log( 1 + T))

El RIGlloglGI - 11 ~ 7/J loglGI

with 1jJ(x) tending monotonically to zero as x tends to o.

Remark. In the case of the cube, log(1 + T) f'V log d, loglCI f'V d log 2, so the
ratio tends to zero. Analogs of the extreme value limits for the coupon collector's
problem are not established in this generality. However, Matthews (1985) has
established limit theorems for many of the examples where Fourier analysis can
be successfully applied.

Usually the results follow the heuristic. For the cube there is an extra factor
of 2. Matthews shows

for all fixed x as n tends to infinity. Here R f'V 1 + ~ which explains the 2.
Matthews' argument works by getting upper and lower bounds on the re­

quired probability. These apply to problems like first time for a Markov chain
to hit every point in a finite state space or first time for Brownian motion to
come within £ of every point on a high-dimensional sphere. The bounds merge as
IGI ~ 00 for random walk problems.

(4) Other problems. There has been some work on special cases of the prob­
lems listed in (1) above. Aldous (1985) started to classify the kind of limiting
behavior that can occur in the birthday problem for random walk. Diaconis and
Smith (1988) have begun to develop a fluctuation theory (as in Chapter 3 of Feller
(1968)). Some neat results emerge for nearest neighbor random walk on a 2-point
homogeneous space. For example, on the n-cube, the probability that random
walk starting at (00 ... 0) hits a given point at any specified distance less than n
before returning to zero tends to 1 as n tends to 00. The probability tends to 1/2
for (1, ... ,1).

This seems like a rich collection of reasonably tractable problems. Passing
to the limit should give results for the approximating diffusions (e.g., Ornstein­
Uhlenbeck process for the cube) in much the same way as results about simple
random walk lead to results for Brownian lTIotion.
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G. SOME OPEN PROBLEMS ON RANDOM WALK AND STRONG UNIFORM TIMES.

Here is a small list of problems that seem worth careful work.
(1) The slowest shuffle. Arunas Rudvalis has suggested the following can­

didate for the slowest shuffle: At each time, the top card is placed either at
the bottom, or second from the bottom, each with chance t. How long does it
take to get random? Is this the slowest shuffle equally supported at 2 generating
permutations?

(2) Let G == Zn. Pick k points in G, and repeatedly choose one of them at
random. This determines a random walk. What are the slowest k points (given
no paritiy problems) - a "arc" near zero? (i.e. the set of points j with Ijl < k/2.)
What are the fastest k points? Andy Greenhalgh has shown how to get rate n1 /

k

by an appropriate choice. What's the rate for "most" sets of k points? These
questions are already non-trivial for k = 3. They are also worth studying when k
grows with n.

(3) Moving on to other groups, Aldous and Diaconis showed that for most
measures P on a finite group G, IIP*P- U/I ~ Ibl' so for G large, most measures
are random after two steps. To get an interesting theory, constraints must be put
on the support. Andre Broder asked the following: pick a pair of elements in Sn'
Consider the walk generated by choosing both of these elements at random. It can
be shown that such a pair generates Sn with probability 3/4 asymptotically. Is
the walk random after a polynomial number of steps? Similar problems are worth
investigating for any of the classical infinite families of finite simple groups (I'd
try PGLn(q)). Back on Sn; it seems that any "reasonable" shuffle gets random
in at most a polynomial number of steps.

(4) The 15 puzzle. This familiar puzzle has 15 blocks arranged in a 4 X 4
grid. At each state, any of the blocks can be slid into the blank. Suppose uniform
choices are made among the current possibilities.

Here is a simplified version: Consider the blank as a 16th block, and consider
the puzzle on a "torus." An allowable move now involves picking one of the 16
squares at random, and then a direction (North, South, East, West) and "cycling"
that square in the chosen direction. For example, the bottom row might change
from 13, 14, 15, 16 to 16, 13, 14, 15 or to 14, 15, 16, 13. It is not hard to show
that it takes order n3 steps to randomize a single square (on an n X n grid). I
presume that order n 3 log n steps suffice to randomize everything. For a 4 X 4, this
gives about 90 "moves" to randomize. I presume this simplified version converges
to uniform faster than the original 15 puzzle. Similar questions can be asked for
other puzzles such as Rubic's cube.

(5) The affine group. Consider random walks of form X n = anXn- 1 +
bn(mod p). Here p is a fixed number (perhaps a prime) and (an,bn) are cho­
sen at random: e.g., an = 2 or t(mod p), bn = ±1. It seems that the right answer
for these is (log p)a for a = 1 or 2. The best that has been proved at present is
order p2 (see Diaconis and Shahshahani (1986a).

(6) Thorp's shuffle. A simple model for a random riffle shuffle has been
described by Thorp (1973). Cut the deck exactly in half. Start to drop the cards
from left or right hand as with an ordinary shuffle. At each time, choose left or
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right with chance t. Whatever is chosen, drop that card, and then a card from
the opposite half. Continue inductively. I think use of the mathematics of shuffle
nets (or work on sorting in parallel) will allow an elegant solution to this problem.

(7) Continuous groups. We have no examples of a strong uniform time ar­
gument being used to get rates of convergence for a random walk on a compact,
infinite group. It may be necessary to change the distance to the Prohorov metric.
For problems like random reflections (see Diaconis and Shahshahani (1968a)) or
random walk on the circle determined by repeatedly choosing a point in a small
arc uniformly, there is convergence in total variation metric.

(8) The cutoff phenomenon. The most striking finding is the existence of
sharp phase transition, IIp*k - UII cutting down from 1 to zero in a relatively
short time. It would be great to understand if this usually happens. As explained
in problem (3) above, restrictions will have to be put on the support.

(9) Relations between various approaches. A curious feature of the examples
is that usually if one method of attack works (e. g., Fourier analysis, or coupling,
or strong uniform times), then all the methods work. There must be a reason.
The greatest mystery is to understand the connections between the analytic and
probabilistic methods. One place to start is "top in at random," the first example
of Chapter 4. This can be done by strong uniform times and coupling. There
must be a way to do it Fourier analytically.



Chapter 5. Examples of Data on Permutations and
Homogeneous Spaces

To fix ideas, as well as to make contact with reality, it is useful to have a
collection of real data sets on hand.

A. PERMUTATION DATA.

(1) Large sets of rankings are sometimes generated in psychophysical experiments
(rank these sounds for loudness), taste testing experiments (rank these 5
types of coffee ice cream), or surveys. To give an example, in 1972, the
National Opinion Research Center included the following question in one of
their surveys: Where do you want to live? Rank the following 3 options: in
a big city; near a big city (~ 50 miles); far from a big city (> 50 miles). The
data from 1439 respondents was

city suburbs country #
1 2 3 242
1 3 2 28
2 1 3 170
3 1 2 628
2 3 1 12
3 2 1 359

Let us briefly discuss this data. The modal rank is 1i ~ - people prefer
the suburbs, then country, then city. This is born out by simple averages: 270
people ranked city first, 798 ranked suburb first, 371 ranked country first.

The 2 small counts lead to an interesting interpretation. Both violate the
unfolding hypothesis of Coombs (1964). To spell this out a bit, suppose people's
rankings are chosen in accordance with the ideal distance from the city, different
people having different preferences. Thus, one chooses the rank one location and
then "unfolds" around it. In this model (I 5 ~) is impossible since if one most
prefers being in the city, one must prefer being close to the city to being far away.
The number of permutations of the set 1,2, ... , n consistent with unfolding is
about 2n

- 1 , so many arrangements are ruled out. Unfolding is a nice idea, but
distance to the city might not determine things for someone who works in the sub­
urbs and doesn't want to live where they work. If you ask people to rank order
temperature for tea (hot, medium, cold), you don't expect the unfolding restric­
tion to hold, but if you ask people to rank order sugar teaspoons (0, t, 1, ~, 2)
you do expect the data to be consistent with unfolding.

Further analysis of the distance to cities data is in Chapter 8. Duncan and
Brody (1982) discuss these data in some detail.

92
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Ranked data often comes with other variables - rankings for men and
women, or by income being examples. In the data on distance to cities, the
actual dwelling place of the respondent is available. Methods for dealing with
covariates are developed in Chapter 9.

It is worth pointing to a common problem not represented in the cities data.
Because n! grows so rapidly, one can have a fairly large data set of rankings and
still only have a small proportion of the possible orders represented. For example,
I am considering a data set in which 129 black students and 98 white students
were asked to rank "score, instrument, solo, benediction, suite" from the least
related to "song" to the most strongly related to "song." Here, there cannot
be very many repeats in each ranking. In another data set, quoted in Feigin and
Cohen (1978), 148 people ranked 10 occupations for desirability. Clearly, the ratio
of the sample size to n! has a limiting effect on what kind of models can be fit to
the data.
(2) Pairs of permutations often arise as in "rank order the class on the midterm

and final." Similarly, small sets of rankings arise as in a panel of judges rank­
ing a set of contestants. A large collection of examples appears in Chapter
7A.

(3) The Draft Lottery. In 1970, a single "random" permutation in S365 was
chosen. This permutation was used to fix the order of induction into the
army. The actual permutation is shown in Table 1. For discussion of this
data set, see the article by S. E. Fienberg (1971).
As Fienberg reports, it was widely claimed that the permutation tended to

have lower order months Jan., Feb., ... having higher numbers. The Spearman
rank correlation coefficient is -.226, significant at the .001 level. Figure 2, based
on Figure 1, shows the average lottery number by month. The evidence seems
strong until we reflect on the problems of pattern finding in a single data source
after agressive data analysis.

Further analysis of this data is given in example 1 of Chapter 7A.

B. PARTIALLY RANKED DATA.

There are numerous examples in which people rank a long list only partially.
For example, people might be asked to rank their favorite 10 out of 40 movies,
a typical ranking yielding (a1' a2, ... , a10) with a1 the name of the movie ranked
first, etc. Alternatively people might be asked to choose a committee of 10 out of
40, not ranking within. Then a typical selection yields the set {at, a2, ... , a10}.

In each case the symmetric group S40 acts transitively on the partial rankings
which may thus be represented as homogeneous spaces for S40 (see Chapter 3-F
for definitions). For ranked 10 out of 40 the homogeneous space is S40/ S30. For
unranked 10 out of 40, the homogeneous space is S40/ S10 x S30.

Here are some real examples of such data.
Example 1. American Psychological Association data. The American Psycholog­
ical Association is a large professional group (about 50,000 members). To vote for
a president, members rank order five candidates. A winner is chosen by the Hare
system: Look at the first place votes for all five candidates. If there is no majority
candidate (~ 50%) delete the candidate with the fewest first place votes. Ballots
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Figure 1
The 1970 Random Selection Sequence by Month and Day

Day Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.

1 305 086 108 032 330 249 093 111 225 359 019 129
2 159 144 029 271 298 228 350 045 161 125 034 328
3 251 297 267 083 040 301 115 261 049 244 348 157
4 215 210 225 081 276 020 279 145 232 202 266 165
5 101 214 293 269 364 028 188 054 082 024 310 056
6 224 347 139 253 155 110 327 114 006 087 076 010
7 306 091 122 147 035 085 050 168 008 234 051 012
8 199 181 213 312 321 366 013 048 184 283 097 105
9 194 338 317 219 197 335 277 106 263 342 080 043

10 325 216 323 218 065 206 284 021 071 220 282 041
11 329 150 136 014 037 134 248 324 158 237 046 039
12 221 068 300 346 133 272 015 142 242 072 066 314
13 318 152 259 124 295 069 042 307 175 138 126 163
14 238 004 254 231 178 356 331 198 001 294 127 026
15 017 039 169 273 130 180 322 102 113 171 131 320
16 121 212 166 148 055 274 120 044 207 254 107 096
17 235 189 033 260 112 073 058 154 255 288 143 304
18 140 292 332 090 278 341 190 141 246 005 146 128
19 058 025 200 236 075 104 227 311 177 241 203 240
20 280 302 239 346 123 360 187 344 063 192 185 135
21 186 363 334 062 250 060 027 291 204 243 156 070
22 337 290 265 316 326 247 153 339 160 117 009 053
23 118 057 256 252 319 109 172 116 119 201 182 162
24 059 236 258 002 031 358 023 036 195 196 230 095
25 052 179 343 351 361 137 067 286 149 176 132 084
26 092 365 170 340 357 022 303 245 018 007 309 173
27 355 205 268 074 296 064 289 352 233 264 047 078
28 077 299 223 262 308 222 088 167 257 094 281 123
29 349 285 362 191 226 353 270 061 151 229 099 016
30 164 217 208 108 209 287 333 315 038 174 003
31 211 030 313 193 011 079 100

Figure 2
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with this candidate are relabelled to have the remaining candidates in the same
relative order. The procedure is now continued with the four remaining candi­
dates. Fishburn (1973), Doran (1979), or Brams and Fishburn (1983) discuss the
system and relevant literature.

A considerable number of voters do not rank all five candidates. For example,
in the year being considered the number of voters ranking q of the candidates was

q #
1
2
3

5

5141 }
2462 9711
2108

5738

15,449

Thus there were 5,738 complete rankings, but 5,141 only voted for their first
choice. In all, more than half of the ballots were incomplete. It is assumed that
people who rank 4 candidates meant to rank the 5th candidate last.

It is natural to inquire whether the partially ranked ballots are different from
the restriction of the complete ballots (or vary with q). Such considerations should
play a role in deciding on a final voting rule, and on deciding on ballot design and
election publicity in following years.

Table 1 gives the complete data. The data are arranged as (rank, #) where
rank is a five-digit number, whose ith digit represents the rank given to candidate
i (a zero or blank means that this is a partial ranking, in which candidate i has not
been ranked). For example, the first entry (1, 1022) indicates that candidate 5 was
ranked first by 1022 people who didn't rank anyone else. The second entry (10,
1145) indicates that candidate 4 was ranked first by 1145 people (who didn't rank
anyone else). The first 5 entries give the totals for singly ranked items. The next
20 entries give totals for people ranking 2 of the 5 candidates. For example 143
people ranked candidate 5 first and candidate 4 second (and didn't rank anyone
else). These data are analyzed by Diaconis (1989).

Example 2. k sets of an n set. If people are asked to choose their favorite k of n,
without ranking within (as in choosing a committee or set of invitees to a meeting),
then the relevant homogeneous space is Sn/ Sk X Sn-k, where Sk X Sn-k is the
subgroup of Sn allowing arbitrary permutations among {I, ... , k} and among
{k + 1, ... , n}. Approval voting, recommended by Brams and Fishburn (1983)
yields such data.

Here is an example where large amounts of such data occur. The State of
California has a state lottery game called 6/49 or Lotto. To play, you select a 6
set from {I, 2, ... , 49}. Then, 6 of 49 numbered balls are chosen at random. The
grand prize is divided between the people choosing this subset.

There are about 14 million subsets, and 11 million players per week in this
game at present. Of course, people do not choose subsets at random - they play
favorate combinations. One can get a distinct advantage in this game by avoiding
popular numbers and subsets. After all, if you are the only person on the subset
you don't have to split with anyone. This can actually overcome the "house take"
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Table 1
American Psychological Association Election Data

# of Votes # of Votes # of Votes # of Votes

Partial Cast of Partial Cast of Partial Cast of Partial Cast of
Ranking This Type Ranking This Type Ranking This Type Ranking This Type

1 1022 23100 83 45213 24 24135 96
10 1145 20103 74 45132 38 23541 45

100 1198 132 19 45123 30 23514 52
1000 881 123 15 43521 91 23451 53

10000 895 2103 16 43512 84 23415 52
21 143 1302 15 43251 30 23154 186
12 196 1032 45 43215 35 23145 172

201 64 1320 17 43152 38 21543 36
210 48 1203 8 43125 35 21534 42
102 93 31002 38 42531 58 21453 24
120 56 31020 45 42513 66 21435 26

2001 70 31200 32 42351 24 21354 30
2010 114 21003 17 42315 51 21345 40
2100 89 21030 31 42153 52 15432 40
1002 80 1023 55 42135 40 15423 35
1020 87 1230 9 41532 50 15342 36
1200 51 21300 31 41523 45 15324 17

20001 117 10032 35 41352 31 15243 70
20010 104 10203 49 41325 23 15234 50
20100 547 10302 41 41253 22 14532 52
21000 72 10320 21 41235 16 14523 48
10002 72 13002 31 35421 71 14352 51
10020 74 13020 22 35412 61 14325 24
10200 302 13200 79 35241 41 14253 70
12000 83 10023 44 35214 27 14235 45
30021 75 10230 30 35142 45 13542 35
30201 32 12003 26 35124 36 13524 28
32001 41 12030 19 34521 107 13452 37
20031 62 12300 27 34512 133 13425 35
20301 37 54321 29 34251 62 13254 95
23001 35 54312 67 34215 28 13245 102

3201 15 54231 37 34152 87 12543 34
2301 14 54213 24 34125 35 12534 35
3021 59 54132 43 32541 41 12453 29
2031 50 54123 28 32514 64 12435 27

321 20 53421 57 32451 34 12354 28
231 17 53412 49 32415 75 12345 30

30012 90 53241 22 32154 82
30210 13 53214 22 32145 74
32010 51 53142 34 31542 30
20013 46 53124 26 31524 34
20310 15 52431 54 31452 40
23010 28 52413 44 31425 42

3012 62 52341 26 31254 30
3210 18 52314 24 31245 34
2310 21 52143 35 25431 35
2013 54 52134 50 25413 34

312 46 51432 50 25341 40
213 16 51423 46 25314 21

2130 17 51342 25 25143 106
3120 26 51324 19 25134 79
3102 16 51243 11 24531 63

30102 47 51234 29 24513 53
32100 57 45321 31 24351 44
30120 15 45312 54 24315 28
20130 39 45231 34 24153 162
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and yield a favorable game. Chernoff (1981) gives details for the Massachusetts
lottery. In any case, the data must be analyzed.

While it is not possible to present such data here, the following smaller ex­
ample shows that interesting analyses are possible.

There are various gadgets sold to generate a six-element subset of
{I, 2, ... , 49}. These are used to help players pick combinations for the California
state Lotto game.

One such gadget is pictured in Figure 1. There are 49 numbered holes and
six balls enclosed by a plastic cover. One shakes the balls around and uses the six
set determined by their final resting place.

Figure 1.

PICK 6 LOTTO & WIN
1 2 3 4 5 6 7 8 9
0 0 0 0 0 0 0 0 0

10 11 12 13 14 15 16 17
0 0 0 0 0 0 0 0

18 19 20 21 22 23 24 25
0 0 0 0 0 0 0 0

26 27 28 29 30 31 32 33
0 0 0 0 0 0 0 0

34 35 36 37 38 39 40 41
0 0 0 0 0 0 0 0

42 43 44 45 46 47 48 49
0 0 0 0 0 0 0 0

This gadget seems at first like other classical devices to generate random out­
comes: if vigorously shaken, it should lead to random results. Further thought
suggests that the outer, or border numbers might be favored over the inner num­
bers.

To test this, 100 trials were performed. The gadget was vigorously shaken
and set down on a flat surface. The results are given in Table 2.

Following each six set is X - the number of balls falling on the outer perime­
ter in that 6-set. For example, the first 6-set {ID, 11, 13,25,36, 42} had 3 outside
numbers - 10, 25, 42 - so X = 3. There are 25 outside numbers out of 49.



1,17,22,25,29,31/3
2,13,23,24,26,30/2
2, 6,15,18,32,37/3
2,14,15,17,18,35/3
4,10,20,31,32,37/2
7,13,17,27,31,44/2

19,22,28,32,42,44/2
7,13,19,33,47,48/4
1, 2, 4,15,19,40/3
2, 5,25,26,30,39/4

6
.010
.03
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Table 2
100 6-sets of {I, 2, ... , 49}

10,11,13,25,36,42/3 5,10,21,26,42,46/5 4,17,18,22,32,41/4
25,27,34,39,45,46/4 16,23,37,41,43,45/3 6, 9,10,12,16,32/3

3, 5,18,20,33,39/4 8,10,13,34,43,49/5 2, 5,17,19,36,40/3
3,10,23,26,45,49/5 2,10,11,12,13,15/2 2, 6,10,25,33,38/5
3, 7,15,19,26,34/4 10,13,15,22,26,43/3 3,17,29,40,41,45/4
4,15,32,33,36,49/3 15,19,22,30,32,39/0 4, 7,11,23,35,36/2

10,11,23,33,43,46/4 2,15,22,25,29,48/3 1,18,31,33,34,46/5
1, 6, 7,18,26,34/6 6, 7,10,11,17,31/3 11,13,15,28,34,39/1
6,11,15,19,26,46/3 6,17,24,29,42,43/4 4, 7,15,18,31,33/4
1,11,15,18,26,29/3 2, 9,21,36,43,45/4 1, 3,12,15,20,41/3

10,11,19,31,36,42/2 7,12,18,35,42,44/4 4, 9,12,22,39,41/3
6,15,25,27,42,47/4 5,16,18,33,36,39/3 3,10,12,28,34,39/3

17,18,33,36,43,46/5 2,6, 7,11,31,47/4 2, 7,12,27,34,35/3
1, 2,32,36,43,48/4 18,22,28,36,42,47/3 1, 4, 7,12,20,43/4

16,20,30,35,45,46/2 4,18,29,35,39,46/3 5, 7,14,16,18,31/3
16,20,26,37,42,49/3 3, 6,16,25,29,42/4 6,23,28,34,36,40/2

3,18,27,30,42,43/4 1,28,31,37,42,43/3 2, 5, 9,15,23,27/3
9,10,27,42,43,45/5 1,18,23,27,42,43/4 2, 3,19,34,39,44/4
6,23,32,39,42,46/3 4, 5, 7, 8,40,42/5 6,12,14,16,23,39/1
5,19,36,39,42,44/3 6, 7, 9,12,39,49/4 2,12,15,26,38,43/3

7,18,20,29,35,43/3 12,13,18,19,22,36/1 5, 7,12,17,29,35/3
12,14,23,29,41,48/2 4, 7, 8,10,33,49/6 4, 9,16,23,27,42/3

4, 6,17,20,33,48/5 7, 9,31,32,41,46/4 2,13,15,20,21,48/2
4,18,27,30,43,49/4 9,12,14,37,46,48/3 1, 5,34,42,44,46/6
6,10,18,30,35,45/4 7, 9,16,29,41,46/4 15,16,17,24,27,30/1

26,27,38,42,43,44/4 14,19,21,28,33,42/2 8,15,18,21,30,39/2
6, 8,19,38,43,49/4 6,14,15,17,31,49/3 6,15,21,23,32,47/2
1,20,25,42,43,49/5 8,33,35,41,45,47/5 5, 7, 8,19,23,49/4
4,34,27,39,43,46/4 2, 8,25,29,42,47/5 7, 8, 9,14,20,22/3
3, 4,11,33,46,49/5 8,11,24,25,37,48/3 10,15,29,34,46,49/4

If the six sets were chosen at random, X would have a hypergeometric distribution

H {X = j} = Wli:~i). These numbers are given in Table 3 which also shows the

empirical counts from Table 2.
Table 3

Hypergeometric and Empirical Probabilities for X.
j 0 1 2 3 4 5

H {X = j} .013 .091 .250 .333 .228 .016
Empirical .01 .04 .14 .35 .30 .13

The differences are not overwhelming visually. They do show up in two
straightforward tests.

A first test was based on p = H X = 4, 5, 6} = .353 versus the empirical
ratio p = .46. Then (p - p)/ p(l - p)/100 = 2.23. This difference, more than
two standard deviations, is convincing evidence against uniformity.

Colin Mallows suggested using the average, X, as a statistic. Under the null
distribution, E(X) == 3.06, SD(X) == 0.116. The observed X is 3.40. This yields
a standardized (z value) of 2.92.

Remarks.
1) As is well known, the omnibus chi-square test is to be avoided for these

kinds of problems. Because it tries to test for all possible departures from
uniformity, chi-square only works well for large deviations or sample sizes.
Interestingly, here it fails to reject the null (10.23 on six degrees of freedom
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with all 7 categories or 9.01 on five degrees of freedom with the first and last
categories combined).

2) Other questions can be asked of these data. To begin with, the central
numbers

20, 21, 22, 23
28, 29, 30, 31

presumably occur less often. More generally, a test that looks at all numbers, but
takes into account the distance from the edge, could be constructed. A preliminary
graphical analysis was not instructive.

Interesting questions arise about the corners and about individual numbers.
With more data, some second order questions can be entertained.

3) It seems clear that this style of randomization mechanism is badly flawed.
Possible physical explanations can be entertained to explain these flaws. The
balls lose most of their energy on impact with the sides, and then "trickle
back" to the edge. A slight tilt draws the balls toward an edge.

4) One practical application of this kind of testing problem comes in the ac­
tuallottery. A quick test to detect marked departures is needed for a pre-game
screening (someone might have switched for loaded balls during the night).

Example 3. Q sort data. The General Social Survey lists thirteen qualities a child
could possess. From this list, respondents are asked to choose the most desirable
quality, the two next most desirable qualities, the least desirable quality and the
next two least desirable qualities. In an obvious way, this is data on SI3/SI X
S2 X S7 X S2 X SI. More generally, if A is a partition of n, so A = (AI, ... , Am)
with Al + ... + Am = n, one can consider data of the form: choose the first Al
objects (but do not order between), choose the next A2 objects, etc., finishing
with Am objects ranked last. Such a scheme is called Q sort data in psychology
experiments. It is not unusual to ask for a list of 100 items to be ranked for its
degree of concordance or similarity with a fixed object. For example, the object
might be a person (spouse, national leader) and the items might be descriptive
levels of aggression. Suppose 9 categories of similarity are used, ranging from 1 ­
"most uncharacteristic," through 5 "neither characteristic nor uncharacteristic,"
up to 9 - "most characteristic." To aid in different rates, a forced distribution is
often imposed. For n = 100, the numbers permitted in each category are often
chosen from binomial considerations as 5, 8, 12, 16, 18, 16, 12, 8, 5. A novel
application and references to the older literature may be found in L. E. Moses et
al (1967). For more recent discussion see Heavlin (1980).

Example 4. Other actions of Sn' The symmetric group acts on many other
combinatorial objects, such as the set of partitions or labelled binary trees. It
follows that there is a wide variety of objects to which the analysis of this and
succeeding chapters may be applied.

c. THE d-SPHERE Sd.

Sometimes data are collected on the circle - which way do birds leave their
nests. Data are also collected on the sphere - for example, in investigating the
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theory of continental drift, geologists looked at magnetization direction of rock
samples on two "sides" of a purported boundary. Roughly, small pieces of certain
kinds of rocks have a given magnetic orientation giving points on the sphere in 1R3 •

This leads to two-sample and other data analytic problems. Such considerations
led Fisher (1953) to invent his famous family of distributions on the sphere.

Here is an example of data on higher dimensional spheres: consider testing
whether measurement errors are normal. Samples of size p are available from a
variety of different sources. Say sample i is normal with parameters j.li, a}:

(X11, ... ,X1p) LLd. n(Jll,ai)

(X21 , . · ., X 2p) LLd. n(j.l2' a~)

(Xn1, ... ,Xnp) LLd. n(j.lp,a;).

Think of p small (say 10) and n large (say 50). All samples are assumed indepen­
dent. Let Xi and Si be the ith sample mean and standard deviation.

The spherical symmetry of the normal distribution implies that Yi are randomly
distributed over a p - 2 dimensional sphere. Standard tests for uniformity thus
provide tests for normality.

The group of n X n orthogonal matrices O(n) acts transitively on the n sphere.
The subgroup fixing a point (say the north pole (1,0,...,0)) is clearly O(n - 1).
Thus the sphere can be thought of as O(n )/O(n-1) and the rich tools of harmonic
analysis become available.

Further introductory discussion is in Chapter 9B. Mardia (1972) and Watson
(1983) give motivated, extensive treatments of data on the sphere.

D. OTHER GROUPS.

Many other groups occur. For example binary test results (e.g. right/wrong
on the ith question 1::; i::; k) lead to data on Z~. Here, for x E Z~, f(x) is the
number of people answering with pattern x. In panel studies a subject is followed
over time. For example, 5,000 people may be followed for a year, each month a
one or zero is recorded as the person is employed or not. This leads to data on
Z122 •

There is a curious data set for Z365 X Z365 connected to the birthday-deathday
question. Some researchers claim famous people tend to die close to the date of
their birth. See Diaconis (1985) for a review of this literature.

Data on yet other groups arises in testing Monte Carlo algorithms for gen­
erating from the uniform distribution. Such group valued random variables are
useful in doing integrals over groups. Testing a generator leads to a sample on the
group in question. I have looked at data for the orthogonal and unitary groups
in this regard.

It seems inevitable that data on other groups and homogeneous spaces will
arise naturally in applications. One final example: with many scatterplots, one
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has many covariance matrices. The set of positive definite 2 X 2 matrices is
usefully represented as GL2/0 2 • Several other examples are given in the following
chapters.

E. STATISTICS ON GROUPS.

The examples described above suggest a wealth of statistical problems. In
classical language, there is

• Testing for uniformity (is the sample really random?)
• Two sample tests (is there a difference between men and women's rankings?)
• Assessing association (is husband's ranking close to wife's?)
• Model building (can this huge list of data be summarized by a few param­
eters?)
• Model testing

More inclusively, there is the general problem of data analysis: how to make sense
of this type of data; how to discover structure and find patterns.

The next four chapters offer three different approaches to these problems.
Chapter 6 develops measures of distance on groups and homogeneous spaces.
These are used to carry all sorts of familiar procedures into group valued examples.

Chapter 8 develops an analog of the spectral analysis of time series for group
valued data. This is explored in the examples of partially ranked data. These ex­
amples make full use of the representation theory of the symmetric group. Chapter
7 is devoted to a self-contained development of this theory.

Chapter 9 uses representation theory to develop a natural family of models.
In familiar cases, these reduce to models introduced by applied workers. The
theory shows how to go further, and gives a unified development for all groups at
once.

Of course, there is no substitute for trying things out in real examples, where
special knowledge and insight can be brought to bear. There has not been much
Bayesian work on these problems that I know of. The problems of developing
natural prior distributions with respect to invariance seem fascinating. Consonni
and Dawid (1985) or Fligner and Verducci (1988) offer steps in this direction.



Chapter 6. Metrics on Groups, and Their Statistical Uses

In working with data, it is often useful to have a convenient notion of dis­
tance. Statisticians have used a number of different measures of closeness for
permutations. This chapter begins by analyzing some applications. Then a host
of natural metrics (and basic properties) is provided. Next, some abstract princi­
ples for constructing metrics on any group are shown to yield the known examples.
Finally, the ideas are carried from groups to homogeneous spaces.

A. ApPLICATIONS OF METRICS.

Example 1. Association. Let p be any metric on the permutations in Bn . Thus,
p(1r , 1r) = 0, p(1r, u) = p(u, 1r) and p(1r, 'fJ) ::; p(1r, u) + p(u, 'fJ). Many possible
metrics will be described in Section B. To fix ideas, one might think of p as
Spearman's footrule: p(1r,u) = 2: i 11r(i) - u(i)l. One frequent use is calculation
of a measure of nonparametric association between two permutations. A standard
reference is the book by Kendall (1970).

As an example, consider the draft lottery example in Figure 2 of Chapter 5.
The data consists of 12 pairs of numbers, (i, Yi), and Yi being the rank of the
average lottery number in month i. It is hard to get the value of Yi out of the
figure, but easy to get the rank of Yi (i.e., biggest, next biggest, etc.). I get

1r Month I J F M A M J J A SON D
u Rank Yi 5 4 1 3 2 6 8 9 10 7 11 12

The two rows can be thought of as two permutations in 812 . Are they close
together? Taking p as the footrule, p(1r, u) = 18. Is this small? The largest value
p can take is 72. This doesn't help much. One idea is to ask how large p(1r, u)
would be if u were chosen at random, uniformly. Diaconis and Graham showed
the following result (proved in Section B below).

Theorem 1. Let p(1r, u) = 2: 11r (i) - u( i) I. If u is chosen uniformly in 8n then

1
AV(p) = 3"(n2

- 1)

1
Var(p) = -(n + 1)(2n2 + 7)

45

{ p-AV } 1 jt 2/2
P ~ t = -- e-x dx +0(1).

BD v'2i -00

In the example, AV ~ 47.7, BD ~ 9.23. The value 18 is more than 3 standard

102
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deviations from the mean. Thus 18 is small in that it (or a smaller value) is quite
unlikely to have occurred under a simple chance model.

The approximate normality is valid as n tends to infinity and one might worry
about n = 12. Figure 4 below shows the result of a Monte Carlo experiment based
on 100,000 choices of eT from a uniform distribution. The normal approximation
seems fine. The graph was supplied by Hans Dry who also published tables of the
footrule for n ~ 15, in Dry and Kleinecke (1979). From their tables, the p value
for the draft lottery data is P{p ~ 18} = .001 ·

Figure 1
Normal approximation for n = 12
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epoo

4.000

2.000
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Many further tests of randomness for the Draft Lottery data are described
by Fienberg (1971). This test is natural starting from Figure 2.

Statisticians often normalize metrics to lie in [-1,1] like correlation coefficients.
If pes, t) is a metric with maximum value m, then R(s, t) = 1- 2pjm lies in [-1,1].

I find it interesting that the standard "non-parametric measures of associ-
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ation" arise from metrics. I've never been able to get much mileage out of the
triangle inequality, which translates to

R(s, u) ~ R(s, t) + R(t, u) - 1.

Example 2. Scaling A second use of metrics for permutation data adapts such
data for a run through a standard multidimensional scaling or clustering program.
Multidimensional scaling takes points in any metric space and finds points in the
plane such that the distances between the points in the plane are close to the
distances between the points in the metric space. Imagine a collection of several
hundred rankings of 10 items. It can be hard to get a preliminary "feel" for
such data. Scaling finds representative points or sometimes "nonlinear mapping"
which can be visualized. Obviously, a metric is necessary, since the input to
a multidimensional scaling program is the set of distances between the original
points. A nice discussion of scaling is in Chapter 14 of Mardia, Kent, and Bibby
(1978). Critchlow (1985, pg. 116-121) gives an example with permutation data.
Cohen and Mallows (1980) use the biplot in a similar way. See Figure 2 below.

Example 3. Mallows' model. A third use of metrics is as a means of model
building. Following Mallows (1957), let's use a metric to put a probability measure
on Sn. This measure will have a location parameter?ro E Sn and a scale parameter
A E R+. Set

P(7r) = ce-,\p(1l",1l"o); c-1 = Le-'\P(1l",1l"o).

1r

The largest probability is assigned to ?ro and probability decreases geometri­
callyas the distance from ?ro. Increasing A makes the distribution more and more
peaked about ?ro. Of course, A == 0 gives the uniform distribution.

A nice application of this approach to analyzing agreement between several
judges in a contest is in Feigin and Cohen (1978). Critchlow (1985) gives other
examples where Mallows' model provides a good fit to ranking data.

Mallows' original derivation of this model is less ad hoc. He considers gen­
erating a ranking of n items by making paired comparisons. Suppose 1ro is the
true ranking, but a subject errs in comparing i and j with probability p. Mal­
lows shows that conditional on the comparisons yielding a ranking, the ranking is
distributed as above, with p given by Kendall's measure of association T and A a
function of p. This is discussed in Section B below. Fligner and Verducci (1986,
1988b) develop and extend this justification for Mallows model.

Example 4. Two-sample problems. Here is a fourth use of metrics: as a means
of looking at 2 sample problems. In such problems we consider two sets of permu­
tations 1r}, ••• , 1rnand O'}, ••• , O'm and ask about their similarities and differences.
One classical question: "Can these two sets be regarded as samples from a single
population of permutations?". If the 1r'S and O"s were permutations of a small
number of items and n and m were large, there would be no problem. The ques­
tion could be treated by well-known techniques for the multinomial distribution.
Consider though, the problem of distinguishing between the distribution of riffle
shuffles generated by Reeds and Diaconis in Chapter 5. Here n == 100, m == 103
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and the permutations are in SS2. Here is an idea, borrowed from J. Friedman and
L. Rafsky (1979).

Choose a metric p. Regard the 2 sets of permutations as points in a metric
space. Form the minimal spanning tree for the combined data - that is, the
shortest connected graph having a unique path between every pair of points.
"Color" the points of one set (say the set {1ri}) red. Count T, the number of
edges in the tree that join two nodes of different colors. The idea is that if the
distributions of 1r and (J' differ, the 2 types of points will tend to be separated,
and only a few edges in the tree will cross over. If the distributions of 1r and (J'

are the same, there will be many cross-overs.

Figure 2

A 'scaling' picture of the minimal spanning tree in a metric space. The squares
are sample 1, the stars are sample 2.

The distribution of T can be simulated by fixing the tree and randomly
relabelling the vertices, drawing the m values without replacement from an urn
containing n + m balls. Friedman and Rafsky give a normal approximation. See
also Stein (1986).

The discussion above used the minimal spanning tree. Any graph that con­
nects points together if they are close can be used. Friedman and Rafsky also
obtained good results for the graph connecting each point to its k-nearest neigh-
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bors. Critchlow (1985, Chapter 6) used the union of all minimal spanning trees ­
for discrete metrics, the tree need not be unique.

Feigin and Alvo (1986) give another approach to assessing variability between
groups using metrics on permutations. Fligner and Verducci (1988a) develop these
ideas into a new approach for judging athletic competitions.

Example 5. Generalized association. Friedman and Rafsky (1983) have devel­
oped a method of testing association for data of the form (Xl, YI), (X2, Y2), · · · ,
(x n , Yn). Here x takes values in a metric space X, and Y takes values in a metric
space Y. In an epidemiology application it might be that Xi are times of occur­
rence, and Yi are spatial locations of cases of a rare disease. One suspects trouble
if points that are close in time are close in space.

In a more mundane setting, X and Y may both be symmetric groups, the
data representing rankings of items on two occasions.

To test "association" they suggest forming a nearest neighbor graph for the
Xi, and a separate nearest neighbor graph for the Yi. These graphs might both
be minimal spanning trees. This gives two graphs on the vertex set 1, 2, ... , n.
Now take T to be the number of edges that occur in both graphs. T is large if
points close in X are close in Y.

One can get a null hypothesis distribution for T by comparing it with re­
peated values from the samples (XI,Y1r(I»), ... ,(xn'Y1r(n») where 1r is a random
permutation. After all, if Xi and Yi have no connection, the value of T should be
about the same as for (Xi, Y1r(i»). Friedman and Rafsky give a normal approxima­
tion for this statistic. See also Stein (1986).

One final idea: this test of association includes the 2 sample test described
in Example 4! To see this, consider the m + n values as points in a space Y, and
let Xi be one or zero as Yi is from the first or second sample. Use the discrete
metric on X. The association statistic Ta counts the number of edges that appear
in both graphs. This is the number of edges in the graph in Y space that have the
same colored edges in the two sample setting. Thus T == n + m-I - Ta, so the
two tests are equivalent; distributions are judged different if there is association
with sample labels.

Jupp and Spurr (1985) give a different approach to testing for independence
on groups using metrics.

Example 6. Goodness of fit tests. Given a model for data in a metric space X,
one can carry out standard chi-squared goodness of fit tests by splitting X into
pieces based on a metric and comparing observed and expected.

Example 7. Robust regression. Here is an approach to non-linear regression
using a metric on Sn. Consider a family of real valued functions from a space X;

f(x,O): X ~ R, 0 E 0

e.g., f(x) = a+bx, or f(x) = a+b cos (cx+d). Suppose we observe (YI,XI), ... ,
(Yn, x n) and desire a value of () such that Yi is close to f(Xi, fJ). The classical
approach to this is to fit by least squares: find a value of fJ minimizing E(Yi -
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f(Xi, 8))2. In recent years, people have noted that this approach is very sensitive
to a few "wild values". If 1 or 2 of the x or y values are far away from the
rest, those values have a huge effect on the minimizing B. Here is a simple idea:
choose a value of fJ so that the rank of f( xi, fJ) is as close as possible to the
rank of Yi. In simple linear cases, this gives the line with correlation replaced
by the nonparametric measure of correlation induced by p. Sen (1968) develops
properties of the estimator. Bhattacharya, Chernoff, and Yang (1983) apply it to
a fascinating cosmology problem involving truncated regression.

Example 8. Social choice functions. A common problem in social choice theory
is the choice of the "best alternative" based on a committee's ranking of the
available alternatives. Classical examples include

Plurality: Choose the alternative with the most first place votes
Borda's rule: Assign a weight of 0 to the least preferred

alternative. 1 to the next least preferred, and so on. The
total score of each alternative is computed and the
alternative(s) with the highest score is chosen as winner.

Condorcet's rule: If there is some alternative that defeats every
other in pairwise comparison, then that alternative
should be chosen as the winner.

Even when applicable, the different rules need not lead to the same choice.
Consider 19 rankers choosing between three alternatives a, b, c. If the rankings
are

a b c #

1 2 3 3
1 3 2 4
2 1 3 2
3 1 2 4
3 2 1 6

19

then a is chosen by plurality but b is chosen by Borda's rule (it gets score 21 versus
16 for a and 20 for c) and c is chosen by Condorcet's rule (it defeats each of a and b
in 10 votes). A famous theorem of Arrow says that there is no "reasonable" social
choice function. A review of this literature may be found in Fishburn (1973).
Grofman and Owen (1986) contains several further review articles.

For some tasks it may be desirable to choose a winner and a runner up. Other
tasks require a committee of the top three choices or a complete permutation,
representing the group's ranking. These may all be subsumed under the problem
of choosing a partial ranking of shape A, where Ais a partition of n, the number of
alternatives (see Section B of Chapter 5). We will focus on the choice ofa complete
ranking given a probability P on rankings. Usually, P( 7t") is the proportion of
rankers choosing 1r.

One usable route through this problem uses metrics on groups as a way of
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defining a "mean" or "median". Let P be a probability on a finite group G. Let
p be a metric on G. Define

f(s) = L P(t)p(s, t).
t

The group element "7 is a p-median of P if "7 minimizes /(8). The number /("7) is
called the p-spread of P. Substitution of p2 for p in the formula for /(s) yields a
p-mean.

John Kemeny has proposed choosing a group ranking by using the metric
induced by Kendall's tau on Sn. In Young and Levenglick (1978), a list of prop­
erties of Kemeny's procedure are shown to characterize it. Here is a version of
their result:

A preference function J.l assigns a set of permutations to each probability
P on Sn. For example J.l(P) could be the set of p-medians of P. A preference
function is neutral if it transforms correctly under relabeling. In symbols, let
PT] (1r) == P(1]- I 1r), then J.l is neutral if

/l( PT]) = 1]J.l( P) for all 1] and P.

A preference function is consistent if for any a in (0,1),

If PI and P2 represent the rankings of n and m judges respectively, then the
pooled panel is represented by PIn/en + m) + P2m/(n + m). Consistency says
that if PI and P2 lead to common preferences then the combined judges choose
these preferences.

Given a probability P, let n(P, ij) be the difference between the probabilities
of all1r preferring i to j and all1r preferring j to i. Condorcet's proposal was that
alternative i was preferred if n(P, ij) > 0 for all j "# i (thus i would beat any j in
a pairwise popularity contest).

If a complete ranking is desired, a natural extension of Condorcet's idea is
this: if i beats j in a pairwise popularity contest, then i should be ranked above j
in any consensus ranking. Formally, it suffices to deal only with adjacent rankings.
A preference function J.l is called Condorcet if n(P, ij > 0) (for fixed i and j) implies
no 1r with 1r(i) == 1r(j) +1 is in J.l( P). (For this, the condition becomes n(P, ij) == 0
implies 1r- I (k) == i,1r- I (k + 1) == j€J.l(P) iff 1["-I(k) = j,1r-1(k + 1) == i€JL(P)).
Thus, no 1r ranking j as the immediate predecessor of i is in the consensus ranking.

Young and Levenglick show that medians based on Kendall's r are neutral,
consistent, and Condorcet. They further show that these three properties char­
acterize r-medians among preference functions.

These ideas can be carried over to choosing a final ranking of shape A. Each
1r E Sn can be naturally assigned to such a partial ranking. The image of P under
this map gives a probability on partial ranks and a choice of distance on partial
rankings leads to a mean.
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In Section 8.7 of Grenander (1981), a notion of a centroid set is introduced.
This is very similar to a p-median, based on a distance defined using characters.

Example 9. Moments of probabilities on groups.
It is not clear how the p-medians and p-spreads relate to group operations

like convolution. There is a little theory for moments of probabilities on groups
that share, with the mean and variance, the property of being homomorphisms
from probabilities under convolution into G (so the mean of a convolution is the
sum of the means) or R+ (so the variance of a convolution is the sum of the
variances). This is elegantly surveyed in Heyer (1981).

Here is an example due to Levy (1939). Consider a random variable X taking
values on the circle T = {zcC: Izl = 1}. Levy defined variance as

VeX) = inf f [arg(za)F Px(dz)
aET iT

(where arg z is the unique cP E (-1r,1r] such that eicl> = z). Every a E T which
achieved the infimum he called a mean. He used these notions to prove the
following version of the Kolmogorov three series theorem: Let Xl, X 2 , ••• , be T
valued random variables. A necessary and sufficient condition for convergence of
00

L: X j a.s. is
j=l

(a) EV(X j ) < 00 (b) EE(X j ) < 00

where (b) is interpreted as holding for any choice of expectations. This has been
somewhat improved by Bartfai (1966).

Note that Levy's mean is the mean of example 8, with the usual metric.

Example 10. Tests for uniformity. Let X be a homogeneous space on which G
acts transitively. We have data Xl, X2, ••• , X n and want to test if it is reasonable
to suppose that these are independent and uniform.

As an example, X might equal G and the Xi might be the output of a com­
puter routine to generate random elements of G - one wants to test such things.
See Diaconis and Shahshahani (1987a) for examples.

The amount of data will play a role in choosing a test. If n is small, one can
only hope to pick up fairly strong departure from uniformity.

One simple example is the following variant of the empty cell test: Let
p(x,y) be a G invariant metric. Look at m = min p(Xi,Xj), and compare with
its null distribution. The null distribution can be approximated using Poisson
limit theorems for U-statistics.

To fix ideas, take X = G = zt with p(x, y) the Hamming distance - the
number of coordinates where X and y disagree. If X and y are chosen at random,

a
P{p(x, y) ~ a} = P{B(a)}, with B(a) the ball of radius a. This has L: (1) points,

j=O
a

and so P(B(a» = -:J;r L: (1)·
j=O

The expected number of pairs (Xi,Xj) within distance a is thus A =
(2)P(B(a)). For d large, and a chosen so that e.g. 1 ~ A ~ 10, the number
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of close pairs is approximately Poisson(A). The chance that no two are within
distance a is thus approximately e-'\.

For example, if d == 10, n == 50, a == 0, then A == 1.2, e-'\ == .3.
The argument can be made rigorous by checking the conditions in Sev­

astyanov (1972), Silverman and Brown (1978), or Stein (1986). Note that theo­
rems giving the null distributions of metrics (see Example 1 above) now are useful
to compute volumes of spheres B(a).

A collection of tests for uniformity on groups is suggested by Beran (1968),
developed by Gine (1973), with a practical implementation by Wellner (1979).
These all use distances and are mainly specialized to continuous examples such
as the circle or sphere. Jupp and Spurr (1985) apply similar ideas.

Example 11. Loss functions. Investigating statistical aspects of the examples
presented here leads to estimating parameters in a group. Metrics can be used as
loss functions. For a classical example, consider n observations from a multino­
mial distribution with k categories and unknown probability vector Pt, P2, . · · ,Pk·
It may be desired to rank the Pi, deciding on the largest, next largest, and so
on. Thus the parameter and estimate are permutations, and a decision theoretic
formulation will involve a distance.

Estimation of Gaussian covariance matrices could stand some work from this
viewpoint using the observation that GLn/On is identified with the space of pos­
itive definite matrices; now the techniques of Section D below can be used.

The location parameter in Mallows' model (Example 3 above) is an element
of Sn, and evaluation of estimators again necessitates a metric.

Andrew Rukhin (1970, 1977) began a systematic development of statistical
estimation on groups that is well worth consulting.

Example 12. Random walk again. In investigating the rate of convergence of
random walk on groups to the uniform distribution we used the total variation
distance. It is natural to try other distances between probabilities. Several of
these may be defined starting from a metric on G. Let G be a compact group,
P and Q probabilities on G, and d a metric on G. We assume d is compatible
with the topology on G (so d(s, t) is jointly continuous). Usually.d is invariant or
bi-invariant. Also assume d ~ 1.

The Wasserstein or dual bounded Lipschitz metric is defined by dw(P, Q) ==
sup IP(f) - Q(f)l; the sup being over all f satisfying the Lipschitz condition
If(x) - f(y)1 ~ d(x, y).

It can be shown that the following statements are equivalent:
(a) dw(P,Q) ~ E.

(b) There are random variables taking values in G with X rv P, Y rv Q and

E(d(X, Y)) ~ E.

Dudley (1968) and Huber (1981) contain proofs of this result. Rachev (1986)
contains an extensive survey. These papers also describe the Prohorov distance
between P and Q - this also depends on the underlying metric. It seems ex­
tremely hard to get our hands on these metrics.
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Inequality (b) above suggests that strong uniform times and coupling tech­
niques can be used to bound these distances. I do not know of any examples.

Example 13. Rank tests. Doug Critchlow (1986) has recently found a remark­
able connection between metrics and nonparametric rank tests. It is easy to
describe a special case: consider two groups of people - m in the first, n in
the second. We measure something from each person which yields a number, say
Xl , X2, •• • , X m ; Yt, .. · , Yn' We want to. test if the two sets of numbers are "about
the same."

This is the classical two-sample problem and uncountably many procedures
have been proposed. The following common sense scenario leads to some of the
most widely used nonparametric solutions.

Rank all n + m numbers, calor the first sample red and the second sample
blue, now count how many moves it takes to unscramble the two populations. If it
takes very few moves, because things were pretty well sorted, we have grounds for
believing the numbers were drawn from different populations. If the numbers were
drawn from the same population, they should be well intermingled and require
many moves to unscramble.

To actually have a test, we have to say what we mean by "moves" and
"unscramble." If moves are taken as "pairwise adjacent transpositions," and
unscramble is taken as "bring all the reds to the left," we have a test which is
equivalent to the popular Mann-Whitney statistic. If m = n, and moves are taken
as the basic insertion deletion operations of Ulam's metric (see Section B below)
we get the Kolmogorov-Smirnov statistic.

Critchlow begins by abstracting slightly: consider the positions of sample 1
as an m set out of m + n. The procedures above measure the distance to the
set {I, 2, ... , m}. A two-sided procedure measures the smaller of the distances to
{I, 2, ... , m} or {n + 1, n + 2, ... , n + m}.

Every metric on Sn+m/ Sn X Sm gives a naturally associated test. This is
just the beginning. With k sample problems, having sample size Ai from the ith
population, we get testing problems on S N / S Al X S)..2 X .•. X S Ak' Metrics on
these spaces give rise to natural test statistics. Critchlow shows how essentially
all of the basic testing problems in nonparametric statistics can be put into this
framework.

This leads to a unified approach - there is a straightforward extension of
the Mann-Whitney statistic for k sample problems, two-way layouts, two-sample
spread problems, and others. Further, some procedures popular in two-sample
problems have not been previously generalized, so many new tests are possible.

To those of us who have marveled at the cleverness of nonparametricians in
cooking up new tests, this new unified view comes as a breath of fresh air. It
offers hope for a lot more.

We all realize that normal theory testing is essentially testing with respect
to the orthogonal group. Consider the ordinary t test for mean °versus mean
Jj > O. One normalizes the data vector Xl, X2,"" X n to lie on the unit sphere in
Rn, and calculates the distance to (1, 1, ... , 1)/,,;n. If J-L = 0, the point on the
sphere is random. If J-L > 0, the point should be close to the vector with all equal
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coordinates. The t-test amounts to the cosine of the angle between the vectors of
interest. See Efron (1969) for discussion and pictures.

The F test in classical ANOVA has a similar interpretation as the distance
between the observed vector and a subspace where some coordinates are equal.
If in the robust regression of example 7, one uses the orthogonal group, ordinary
least squares results. Many other normal theory procedures can be similarly
interpreted.

Of course, the permutation group sits inside the orthogonal group. One
may try to interpolate between nonpararnetrics and normal theory by considering
intermediate groups. The sign change group is a natural starting place.

More examples will be discussed as we go along. Most of the applications
can be carried over to other groups and homogeneous spaces. It is time to get to
some rnetrics and their properties.

B. SOME METRICS ON PERMUTATIONS.

Let 1r and a be permutations in Sn, with the interpretation that 1r(i) is the
rank assigned by 1r to itern i.

The following metrics have been used in various statistical problems.

D(1r,a) = ~11r(i) - a(i)I(Footrule)

S2(1I",a) = ~{1r(i) - a(i)}2 (Spearman's rank correlation)

H(1r,a) = #{i:1r(i) =I a(i)} (Hamming distance)

1(1I",a) = minimum number of pairwise adjacent transpositions taking 1r-1

to a-I (Kendall's tau)

T(1r,a) = minimum number of transpositions taking 1r to a (Cayley distance)

L(1r,a) = n - length of longest increasing subsequence in a1r- 1 (Ulam's

distance)

This seems like a lot of metrics although it is only the tip of the iceberg.
Table 2 gives the distance to the identity for all 6 metrics on S4. The metrics
have all been defined to be right-invariant in a way which will now be explained.

Invariance. In the most general situation, permutations are presented as 1-1
maps between 2 different sets of the same cardinality:

1ri:A ~ B,IAI = IBI = n.

The way we wind up labeling A or B may be fairly arbitrary and it is reasonable
to consider distances that are invariant in some way. Here, if "I is a 1 - 1 map
"I: A ~ A, right invariance means

Example. Consider 3 students ranked on the midterm and final:
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Table 1
Values of the six metrics when n = 4

1r Cycles T(1r) I(1r) D(1r) S2(1r) H(1r) L(1r)

123 4 (1)(2)(3)(4) 0 0 0 0 0 0
1 243 (1)(2)(3 4) 1 1 2 2 2 1
1 3 2 4 (1)(2 3)(4) 1 1 2 2 2 1
1342 (1)(2 3 4) 2 2 4 6 3 1
142 3 (1)(243) 2 2 4 6 3 1
143 2 (1)(2 4)(3) 1 3 4 8 2 2
2 1 3 4 (1 2)(3)(4) 1 1 2 2 2 1
2 1 4 3 (1 2)(3 4) 2 2 4 4 4 2
2 3 1 4 (123)(4) 2 2 4 6 3 1
234 1 (1 2 3 4) 3 3 6 12 4 1
241 3 (1 2 4 3) 3 3 6 10 4 2
243 1 (1 2 4)(3) 2 4 6 14 3 2
3 124 (132)(4) 2 2 4 6 3 1
3 1 4 2 (1 3 4 2) 3 3 6 10 4 2
321 4 (1 3)(2)(4) 1 3 4 8 2 2
324 1 (1 3 4)(2) 2 4 6 14 3 2
341 2 (1 3)(2 4) 2 4 8 16 4 2
342 1 (1 3 2 4) 3 5 8 18 4 2
4 1 2 3 (1 4 3 2) 3 3 6 12 4 1
4 1 3 2 (1 4 2)(3) 2 4 6 14 3 2
4213 (1 4 3)(2) 2 4 6 14 3 2
4231 (1 4)(2)(3) 1 5 6 18 2 2
4312 (1 4 2 3) 3 5 8 18 4 2
4321 (1 4)(2 3) 2 6 8 20 4 3
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Bill Bob J ane
midterm 7r} 2 1 3
final 7r2 3 1 2

So the set A = {Bill, Bob, Jane} and B = {1,2,3}. Suppose the data had been
recorded as

Bob Bill Jane
midterm
final

1 2 3
1 3 2

This is the same situation: Bob finished first in both exams, etc. It seems rea...
sonable to insist that whatever measure of distance is used not change under this
type of relabeling. If one naively uses the minimum number of pairwise adjacent
transpositions it takes to bring the second row to the first, then the original way
of writing things down takes 3 transpositions and the second way of writing things
down takes 1 transposition.

Obviously, data can be presented in a form where left invariance is the natural
requirement:

rank 1 2 3
midterm Bob Bill Jane
final Bob Jane Bill

Finally, here is an example in which two-sided invariance is a natural re­
quirement. Imagine 5 people and 5 "descriptions" e.g., a psychological profile like
MMPI or a psychic's description. A judge matches people with descriptions giv­
ing a 1-1 map {descriptions} ~ {people}. With 2 or more judges, the question
of how close the judges' rankings are to one another arises. A two sided invariant
distance seems appropriate.

Of the six distances in Section B, only Hand T are invariant on both sides.
Of course, any metric can be made invariant by averaging it.

EXERICSE 1. Show that T is bi-invariant. Show that Spearman's footrule,
averaged to also make it left invariant, is the same as Hamming distance up to a
constant multiple.

There are examples in which invariance, on either side, is not compelling.
Consider a psycho-physical experiment in which a subject is asked to rank seven
musical tones from high to low. If the tones are not uniformly distributed on
some natural scale it might be natural to give different weights to differences in
different parts of the scale. A measure like EWil1r( i) - a( i)il is not invariant on
either side.

All of the six metrics are invariant under reversing order - changing i to
n + 1 - i-Le. interchanging high and low.

Invariance considerations are natural in other problems as well. Consider an
empirical set of data 91, ... , 9n taking values in the finite group G. In testing
whether the data is uniform it is sometimes natural to require that a test statis­
tic T(91, ... ,9n) is invariant under translation: T(91,···,9n) = T(911}, ... ,9nl}).
An example of a non invariant test takes T(91, ... , 9n) equal to the number of
9ieA (e.g., the number of even permutations). Two easy ways to make statis­
tics invariant are averaging and maximizing. Averaging replaces T by T1 =
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faT~T(gl'fJ, ... ,gn'fJ). Maximizing replaces T by T2 = maxT(gl'fJ, ... ,gn'fJ).
~ ~

Again, there are problems in which invariance is not compelling: In testing a
shuffling mechanism for uniformity it is perfectly reasonable to pay special atten­
tion to the top and bottom cards.

We next turn to a case-by-case discussion of the six metrics and their prop­
erties.

1. Spearman's footrule D(1r,a) = ~11r(i) - a(i)l. Clearly this is a right
invariant metric. Thus D(1r,a) = D(id,0'1r-1 ). If either 1r or (]' is uniformly
chosen from Sn, the distribution of D(1r, (]') is the same as the distribution of
D(id, "I) with "I chosen uniformly in Sn. The mean of D is computed as

E{D} =~ I:D(id, IT) =~ I:t li - IT(i)1
n. ~ n. ~ i=l

1 2=-en -1).
3

EXERCISE 2. Prove this last assertion.
A more tedious computation (see Diaconis and Graham (1977)) gives

1
Var{D} = 4S(n+ 1)(2n2 + 7).

Finally, we indicate how the asymptotic normality of D can be shown (see the
Theorem in example 1 of Section A for a careful statement). One approach uses
Hoeffding's (1951) combinatorial central limit theorem: Consider {at}, i, j =
1, ... , n a sequence of arrays. Define

n

W n =L a i7l"(i)
i=l

where 1r is a random permutation in Sn. Then, subject to growth conditions on
afj, W n is asymptotically normal. The expression for the variance given above
allows verification of the sufficient condition (12) in Hoeffding (1951) for the array
aij = ti - jt, i, j = 1, ... , n. Bolthausen (1984) gives a version of the combinatorial
limit theorem with a Berry-Esseen like error bound.

Dry and Kleinecke (1979) gave tables for the foot rule when n S; 15. The
asymptotics seem quite accurate for n larger than 10. See Example 1 in Section
A above.

Diaconis and Graham (1977) give some relations between the foot rule and
other measures of association that appear in the list of metrics. In particular

1+ T S; D ~ 2/.

So the more widely used metric I underlying I{endall's tau is close to the footrule
D in the sense I ~ D ~ 2/.
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Ian Abramson has pointed out a sampling theory interpretation for the
footrule. Consider using the foot rule to measure association. We are given n

pairs (Xl, YI ), (X2 , 12), ... , (Xn , Yn ). Assume that P{XI < s, YI < t} = H(s, t)
and that the pairs are iid (of course, Xl and Yi may well be dependent). To
transform things to permutations, let the rank Ri == #{j: X j ~ Xi}. Similarly,
let Si denote the rank of Yi. Assuming no tied values, Spearman's footrule defines
a measure of association between the two samples by

n

D =L IRi - Sil·
i=l

LEMMA 1. Let {Xi, Yi} be iid from joint distribution function H, with mar­
gins HI(s), H2(t). Then, Spearman's footrule D satisfies ;2 D = E{IHI(X) -
H 2(Y)I} +OpC)n)·
Proof. From the Kolmogorov-Smirnov limit theorem

Thus

The sum converges to its mean as a sum of iid random variables. o

Remarks. Of course H 1 (X) and H 2 (Y) are uniform random variables. If
H(s, t) == HI (s)H2(t), then E{IHI(X) - H2(Y)I} == t, so the lemma agrees
with the mean of D derived above. If X and Y are perfectly correlated (so
H( s, t) == (HI (s) /\ H2 ( t)) and have equal margins, the parameter EIH1 - H 2 1 == o.
If X and Y are perfectly negatively correlated (so H(s, t) == (H1 (s)+H2(t)-1)+),
then EIHI - H 2 1 = t.

The test based on D is clearly not consistent (there are marginally uniform
variables on the unit square which are dependent but for which EIX - YI = t).
Lehmann (1966) discusses consistent tests under these assumptions.

2. Spearman's rank correlation S2(1r,a) = ~(1r(i)-a(i))2. This metric is the
L2 distance between two permutations. It is right invariant. When transformed
to lie in [-1, 1] as in example 1 of Section A, it arises naturally as the correlation
R between the ranks of two samples. It is widely used in applied work.

S2 has mean (n3 - n)/6 and variance n2(n-;~n+l}2 . Normalized by its mean
and variance, S2 has a limiting normal distribution. These results can all be
found in Kendall (1970). Normality can be proved using Hoeffding's theorem as
above.

EXERCISE 3. Compute 8 2 for the draft lottery example in Section A above and
test for randomness.
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The correlation version R has an interpretation as .an estimate of a population
parameter. Let (Xl, Yi), ... , (Xn , Yn ) be independent and identically distributed
pairs drawn from the joint distribution function H(x, y). Then as in the lemma
for Spearman's footrule,

S2 1 2 2 1
3 == 3L;IRi - Sil == EIHl(X) - H 2 (Y)1 + Ope c)·
n n yn

If X and Y are marginally uniform, E(Hl - H 2 )2 == 2( 1
1
2 - cov(X, Y)).

There is a different population interpretation: R = 1- (~:~~)}3 is the sample
correlation between the ranks. The expected value of R can be shown to the three
times the covariance of X == sgn(X2 - Xl) and Y == sgn(Y2 - Yl ). This and
further interpretations are carefully discussed by Kruskal (1958, Sec. 5.6) and
Hoeffding (1948, Sec. 9). Lehmann (1966, Sec. 3) gives some further properties
of R.

3. Hamming distance H(1r,a) == n - #{i:1r(i) == a(i)}. Hamming's distance
is widely used in coding theory for binary strings. It is a bi-invariant metric 011

permutations. Following Exercise 1 in Chapter 7, under the uniform distribution
E{H} == n - 1, Var{H} == 1, and n - H has a limiting Poisson (1) distribution.
These results are all familiar from the probability theory of the matching problem
(Feller (1968, pg. 107)). I have shown that the total variation distance between
n - Hand Poisson (1) is smaller than 2n In!.

The null distribution of H is thus close to its maximum with very little
variability. This doesn't mean that H is useless: for instance, in the draft lottery
example (section A above) H(1r,a) == 9 which has a p-value of .08.

4. K endall 's tau l(1r , (J) == min # pairwise adjacent transpositions to bring
1r- l to (7-1. This metric has a long history, summarized in Kruskal (1958, Sec.
17). It was popularized by Kendall who gives a comprehensive discussion in
Kendall (1970). The definitions in terms of inverses is given to make the metric
right invariant. It has a simple operational form: given 1r, a e.g., 1r == 5~ ~ t, a ==
~ ~ r ~, write them on top of each other, ~ ~ ~ t ~, sort the columns by the top row,
~ 5~ t, and calculate the number of inversions in the second row (== # pairs i < j
with ith entry >jth entry). This is 3 in the example. This number of inversions
is also the minimum number of pairwise adjacent transpositions required to bring
the 2nd row into order. The letter I is used to represent inversions.

l(1r, (7) has mean ('2 )/2 and variance n(n -1 )(2n + 5)/72. Standardized by its
mean and variance I has a standard normal limiting distribution. I(endall (1970)
gives tables for small n. An elegant argument for the mean, variance and limiting
normality is given in (C-3) below. This also gives fast computational algorithms
and correction terms to the normal limit. A second argument is sketched in 5.
below.

Kruskal (1958) and Hoeffding (1948) show that the correlation version of
I has a sampling interpretation. Using the notation introduced for Spearman's
S2, E(l- 21/(~)) is the covariance of X = sgn (X2 - Xl) and Y == sgn (Y2 - Yi).

5. Cayley's distance T(1r, a) = min # transpositions required to bring 1r to
a. This is a bi-invariant metric on Sn. It was named after Cayley because he
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discovered the simple relationship

T(1r, 0-) == n - # cycles in (1ro--
l
).

This is easy to prove. By invariance, take (J' == id. If 1r is a k cycle, it takes k - 1
moves to sort, and disjoint cycles take separate sorting operations.

For the distribution theory, under the null hypothesis the mean is asymptot­
ically n -log n, the variance is asymptotically log n, and T normed by its mean
and standard deviation has a limiting standard normal distribution.

These results have an easy derivation. Without loss, take 0- == id. Sort 1r by
transposing pairs, first switching 1 to place 1, then 2 to place 2, etc. The chance
that 1 is already at 1 is 11n. Whether or not 1 is switched, after it is in place 1
the relative order of 2, ... , n is uniform. The chance that 2 does not need to be
switched is 1/(n - 1), and so on. Thus T has the same distribution as

with XIs independent having P{Xi == 1} == 1- l/i == 1- P{Xi == O}. From here,

1 1 1 1 1 1
E(T) == n - (1 + - +... + -), Var(T) == 1 + - +... + - - (1 + 22 +... + 2).

2 n 2 n n

The central limit theorem for sums of independent variables gives the limiting
normality. This proof appears in Feller (1968, pg. 257). Section C-3 below gives
an algebraic connection.

The same argument works to give the distribution of the number of inversions
for Kendall's tau. There the sum is Yl +...+Yn , with Yi uniform on 0, 1, ... , i-I.

EXERCISE 4. Compute Cayley's distance for the Draft Lottery example A-I and
show it doesn't reject the null hypothesis.

6. Ulam's distance L(1r, 0-) == n- length of longest increasing subsequence in
(J'1r-

l
. If (J' == § ~ r ~ ~ ~ ~ ~ ~, the longest increasing subsequence is of length 6

(e.g., 0-(3) < 0-( 4) < 0-(5) < 0-(7) < 0-(8) < 0-(9)). This natural metric is defined
to be right invariant. To motivate it, consider n books on a shelf in order 0-. We
want to sort the books by deletion-insertion-operations - taking a book out and
inserting it in another place. Thus 3 moves are required to sort (J' above.

LEMMA 2. The smallest number of moves to sort 1r is n- length of longest
increasing subsequence in 1r.

Proof. If 1r( il) < 11"( i2) < ... < 11"(ik) is a longest increasing subsequence, then
clearly inserting and deleting other letters doesn't change the ordering of this
subsequence. It follows that n - k moves suffice. Since each move can increase
the longest increasing subsequence by at most 1, n - k moves are required. 0

This metric is used by biologists and computer scientists. See I(nuth (1978,
5.1.4). Gordon (1983) has suggested it for statistical tasks. If n is large, it is
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not so obvious how to compute L in a reasonable amount of time. The following
solitaire game gives an efficient algorithm.

Floyd's game. Consider a deck containing n cards labelled 1,2, ... , n. Shuffle,
so the top card is labeled 1r(1), etc. Start to play solitaire (turning cards up one
at a time) subject to the following rule: you can only put a lower card on a higher
card. If a card is turned up that is higher than the ones on top of piles, it starts
a new pile. The object is to have as few piles as possible. Thus, if the deck starts
as 6 3 1 5 2 4 7, the game goes

1 1
3 3
665

It seems clear that the best strategy is to place a lower card on the smallest
card higher than it. We will always assume that the game is played this way.

EXERCISE 5.
(a) Show that the number of piles equals the length of the longest increasing

subsequence in 1r.
(b) Show that the expected number of cards in the first pile is log n asymptoti-

00 .

cally, in the 2nd pile (e - 1) log n, in the 3rd pile clog n, with c = L: [(;J) j~l -
j=l

1]/j!. It can be shown that the expected number of cards in the kth pile is
of order log n for fixed k. The remarks below show there are order 2Vn piles
asymptotically.

This game was invented by Bob FIoyd (1964). It gives an order n log n
algorithm for finding the longest increasing subsequence. Fredman (1975) shows
this is best possible.

The distribution theory of L(1r,a) is a hard unsolved problem. The mean is
asymptotically n - 2Vn, see Logan and Shepp (1977). The rest of the distribution
is unknown. The analysis leads into fascinating areas of group theory; see, e.g.
Kerov-Vershik (1985).

C. GENERAL CONSTRUCTIONS OF METRICS.

The preceding section discussed a variety of metrices that have been sug­
gested and used by applied researchers. In this section \ve give general recipes
for constructing metrics on groups. Specialized to the symmetric group, these
recapture the examples, and a good deal more.

1. Matrix norm approach.

Let G be a finite group. Let p: G ~ GL(V) be a unitary representation of G
which is faithful in the sense that if s =1= t then p(s) =1= p(t). Let" " be a unitarily
invariant norm on GL(V). Thus "AMII = IIMII = IIMAII for A unitary. Define
dp(s, t) = IIp(s) - p(t)ll. Observe that this is a bi-invariant metric on G.

Example. Let IIMII2 = 'Ei,jMijMij = Tr(M M*), the sum of squared lengths of
the rows. This is unitarily invariant and leads to interesting special cases.
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Case 1. Take G = Sn. Take p as the n-dimensional permutation representation.
Then, d~(id,1r) = Tr(I - pCrr))(I - p(7r)T) = Tr(21 - p(7r) - p(1r)T) = 2H(id,7r)
where H is the Hamming metric, where on the right, dp is the dimension of p.

Case 2. For general G and p, the argument above shows that characters yield
metrics. Thus dp(s, t) = (d p- re Xp( st- l )) t is a metric, where on the right, dp is
the dimension of p.

Case 3. Specializing the above to the usual n-dimensional representation of
the orthogonal group, dp(s, t) = (n - Tr(st- l ))t is a metric on On. Consider
the distance to the identity d( s, id) = Jn - Tr( s). The (i,i) element of s is the
cosine of the angle between sei and ei, where ei is the ith basis vector. Thus
d(s, id) = {L;l- (sei,ei)}t. Since the metric is bi-invariant, it can be expressed
in terms of eigenvalues e iBj : d( s, id)'= {L;(1 - cos Bj)}!.

Despite these natural properties, and its ease of computation, this is not
the "natural" metric on On. Mathematicians prefer a metric arising from the
Riemannian structure on On as a Lie group. In terms of the eigenvalues this
metric is {~B]}t. See E-5 below.

Case 4. The regular representation R of G gives the discrete metric

if s i= t
if s = t.

To determine the distribution of dp(id, t) requires knowing the distribution of
characters. That is, pick t at random on G, and treat Xp(t) as a random variable.
This is a problem that is interesting on its own. It has not been well studied.

EXERCISE 6. Show that E(Xp) and E(Xp - EXp)(Xp - EXp) can be expressed
as follows: Let XP = alXl +...+ahXh be a decomposition into irreducibles, with
repetitions. If Xl is the trivial representation, then E(Xp) = aI, and E(Xpx.p ) =
ai + · . ·+a~. In particular, if p is real irreducible, E(Xp) = 0, Var(xp) = 1. Find
the mean and variance of d~ described 'in Case 4 above.

Remark. Exercise 6 suggests that metrics defined as (d p - re X(st- l ))! will
not be very "spread out." For real irreducible representations, d~ has mean dim
p and variance one. Nonetheless, they can have interesting distributions. For
example n - H(id,1r) has a limiting Poisson(l) distribution. Further, the first
n moments of n - H(id,1r) equal the first n moments of Poisson(l). Similarly,
the first 2n + 1 moments of the trace of a random orthogonal matrix equal the
first 2n + 1 moments of a standard normal variable. Thus, the distance defined
for the orthogonal group (Case 3 above) has an approximate standard normal
distribution. See Diaconis and Mallows (1985) for these results.

EXERCISE 7. Take G as Sn. Let p be the ('2') dimensional representation derived
by the action of 7r on the set of unordered pairs {i, j}. Show that for large n, Xp( 7r)
has as limiting distribution the same distribution as X(~ -1) + Y where X and Y
are independent, X is Poisson(l) and Y is Poisson(1/2).
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EXERCISE 8. Compute distances suggested by the discussion above for G = Zn,
and Z:r. What are the limiting distributions for n large?

All of the above examples used the L 2 or Frobenius norm. There are many
other unitarily invariant norms. Indeed, these have been classified by von Neu­
mann (1937). To state his result, define a symmetric gauge function as a function
</>: Rn -+ R satisfying
(a) 4>(Ut, · · · , un) 2:: 0, 4> continuous.
(b) 4>(Ut, · .. , un) = 0 implies Ut = ... = Un = o.
(c) </>(tUt, ... , tUn) = t</>(Ut, . .. , Un), t ~ o.
(d) </>(Ut +ui ,... Un + u~) ~ </>(Ut, ... , Un) + </>(ui , ... , U~).
(e) </> is invariant under permuting and sign changes of coordinates.

For M E GL n , let Wt, ... , W n be the eigenvalues of M M* . Define"M 11

</>(IWtl!, ... ,lwnl!). This is a matrix norm: II cM JI = IcIlIMII,IIAl + Nil <
II M II + IINII. It is unitarily invariant and IIMII = IIM*II.

Von Neumann showed that, conversely, every such norm arises in this way.
Examples include

4>= (:ElwiI P);', maxlwil, or { L WitWi2' "Wij7.

il~i2... ~ij

The first of these, for p = 2, becomes the already considered matrix norm
(ErMiir2)t. The second choice becomes the maximum length of Mu subject
to uut = 1. These last two norms also satisfy IIMNII ~ IIMIIIINII. It would be
instructive to try some of these norms out on the symmetric group.

2. The fixed vector approach.

Let G be a group, (p, V) a representation. Suppose that V has an inner
product, and p is unitary. Fix a vector v E V and define

This distance has been defined to be right invariant. It clearly satisfies the triangle
inequality and symmetry. One must check that d(id, t) =I 0 unless t = id. It is
not even necessary that 1111 come from an inner product. All that is needed is that
p(s) be norm preserving for s E G.

Example. Take G = Sn, p the usual n-dimensional representation, so p(1r- t )

(Vt,V2, ••• ,Vn) = (V1r(1),V1r(2), ••• ,v1r(n»). Take v = (1,2, ... ,n)T. Then d2(1r,fJ)
= ~11r(i) - 'f](i)1 2 • If the distance on Rn is chosen as the L 1 distance, Spearman's
footrule results. These considerations emphasize that Spearman's rho and footrule
depend on the choice of v. They make it easy to change v to emphasize differences
at one end of the scale. The distribution theory of these variants follows from
Hoeffding's combinatorial limit theorem. The strong points of the fixed vector
approach will become apparent when it is applied to homogeneous spaces in the
next section.
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3. Lengths.

Let G be a finite group. Let S be a subset of G that generates G in the sense
that any element can be written as a finite product of elements in S. Assume id
fj. Sand S-1 = S. Define the length of an element t as the smallest integer q ~ 0
such that t = 8182 .. . 8 q with each 8i E S. Write q = R.( t). Thus id is the unique
element of length zero, and each element of S has length 1.

Define a metric on G by d(t, u) = f(tu- l
).

LEMMA 3. The length metric d( t, u) = f( tu-1 ) is a right invariant metric. It is
two-sided invariant if tSt- l = S for every t E G.

Proof. Clearly, lengths satisfy R.( tu) ~ R.( t) +f( u), and f( t) = R.( t- l
). Thus d( t, u)

is a right invariant metric. For the last claim, d(T/t,T/u) = R.('fJtu- l 'fJ-l) = f(tu- l )

because S is invariant under conjugation by "I. 0

Example. Take G = Sn. If S is chosen as the set of all transpositions one gets
the Cayley metric T. Choosing S as the set of transpositions of form (i, i + 1), 1 ~
i ::s; n - 1 gives the metric form I of Kendall's tau. To get Ulam's metric L, take
SI as the set of all cycles (a,a + 1, ... ,b),1::S; a < b ~ n. Let S = SI U S1 1

.

These amount to the basic insertion deletion operations described in example 6
of Section B.

Not all metrics arise this way. For instance, the Hamming distance on Sn is
not based on lengths. To see this observe that elements in S have length 1 and
two permutations cannot disagree in only one place. The Hamming distance on
Z2 is based on lengths.

There is a curious application of some fairly deep group theory to the distribu­
tion theory of length metrics. When specialized, it gives the neat representations
of Kendall's and Cayley's distances as sums of independent random variables.

Each of the classical groups (e.g. orthogonal, unitary, symplectic) has associ­
ated a finite Weyl group W. A Weyl group is a group W with a set of generators
81, 82, ... ,Sn such that sr = id and for some integers nij, (8i' 8 j )nij = id, these
being the only relations. For example, Sn with generators (i, i + 1) is a Weyl
group; nij being 2 if the generators are disjoint and 3 otherwise. The sign change
group (permute coordinates and change signs arbitrarily) is another familiar Weyl
group.

Modern motivation for studying these groups comes from Lie theory and
combinatorics. Bourbaki (1968) and Stanley (1980) are readable surveys.

Let (W, S) be a Weyl group. Let F(t) = ~WEwti(w) be the generating func­
tion of the lengths. A basic theorem in the subject states that there exist an m
and integers ei called the exponents of W such that

m

F(t) = II(1 + t+ ... te
;).

i=l

Letting t = 1, this shows IWI = II(ei + 1). Dividing both sides by IWI, we have
the following.
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COROLLARY 1. Let (W, S) be a Weyl group with exponents ei. Then the length
of a random w E W has the distribution of Xl + + X m , where the Xi are
chosen as independent uniform variables on {O, 1,2, , ei}.

The factorization can be found as Exercise 10 of Section 4 in Bourbaki
(1968) or Stanley (1980). As a convolution of symmetric unimodal distributions,
P{l(w) = j} is a symmetric unimodal sequence as j varies.

As an example, on Sn with pairwise adjacent transpositions as generators,
the exponents are ei = i-I for i = 1,2, ... , n, and the factorization becomes the
representation of the number of inversions as a sum of uniforms discussed under
Cayley's distance in Section B above.

There is a second general theorem of the same type. Let (W, S) be a Weyl
group. Take S = {tSt- l } as a new set of generators obtained by closing up the
old set under conjugation. This gives a new length function, say f( w). It is an
amazing fact that the generating function of f factors as

m

L i(w) = IT(1 +ejt).
w i=l

COROLLARY 2. Let (W, S) be a Weyl group with exponents ei. Then the length"l
of a random w E W has the distribution ofXl +.. .+Xm where Xi are independent
with P{Xi = O} = 1/1 + ei, P{Xi = 1} = ei/ 1 + ei.

The factorization (*) was proven by Coxeter and Shephard Todd. See
Solomon (1963) or Proposition 4.6 in Stanley (1979).

These representations make the means and variances of d( s, t) easy to com­
pute. They also make the distribution easy to work with: sums of independent
uniforms have an easy limit theory, with correction terms readily available. Fur­
ther, Harding (1984)'shows how such factorizations lead to an easy algorithm for
fast exact computation of distributions in small cases.

Of course, in the case of Cayley's distance or Kendall's tau, the represen­
tations are well known in statistics. In the next section we show how a similar
factorization holds for the natural extension of these metrics to homogeneous
spaces.

EXERCISE 9. Consider Hamming distance on Z!f. Show its length generating
function factors as (1 + t)n.

An Application. Here is an application of the factorizations in Corollaries
1 and 2 above. Consider Monte Carlo generation of a sample from the Mallows
model (example 3 of Section A) based on the metric I of Section B:

*

We begin by recalling a correspondence between permutations and sequences.
Let (at, ... , an) be a sequence of integers 0 ~ ai ~ i -1. Associate a permutation
by insertion; starting with n, n - 1, n - 2, ... insert n - i +1 so it has ai previously
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inserted numbers to its left. Thus, if n = 7, the sequence (0,0,1,3,2,3,6) develops
as

7 --+ 67 --+ 657 --+ 6574 ~ 65374 --+ 653274 --+ 6532741.

The final permutation has al +.. .+an inversions (here 15). This gives a 1-1 cor­
respondence between permutations and sequences, with the sum of the sequence
equal to the number of inversions. The correspondence is equivalent to the Weyl
group factorization of Corollary 1 above.

If the initial sequence is chosen uniformly: 0:::; ai :::; i-I, then a random
permuta.tion results. If P{ai = j} = e->'i[ :~;i-=-;]' 0 :::; j :::; i - 1, the fina.l
permutation has probability * with 11""0 = id. The distribution of ai is easy to
generate by inversion (Chapter 111.2 of Devroye (1986)).

It is easy to modify things to incorporate 11""0, or to work for any other metric
with a similar factorization.

Fligner and Verducci (1986, 1988b) have pointed out that the normalizing
constant C(A) in * is known from the factorization in Corollary 1. They ap­
ply this in doing maximum likelihood estimation and as a way of extending the
models. Steele (1987) discusses some other combinatorial problems where similar
factorizations arise.

D. METRICS ON HOMOGENEOUS SPACES.

Most of the considerations of previous sections can be generalized to homo­
geneous spaces. Let X be a homogeneous space on which a group G operates
from the right, transitively. Fix fio E X, let l( = {s E G: Yos = Yo}. In this
section X will be identfied with right cosets of l( in G, X ~ {l(Xi} where id =
Xo, Xl, ... , Xj E G are coset representatives for l( in G (so G = !( U!(Xl ... ul(Xj

as a disjoint union). Here G acts (from the right) on cosets by xs = (l(x)s = l(xs
for any s E G and any x = l( X EX.

We have made a slight change of notation (from left to right cosets) to agree
with the notation in Critchlow (1985). Critchlow's monograph develops a host of
metrics for partially ranked data. He gives numerous applications, computer pro­
grams, and tables for popular cases. It is very readable and highly recommended.

There are several ways to choose a metric on X which is right-invariant in
the sense that d(x,y) = d(xs,ys), Le. d(l(x,l(y) = d(l(xs,l(ys).

a) Hausdorff metrics. Let G be a compact group, l( a closed subgroup and
d a metric on G. Let X be a space on which G acts transitively with isotropy
subgroup l(. Write X = G/ l( to denote the representation of X by right cosets.

A metric d* is induced on G / l( by the formula

d*(x,y) = d*(l(x,l(y) = max(a,b)

with
a = max min d(s, t), b = max min d(s, t).

sE!( x t E!( y sE!( y t E!( x

The metric d* is the Hausdorff distance between the sets l(x and l(y - the
smallest amount that each must be "blown up" to include the others. It is a
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standard way to metrize the homogeneous space X, see e.g., Dieudonne (1970,
pg. 53), Nadler (1978), or Roelcke and Dierolf (1981).

EXERCISE 10.
(a) Show that d* is a metric.
(b) If d is right invariant then so is d*.
(c) If d is left invariant, then d*(!( x, !(y) = min d( x, ky).

kE!(
The definition of d* seems more theoretically than practically useful - it

seems hard to explicitly compute the minimum. However, Critchlow (1985) has
given reasonably elegant closed form expressions for partially ranked data and d
any of the classical metrics of Section B. Some of his results will be given here.

Example 1. k sets of an n set. Let x and 11 be k element subsets of {I, 2, ... , n}.
Note x and fi can be identified with points in the homogeneous space Sn/(Sk X

Sn-k), where Sk X Sn-k is the subgroup {1r E Sn:7r(i) ~ k Vi = 1, ... ,k and
1["(i) > k Vi = k + 1, ... , n}. Let H be the Hamming distance on the symmetric
group Sn. Then the induced Hausdorff metric is

H*(x, y) = 2(k - Ixn Yl).

To see this, realize x and y as ordered sets Xl < ... < Xk, YI < ... < Yk. Asso­
ciate permutations x and y to x and y by choosing coset representatives. Since
H(x,y) = H(x-1,y-l), the permutations can be taken as

y = (YIY2
1 2

Xk x~

kk+l

Yk yi
kk+l

Now using part c) of the exercise above

H*(x, y) = min H(x, 'fry).
'TrESIe xSn-1e

Multiplying on the left by 'fr allows us to permute the Yi with i E {I, ... , k} among
themselves and the Yi' E {k + 1, ... , n} among themselves in the first row of y.
This permits matching elements and proves the result.

The null distribution of IxnVI is the well known hypergeometric distribution.

Example 2. Rank k out of n. Here people rank order their favorite k out of n, in
order. Represent a ranking as (Xl, X2, • •• , Xk) where Xl is the item ranked first,
X2 is the item ranked second, etc. Critchlow (1985, Chapter 3) shows

H*(x, y) = #{i ::; k: Xi # Yi} + (k -Ixn Vi)·

Again, this is a very reasonable distance, albeit, perhaps, a bit crude.
Critchlow gives similar explicit, interpretable formulas for the induced Hausdorff
distances derived from the other classical metrics.
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Example 3. The n-sphere. Using the distance d2
( s, t) == n - Tr( st- 1

) on the
orthogonal group, then choosing reflections I - 2xxt as coset representatives (for
x on the unit sphere), leads to

Diaconis and Shahshahani (1983, Sec. 3) discuss the choice of coset representatives
more carefully. If x or y is chosen at random, Vfi,(d2 -1) is approximately standard
normal for large n. This last result is proved with good error bounds in Diaconis
and Freedman (1987).

b) The fixed vector approach. Here is another large class of invariant metrics
on a homogeneous space X == G/ l(. Let (p, V) be any unitary representation of
G. Say p has a l( fixed-vector v E V if p(k)v == v for every k E l(. Usually it is
easy to find such a p and v, see the examples below. It follows from Chapter 3F
that p has a l( fixed vector if and only if p appears in the decomposition of L(X).
Define a metric on X by

Note that this is well defined (it is independent of the choice of coset representa­
tives). Note further that this distance is right G-invariant:

dp(xs, ys) == dp(l( xs, l( ys) == IIp(s-l )[p(x-1) - p(y-1 )]vl/

== dp(x, y),

because p is unitary. This dp clearly satisfies the properties of a metric except
perhaps for dp(x, y) == 0 implying x == y. This must be checked separately. The
fixed vector approach was suggested by Andrew Rukhin as a way to choose loss
functions in statistical problems on groups.

Example 1. k sets of an n set. For the (k) k-element subsets of{1,2, ... ,n},
choose p as the usual n-dimensional representation on Rn with the usual inner
product. Take v == (a, ... , a, b, ... , b) with a run of k a's followed by n - k b's.
Choosing coset representatives as the reverse shuffles of example 1 above yields

Cf. Example 1 of the Hausdorff approach.
Again, Critchlow (1985) gives a variety of results, giving extensions of Spear­

man's foot rule and rho to partially ranked data.

Example 2. The n-sphere. Take X == sn G == On, l( == On-1. Take p as the
usual n-dimensional representation of On, and e1 == (10 .. .O)t as a le-fixed vector.
Finally take coset representatives as I - 2vvt where v == (e1 + x)fc,c == le1 +xl,
and x runs over sn. An easy computation yields d2(x, y) == /Ix _ yl/2.

Constructions a, b, make it clear that there are a wealth of tractable met­
rics on homogeneous spaces. Critchlow gives examples and applications carrying
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over much of the material of Section A to partially ranked data. He has subse­
quently developed many further applications to standard nonparametric problems
as remarked in Example 13 of Section A.

There are a reasonable number of nice distributional problems open - the
null distribution of metrics on homogeneous spaces needs to be better developed.
The following special case hints at what's lurking there.

Example. A metric on partially ranked data. Consider six flavors, a, b, c, d,e, f.
Suppose two rankers rank them, choosing their two favorites, and two least fa­
vorite, not distinguishing within:

(1) a bed e f
1 212 3 3

a bed e f
1 1 332 2

How close are these ranks? It is natural to try the minimum number of pairwise
adjacent transpositions it takes to bring one bottom row to the other. This is 5
in the example. Recall however that the labelling of the top row is arbitrary. The
two arrays could just as easily have been presented with first and last columns
switched. This yields

f bed e a
3 2 1 2 3 1

f bed e a
2 1 3 3 2 1

These are the same rankings, but now their distance is 3.
A simple way to have invariance rearranges the two rankings in order of (say)

the first, and then computes inversions. Thus (1) becomes

a c b d e f
112 233

a c b d e f
131 322 # inversions = 5.

If we had sorted by the 2nd ranking (1) becomes

a b e fed
1 233 1 2

a b e fed
1 1 2 2 3 3 # inversions = 5.

This example has n = 6, and partial rankings of shape 222. More generally,

Definition. Let A be a partition of n. Let 1r and'TJ be partial rankings of shape A.
Define l( 7r , TJ) as follows: arrange the columns of 7r and 1] so that 7r is in order,
beginning with Al ones, A2 twos, etc. This must be done using the minimum
number of pairwise adjacent transpositions. Then count the minimum number of
pairwise adjacent transpositions required to bring the 2nd row of 'TJ into order.

EXERCISE 11. Show that I is a right invariant metric.
One reason for working with the metric I is the following elegant closed form

expression for its null distribution. By right invariance, this only needs to be

computed for l( id, 1r) ~ l(n).

Theorem 2. Let A = {AI, A2' ... , Ar } be a partition of n. Let 7r range over the
n!/IIAi! partial rankings of shape A. Then
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where ((A))! = ((A - l))((A - 2)) ... ((1)) with ((j)) == 1+ q + q2 +... + qj-1.

Remarks. Theorem 2 was proved by Netto when r == 2, and by Carlitz in
the general case. Stanley (1985, Proposition 1.3.17) presents several elementary
proofs. Stanley (1980) proves that the coefficients P{l(1r) == j} are symmetric
and unimodal. The factorization and unimodality generalize to other Weyl groups.
The expressions on the right side are known as q-nomial coefficients.

Fligner and Verducci (1986, 1988b) use this factorization as a base for ex­
tending and interpreting Mallows model on partially ranked data.

Note that « A) )!j A! is the generating function of the convolution of A inde­
pendent uniform variables U1 + ... + U).. with Ui uniform on {O, 1,2, ... , i - 1}.
This gives an easy way to compute means, variances, and asymptotic distribu­
tions where necessary. The following neat argument evolved in work with Andy
Gleason and Ali Rejali. For clarity, it is given for A == (k, n - k).

The null distribution can be described this way: let x be a pattern of k ones
and (n - k) twos. Let l(x) be the number of inversions (e.g. 2121 has 3 inversions).
For x chosen at random, the generating function of l( x) satisfies

~~ qI(x) _ «(k))
(k) x - (k) ·

Rearranging, the right hand side is

gn(q)gn-l(q) gn-k+l(q)

9k(q)9k-l(q) g2(q)

with 9j(q) == t(l + q + ..'. + qi-1), the generating function of Uj - a uniform

random variable on {O, 1,2, ... j - 1}. This has mean == Ilj == j;l and variance
2 _ j'2_1

(J' j - 12 ·

Cross-multiplying, the identity has the probabilistic interpretation

D
1 +U2 +U3 + ... + Uk == Un + Un- 1 +... + Un-k+l,

where the D means equality in distribution. All of the uniform variables are
independent. From this we have

PROPOSITION 1.
) E(l) - + - k(n-k)

a - Iln · · · + Iln-k+l - Ilk - Ilk-I· · · - J-L2 - 2

b) V (1) - 2 2 2 2 2 _ k(n+1)(n-k)
ar - (J'n + · · ·+ (J'n-k+l - O'k - O'k-1 · . · - 0'2 - 12

c) As nand k tend to infinity in any way, provided n-k also tends to infinity, the
distribution of I, standardized by its mean and standard deviation, has a standard
normal limit.

Proof. The mean and variance are derived in the remarks preceding the state­
ment. For the distribution, suppose without loss that k ~ n/2. Write the distri­
butional identity as I + Uk == Un-k. Then standardize

{I - Ill} _(1l + {Uk~ JIk} _7h g Un-k - JIn-k
0'1 O'n-k O'k O'n-k an-k
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The right side converges to a standard normal distribution, as does {Uki,Tik}.
Since this last is independent of { [:11

}, it must be that { [:11 } converges, and
by Cramer's theorem, to a standard normal. 0

Remark 1. The argument above works for virtually any type of partition, in
particular 1q, (n - q)l - for rankings of q out of n.

Remark 2. The proof is similar to the standard argument for the Mann-Whitney
statistic given in I<:endall and Stuart (1967, pg. 505).

Remark 3. The generating function is a ratio of generating functions. We took
advantage of this by cross-multiplying. That is different from having a direct
probabilistic interpretation. Indeed, I do not know how to generate random partial
rankings from the associated Mallows model as suggested for full rankings at the
end of the last section. Fligner and Verducci (1988b, Sec. 3.2) have made some
progress here.

E. SOME PHILOSOPHY.

We have seen examples and applications of metrics. We pause for a moment
to reflect on the big picture. What makes a natural metric; how can we compare
metrics? Important issues here are

1) Interpretability. Is the metric easy to think about directly, easy to explain
to a non-professional? Does it measure something with real world significance such
as the actual number of steps required to sort, or the running time of an algorithm,
or the cost of an error?

Along these lines, observe that Cayley's, I<:endall's tau, and Ulam's metric
have sorting interpretations. The footrule, Kendall's tau, and Spearman's rho
have a statistical interpretation as estimates of population parameters.

2) Tractability. Is the metric easy to compute? The footrule, Hamming and
rho are trivial to program, Cayley and tau require a bit of thought, and Ulam's
metric can be tricky if n is large. Is the null distribution available for small
samples? Are useful asymptotics available? Ulam's metric fares badly here - its
asymptotic distribution is unknown. Of course, null distributions can always be
simulated.

3) Invariance. In the application, is right or left invariance natural and
available?

4) Sensitivity. Does the metric effectively use its range or does it just take on
a few values? Among two sided invariant metrics this is a problem. Worst is the
discrete metric (d(s, t) = 0 or 1 as s = t or not). Next is Hamming distance, which
effectively takes on only a few values around n under the uniform distribution.
Finally, Cayley's distance takes about v'log n values effectively. It should be
possible to find bi-invariant metrics that naturally take on more values. Since
variance can be changed by multiplication by a constant, perhaps the limiting
coefficient of variation J-L/ (J' should be used to measure effective range.

5) Available theory. Has the metric been studied and used enough so that its
strengths and pitfalls are known? Does it link into other aspects of the analysis?
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A nice example arises for continuous groups. Mathematicians seem to agree on
a unique bi-invariant way of metrizing Lie groups such as the orthogonal group.
When pushed "what makes that metric so natural?" they respond with theorems
like "there is a unique differential (smooth except at id, like Ixl) bi-invariant
metric compatible with the Riemannian structure." See Milnor (1976, Lemma
7.6). Metrics can sometimes be derived from axioms (as in Example A-8).

6) The bottom line. There is a fairly harsh test: did somebody actually use
the metric in a real application? Was it used to prove a theorem? Could this have
been done without the metric just as easily? Failing this, does the metric lead to
interesting theoretical questions or results?

A first pass through this list suggests Kendall's tau as the metric of choice.
It's easy to interpret and explain, having both an algorithmic and statistical
interpretation. It's highly tractable because of the factorization. It's been well
studied, tabled for small values of n, and widely used. It's quite sensitive in
the coefficient of variation scale, and links into nice mathematics. It also has a
natural extension to partially ranked data. The bottom line judgement is left to
the reader.



Chapter 7. Representation Theory of the Symmetric Group

We have already built three irreducible representations of the symmetric
group: the trivial, alternating and n - 1 dimensional representations in Chapter
2. In this chapter we build the remaining representations and develop some of
their properties.

To motivate the general construction, consider the space X of the unordered
pairs {i, j} of cardinality (~). The symmetric group acts on these pairs by
7r{i,j} = {7r(i),7r(j)}. The permutation representation generated by this ac­
tion can be described as an (2') dimensional vector space spanned by basis vectors
e{i,j}. This space splits into three irreducibles: A one-dimensional trivial rep­
resentation is spanned by v = ~ e{i,j}. An n - 1 dimensional space is spanned
by Vi = ~j e{i,j} - cv, 1 ~ i ~ n, with c chosen so Vi is orthogonal to v. The
complement of these two spaces is also an irreducible representation. A direct
argument for these assertions is given at the end of Section A. The arguments
generalize. The following treatment follows the first few sections of James (1978)
quite closely. Chapter 7 in James and Kerber (1981) is another presentation.

A. CONSTRUCTION OF THE IRREDUCIBLE REPRESENTATIONS OF

THE SYMMETRIC GROUP.

There are various definitions relating to diagrams, tableaux, and tabloids. Let
A == (AI, ... , Ar ) be a partition of n. Thus, Al ~ A2 ... ~ Ar and Al +...+Ar = n.
The diagram of A is an ordered set of boxes with Ai boxes in row i. If A ==
(3,3,2,1), the diagram is

If A and J.L are partitions of n we say A dominates J.L, and write A~, provided that
Al ~ ILl, Al + A2 ~ ILl + IL2, ... , etc. This partial order is widely used in various
areas of mathematics. It is sometimes called the order of majorization. There is
a book length treatment of this order by Marshall and Olkin (1979). They show
that Af2:Jt if and only if we can move from the diagram of A to the diagram of J.l by
moving blocks from the right hand edge upward, one at a time, such that at each
stage the resulting configuration is the diagram of a partition. Thus, (4, 2) I> (3,3),
but (3,3), and (4,1,1) are not comparable. See Hazewinkel and Martin (1983)
for many novel applications of the order.

131
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A A-tableau is an array of integers obtained by placing the integers from 1
through n into the diagram for A. Clearly there are n! A-tableaux.

The following lemma is basic:

LEMMA O. Let A and J-L be partitions of n, suppose that tl is a A-tableau and t2
is a J-L-tableau. Suppose that for each i the numbers from the ith row of t2 belong
to different columns of tl. Then A~.

Proof. Since the numbers in the first row of t2 are in different columns of
t1 , Al ~ J-Ll. The numbers in the second row of t2 are in distinct columns of tl,
so no column of t 1 can have more than two of the numbers in the first or second
row of t2 • Imagine "sliding these numbers up to the top of the columns of t1 ."

They fit in the first two rows, so At + A2 ~ J.Ll + J.L2. In general, no column of tt
can have more than i of the numbers from the first i rows of t2. 0

If t is a tableau, its column-stabilizer C t is the subgroup of Sn keeping the
1 245

columns of t fixed. For example, when t == 3 6 7 , Ct ~ S{138} X S{26} X

8
S{47} X S{5}' The notation S{i,j, ... ,k} means the subgroup of Sn permuting only
the integers in brackets.

Define an equivalence relation on the set of A-tableaux by considering tl rv t 2
if each row of tI contains the same numbers as the corresponding row of t2. The
tabloid {t} is the equivalence class of t. Think of a tabloid as a "tableau with
unordered row entries." The permutations operate on the tabloids in tIle obvious
way. The action is transitive and the subgroup stablizing the tabloid with 1, ... , Al
in the first row, Al + 1, ... , Al + A2' in the second row, etc., is

S{I,2,... ,Al} X S{Al+I,... ,Al+A2} X ....

It follows that there are n!/AI! ... Ar ! A-tabloids.
Define the permutation representation associated to the action of Sn on

tabloids as a vector space with basis e{t}. It is denoted MA. This represen­
tation is reducible but contains the irreducible representation we are after. To get
this, define for each tableau t a polytabloid et E MA by

et == L sgn( 7r )eJr"{t}.
Jr"EC t

Check that 1ret == eJr"t, so the subspace of MA spanned by the {et} is invariant
under Sn (and generated as an "Sn module" by any et). It is called the Specht
module SA. The object of the next collection of lemmas is to prove that SA is
irreducible and that all the irreducible representations of Sn arise this way. These
lemmas are all from Section 4 of James.

LEMMA 1. Let A and J-L be partitions of n. Suppose that t is a A tableau and s
is a f..L-tableau. Suppose that

~ sgn(~)e~{s} # O.
1rECt
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Then Af?.Jl, and if A = p, the sum equals ±et.

Proof. Suppose for some a, b that a and b are in the same row of s and in the
same column of t. Then

(id - (ab))e{s} = e{s} - e{s} = o.

Since a and b are in the same column of t, the group < id, (ab) > is a sub­
group of et. Let lTl, ••. ,lTk be coset representatives, so 2: sgn(7r)e 7r{s} =

1rECt

k
E sgn(lTi)lTi{id - (ab)}e{s} = o. This is ruled out by hypothesis, so the numbers
i=l
in the ith row of s are in different columns of t. Lemma 0 implies that Af?.Jl.

Suppose A = J,L, and the sum does not vanish; then, again, numbers in the
ith row of s appear in different columns of t. It follows that for a unique 7r* E
Ct ,7r*{t} = {s} and this implies that the sum equals ±et (replace {s} by 7r*{t}
in the sum). 0

LEMMA 2. Let J,L E MJ1., and let t be a J,L tableau. Then for some scalar c

L sgn(7r)1ru = c et·

1rECt

Proof. u is a linear combination of e{s}. For u = e{s}, Lemma 1 gives the result
with c = 0 or ±1. 0

Now put an inner product on MJ.L which makes e{s} orthonormal: < e{s},
e{t} > = 1 if {s} = {t} and 0 otherwise. This is Sn invariant. Consider the "opera­
tor" At E sgn(7r)7r. For any u,v E MJ.L, < Atu,v > =

1rECt

E sgn 7r < 1rU, V > = E sgn 7r < U,7r-1
V > = < u, Atv>. Using this inner

product we get:

LEMMA 3. (Submodule Theorem). Let U be an invariant subspace of MA. Then
either U :> SA or U C SA.l. In particular, SA is irreducible.

Proof. Suppose U E U and t is a A-tableau. By Lemma 2, Atu is a constant
times et. If we can choose u and t such that this constant is non-zero, then et E U
and, since 7ret = e1rt, SA C U. If Atu = 0 for all t and u, then 0 = < Atu, e{t} >
= < u,At e{t} > = < U,et >. So U C SA.l. 0

At this stage we have one irreducible representation for each partition A
of n. The number of irreducible representations is the same as the number of
conjugacy classes: see Theorem 7 of Chapter 2. This number is also the number
of partitions of n as explained at the beginning of Chapter 2D. Hence, if \ve can
show that the SA are all inequivalent, we have finished determining all of the
irreducible representations of Sn.
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LEMMA 4. Let T: MA -7 MJ-L be a linear map that commutes with the action of
Sn. Suppose that SA et ker T. Then )..~. If).. = Jl, then the restriction of T to
SA is a scalar multiple of id.

Proof By lemma 3, Ker T C SAl... Thus for any t, 0 :j:. Tet = T Ate{t} = AtTe{t}.
But Te{t} is a linear combination of Jl-tabloids e{s} and for at least one such e{s},
At e{s} -I O. By Lemma 1, )..~. If ).. = Jl, then Tet = c et by the same argument.

o

LEMMA 5. Let T: SA --* SJ-L be a linear map that commutes with the action of
Sn. 1fT -I 0, )..~.

Proof Any such T can be extended to a linear map from MA to MJ-L by defining
T to be 0 on SAl... The extended map commutes with the action of Sn. If T f:. 0,
then Lemma 4 implies )..~. 0

Theorem 1. The SA are all of the irreducible representations of Sn.

Proof If SA is equivalent to SJ-L, then, using Lemma 5 in both directions, ).. = Jl.
o

Remark. The argument for Lemma 4 shows that the irreducible representations
in MJ-L are SJ-L (once) and some of {SA: )..~} (possibly with repeats). In fact, SA
occurs in M J-L if and only if )..~.

To complete this section, here is a direct proof of the decomposition of Mn-2,2
discussed in the introductory paragraph to this chapter. We begin with a broadly
applicable result.

A USEFUL FACT.

Let G be a finite group acting on a set X. Extend the action to the product
space X k coordinatewise. The number of fixed points of the element S E G is
F( s) = I{x: sx = x }I. For any positive integer k:
(1) ,b, E F(s)k = I orbits of G acting on Xkl.

s

(2) Let R, V be the permutation representation associated to X. Thus V has as
basis bx and Rs(bx ) = bsx . The character of this representation is XR(S) =
F(s). If R decomposes into irreducibles as R = mlPl EB ... EB mnPn; then

~m7 = I orbits of G acting on X 2 1.

Proof. For (1) we have the action of G on X k given by S(Xl, ••• ,Xk)

(SXl, .•• ,SXk). Let Ci be a decomposition of X k into G orbits. Then

Lf(s)k = LL6sx1 (Xl) .. 'L6sxk (xk) = LL6s:f(:f)
s s Xl Xk Xk s

=L L L 6S:f(:f).
i fECi S
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The innermost sum is the cardinality of the stabilizer of G at ~: INxl with N x =
{s: Sf = f}. Observe N sx = S Nxs-I. In particular, the size of N x doesn't
depend on the choice of f -in a give~ orbit. Since IQI = INxl ICil the i~ner sum
equals IGI/ICil. The sum over fECi multiplies this by ICil.-The final sum yields
IGf · IOrbitsl as required. To prove (2), we use the orthogonality of characters:
XR == mIX1 + · · ·+ mnXn so < XRlxR >== mi + · · ·+ m~. On the other hand, it
is clear XR(S) == F(s) and F(s-1) == F(s), so < XRlxR >== Ibl~F(s)2. 0

REMARKS AND ApPLICATIONS

(a) With k == 1, part (1) is called Burnside's lemma. It is at the heart ofSerre's
exercise 2.6 which we have found so useful. It also forms the basis of the
Polya-Redfield "theory of counting." See e.g., de Bruijn (1964).

(b) If G acts doubly transitively on X, then there are two orbits of G acting on
X X X:{(x,x)} and {(x,y):y:l x}. It follows that V decomposes into two
irreducible components: One of these is clearly spanned by the constants.
Thus its complement {v: I;Vi == O} is irreducible.

(c) When G acts on itself we get back the decomposition of the regular repre­
sentation.

(d) There is an amusing connection with probability problems. If G is consid­
ered as a probability space under the uniform distribution U, then F(s) is
a "random variable" corresponding to "pick an element of G at random and
count how many fixed points it has." When G = Sn and X = {I, 2, ... , n},
F(1r) is the number of fixed points of 1r. We know that this has an approx­
imate Poisson distribution with mean 1. Part (1) gives a "formula" for all
the moments of F(g).

EXERCISE 1. Using (1), prove that the first n moments of F(1r) equal the first
n moments of Poisson(1), where 1r is chosen at random on Sn.

(e) Let us decompose Mn-2,2. The space X is the set of unordered pairs {i,j}
with 1r{i,j} = {1r(i),1r(j)}. The permutation representation has dimen­
sion (2'). There are 3 orbits of Sn acting on X X X corresponding to pairs
{i,j},{k,£} with 0,1, or 2 integers in common. Thus, clearly Sn acts tran­
sitively on the set of pairs ({i, j}, {i, j}). Also for ({i, j}, {j, £}) i ~ i, j and
for ({i, j}, {k, i} ) with {k, £} n {i, j} == <p. It follows that V splits into 3 irre­
ducible subspaces. These are, the I-dimensional space spanned by v = ~e{ij},

the n - I-dimensional space spanned by Vi == ~je{ij} - cv 1 ~ i ~ n, and
the complement of these two spaces. Clearly, the space spanned by v gives
the trivial representation and the space spanned by Vi gives the n - 1 di­
mensional representation. What is left is n(n - 3)/2 dimensional. If \ve
regard the permutation representation as the set of all functions on X with
sf(x) = f(s-1 x ), then the trivial and n - 1 dimensional representations are
the set of functions of form f {i, j} == i1 (i) + i1 (j).

EXERCISE 2. Show that for fixed j, 0 ~ j ~ n/2, Mn-j,j splits into j + 1
distinct irreducible representations, the ith having dimension (7) - (i~1).· Hint:
use the useful fact and induction, (e) above is the case j == 2.
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We can build some new irreducible representations directly by tensoring the
representation we know about with the alternating representation. Tensoring the
alternating representation with the n - 1 dimensional representation always gives
a different irreducible representation. For n = 4 we already have all irreducible
representations: 2 of 1 dimension, 2 of 3 dimensions and 1 of dimension n(n ­
3)/2 = 2. The sum of squares adds to 24. For n >- 4 (but not n = 4) the
n(n - 3)/2 dimensional representation yields a new irreducible representation of
the same dimension. For n = 5 this gives all the irreducible representations but
1. We can build this by considering the action of Sn on ordered pairs (i, j). That
is, M 3,1,1.

B. MORE ON REPRESENTATIONS OF Sn

The books by James and James-Kerber are full of interesting and useful facts.
Here is a brief description of some of the most useful ones, along with pointers to
other work on representations of Sn.

(1) The Standard Basis of SA. We have defined SA as the representation of
MA generated by elements et. There are n! different et and the dimension of SA
can be quite small. For example, if A = (n-1, 1), we know SA is n-1 dimensional.
It turns out that a few of the et generate SA. Define t to be a standard tableau

if the numbers increase along the rows and down the columns. Thus IIIII[] is[illJ
a standard [3, 2] tableau. There is only 1 standard (n) tableau. There are n - 1
standard (n - 1,1) tableaux. In Section 8, James proves that {etlt is a standard
A-tableau} is a basis for SIL. This is a beautiful result, but not so helpful in "really
understanding SA." What one wants is a set of objects on which Sn acts that
are comprehensible. The graphs in Section 5 of James are potentially very useful
in this regard for small n. As far as I know, a "concrete" determination of the
representations of Sn is an open problem. See (6) below.

(2) The Dimension of SA. There are a number of formulas for the dimension
(and other values of the character) of the representation associated to A. The
dimensions get fairly large; they are bounded by vnr of course, but they get quite
large:

n
max dim

2 3 4 5
123 6

5 7 8 9 10
16 35 90 216 768

We know that dim(SA) equals the number of ways of placing the numbers 1, ... , n
into the Young diagram for A in such a way that the numbers increase along rows
and down columns. From this follows bounds like the following which was so
useful in Chapter 3:

dim(SA) ~ C)J(n - AI)! ·

There is a classical determinant formula (James, Corollary 19.5)

dim(SA)= n! DetI1/(Ai - i + j)!I, where l/r! = 0 if T < o.
Finally, there is the hook formula for dimensions. Let A be a partition of n. The
(i, j) hook is that part of the Young diagram that starts at (i, j) and goes as far
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as it can either down or to the right. Thus, if A = (4,3, 2),~ the (2,2)

hook is indicated by x's. The length of the (i, j) hook is the number of boxes in
the hook. Using this terminology, the hook length formula says

dim(SA) = n!/product of hook lengths in A.

For example, when A = (4,3,2), the hook lengths are

653 1
431
2 1

The dimension is 9!/6! · 3 = 168.
The dimension of s(n-l,l) is n - 1. The dimension of 5 11. .. 1 is 1.
Greene, Nijenhuis, and Wilf (1979, 1984) give an elegant, elementary proof

of the hook length formula involving a random "hook walk" on a board of shape
A.

Hooks come into several other parts of representation theory - in particular,
the Murnaghan-Nakayama rule for calculating the value of a character (section
21 of James).

(3) Characters of the Symmetric Group. To begin, we acknowledge a sad
fact: there is no reasonable formula for the character XA(J-l) where A is a partition
of n, XA the associated irreducible character of Sn, and J.l stands for a conjugacy
class of Sn. This is countered by several facts.
(a) For small n (~ 15) the characters have been explicitly tabulated. James­

Kerber (1981) give tables for n ~ 10 and references for larger n.
(b) For large n there are useful asymptotic results for XA (J-L). These are clearly

explained in Flatto, Odlyzko, and Wales (1985).
(c) For any specific A and J.l there is an efficient algorithm for calculating the

character called the Murnaghan-Nakayama rule. Section 21 of James (1978)
or Theorem 2.4.7 of James-Kerber (1981) give details.

EXERCISE 3. Define a probability Q on Sn as follows: with probability Pn choose
the identity with probability 1 - Pn choose a random n-cycle. Determine the rate
of convergence. How should Pn be chosen to make this as fast as possible? Hint:
See (d) below.

(d) For "small" conjugacy classes J.l, and arbitrary n and A, there are formulas like
Frobenius' formula used in Chapter 3D. Ingram (1950) gives useful references.
See also Formula 2.3.17 in James-Kerber (1981).

(e) For some special shapes of A, such as hooks A = (k, 1,1, ... ,1), closed form
formulas are known, see e.g. Stanley (1983) or Macdonald (1979).

(f) There are also available rather intractable generating functions for the charac­
ters due to Frobenius. This analytic machinery is nicely presented in Chapter
1.7 of Macdonald (1979).
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(4) The Branching Theorem (Section 9 of James). Consider p the n - 1
dimensional representation of Sn. Let Sn-I be considered as a subgroup of Sn
(all permutations that fix 1). Then p is a representation of Sn-I, "by restriction"
James writes s(n-I,I) ! Sn-I. Observe that p restricted to Sn-I is reducible.
If we choose the basis el - e2, el - e3, ... ,el - en; then the sum of the basis
elements generates a one-dimensional invariant subspace. Since Sn-I operates
doubly transitively on the basis elements, we have p ! Sn-I splitting into two
irreducible subspaces; one of dimension 1 and one of dimension n - 2.

The branching theorem gives the general result on how SJ.L ! Sn-I decom­
poses: there is one irreducible representation for each way of removing a "box"
from the right hand side of the Young diagram for J1 in such a way that the result­
ing configuration is a diagram for a partition. Thus, the diagram for [n -1,1] can
be reduced to (n - 1) or (n - 2,1) and these are the two irreducible components.
The branching theorem is used to give a fast Fourier transform for computing all
j(p) in Diaconis and Rockmore (1988).

EXERCISE 4. (Flatto, Odlyzko, Wales). Let p be an irreducible representation
of Sn. Show that p restricted to Sn-I splits in a multiplicity free way. Using this,
show that if P is a probability on Sn that is invariant under conjugation by Sn-I
(so P(1r) == P(a1ra- l

) for a E Sn-I), then Pep) is diagonal for an appropriate
basis which does not depend on P.

(5) Young's Rule. This gives a way to determine which irreducible subspaces
occur in the decomposition of M A. It will be extremely useful in Chapter 8 in
dealing with partially ordered data "in configuration A." For example, data of
the form "pick the best m of n" can be regarded as a vector in M(n-m,m), the
components being the number of people who picked the subset corresponding to
the second row of the associated tabloid. The decomposition of M(n-m,m) into
irreducibles gives us a spectral decomposition of the frequencies and a nested
sequence of models. See Chapter 8B and 9A.

Young's rule depends on the notion of semi-standard tableaux. This allows
repeated numbers to be placed in a diagram. Let A and J.L be partitions of n. A
semi-standard tableau of shape A and type J1 is a placement of integers ~ n into
a Young tableau of shape A, with numbers nondecreasing in rows and strictly
increasing down columns, such that the number i occurs J-Li times. Thus, if A =
(4,1) and J.L == (2, 2, 1), there are two tableaux of shape A and type J.L:

1 122
3

1 123
2

Young's Rule: The multiplicity of SA in MJ.L equals the number of semi-standard
A tableaux of type J.L. As an example, consider, for m ~ n/2, J.L == (n - m, m).
We are decomposing MJ.L. The possible shapes A are

n-m m n-m m-I
~~~~

1 1 ... 1 2 ... 2, 1 1 ... 12 ... 2, ... 1 1
222

1 1 1 ... 1
2 2
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Each occurs once only. Thus M(n-m,m) = s(n) EB s(n-l,l) EB s(n-2,2) EB ... El)

s(n-m,m). By induction dim s(n-m,m) == (~) - (m~l). When we translate this
decomposition into an interpretation for "best m out of n" data, the subspaces
s(n-m,m) have interpretations:

sn - The grand mean or # of people in sample.

sn-l,l - The effect of item i, 1 ~ i ~ n.

sn-2,2 - The effect of items {i, j} adjusted for the effect of i and j.

sn-k,k - The effect of a subset of k items adjusted for lower order effects.

Remarks. Many further examples of Young's rule appear in Chapter 8. Young's
rule does not give an algorithm for decomposing MJ.£ or interpreting the SJ.£. It
just says what pieces appear. Section 17 of James (1978) solves both of these
problems in a computationally useful way. This remark is applied in Chapter 8C
below.

Young's rule is a special case of the Littlewood-Richardson rule which de­
scribes how a given representation of Sn restricts to the subgroup Sk X Sn-k. See
James and Kerber (1981, Sec. 2.8).

(6) Kazhdan-Lusztig Representations. The construction of the irreducible
representations given in Section A constructs SA as a rather complicated subspace
of the highly interpretable MA. Even using the standard basis ((1) above), SA is
spanned by the mysterious Young symmetrizers et. It is desirable to have a more
concrete combinatorial object on which the symmetric group acts, with associated
permutation representation isomorphic to SA. An exciting step in this direction
appears in Kazhdan and Lusztig (1979). They construct graphs on which Sn
acts to give SA. For n ~ 6, these graphs are available in useful form. Kazhdan
and Lusztig construct these representations as part of a unified study of Coxeter
groups. The details involve an excursion into very high-powered homology. Garsia
and McLarnan (1988) gives as close to an "in English" discussion as is currently
available, showing the connections between Kazdahn and Lusztig's representations
and Young's natural representation as developed in Chapter 3 of James-I{erber.

(7) The Robinson-Schensted-Knuth (RSK) Correspondence. There is a fasci­
nating connection between the representation theory of Sn and a host of problems
of interest to probabilists, statisticians, and combinatorialists centered about the
R-S-K correspondence. The connected problems include sweeping generalizations
of the ballot problem: if one puts At-ones, A2-twos, ..., Ak - k's into an urn and
draws without replacement, where At 2: A2 ... 2: Ak is a partition of n, then the
chance that # ones 2:: # two 2:: ... 2:: # k's at each stage of the drawing equals
f(A)fn! where f(A) == dim(SA) discussed in (2) above. This links into formu­
las for the coverage of I{olmogorov-Smirnov tests, the distribution of the longest
increasing subsequence in a permutation, and much else.

The connection centers around a 1-1 onto map 7I" ~ (P, Q) between Sn and
pairs of standard Young tableaux of the same shape. Since there are f(A) of



140 Chapter 7B

these tableaux of shape A, we have an explicit interpretation of the formula n! =
'E A f(A)2.

One route to accessing this material starts with Section 5.1.4 in Knuth (1975).
Then try Stanley (1971), then some of the papers in Kung (1982). Narayana
(1979) gives pointers to some statistical applications. Kerov and Virshik (1985)
give applications to statistical analysis of other aspects of random permutations.
White (1983) discusses the connection between the R-S-I<: correspondence and the
Littlewood-Richardson rule.



Chapter 8. Spectral Analysis

Often data are presented as a function f( x) defined on some index set X. If
X is connected to a group, the function f can be "Fourier expanded" and one
may try to interpret its coefficients. This is a rich idea which includes the usual
spectral analysis of time series and the analysis of variance.

This chapter develops the idea in stages. First, for data on groups (time
series, binary vectors, and permutation data). Then the idea is developed for
data on homogeneous spaces (the sphere and partially ranked data). Next some
theory needed for practical computation is derived. All of this is illustrated for
some classical designs in the analysis of variance. Finally, some research projects
are spelled out.

A. DATA ON GROUPS

1. Time series analysis. Fourier analysis of time series or other signals is
a familiar scientific activity. For example, data on the number of babies born
daily in New York City over a five year period are studied by Izenman and Zabell
(1978). Here X = {1, 2, ... , n} with n = 5 X 365 + 1. The data are represented as
a function f( x) = # born on day x. Inspection of this data shows strong periodic
phenomena: about 450 babies are born on each week day and about 350 on each
day of the weekend. (Physicians don't like to work on weekends.) There might
also be monthly or quarterly effects.

To examine (and discover) such phenomena, scientists pass from the original
data f(x) to its Fourier transform

j(y) = ~xf(x) e2trixy/n

where the sum runs over x == 0, 1, ... , n - 1. Fourier inversion gives

It sometimes happens that a few values of j(y) are much larger than the
rest and determine f in the sense that f is closely approximated by the function
defined by using only the large Fourier coefficients in the inversion formula. When
this happens, we have f approximated by a few simple periodic functions of x,
e.g. e-2trixy/n, and may feel we understand the situation.

The hunting and interpretation of periodicities is one use of spectral analysis.
A splendid introduction to this subject is given by Bloomfield (1976). A more
advanced treatment from the same point of view is given by Brillinger (1975).

141
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There are other interpretations of spectral analysis. The discussion papers
by Jenkins (1961) and Parzen (1961) present a useful survey of different views.
Some further discussion is given in the last section of this chapter. For now, we
will stick to the data analytic view outlined above.

2. Permutation data. Spectral analysis can be carried out for any group using
the matrix entries of the irreducible representations as a basis. Before developing
this in general, here is an example.

In Chapter 5-A we discussed rankings of three items. People were asked to
rank where they wanted to live: in a city, suburbs, or country. The rankings were

1r city suburbs country #
id 1 2 3 242
(23) 1 3 2 28
(12) 2 1 3 170

(132) 3 1 2 628
(123) 2 3 1 12

(13) 3 2 1 359

Here X = S3, and f(1r) is the number choosing 1r. There are three irreducible
representations of S3: the trivial, sgn, and two-dimensional representation p. The
Fourier inversion theorem gives

f(1r) = ~{j(triv) + sgn(1r)' j(sgn) +2Tr(p(1r-1 )j(p)).

Expanding the trace gives a spectral analysis of f as a sum of orthogonal functions.
To facilitate comparison between functions in this basis, let us choose an

orthogonal version of p. Thus, using cycle notation on S3

tr id (1 2) (2 3) (1 3) (1 2 3) (1 3 2)

p(tr) (01 °1) (-01 °1) 1 (1 V3) 1 (1 -V3) 1 (-1 -V3) 1 (-1 V3)
2" V3 -1 2" -V3 -1 2 V3 -1 2" -V3 -1

These are arrived at by choosing Wl = 1(e1 - e2), W2 = ~(el +e2 - 2e3)

as an orthonormal basis for {v E R3
: VI + V2 + V3 = O}. The matrices p(1r) give

the action of 1r in this basis. Now

j(triv) = 1439, j(sgn) = 242 - 28 - 170 +628 + 12 - 359 = 325,

A _ (-54.5 285v'3/2)
f(p) - -947v'3/2 -101.5 ·

Define four functions on S3 by
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With this definition, the functions 1, sgn 1r, a(1r), b(1r), c(1r), d(1r) are orthogonal
and have the same length.

Expanding the trace in the Fourier inversion theorem gives

1
f(rr) = 6"{1439 +325 sgn(rr) - 54.5V2 a(rr) - 947V3fi b(rr) +285-../3/2 c(rr)

- 101.5V2 d(1r)}.

== ~{1439 +325 sgn(rr) - 77 a(rr) - 1160 b(rr) +349 c(rr) - 144 d(rr)}.

As a check, when 1r = id, this becomes

242 = ~{1439 +325 - 109 - 203}.

The largest non-constant coefficient, 1160, multiplies b(1("). This is the function

1r id (1 2) (2 3) (1 3) (123) (132)
b(1r) 0 0 J372 -J372 J372 -J372

or
-J372 if cities are ranked 3rd (1r(1) = 3)

b(1r) = 0 if country is ranked 3rd (1r(3) = 3)

J372 if suburbs are ranked 3rd (1r(2) = 3).

Spectral analysis gives fresh insight into this little data set: After the con­
stant, the best single predictor of f is what people rank last. Now b(1r) enters
with a negative coefficient. It "follows" that people "hate" the city most, the
suburbs least and the country in between. Going back to the data #{1r(1) = 3} =
981, #{1T"(2) = 3} = 40, #{1T"(3) = 3} = 412, so the effect is real. It seems at
variance with the unfolding hypothesis, but is in fact necessary. If people make
individual rankings by unfolding, the proportions connected to extreme ranks will
be monotone with the unfolding point in the center.

The kind of data analytic interpretation given in the last paragraph seems
mandatory - we must seek subject matter interpretation of our findings. As a
word of warning, almost any set of summary statistics can have a story woven
about them - we are good at making up stories.

EXERCISE 1. Carry out the analysis of this section for the non-orthogonal
representation of Sa given in Chapter 2-A. Show that the main conclusions do not
change.

3. A general case, with inference. For G a finite group, and f a function on
G, the Fourier inversion theorem gives

1 -1 "
f(s) = iGfEp dp Tr(p(s )f(p»·
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Now let P be a unitary representation, so p(t)* == p(t- 1
). Corollaries 2 and 3

to Schurs lemma of Chapter 2 yield orthogonality relations for the matrix entries of
p. Define the usual inner product on all functions on G: < <PI1/; > == IblE <p( t)1/;( t)*.
Then

< Pijl17ki > = 0 if p and 17 are inequivalent unitary representations, for any

ij, kf.

{
0 unless i == k and j = f,

< Pijlpkl > = Jp if i = k, j = f.

It follows that the functions Pij(8) = JfI; Pij(8-1 ) are orthonormal on G with
respect to < ·1· >.

To numerically compute the spectral representation, compute J(p) and ex­
pand the trace giving

l(s) = I~I ~..;;r; j(p)ji Pij{S).
P,?',]

The squared length of the projection indexed by functions associated to P is
dp Tr(j(p)j(p)*) == dp llj(p)11 2

•

Elementary inference. In carrying out spectral analysis, it is natural to won­
der "if the data had come out a bit different, would the inferences change?" This
is susceptible to a wealth of interpretations - from an elementary sensitivity analy­
sis, through a bootstrap analysis, through a frequentist model through a Bayesian
analysis. At present, very little is available in off the shelf tools. We here develop
the obvious normal theory. Some more speculative suggestions are contained in
the final section of this chapter.

Let G be a finite group. Suppose that an observed function f( 8) can be
regarded as a true function J.L( s) plus an error or perturbation function £( s)

f( s) = J.L( s) + £(s).

The strongest possible assumptions that can be made are J.L(s) fixed (or known)
and e(s) rv N(O,0-2 ) (normal, with mean 0 and variance 0-2 independent for each
8). Then for an orthogonal representation p, the coefficients j(p)ijJfI; are all

independent normals, with mean JfI;~(P)ij and variance a 2 JGI. (I have assumed
that all of the representations are real. For unitary representations, complex
normal distributions occur). Further, for P and 17 inequivalent representations,
j(p)ij and j(17)ki are independent.

EXERCISE 2. Prove the results in the last paragraph.
If (72 is assumed known, or {1(p) == 0 is assumed for some irreducible so

(72 can be estimated, all of the usual inferential tools associated to the general
linear model are available. In particular, dp llj(p)11 2 is distributed as (12 times
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a chi-squared variable on d~ degrees of freedom (if jl(p) = 0). Fisher's test for
the significance of the largest Fourier coefficient (see e.g. Bloomfield (1976) or
Anderson (1971)) is easily adapted to this setting.

If (J'2 is assumed to depend on s, a rich array of tools from variance compo­
nents and classical multivariate analysis are available. Work of the Danish school
is particularly relevant - see Perlman (1988) for entry into this literature.

The normality of the Fourier transforms is approximately true under much
less restrictive assumptions than normality of I( s). After all, j(p)ij is an average
of a lot of things, and will be approximately normal and independent of other
coefficients under fairly mild assumptions. This deserves to be worked out more
carefully. Anderson (1971, Sec. 2.6), Freedman and Lane (1980), or Diaconis and
Freedman (1984) are useful places to start.

This seems like a good place to point out

Elementary fact. Let P be an irreducible unitary representation of G. Let
L(G) be all functions on G. Consider the subspace L j spanned by the matrix
entries of the jth column of p. Then L j is an invariant subspace isomorphic to p.

Proof. Let s Pij(t) = Pij(s-lt). The matrix equation p(s-l )p(t) == p(s-lt) shows
that Pij(S-lt) == Ek akPkj(t) as a function of t. Thus L j is an invariant subspace.
Choosing the functions Pij, 1 ~ i ~ dp as a basis gives p(s) being the associated
matrix representation. 0

Remarks. As j varies, the representations L j give the dp copies of p that appear
in the decomposition of the regular representation. In applications, the columns
of p sometimes have a natural meaning. For example, on Sn the jth column of
the n - I-dimensional representation codes which i is mapped to position j in
one choice of basis. Expanding the trace preserves this interpretation. Further
discussion of interpretability of the basis functions appears in the last section of
this chapter.

4. Bahadur's item analysis. Bahadur (1961) introduced a spectral analysis
when X == Zf consists of data on binary k-tuples. For example, fix k at 5 and
consider a population of families with five children. Take f( x) as the proportion
of families whose children were born in birth order x - so if x == 01010, the birth
order was girl, boy, girl, boy, girl. Klotz (1970) gives an analysis of such data.

Economics has massive amounts of "panel study data." Here k might be 12
and x might represent the pattern of employed/unemployed behavior for a person
in the study. It is not uncommon to have samples larger than 5,000 people. Hsiao
(1986) is a recent book on this subject.

Bahadur's original motivation was test score analysis, where x records the
pattern of correct/incorrect guesses, and f( x) records the proportion of students
answering in a given pattern.

Let Xi, 1 :s; i ~ k be the coordinate projection from Z;. Let f(x) be a
probability on Zf. Define (li == Ef(Xi) and Zi == (Xi - (li)/VO!i(l- O!i). Define
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Tij==Ef(ZiZj), i<j

Tiji == Ef(ZiZjZi), i < j < (,

Tl. .. k == E f (Zt Z2 ••• Zk).

The (~) parameters Tij are correlations. The Tiji can be thought of higher order
correlations, etc. Bahadur wrote the spectral decomposition of f as follows.

PROPOSITION 1. (Bahadur). For 1 a probability on Z~,

1==11 ·12

where

11 (x) = IT aft (1 - ai)1-x, is the product distribution with

margins matching f.

h(x) = 1 +L rijZiZj + L rijtZiZjZt +... + rl...kZl .. . Zk·

i<i i<i<i

Proof. Consider the vector space of all functions on Z~ with inner product
< 9, h >= Efl(9· h). The set

consists of orthonormal functions: 11911 == 1 for 9 E Sand < 9, h >= 0 for 9, h E S
but 9 :P h. There are 2k functions in S, so they form a basis. Now, set /2 == ///1.
Then < 12, 9 >== ~12glt = Ef(g)· Also Ef(l) == 1, Ef(Zi) = 0, so the proposition
follows. 0

The function /2 measures departure from independence. It is natural to look
at the individual coefficients to try to understand the nature of the dependence.
Let 6[k) == 1112 - 111 2

• Thus define

6{k) =L r~j + L r~jt + ···+ rLk
i<i i<i<i

d {'2 2
=u2 + ... + Ok·

The ratios 6;/6[k) provide an index of the relative importance of the jth order
terms. Similarly, If Im is the approximation to 1 in which all terms in 12 involving
a product of more than m Zi'S are omitted, then

provides an index of quality for the approximation of I by Im.
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The analysis above is just the standard spectral analysis shifted to a more
natural base measure (matched marginals versus uniform). As Bahadur remarks,
it is also natural to expand and analyze log f. This gets away from the problems
of interpreting negative coefficients and links into the usual log-linear analysis of
such data as a 2 X 2 X ... X 2 contingency table.

B. DATA ON HOMOGENEOUS SPACE

A natural and useful extension of spectral analysis occurs for homogeneous
spaces. These were defined and illustrated in Chapter 3F.

1. Definitions. Let X be a finite set. Let G act transitively on X with N
the isotropy subgroup: N == {s E G: sXo == xo} where Xo is some fixed point in
X. Let L(X) be all functions from X into the complex numbers C. Then L(X)
decomposes into irreducibles as

Vo ffi VI ffi · · · ffi Vk •

Suppose we are given f(x) E L(X), regarded as data - f(x) is the number (or
proportion) of people having property x.

Spectral analysis is the decomposition of f( x) into its projections on the
irreducible invariant subspaces of L(X), and the approximation of f(x) by as
small a number of projections as give a reasonable fit.

Here L(X) is regarded as an inner product space using < fig > ==
fxr~f(x)g(x)*, and projections are orthogonal. Of course we usually want even
more: the coefficients of f projected into Vi in some natural or interpretable basis
help connect the analysis to the original subject matter.

As shown in Corollary 1 of Section 3 below the decomposition of the regular
representation falls into this domain. The following are less standard.

Example 2. Partially ranked data. Let A be a partition of n. Consider data
consisting of partial rankings of n items of shape A: thus people rank their favorite
Al items (but not within) and their next A2 items (but not within) and their final
Ak items (but not within). Here n == Al +A2 +... + Ak and we do not assume Ai
are ordered. Chapter 5B gives examples.

If SAl X S)..2 X •.• X S)..1e denotes the subgroup of Sn which allows permutations
among the first Al coordinates, the next A2 coordinates, and so on, then X =
Sn/S)..l X .•• X S)..Ie. The space L(X) can be taken as all real valued functions on
X because all irreducible representations are real. Thus L(X) == M oX of Chapter
7. The decomposition of L(X) is given by Young's rule (see Chapter 7-B). Here
are some special cases.

Case 1. A = (n - 1,1). This is simple choice data, people choosing one out of
n items. The set X may be regarded as {I, 2, ... , n} and f(x) is the number of
people choosing x. The decomposition is

L(X) == sn EB sn-I,l

with sn the trivial representation and sn-l,l the n-1 dimensional representation.
This amounts to f(i) =7+ (f(i) -I) with 7 == *L;f(i).
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Case 2. A = (n-2, 1, 1). Here people pick their favorite and second favorite items
from a list of n (order matters). The space X may be regarded as {(i,j), 1 ~ i =I
j ~ n} so IXI = n(n - 1). The decomposition of L(X) is

L(X) == sn E9 2Sn - I ,1 E9 sn-2,2 E9 sn-2,1,1

dim n(n - 1) 1 2(n - 1) n(n - 3)/2 (n - l)(n - 2)/2.

o
2
3

o
23

To derive this, start with A = (n - 2,1,1). Consider n - 2 ones, one two, and
one three. Young's rule asks for the number of ways of arranging these symbols
into arrays which are increasing along rows, and strictly increasing down columns.
The only ways are

0 23

where the block indicates n-2 ones. The number of times each shape appears gives
the multiplicity of the corresponding irreducible. The dimensions are computed
from the hook length formula of Chapter 7.

Here there is a natural interpretation of the decomposition. The projection
into sn represents the best constant approximation to f, Le. I = n(Ll) Ef( i, j).
The two sn-l,l spaces give the effect of the first coordinate and the second coor­
dinate respectively. The projection of j into sn E9 2Sn - I ,1 gives the best approx­
imation to f of the form

The projection into sn-2,2 can be thought of as the best approximation of j,
orthogonal to sn E9 2Sn - 1 ,1, of form

the brackets indicating unordered pairs. The projection onto sn-2,1,1 can be
thought of as a residual, or what's left when the first four terms are subtracted
off.

EXERCISE 3. Verify the decomposition
M n - 3,l,l,l = sn EB 3S n - 1,l EB 3S n - 2 ,2 EB sn-3,3 El) 2S n - 3 ,2,l EB 3S n - 2,l,l EB sn-3,l,l,l

n(n - 1)(n - 2) 3(n _ 1) 3n C;-3) nCn-lJCn-S) 2n Cn-;)Cn-4) 3(n;-1) (n;-l)

Can you give an interpretation to the subspaces involved?

3. Computing projections. We turn now to the problem of actually computing
the projections, choosing bases, and so on.

Method 1 - Character Theory. Let G be a group, p: G ~ GL(V) a representation.
The decomposition of V into irreducibles usually requires choosing a basis. There
is a coarser direct sum decomposition that is basis free. Let Xl, X2, . · . ,Xh be
the distinct characters of the irreducible representations W1 , •.• , Wh of G. Let
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d1 , d2 , • •• , dh be their degrees. Let V == U1 El) U2 EI) ••• El) Urn be the decomposition
of V into a direct sum of irreducible representations. For i = 1, ... , h, denote by
Vi the direct sum of the spaces Uj which are isomorphic to Wi . Then

v == Vi El) • • • El) Vh .

This decomposition is canonical in the following sense:

Theorem 1.
(1) The decomposition V == VI El) ••• El) Vh does not depend on the initially chosen

decomposition of V.
(2) The projection Il i olV onto Vi associated with this decomposition is given by

lli = I~I E Xi(t)*p(t).
tEG

(3) If the original representation is unitary, then Ili is an orthogonal projection.

Proof. We first prove (2). Restrict attention to an irreducible subspace Uj •

Then p restricted to Uj is an irreducible representation with character X say. Let
IIi be defined by the formula in (2). Since Uj is invariant, Il i maps Uj into itself.
Since Il i and p commute, Ili restricted to Uj is a constant times the identity. This
constant is

{
0 if X -t x·< Xi Ix >* == ." t
1 IfX#Xi.

This proves that Il i is a projection onto Vi. Since ITi does not depend on the
originally chosen decomposition, (1) follows.

For (3), clearly IT i is a projection. To show it is orthogonal, we must show
that IT; == Il i . This is obvious if p is unitary. 0

EXERCISE 4. Consider the voting data of Chapter 5-B. Compute the projections
into the irreducible subspaces for the people voting for only two candidates (see
Case 2 in Section 2 above. The characters of Ss are in James and Kerber (1981))
compare with people voting for only one candidate.

We will find use for this theorem as a practical tool for computing projections.
Here is a theoretical application which shows that the spectral analysis on groups
developed in Section A is the same as the spectral analysis developed in this
section.

COROLLARY 1. Let R, L(G) be the regular representation of the finite group
G. Let p be an irreducible representation and Vp the direct sum of all irreducibles
in L(G) isomorphic to p. For f E L(G), the orthogonal projection of f into the
space Vp is given by

dp -1 ,.
llpf(s) = fGiTr(p(s )f(p»·
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Proof. Using Theorem 1, we must show

TIp/(S) = I~I LXp(C1)Rt /(s) = 1~ITr{p(s-l)j(p)}.
p

Both sides are linear in j, so take j == 8u . Cancelling common factors, the left
side equals

The projection is orthogonal because the regular representation is unitary. Note
that the right side of the formula doesn't depend on the basis chosen for p. 0

Example. Take G == Sn, and X as the k sets of {1,2, .. . ,n} as discussed
in example 2 of Chapter 5B. Here X == Sn/ Sk X Sn-k and the representation
decomposes without multiplicity (see Exercise 2 of Chapter 7) as

L(X) = sn EB sn-1,1 EB sn-2,2 EB ... EB sn-k,k

dim (k) 1 n - 1 (2) - (1) (k) - (k -1 ).

Here the projection given by Theorem 1 is simply the projection into irreducibles.
This holds for data on any homogeneous space which is a Gelfand pair (see Chapter
3-F).

Example. Take G == Sn and X == Sn/ Sn-2 X SI X SI. Here there is multiplicity:

L(X) == sn EB 2Sn - l ,1 EB sn-2,2 EB sn-2,1,1.

A further decomposition of the projection into 2Sn - l ,1 is required. One way to
do this is described in Exercises 2.8,2.9 and 2.10 of Serre (1977, Sections 2.6 and
2.7). A second way to do it is outlined next.

Method 2 - Following known vectors. One problem with Theorem 1 is that it
involves a sum over the group. For homogeneous spaces like S49/ S6 X S43, this is
simply not feasible.

Let G be a group and (p, V) a representation. Suppose V is equipped with an
invariant i~ner product. We are often in a position where we know, or can guess
at, vectors Wl, W2, .•• , W J E V which generate an invariant subspace W CV. It
is then straightforward to orthonormalize Wi using the Gram-Schmidt procedure,
forming wi, w2' ... ,wj. Then the projection of v on W is

IIwv == ~ < v,wj > wj.

Computations using this approach usually only involve a small fraction of work
required for the character theory approach.

Example. Consider the decomposition arising from X = Sn/Sn-2 X SI X Sl-
ordered pairs out of n. The pieces are

L(X) == sn EB 2Sn - 1,1 EB sn-2,2 Ea sn-2,1,1.
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Here L(X) is considered as the space of all real functions on ordered pairs with
< I,g > = Ei,j f(i,j)g(i,j). The n - 1 functions fk(i,j) = 6k(i) - ~, 1 ~ k < n
are linearly independent and span an n - 1 dimensional subspace of 2Sn - 1 ,1. The
n - 1 functions gk(i,j) = Ok(j) - ~,1 ~ k < n are linearly independent of the Ik
and each other. They span the rest of 2Sn - 1 ,1.

This gives a natural way of decomposing the remaining subspace in the ex­
ample of the last section.

Remark 1. This approach is available for decomposing any of the subspaces
MA. The relevant details are given in Section 17 of James (1978). In deriving a
version of Young's rule that works for finite fields, James introduces a hierarchy of
invariant subspaces SP,#,p, which split MA into progressively more refined pieces
(ending with irreducibles). He gives an explicit basis for each of these subspaces
involving sums over the column stabilizer subgroups. These sums, and attendant
computations, seem computationally manageable.

As an example, we know that each MA contains the irreducible SA once.
Recall from Chapter 7, a standard Young tableau is a tableau which is decreasing
across rows and down columns. Recall that for a tableau t the vector (or function
or polytabloid) et is defined by

et = L sgn(rr)e1r{t},

1rECt

where {t} is the tabloid associated to t, and Ct is the column stabilizer of t.
James shows that {et: t is a standard Young tableau of shape A} is a basis for
SA in MA. For A's without many parts, ICtl is manageable (e.g., it has size 2k

for A = (n - k, k». The number of standard Young tableaux is given by the
hook length formula of Chapter 7. The et can be orthogonalized to e;. Then the
projection of v E MA can be computed through v · e;.

Remark 2. Often a subspace W C V has a simple data analytic interpretation,
but for computational convenience, the projections are computed with respect to
a basis which scrambles things up. A second problem: the dimension of W can be
smaller than the number of natural projections. For instance, the decomposition
arising in studying unordered three sets out of six is

the dimension of 8 4 ,2 is 9 (= (~) - (~». Now 84 ,2 is the space of unordered pair
effects. There are (~) = 15 such effects it is natural to look at.

Colin Mallows has suggested a remedy for these problems. Given v E V,
project it to v* E W. Then take the natural vectors of interest, say Vt, V2, . .. , Vi,

project them into vi E W, and plot < v*, vi > versus i. This allows us to
try to interpret the projections on a natural scale. It assumes v*, vi have been
normalized to be unit vectors. See Diaconis (1989) for applications.

Method 3 - Radon transforms. There is a special technique available for decom­
posing the representations MA associated to partially ranked data of shape A.



152 Chapter 8B

For clarity, this will be explained for the multiplicity free case A = (n - k, k) with
k ~ n/2.

A vector f E Mn-k,k can be regarded as a function on k sets of an n set.
For 1 ~ j ~ k, define a mapping

R+: Mn-j,j --t Mn-k,k by R+ f(s) =L fer)
s:)r

where Irl = j, Isl = k. This Radon transform R+ has an inverse R-: Mn-k,k ~

Mn-j,j satisfying R- R+ f = f. An explicit form of the inverse is given by Gra­
ham, Li and Li (1980). If Mn-k,k and Mn-j,j are given bases consisting of delta
functions on the k sets and j sets respectively, then the r,8 element of R- is

(-l)k- j (k - j) 1

(-l)ls-r'ls - rl (n- j )·
Is-rl

Note that both R+ and R- commute with the action of Sn. Composing
maps in the other way, R+ R- gives a map Mn-k,k ~ Mn-k,k. This map is an
orthogonal projection onto the single copy of Mn-j,j contained in Mn-k,k:

LEMMA 1. The map R+ R- is an orthogonal projection on Mn-k,k with range
isomorphic to Mn- j,j .

Proof. Since R+ R- R+ R- = R+(R- R+)R- = R+ R-, the map is a projection.
To show that it is orthogonal we must show (R+ R-)t = R+ R-. Let 81 and 82 be
k sets. The SI, 82 entry of R+ R- is proportional to

With 6rs = 1 or 0 as r C 8 or not. This sum is a sum of terms of form

1 1
(-l)k-i(k - f) (n- j ) ,k-i

the multiplicity of this term being #{r C 81: r n 82 = f}. This is a patently
symmetric in 81 and 82, so orthogonality follows.

Finally, both R+ and R- commute with the action of Sn. The map R- is
onto Mn-j,j, so R+ is an isomorphism of Mn-j,j with the range of R+ R- Le.
with range R+. 0

To use the lemma, define R+ R- = 'Trj. Then I - 'Trj is also an orthogonal
projection. We know Mn-k,k = sn EB sn-l,1 EB sn-2-2 EB ... EB sn-k,k = Mn-j,j EB
sn-j-l,i+1 E9 ... EB sn-k,k. One may thus proceed by taking j = k - 1, k - 2, ... , 1
inductively. This procedure is computationally feasiable for n large and k small.

A similar procedure is available for any partition A using the results in Section
17 of James (1978). Diaconis (1987) gives details.
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Final remarks on choice of basis. Return to data f on a group G. The Fourier
transform j(p) can be a completely arbitrary matrix for general f. To see this,
just define f by the inversion theorem to have a prescribed j(p). There is a
rather complex restriction, akin to Bochner's theorem but more complex, when f
is positive. For practical purposes J(p) is an essentially arbitrary matrix.

We have available the possibility of changing bases, changing from J(p) to
A J(p)A -1. As A varies, the invariants of J(p) are its eigenvalues, or its "canonical
form."

To compare coefficients within j(p) and between various p's, it seems natural
to consider only unitary (or orthogonal) base changes. Then, there is not much
that can be done to bring J(p) into a simple form. One possibility is to rotate to
make the first few rows of j as large as possible.

Other possibilities are to change bases to bring the matrix into a simple
form. For example, any matrix can be conjugated by an orthogonal matrix to the
sum of a diagonal and skew symmetric matrix: A = teA + At) + teA - At), and
A + At = rDrt , so rArt = tD + S, with D diagonal and S skew symmetric.
Any matrix can be orthogonally conjugated to lower triangular form (essentially)
see Golub and van Loane (1983).

The choice of bases must balance off

• computational convenience

• ease of interpretation

• convenience of orthogonality

• maximal informativeness of a few projections

• invariance considerations.

Nobody ever said statistics was easy.

At present, we can have the first three properties, for partially ranked data,
by using methods 2 or 3 and Mallows' idea as outlined under method 2. There is
plenty to think about.

c. ANALYSIS OF VARIANCE.

Analysis of variance (ANOVA) is a set of techniques for analyzing cross tabu­
lated data such as two-way arrays. Data analytically, ANOVA is a special case of
spectral analysis as described in Section B. This section develops the connection,
and explains a technique introduced by Peter Fortini for defining the group for
the array from a naturally given set of factors.

There is more to ANOVA than the data analytic aspects presented here.
Section D-4 describes some of the other ideas. Hopefully they can be developed
for other types of spectral analysis.

1. Classical examples.

Example 1. Two-way ANOVA with 1 repetition per cell. Here data are collected
in a two way layout
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X11 X12 • .. X1J

X21

Xl1 XIJ

The rows represent the I different levels of one factor, the columns represent the
J different levels of a second factor. The classical examples involve agriculture:
the Xij might represent the crop yield, the row factors might be different types
of seed, the column factors might be different types of fertilizer. In a psychology
example the data might be reaction time, the row factor might be wording of
question, the column factor might be type of recording device.

There are two basic steps in analyzing such data: forming estimates of "main
effects" and the testing ritual involving F statistics that is often called ANOVA.
The first is simple and quite sensible: calculate the average of all numbers in
the table x .. - the grand mean. Subtract x .. from Xij. Calculate "row effects"
Xi. == t~j{Xii - X .. }. Subtract the row effects and calculate column effects x.j.

Subtract the column effects forming residuals: Tij == Xij - X .. - Xi. - x.j' This is
attempting an additive decomposition of the data:

Xii == x .. + Xi. + x.i·

If the residuals are small, the approximation makes a useful, simple description
of the data. One then looks at the main effects - e.g. if the column effects are
ordered, they might be plotted against j to see their shape, etc. The residuals
can be plotted (does there seem to be a relation with XiI or Xlj?). If an additive
·fit fails, one can try different scales - an additive fit to log Xij' Tukey (1977)
vigorously illustrates this approach to ANOVA.

The second piece of analysis is a way of performing a statistical test to see
if the main effects are zero. There are several different tests - all main effects
zero, row effects zero, column effects zero, and even grand mean zero. These
tests all have a geometric interpretation: they are ratios of the squared lengths
of the "effect" vectors to the squared length of the residual vector. The tests can
be justified in language involving normal distributions or in language involving
permutations of the residuals.

I cannot hope to adequately review the statistical aspects of ANOVA here.
The classical text by Scheffe (1959) is still most readable and useful. Two fine
survey articles are those by Tjur (1984) and Speed (19S7). Further references and
discussion are given in Section D-4.

We now rephrase this as a spectral analysis problem. The data Xij can be
thought of as a function defined on the set of ordered pairs X == {(i, j) 1 ::; i ~
I, 1 ::; j ::; J}. The group G == SI X SJ (where Sn is the symmetric group on n
letters) acts transitively on the ordered pairs. This gives a representation of SIX
SJ on L(X) which is just the product of the usual I dimensional representation
we called MI-1,1 of SI with M J -1,1 of Sl. Now MI-1,1 splits into the constants,
and an I-I dimensional irreducible. We write M I - 1 ,1 == SI EB SI-1,1. So
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M 1- 1 ® MJ-1=(SI EB SI-l,l)®(SJ EB SJ-l,1)=TrivEBS1-1,1 ® TrivEBSJ-1,1 ® TrivEBS1-1,1 ® SJ-l,l

dim IxJ 1 I-I J-l (/-l)(J-l)

The observed array Xij is just a vector in L(X). The projection of x into the
invariant irreducible subspaces gives the usual ANOVA decompositon: the pro­
jection onto the one dimensional space of constants is the array with constant
entry x ... The projection onto SI-1,1® triv is onto all arrays which are constant
in each row, with the constants summing to zero. These constants are Xi. The
final space is spanned by the residuals Tij.

The lengths of these projections give the usual sums of squares required for
the classical ANOVA table. The dimensions of the various irreducible subspaces
give the degrees of freedom for the classical F tests.

Example 2. Two way ANOVA with repeated entries - wreath products. In this
example, data are collected in a two way array, but k observations are collected
at each level of the two factors. It is intuitively clear that the appropriate group
of symmetries allows permutations of rows and columns and, within each row and
column, an arbitrary permutation of the k elements in that cell among each other.
To write this down neatly, it is useful to introduce the notion of wreath product.

Let G be any group and H a subgroup of Sn. Define a group G wr H as
follows. The group consists of the set of elements in Gn XH == {(91, 92, ... , 9n; h)}.
The product of two elements is

(91, · · ., 9n; h)(g~, · · ., 9~; h') = (glg~-1(1)' · · ., gng~-l(n); hh').

Th ·d t·t · ( . .. ) ( h)-l (-1 -1 h- 1 )e 1 en 1 y IS 'tG,···,'tG; 'tH, gl,···,9n; = gh- 1(1), ... ,9h-1(n); .
The subgroup Gn sits in G wr H as a normal subgroup. H sits in G wr H as
{(iG , ... ,iG ; h)}. G wr H is the semi-direct product ofGn and H.

For an I X J table with k replications per cell, the natural symmetry group
is Sk wr(SI X SJ). The representation theory of wreath products is completely
known in terms of the irreducible representations of G and H. A reasonable
treatment is Chapter 4 of James and Kerber (1981). When this theory is applied
to ANOVA there are no surprises; the decomposition is the one derived in all
standard texts; see Example 4 below for a special case.

Example 3. The Diallel Cross Design. This design is used by animal or plant
breeders to find new hybrid species of known species. Consider n known types
of plant. Form all (~) crosses of distinct strains. The data are some measurable
characteristic of each offspring (yield, size, etc.). Here the data are indexed by
unordered pairs {i,j}. The natural symmetry group is Sn; the standard ANOVA
decomposition corresponds to the decomposition of what we have called Mn-2,2 ~

sn EB sn-1,1 EB sn-2,2.

We will return to examples after a general definition of the symmetry group
of a designed experiment.

2. A systematic approach. In the examples above we just wrote down a group
and showed how spectral analysis gave "the usual" ANOVA.

Alan James (1957,1982) and Ted Hannan (1965) introduced ideas to relate an
algebraic object to a designed experiment. Gleason and McGilchrist (1978) give
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a more detailed account of these ideas. Lederman (1967) independently pointed
out the connection between ANOVA and representation theory.

Peter Fortini (1977) extended these ideas to give a reasonably systematic
theory. His work associates a group in a natural way to an experiment given in
terms of classical factors. Then spectral analysis can be used as before. Here is a
brief account of Fortini's ideas.

Let X be a finite set. We will work with observations indexed by X.

Definition 1. A factor f of the design indexed by X is a set valued map
from X to the elements of a finite set F. If IXI = N, IFI = k, a factor can be
described by an N X k matrix I where Ixl = 1 if f E I(x), IXl = 0 otherwise. A
multifactorial design is a set X and a collection of factors (/1, F1), ... , (Ik, Fk).

Definition 2. The automorphism group G of a multifactorial design is the
group of all permutations 9 of X with the property that for each factor li there
is a permutation gi of Fi such that li(gX) = gi(fi(X)).

Thus, if x is associated with levels li(X), gx is associated to levels 9ifi(x).
The outcome set V of a numerical experiment indexed by X is the set of all
real valued functions on X. This has basis ex, and we have the permutation
representation of G acting on V. An analysis of variance is a decomposition of V
into a direct sum of irreducible invariant subspaces Vi. The projections of v E V
onto Vi are called main effects. The squared lengths of these projections form the
ith line of an ANOVA table: the number of degrees of freedom of the ith line is
dim Vi.

Example 4. Two treatments with two objects per treatment. To understand the
definitions, consider comparing two treatments: A or B with two objects for each
treatment. Take X to be the set of four objects, labeled {1,2,3,4}. There is one
factor - did the object get treatment A or B? Suppose that objects 1 and 3 get
treatment A and objects 2 and 4 get treatment B. The factor matrix is

A B
1 1 0
2 0 1
3 1 0
4 0 1

The permutations of X that are in G are id, (1 3), (2 4), (1 3)(2 4), each associated
with the identity permutation of factors A and B, and (1 2)(3 4), (1 4)(2 3), (1 2
3 4), (4 3 2 1) each associated with transposing A and B. We thus get an eight
element automorphism group. Observe that the group is the symmetry group of
the square
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It is often called D 4 - the dihedral group on four letters. Observe too that if
we think about the problem directly, as we did before, the "obvious" symmetry
group is S2 wr S2. This is an eight element group which is isomorphic to D 4.

How does the four-dimensional space V decompose? Here, the decomposi­
tion is obvious, but as an exercise, we follow Fortini and derive the result using
character theory. The character table for D 4 is in Chapter 5 of Serre (1977):

Perm
Class Xl X2 X3 X4 Xs rep.

1 1 1 2 1 1 4
(1 3)(2 4) 1 1 -2 1 1 0

(1 2)(3 4), (1 4)(2 3) 1 -1 0 -1 1 0
(1 3), (2 4) 1 -1 0 1 -1 2

(1 2 3 4), (1 4 2 3) 1 1 0 -1 -1 0

Looking across the first row, there are 5 distinct irreducible representations, four
of dimension 1 and one of dimension 2. Which of these appear in the permutation
representation? The character of the permutation representation is the number
of fixed points of G acting on X. This is given in the last column above. The
multiplicity of Xi in the permutation representation is given by

We get ml = 1, m2 = 0, m3 = 1, m4 = 1,ms = o. Thus, V = VI EBV2 EBV3 • VI is
the 1 dimensional grand mean space, V2 is the space: {y E V: (Yl +Y3)-(Y2+Y4) =
O}. It represents the difference between the average of the group means. The space
V3 is a 2 dimensional space of "what's left over."

Example 3. revisited. The need for factors taking more than one value on a
given observation is well illustrated by the diallel cross. Here X = {{i, j}; i ~ j}.
F = {1,2, .. . ,n}, and !{i,j} = {i,j}. Thus the matrix has two ones in each row.
The automorphism group is a subgroup of Se;). A bit of reflection shows that it

is Sn, and that V is what we have been calling Mn-2,2.

Example s. Balanced incomplete blocks. Let us begin with an example taken
from Cochran and Cox (1957, pg. 443) on the effects of aging on the tenderness
of beef. Six periods of storage (0, 1, 2, 4, 9, and 18 days) were tested. These
treatments are denoted 1, 2, 3, 4, 5, 6 respectively.
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To facilitate comparison, roasts from symmetric locations (left/right sides)
were paired into blocks of size 2. There are 15 = (~) ways to treat a pair. Scoring
was done by 4 judges, each marking on a scale from 0 to 10. The data shows their
totals out of 40, a high score indicating very tender beef.

1 2 345 6 7 8
{1,2} {3,4} {5,6} {1,3} {2,5} {4,6} {1,4} {2,6}
7 17 26 25 33 29 17 27 23 27 29 30 10 25 26 37

Block
Pair

Scores
Block
Sums 24 51 62 44 50 59 35 63

Block 9 10 11 12 13 14 15
Pair {3,5} {1,5} {2,4} {3,6} {1,6} {2,3} {4,5}

Scores 24 26 25 40 25 34 34 32 11 27 24 21 26 32
Block
Sums 50 65 59 66 38 45 58

Thus block 1 was given treatments 1 and 2. The roast receiving treatment 1
was rated at 7. The roast receiving treatment 2 was rated 17.

The first thoughts for such an analysis run as follows: It is natural to compute
the sum for all roasts receiving treatment i:

Treatment 1 2
Sum 70 115

345
132 139 158

6
155

This suggests longer aging improves tenderness, the effect perhaps peaking at
treatment 5 (9 days).

Now it is natural to try to see if there is a block effect: roasts from different
location vary in tenderness, and if one of the treatments was tried on more tender
blocks, this would favor the treatment.

The natural adjustment subtracts from the ith treatment total the sum of
the block averages (here block sum/2) for the blocks containing the ith treatment.
Chapter 5 of Scheffe (1959) gives a careful, clear description. In the example, the
adjusted sums are

Treatment 1 2 3 4
Adjusted Sum -33 -5.5 4 8

5 6
15.5 11

These now sum to zero.
Here, the adjustment doesn't affect the conclusions drawn above. We leave

further details to Cochran and Cox who carry out the usual analysis and conclude
that storage up to about a week increases tenderness.
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In general, there are t treatments to be compared in blocks of size k < t. An
unreduced balanced incomplete block design involves all possible (~) blocks and so
k(t) basic units (in the example, t = 6, k = 2 and 30 roasts were involved).

One natural way to index such data is as a pair (i,s) with 1 :s; i :s; t denoting
the treatment applied to that unit, and s of cardinality Isl = k - 1 denoting the
subset in the same block as the given unit. Thus X = {(i, s)} and IXI = t(~=~) =
k(%).

The group St that permutes treatment labels operates transitively on X, and
we see that L(X) can be identified with M t -k,k-1,1 of Chapter 7. Another way
to arrive at this result begins with the idea that this experiment has two factors:
"treatments" 11 (i, s) = i, and "blocks" 12 {i, s} = {i Us}.

What automorphisms are possible? A little reflection shows that only permu­
tations that permute treatments among themselves are allowed; treatments that
permute things within a block are ruled out and allowable treatments that move
blocks around can be achieved by permuting treatments. Thus the automorphism
group is isomorphic to St.

The decomposition now follows from Young's rule. Before stating the result,
let us examine the introductory example on aging of meat. Here t = 6, k = 2, and
we have

M 4,1,1 = S6 Ea 2S5,1 Ea S4,2 Ea S4,1,1

dim 30 1 2 X 5 9 10

(see Case 2 of Section B-2 above). The projection onto the one dimensional space
S6 is the grand mean. The treatment effects can be identified as one of the
S5,1 spaces. The block effects space, orthogonal to S6 Ea S5,1, is S4,2 (the full
I5-dimensional block effect space M 4,2 = S6 Ea S5,1 Ea S4,2). These projections
constitute the class.ical analysis for this experiment, projecting into treatment and
blocks adjusted for treatment.

The remaining SS,l gives a new piece of analysis due to Fortini. To give it
a clear interpretation let us change the imagery. Suppose there are 6 amounts
of vanilla added to ice cream (from none to a fair amount). Fifteen people each
taste two servings each in a balanced incomplete block involving 30 servings in
all. The treatment effects are interpreted as before. The block effects become
subject effects - some people are systematically higher than others.

The classical analysis assumes that treatment and block effects are additive.
However, this would fail if tasters give ratings partially by comparison. The 2nd
copy of SS,l can be interpreted as the additive effect on the rating of treatment i
due to being in the same block with treatment j.

In tasting examples, this (and its higher order analogs described below) makes
perfect sense. In the aging/tenderness experiment it seems perfectly sensible to
set this effect to zero as is done classically.

To decompose Mt-k,k-l,l in general, Young's rule begins with t - k ones,
k -1 twos, and one 3. These are placed into any arrangement as a tableaux which
is non-decreasing in rows and strictly increasing in columns. Thus

k-l k-l
Mt-k,k-I,I = st EB 2St- j,j Ea St-k,k EB st- j-I,M.

j=l j=l
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It being understood that any improper partition above doesn't contribute.
Fortini (1977) used this decomposition to build a class of standard linear

models for which the decomposition gives the appropriate ANOVA. Calvin (1954)
seems to be the first paper to extend the classical model to try to cope with this
kind of non-additivity.

Example 6. The projective plane. As a final topic for this section we recall
that there are many further types of block designs. For example, to compare 7
treatments, with block size 3, the following classical design can be used:

{123} {345} {156} {246} {147} {257} {367}.

Here, each pair appears together in exactly one block, so the same type of
block/treatment analysis is available.

This design is constructed as the set of lines through the origan in the vector
space Z? Each plane contains 3 points which gives rise to the blocks. These are
edges in the figure below.

100

5

1

001
2

011
3

010

The group of this design is GL3 ( Z2), a well studied simple group of order 168. For
someone wishing to learn a little group theory, decomposing L(X) makes a nice
exercise. L(X) is 21-dimensional. It decomposes into 4 irreducible pieces: the
trivial representation, a 6-dimensional space of treatment effects, a 6-dimensional
space of block effects, and an 8 dimensional irreducible space of residuals.

EXERCISE 5. Prove the assertions about L(X). Hints: argue that GL3(Z2) acts
doubly transitively on lines and planes in Z? Using the "useful fact" in Chapter
7A, this gives two irreducible 6-dimensional representations of GL3 • Now consider
X = {(i, p): i a point, p a plane, i E p}. Show that GL3 acting on X X X has 4
orbits. Now use the "useful fact" of Chapter 7 to argue that L(X) decomposes
into 4 irreducibles.
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This example is the tip of the iceberg called combinatorial design. Lander
(1982) is a nice reference for the construction of block designs. Beth, Jungnichel,
and Lenz (1986) is a recent encyclopedic reference. It seems like a worthwhile
project to go through the classical designs, compute automorphisim groups, and
compare the spectral decomposition with classical ANOVA.

D. THOUGHTS ABOUT SPECTRAL ANALYSIS.

This chapter builds on two well established traditions: the analysis of variance
and the spectral analysis of time series. The new applications and variations of
classical areas such as block designs should be regarded speculatively.

There is much of value in the parent theories as they appear in modern
practice which I have not thought through in sufficient detail to carry over. This
section outlines some of these techniques.

1. Why projections onto invariant subspaces? It is an empirical fact that the
decomposition of data indexed by X into irreducible pieces is sometimes scientif­
ically useful. Let me make an attempt to explain this. There is no one right way
to analyze data. The spectral decomposition presents certain averages of the data
which often seem sensible. The set of all averages is a 1-1 function of the data, so
nothing is lost. Often the specific labeling of X is fairly arbitrary, and we would
rather not have our conclusions depend on this labeling. In other circumstances,
the order is worth taking into account, but it is useful to separate the part of the
analysis that depends on the order from the part that is invariant under G.

Data indexed by X are represented by a function on X. Sometimes this
function takes values in the integers, as in the case of counted data: "how many
people in the population chose X?" Even here we want to be able to talk about
averages and differences of averages, so we need to consider functions from X into
the rationals Q. For the permutation group, the splitting of a representation over
Q is the same as its splitting over the real or complex numbers.

Our function thus naturally sits in L(X): the set of all complex valued
functions. A subset of L(X) can be thought of as a partial description. In practice
these will be things like the constants or "first order functions;" sets of functions
that are simple to describe or interpret. If the actual f can be well approximated
by a simple I we regard this as useful. If I is "first order" and 9 is "first order"
it seems natural that ~ f or f +9 be the "first order" since, for example, f +9
has the interpretation of combining the two data sets (for counted data). This
suggests that a basic partial description be a subspace of L(X).

Finally, if G acts on X we want to consider descriptions that don't depend
on the labelling: it seems unnatural that I(x) could be "first order" but not
f(gx). Thus a natural descriptive unit is an invariant subspace of L(X). Then
spectral analysis is the decomposition of f( x) into its projections on the irreducible
invariant subspaces of L(X), and the approximation of f( x) by as small a number
of its projections as give a reasonable fit.

Of course, this kind of linear analysis is just a start. Non-linear analyses may
also be most useful (see Section (4) below). These are easiest to interpret if they
have a simple connection to the linear theory (log f may be well approximated
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by a simple linear fit).
2. On the choice of group. Spectral analysis begins with a group G acting on

a set X. In some areas, like ANOVA, there is some theory to guide the choice of G.
In other areas, like time series, physics dictates the choice. In new applications,
there may be several possible groups among which to choose.

Clearly if G acts on X and H is a subgroup of G, the splitting of L(X) into H
irreducibles is finer than the splitting under G. Choosing the smallest group that
preserves essential structure gives the largest number of projections. Preliminary
analysis may start with larger groups.

Consider a two way I X J array. The group that gives classical ANOVA
is SI X SJ. Another group that operates transitively is ZI X ZJ, operating by
cyclically shifting each coordinate. A third transitive action is given by SI X ZJ.
Any of these groups might be appropriate. ZJ preserves adjacency (or time order)
while SI invariance says adjacency isn't relevant. Thus SI X ZJ might be deemed
natural for a problem in which the rows index types of bird, the columns index
months of the year, and the entries are number of birds sighted in that month by
a local bird watching society.

EXERCISE 6. Derive the appropriate spectral analysis for SI X ZJ.
As a second example, consider X == Z~. Four groups act naturally on this

space: Z~, G L k (Z2), Z2 wr Sk, and Z2 wr Zk. We consider these in turn.
a) Under Z~, L(X) == Et) Vy where Vy is the one dimensional space spanned

yEX

by x ~ ( -1 )Xoy
• Here spectral analysis amounts to the Fourier inversion theorem

f(x) = 21k L( -lY'Y j(y).
y

b) GL k (Z2) acts doubly transitively on X, so by Serre's exercise (2.6),

L(X) == Vo ffi VI

with Vo the constants and VI == {f: ~f(x) == O}.
c) Z2 wr Sk (see Section C for notation) is the group of pairs (y,1r) with

1r E Sk, Y E Z~ acting on X by (y,1r)x == (X 1r-l(I) + YI, ... ,X1r-l(k) + Yk): you
permute the coordinates by 1r and add y. It is straightforward to show that

with Vj the linear span of (_l)X oy for Iyl == j. Thus spectral analysis under Z2 wr
Sk lumps together pieces of the spectral analysis under G == Z~.

EXERCISE 7. Show that L(X) splits as shown for Z2 wr Sk. Find the decompo­
sition with respect to Z2 wr Zk.

3. On probability. The data analytic approach to spectral analysis presented
in this chapter is not based on probability. Spectral analysis is a reasonable, useful
activity if f is not a sample, rather a complete enumeration of a population. Thus,
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nothing is unknown, but there may still be plenty to do in condensing the data so
that simple descriptions can be given. This point of view follows Tukey (1977).

Of course, there are many opportunities for probability to play a role. When
we informally assess goodness of fit in a linear approximation such as f( i, j) ==
a + bi + Cj, we compare the residuals rij = f(i,j) - a - bi - Cj, with the main
effects a, bi , Cj. If residuals are small, we regard the approximation as useful. The
standard tests and confidence interval procedures are formalizations of this idea.

There is much more to do in constructing a believable probabilistic theory
for spectral analysis. For example, the data f(x) might be a sample from a
larger population F(x). If the sample size is small, there is no reasonable hope
of estimating F, but one can hope to estimate some simple functionals of F such
as its projections onto a few subspaces of interest. How the dimensionality of the
subspaces should relate to the size of X and the sample size seems like a rich
interesting question. Finch (1969) makes a start on these questions. See also the
discussion in Section 3 of Diaconis (1985).

In some instances the bootstrap offers a reasonable way to wiggle data a
bit. There are two obvious ways to bootstrap - sample iid from f( x) to get
flex), f 2(x), ... , fb(x), or fit a model and bootstrap residuals. Freedman (1981)
describes these alternatives in regression problems. Of course, all of this is tied to
some sampling like story. Without a believable sampling justification (as in com­
plete enumeration problems) I find the bootstrap far too violent a perturbation
of the data. Diaconis (1983) suggests less drastic perturbations.

I have been impressed with the usefulness of the basic normal perturbation
model outlined in Section A-3. This serves as an accurate approximation for all
sorts of schemes for quantifying "if the data had come out different, how would
my conclusions differ?" or "if I had more data, how close is my best guess likely
to be?"

Some further discussion of the need for probability is given later. It is worth
emphasizing that spectral analysis can be useful without underlying probabilistic
structure.

4. Lessons from ANOVA. A basic component of ANOVA is a test to see if
projection of a given function onto a given subspace can be assumed to be zero.
The standard test involves comparison of the observed projection with an estimate
of "ambient noise" - usually the normalized length of the projection of the data
onto the space of residuals. If the ratio of lengths is "large", then the projection
cannot be asserted to be zero. Usually, "large" is quantified under the normal
perturbation model of Section A-3.

Terry Speed (1987) gives an elegant survey of this material delineating a
natural class of perturbation models involving patterned covariance matrices, for
\vhich the orthogonal projections in fact give the maximum likelihood estimates.

An important idea from classical ANOVA deals with fixed versus random ef­
fects. As data analytic motivation, consider a two way array with one observation
per cell. Suppose the rows are different brands of typewriters and the columns
are different typists. The Xij might be average speed. If we are trying to evalu­
ate typewriters, then the row averages are basic. It may be that the typists are
thought of as drawn from a pool of typists. Then, the column averages are not of
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particular interest - they are thought of as random effects. Their mean, variance,
or distribution may be of interest as information about the population of typists.
Tukey (1961) contains an interesting discussion of the distinction between fixed
and random effects and its impact on ANOVA and time series data.

Modern ANOVA employs a wealth of non-linear techniques. These begin
with transformations of Xij to T(Xij) aiming for linearity. Box and Cox (1964)
or Hoaglin, Mosteller, and Tukey (1983, Chapter 8) give the basics. This is often
supplemented by fitting more complex models such as

as in Tukey (1949) or Mandel (1961). Stein (1966) gives a decision theoretic
version.

More aggressive transformation techniques involving splines or more complex
smoothers appear in approaches like projection pursuit (see, e.g. Huber (1985) or
Henry (1983)) or Ace (see Breiman and Friedman (1985), Stone (1985), or Hastie
and Tibshirani (1986)). None of these techniques are well tried out in ANOVA
settings, but all seem worth thinking about and extending to other instances of
spectral analysis.

Another important aspect of modern statistics is a concern for robustness ­
it may be that observed data is well approximated by a linear fit except for a few
"wild values." For methods based on linear projections, even one wild value can
foul up everything, making it seem as if no linear fit works.

One approach to these problems is to replace the usual averaging operators by
robust versions such as medians. Hoaglin, Mosteller and Tukey (1985, Chapters
2-5) contains a good review. It is not at all clear if these approaches can be
adapted to more complex designs which really lean on the additivity. Another
approach is to try to remove or down-weight the outliers. Other approaches
involve using perturbation distributions that are longer tailed than normal. Pasta
(1987) contains a review of the problems and available remedies. It is fair to say
that even for ANOVA this is a difficult problem, on the cutting edge of current
research.

Here is another contribution of modern statistical theory to ANOVA. We
now realize that while the projections have many appealing properties, they are
not the most accurate estimates of population projections under the usual normal
model. Non-linear shrinkage estimators can do better than the classical linear
estimators. Stein (1966) shows how to modify the usual estimators in orthogonal
designs to get improvement. I do not know of a systematic account for more
general designs.

The Bayesian analysis of ANOVA data is important on its own - we often
know quite a bit and want a way to combine this prior knowledge with the obser­
vations in a sensible way. Box and Tiao (1973) cover the basics. Consonni and
Dawid (1985) give group related theory.

The Bayesian techniques give a reasonable way to get shrinkage estimates,
possibly using conjugate priors and empirical Bayes ideas as surveyed by Morris
(1983). Berger (1985, Chapter 4) surveys the recent literature on estimating a
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normal mean. Again, most of these ideas are applicable in ANOVA and other
spectral analysis problems but the details need to be worked out on a case by
case basis.

An important problem that must be dealt with is missing data. The algebraic
theory of ANOVA works neatly if things are neatly balanced. With a two-way
layout and unequal numbers of observations per cell, there are no longer simple
form~las for many quantities of interest. It is not unusual to have symmetry
broken by having some subjects get sick or be lost for other reasons.

A rich collection of techniques has evolved for dealing with these problems.
A most useful tool for computing "projections" has evolved as the EM algorithm
of Dempster, Laird and Rubin (1977). They survey the literature. Dodge (1985)
gives some special techniques for ANOVA problems.

There is some very recent work which relates the approach taken in this
chapter to some of the mathematics of Chapter 3-F. In working with stochastic
models for designed experiments, many workers have emphasized the importance
and utility of "general balance." This is a condition introduced by Nelder (1965)
which links the "design" part of the experiment to the structure of the assumed
model. When the condition holds, all sorts of elegant formulas for computing best
linear unbiased estimates are available. A recent survey of this material is given
by Houtman and Speed (1983).

Recently, Bailey and Rowley (1986) have given a useful sufficient condition
on the group of symmetries of the design (the definitions are a bit different than
those in Section C) which forces generalized balance. There are too many details
needed to state their results carefully. Very roughly, the group of symmetries acts
on a space T of treatments, and the representation L(T) must be multiplicity
free (see Chapter 3F). The Bailey and Rowley paper is very clearly written and
connects wonderfully with the material in this monograph.

5. Lessons from time series. Spectral analysis of time series and other sig­
nals is widely applied and has an enormous literature. Robinson (1982) surveys its
history. It differs from ANOVA in having numerous hard science manifestations.
Indeed, in some speech, geophysics, and signal processing applications the spec­
trum is naturally observed. Brillinger (1988) contains a list of such applications.

It is natural to try to emulate the success stories of spectral analysis for other
groups. It seems fair to admit that at present there is no underlying "physical
justification" for the spectral decomposition in other cases. None the less, it seems
promising to try to plug into the experience and imagery of the established theory.

For example, it is well known that the periodogram (essentially the squared
discrete Fourier transform) is not an accurate estimate of the amplitude of the
Fourier transform at given frequency. It is asymptotically an exponential variable,
and so not consistent as time goes on. Under smoothness assumptions on the
underlying spectrum, smoothing the periodogram becomes sensible and leads to
reasonable estimators. Olshen (1967) gives details.

The same problem is present in other spectral analyses. Under the normal
perturbation model the Fourier transform has independent coordinates with fixed
variance (see Example A-3). This continues to hold under broad alternative per­
turbation models. Without repeated observations, there is a limit to the accuracy
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of estimates. Thought of in the ANOVA context this is not surprising - we can
only hope for an accurate indicator of variability. We can think of formulating
natural smoothness assumptions to allow increased accuracy.

When applicable, the sampling model is a natural replacement for signal plus
noise - the Fourier transform applied to a population is simply a 1-1 transform
and so gives a natural parameter to estimate.

Time series has goals in addition to estimating the spectrum at a point.
In continuous time problems, there can be a continuous spectrum, and many
other functionals are relevant. Tukey (1986) emphasizes this aspect and points
to properties of ensembles of time series that are of scientific interest. For ranked
data, there is an obvious prediction problem: how will a complete enumeration
(or larger sample), turn out? More in line with time series, prediction might
be this: people partially rank several quantities; later their true preferences are
revealed. How good a guess can be made based on current knowledge?

Time series analysis has a time domain side which is based on models for
the observed process. There is a healthy interplay between time and frequency
domains. This is presented by Anderson (1971) or Priestly (1981). As with
ANOVA, it's nice to see natural projections have an interpretation as reasonable
estimates of parameters in a model. Models for data on homogeneous spaces
are introduced in the next chapter. There hasn't been any serious work on the
interplay with spectral analysis.

There are many modern versions of spectral analysis of time series. There
are remedies for all of the problems discussed in the ANOVA section. It seems
impossible to survey this briefly. Anderson (1971), Brillinger (1975) and Priestly
(1981) are good references; leading to others. With work, most of these ideas
should be transferrable to other spectral domains when the need arises.

One final thought: real examples in hard science settings are a sparkling
part of time series analysis. If progress is to be made in generalization, similar
examples will have to be found.



Chapter 9. Models

Fitting models to data is a popular activity. For data taking values in a group
or homogeneous space, the associated representation theory gives neat families of
models. Briefly, if P(x) is a probability on X, write P(x) == eh(x) with h == log P.
Then expand h in a natural basis bi of L(X):h(x) == ~(Jibi(X). Any positive
probability can be expanded in this way. Truncating the expansion to a fixed
number of terms leads to families of simple measures or models; because bi are
orthogonal, (}i are identifiable.

It is an interesting fact that many models introduced by applied workers
fall into this class. The general story is presented first, then a specialization to
data on spheres, then a specialization to partially ranked data. A brief review of
other approaches to ranked data is followed by a section supplying the relevant
exponential family theory.

A. EXPONENTIAL FAMILIES FROM REPRESENTATIONS

Let G be a group acting transitively on a compact set X. Let L(X) denote the
real valued continuous functions on X. Suppose X has an invariant distribution
dx. The following abstracts an idea introduced by Lo (1977) and Beran (1979).

Definition. Let 0 be an invariant subspace of L(X) containing the constants.
Define a family of measures, one for each () E 0, by specifying the densities to be

Po(dx) = a((J)eO(x)dx,

where a((}) is a normalizing constant forcing Po (dx) to integrate to 1.
Suppose 0 is finite dimensional. Let bo =constant, bI , b2 , ••• , bp be a basis

for 0. Then the family can be parameterized as

LEMMA 1. The family * is well parameterized in the sense that Po = Po' if and
only if 0 =0' .

Proof. Only the forward direction requires proof. If Po = PO', then

(8 - 8') · b(x) = log(a(8') / a((})) for all x.

The left side is a linear combination of bI , b2 , ••• , bp which is constant. But
1, bI , b2 , ••• , bp is a basis, so () = 8'. 0

In applications there is a decomposition into invariant subspaces L(X)
Vo E9 VI E9 V2 E9 ... and 0's are chosen as a finite direct sum of subspaces. Usually
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these nest together neatly to form zeroeth order models (the uniform distribution),
1st order models, etc. The matrix entries of the irreducible representations then
provide a convenient basis.

The easiest example is for data on Z~. The exponential families that the
group theory suggests are exactly the log-linear models that statisticians fit to
2 X 2 ... X 2 tables (k factors). Here a person is classified via k dichotomous
variables. This gives rise to a vector in Zf or locates a cell in the table.

A useful entry to the statistical literature is provided by the first few chap­
ters of Gokhole and Kullback (1978). General contingency tables can be treated
similarly. Since this is such a well studied area, we will not pursue it further than
mentioning the important paper of Darroch, Lauritzen and Speed (1980). This
gives an elegant interpretation to setting (Ji = 0 for a large class of models. It
would be an important contribution to generalize their ideas to the general group
case.

The measure Fo(dx) governs a single observation. We model a sample of size
n by a product measure

n

P8(XI, X2,···, x n ) = IT P8(Xi) dx i.
i=l

The statistical problem becomes, given a model El, and observations Xl,

X2, ••• ,Xn , what is a reasonable guess for 8, and how sure are you about the
answer.

Remark 1. Crain (1973, 1974, 1976) suggested expansion of log P(x) in a
basis of orthogonal functions as a route to nonparametric density estimation. He
truncated the expansion at a point depending on sample size. This leads to an
approximate density in a finite dimensional exponential family as in the definition
above.

Crain's later papers give conditions on how large the cutoff point should be
to have the maximum likelihood estimator exist. These are discussed in Section
E below.

Remark 2. There is a growing literature on orthogonal series estimators ­
density estimators based on expanding the density directly as P(x) :::: ~(}ibi( x).
Hall (1986) makes noteworthy contributions providing simple useable estimators
and giving sharp rates of convergence. He gives pointers to the literature. Hall's
results can be carried over to problems on compact homogeneous spaces in a
straightforward way.

Orthogonal series estimators suffer from the possibility of negative density
estimates. This is why Crain worked with log P(x). It is a worthwhile project to
combine the ideas and bounds of Hall with the ideas of Crain.

Remark 3. One problem encountered with log P: it is badly behaved if P :::: o.
Consider a density on the circle. If P(x) > 0 outside an interval, things can be
rescaled and there is no trouble. If P(x) :::: 0 on several intervals the problem
can be treated as a mixture, but the log P approach is wearing out its welcome.
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There are so many other density estimates possible - from histogram's, through
kernel estimators, through projection pursuit.

On more gene'ral homogeneous spaces, problems with vanishing density seem
even less approachable.

Remark 4. The definition above is in terms of real valued functions. This works
fine for the symmetric group and its homogeneous spaces and for the orthogonal
group. In general, L(X) may be taken as all cO'mplex functions and a model may
be taken as an invariant subspace of L(X). Just as any real function on Zn can
be expanded in terms of sin(21rjk/n) and cos(21rjk/n), any real function on X
can be expanded as a real linear combination of the real and imaginary parts of
the matrix entries of the irreducible representations that occur in the splitting of
L(X).

Remark 5. The models intro.duced here blend in nicely with the spectral theory
of Chapter 8. They are the largest models which allow as sufficient statistics the
ingredients of the matching spectral analysis. See E-1 below.

Remark 6. The ideas set out above can be generalized in various ways. One
natural extension begins with a space X and a symmetric Markov chain P( x, dx)
on X. Symmetric chains can he orthogonally diagonalized, and the eigen vectors
provide a convenient orthogona,l basis for L(X). There are chains that don't
arise fro·m groups where this b·asis can h.e written explicitly. See Banni and Ito
(1986, 1987) or Diaconis and Smith (1987). It is not clear if these models can be
connected to the underlying chain.

A word of caution: I find the statistical community introduces models much too
easily. In some cases, there is a justification: "height is the sum of a lot of small
factors, so heights should be approximately normally distributed" or "the number
of accidents is the sum of a lot of roughly independent binomial variables with
small parameters, so accidents should be approximately Poisson." In some cases
linearity or physical justification (and repeated comparison with reality) justify
models: Gauss' discovery of Ceres, Bright-Wigner distributions in particle physics
or multinomial distributio,ns in genetics are examples.

Th'e cases where some slim justification is given seem alarmingly few to me.
Usually, one is contemplating some data and it model is chosen for convenience
as a way of doing data analysis. This is a curve fitting approach and is fine,
except that the p.roduct model assum-es independence. Further, the assumptions
ab·out P8(dx) may be a drastic oversimplification. One may well do b'etter looking
directly at the data using spectral analysis, or a convenient ad hoc ap-proach.

I must admit that I too find ad hoc modeling attractive and occasionally
useful - it seems like a most worthwhile project to try to isolate what good comes
out of the modeling paradigm an·d attempt to build a theory that optimizes this
good instead of behavior in El, non-existent fantasy lan·d of iid repetitions.
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B. DATA ON SPHERES.

Spherical data is discussed in Chapter 5-C. One important special problem
is testing for uniformity. A large number of special tests have been suggested.
These are reviewed by Mardia (1972) and Watson (1983). We discuss here one of
the earliest tests and follow its later developments.

Let Xl, X 2 , ••• , X n be unit vectors on the sphere BP in p dimensions. Define
the sample resultant R and sample mean direction U(8) by

1~ --
- L.J Xi = RU(8).
n i=l

Intuitively, if Xi are uniform, R will be "small" because there will be a lot of
cancellation. If Xi are non-uniform and cluster around some point, then R will
be "large." Rayleigh (1919) worked out the distribution of R under the uniform
distribution and could thus propose a test "reject uniformity if R > r" where r
is chosen to achieve a given proportion of false rejections. A nice derivation of
Rayleigh's results is given by Feller (1971, pg. 32).

Questions and alternate tests immediately suggest themselves. Observe that
Rayleigh's test is invariant: R does not change if Xl, X 2 , ••• , X n , are replaced
by rXl, ... , r X n , r orthogonal. On the negative side, Rayleigh's test would not
be appropriate if the Xi tend to cluster either close to a point or its antipode.
When is this test a good one? Some answers have come from statistical theory.

Independent of Rayleigh, a class of natural non-uniform distributions was
developed and used by Von Mises and Fisher. These have the form

with x E BP, dx the uniform distribution, JL E BP, and k 2:: o. The normalizing
constant is

Cp( k) = k(p-l)/2 / (21r )p/2 I(p-I)/2 (k)

with I r ( k) the modified Bessel function of the first kind.
The PJ.t,k have "mean direction" JL and as k increases are more and more con­

centrated about JL. They arise naturally from the first hitting place of a Brownian
particle with drift on the sphere. Watson (1983, Chapter 3) discusses this and
other justifications.

A nice result is that the likelihood ratio test of

Ho: k = 0 vs. HI: k > 0, JL unknown

reduces to Rayleigh's test. Further, Rayleigh's test is the uniformly most powerful
invariant test of uniformity versus PJ.t,k(dx). These results are due to Beran (1968)
who discusses their analog on compact homogeneous spaces. Gine (1975), Wellner
(1979), and Jupp and Spurr (1985) amplify and develop these ideas. Closely
related developments in the signal processing literature are surveyed by Lo and
Eshleman (1979).
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These developments give a pleasing answer to the original question: when is
Rayleigh's test good - it's good if data cluster about one point JL in a spherically
symmetric way.

Remark. I cannot resist reporting some background on Fisher's motivation for
working with the distribution discussed above. This story was told to me in 1984
by the geologist Colin B. B. Bull. Dr. Bull was a student in Cambridge in the
early 1950's. One day he ran across the street in haste and knocked an old man
off a bicycle! The old man seemed dazed. When asked where he was bound
he replied "India." It turned out to be R. A. Fisher who was meeting a train
enroute to a visit to the Indian Statistical Institute. A month later, Bull met
Fisher at Cambridge and again apologized. Fisher asked what area Bull worked
in. Bull explained that a group of geologists was trying to test Wegener's theory
of continental drift. Wegener had postulated that our current continents used to
nest together. He tested this by looking at the distribution of a wide variety of
bird, animal and plant life - arguing that matching points had close distributions.

Geologists found themselves far afield in trying to really understand We­
gener's arguments. They searched for data that were closer to geology. They had
hit on the distribution of magnetization angle in rocks. This gave points naturally
distributed on the sphere. They had two distributions (from matching points on
two continents) and wanted to test if the distributions were the same.

Fisher took a surprisingly keen interest in the problem and set out to learn
the relevant geology. In addition to writing his famous paper (which showed the
distributions were different) he gave a series of talks at the geology department to
make sure he'd got it right. Bull told me these were very clear, and remarkable
for the depth Fisher showed after a few months study.

Why did Fisher take such a keen interest? A large part of the answer may
lie in Fisher's ongoing war with Harold Jeffries. They had been rudely battling
for at least 30 years over the foundations of statistics. Jeffries has never really
accepted (as of 1987!) continental drift. It is scarcely mentioned in Jeffries' book
on geophysics. Fisher presumably had some extra-curricular motivation.

The motivation for Rayleigh's and Von Mises' work seems equally fascinating!
Watson (1983, Chapter 3) gives a good set of pointers.

There is a second family of probabilities on BP that has received a good deal
of attention. The Bingham densities are defined on BP as

bp(D) exp{tr[DR'xx'R]}dx

where D is a p X P diagonal matrix with (p, p) entry zero, and R is a p X P
orthogonal matrix.

These densities are invariant under x ---+ -x and so are possible models for
unsigned directional data - lines in RP (or points in projective space). A host of
properties and characterizations of these densities are known.

Beran (1979) points out that both the Fisher-Von Mises and Bingham families
fit nicely with the definition of models given in Section A. Here, the group SO(p)
of p X P orthogonal matrices with determinant 1 operates transitively on the space
X = BP. Take L(X) as the continuous real valued functions on X.



172 Chapter 9C

Let Pk be the homogeneo·us polynomials (in RP) of degree k. Let M k be the
P2

subspace of harmonic functions in Pk : Mk = {f: \/2 f :::: O} where \12 = E /;re
i:o::l I

Thes·e Mk are invariant and irreducible under the action of SOp. Further, L(X) =
ffik£oMk as a Hilbert space direct sum. Proofs are in Dunkl and Ramirez (1971).

Following the definition, Mo - the zero-th order model gives only the uni­
form distribution. Mo ffi M1 - the first order models is o;bviously spanned by
1, X1,X2, ••• ,xp (these are all killed by \]2). The associated exponential family
is the Fisher-Von Mises family.

A second-order model is defined by Mo ffi M 1 ffi M 2 • B·eran (1979) sh·ows these
are spanned by{XiX j}- {x;}, giving the Bingham distribution. In general, a basis

r
for ffi M k consists of all distinct monomials of degree r a.nd r -- 1, excluding x;

k=()
if r is even or x;-1 if r is odd.

Some more technical discussion of estimates and their properties is given in
Sectio.n E below.

C. MODELS FOR PERMUTATIONS AND PAltT1ALLY RANKED DATA.

Begin with a data set on the symmetric group S"". Say I( 1r) is the proportion
of the data choosing rankn,g 1r. In working; with stlch data it seems natural to
begin by looking at first order statistics: the proportions ranking each item first,
or last, and more gen~rally the proportion ranking item i in position j. The
average rank given ecteh item is a popular summary which is a mean of these first
order statistics.

Paul Holland suggested working with the ex.ponential family throu..gh the first
order statistics in the ea.rly 1970's. This leads to

Holland's model. Let p be th'e n - 1 dimensional irreducible representation of Sn.
Let Mat(n - 1) be the set of all n - 1 by n, ..-- 1 real m-atrices. Define

P,(1f) := c(O)eTr [9 p(1r)]; for (J'E Mat(n - 1),

with c(8)-1 = ~1r eTr( 8(p( 11"» .

Remarks. These models are well parameterized by IJ E Mat(n -1) = R(n-l)2.

To give a.n example, consider a simple sub family:

This can be described intuitively as "there is some special chance of ranking item
1 in position 1; whether or not this is done, the rest of the permutation is chosen
uniformly.

If item 1 were carefully ranked, and then the others chosen at random, the
appropriate family would be

Holland's model exten.ds these considerations to a full first order model.
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Joe Verducci (1982) began with Holland's model and the observation that
(n -1)2 parameters is still a lot to work with and think about. He introduced some
natural low dimensional subfamilies and fit them successfully to real data sets.
One of his nice observations is that some of Mallows' metric models introduced
in Chapter 6-A-1 are subfamilies of first order exponential families.

Consider

Q)..(1r) = c(A)eAH(1r,rro) A E IR, H = Hamming distance.

For fixed 1ro, this is a subfamily of Holland's, taking () = Ap(1r01
). Of course, if

1ro is also treated as a parameter, the two models are different. Verducci observed
that replacing H by Spearman's S2 also gives a first order model.

Arthur Silverberg (1980) began to work with second order models using the
proportion ranking i, i' in position j, j'.Verducci (1982) realized the connection
with group representations could help sort out questions of when a model is full,
or well parameterized.

Silverberg worked with q-permutations, where people rank their favorite q out
of n. This would be data on Sn/Sn-q in the language of Chapter 7. Generalizing
slightly, let A be a partition of n. Let X = Sn/ SAl X SA2 ••. X SAk be the set or
partial rankings of shape A. Using Young's rule, and notation of Chapter 7,

L(X) = MA = EB k(vj >')SV
lI~n

where the sum is over all partitions v of n which are larger than A in the partial
order of majorization and k(v, A) is the multiplicity of 8 11 in MA. See the remarks
to Theorem 1 in Chapter 7A. Restricting attention to a few of the pieces in this
decomposition gives models of various sorts.

If A = (At, ... , Ak), the n -1 dimensional representation appears (k -1) times
(k( n - 1, 1); A) = k - 1). The direct sum of these k - 1 dimensional subspaces has
dimension (k - 1)(n - 1) and it spans the first order model.

Let us apply Young's rule to answer a question posed by Silverberg (1980) ­
what is the dimension of 2nd order models for q-permutation data. The partition
involved is n - q, 1q. Suppose that 2 ~ q ~ n - q. Second order models are associ­
ated with partitions (n - 2, 1, 1) and (n - 2, 2). By Young's rule, the multiplicity
of each in M t

q ,n-q is (~). By the hook length formula of Chapter 7, the dimension
of sn-2,1,t is (n - l)(n - 2)/2. The dimension of sn-2,2 is n(n - 3)/2.

If we also include the first order component, the dimension of the second
order model is

( -1) (q)(n-1) (q)n(n-3)qn +22 +22·

Of course, it is important to keep the pieces separated, both for computation and
inference.

The models discussed above have not been broadly applied. At present, there
are no simple processes that lead to these models, nor simple interpretations or
benefits from them. Since exponential families have such a good track record in
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these directions, it seems like a worthwhile project to study and develop properties
of low order exponential families on partially ranked data.

Some technical and practical aspects of the models in this section are dis­
cussed in Section E of this chapter.

D. OTHER MODELS FOR RANKED DATA.

The models proposed for ranked data in the previous section and the metric
models of Chapter 6 have a distinctly ad-hoc flavor to them. There have been
energetic attempts in the psychological literature to develop models for ranked
data that are grounded in some more basic processes. This section briefly describes
some of the models and gives pointers to the literature.

.To fix a problem, consider an experiment in which p tones are played for a
subject who is to rank them in order of loudness. It is an empirical fact that
even a single subject, asked to repeat this task on different days, gives different
answers. To account for this variability, Thurstone introduced an unobservable
"discriminal process" of the form UI +XI , U2 +X2 , ••• up+Xp where UI, U2, • •• , Up

are fixed constants, and Xl, ... , X p are random variables, independent with the
same distribution. It is postulated that on a given trial, a subject rank orders
tone i in position j if Ui + Xi is the jth largest.

Thurstone proposed normal distributions for the Xi. With a distribution
fixed, one can estimate best fitting Ui and compare data and model. There has
been a lot of experimental work showing a good fit for certain tasks. An extensive,
readable review of this work appears in Luce and Suppes (1965).

A second line of work stems from a simple model put forward by Luce (1959).
This postulates an unobservable system of weights Wl, W2, ••. ,wp• It is proposed
that a subject ranks items by choosing the first ranked item with probability
proportional to W i . This choice being I, the second ranked item is chosen with
probability proportional to {Wj} - WI, and so on.

This model has also been fit to data with some success. Holman and Marley
proved that if the underlying random variables Xi in Thurstone's approach have
an extreme value distribution P{X < t} = e-e-', -00 < t < 00, the resulting
choice probabilities are given by Luce model as well. Yellott (1977) gives refer­
ences, proves a converse, and suggests some intriguing open probability problems.

Yellott's results deal with location shifts of extreme value distributions. Louis
Gordon (1983) has observed a neat reformulation: consider the basic weights
Wl, • • · w p in Luce's model. Let YI , 1'2, ... Yp be independent and identically dis­
tributed standard exponential variables: P(Y > t) = e- t . Put a probability
on permutations by considering the order statistics of Y1/WI, ... , Yp/wp. Cordon
shows this induces the distribution of Luce's sequential model. Since the log of an
exponential variable has an extreme value distribution, this is a special case of the
results described by Yellott. Gordon shows how to use the representation to give
an efficient algorithm for generating random permutations from this distribution.

Independent of the literature cited above, Plackett (1975) developed a family
of non-uniform probabilities on permutations. Plackett's first order models are
the same as the Luce models. These are fit to some race horse data by Henery
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(1981). An order statistics version of Plackett's higher order model is given by
Dansie (1983). Plackett's motivation is interesting. One has available data on
the chance that a horse finishes first in a race. One wants to predict the chance
that the horse "shows" (finishes in the top 3). Plackett fit a model on the final
permutation using the first order data. This approach is the basis of several
believable systems for beating the races. See Zambia and Hausch (1984).

Models like Luce's have been extended, axiomatized, and tested by modern
mathematical psychologists. The extensions account for practical difficulties such
as the irrelevance of alternatives. If Luce's model is taken literally, one postulates
a weight associated to the ith object independent of the other choices available.
This easily leads to thought experiments generating data at variance with such a
model. The following example is due to L. J. Savage.

Suppose you are indifferent between a trip to Paris and a trip to Rome.
Thus w(Paris) == w(Rome). You clearly prefer Paris + $10 to Paris. On Luce's
model, if asked to choose between Paris, Paris + $10, or Rome, you choose Rome
about 1/3 of the time. Something is wrong here - it is unlikely that such a
small inducement would change things so drastically. Tversky (1972) gives other
examples and discussion.

One simple way around this objection is to allow the weights to depend on
the problem under consideration. Going further, after the first choice is made,
the second choice can be modeled by a new set of weights. But then any set of
choice probabilities can be matched exactly so no test of the model is possible.

Some interesting half-way houses have been worked out. For example, Tver­
sky (1972) describes choice by a hierarchical elimination process. Each alternative
is viewed as a collection of measurable aspects. To make a choice, one selects an
aspect with probability proportional to its measure. This eliminates all alter­
natives not possessing this aspect. The process continues until one alternative
remains. For example, in choosing a restaurant for dinner, we may first choose
type of food (e.g. seafood), then location, then price. Tverskyand Sattath (1979)
consider a subclass of these hierarchical models called preference trees which have
many appealing properties.

The present state of the theory is this - no one claims to have a reasonable,
believable and testable theory of how we perform ranking or choice. There is a
list of constraints and desiderata on potential theories. These offer insight into
choice behavior and rule out many naive suggestions. Thurstone's models and
Luce's model are seen as straw men which triggered these investigations. Slight
elaborations of these models have proven useful in horse race betting.

E. THEORY AND PRACTICAL DETAILS.

1. Justifying exponential families.

Return to the setting of Section A - exponential families on a space X. One
justification for these models Pe that statisticians have developed goes as follows.
Consider first a sample Xl, X 2 , •• • X n from such a family with unknown o. The
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sufficient statistics are

Any question about which () E 0 generated the data can be answered as well from
the averages bi as from the full set of data. Often a working scientist, or common
sense, will have reduced the data in just this way.

For example, if the data are n rankings of p items, it is natural to summarize
the data by collecting together the number of people ranking item i in position j.
This amounts to the first order models for permutations described in Section C
above.

If summarization is deemed sensible, one may ask for the richest or fullest
model for which this summarization is "legal." A classical theorem, the Koopman­
Pitman-Darmois theorem, implies that this is the exponential family Pe through
these sufficient statistics.

This line of thinking has several modern versions. The Danish school of
Martin-Lof-Lauritzen formalizes things as extreme point models. Lauritzen (1984)
contains a clear description.

A Bayesian version is given by Diaconis and Freedman (1984). Briefly, if
Xl, X 2 , • •• , X n (the data) are judged invariant under permutations (exchange­
able) and more data of the same type could be collected, then de Finetti's theorem
implies that the data were generated by a mixture of independent and identically
distributed variables. If the bi summarize the data, in the sense that given {bi } all
sequences Xl, ... , X n with these bi are judged equally likely, then an extension
of de Finetti's theorem implies the data are generated by a mixture of the ex­
ponential families introduced above. This brief description omits some technical
details but is correct for the examples introduced below. Diaconis and Freedman
also given versions of the Koopman-Pitman-Darmois theorem suitable for discrete
data. Diaconis and Freedman (1988) give versions for continuous data.

There is a related motivation in the non Bayesian setting when Xi are iid:
the maximum entropy distribution for Xl, ... , X n given the summaries {bi } is the
member p{} of the exponential family with 8 chosen so the mean of p{} equals bi .

See Kullback (1968) or Posner (1975) for details.
These justifications boil down to the following: if the data are collected and

it is judged reasonable to summarize by averages {bi } then the exponential family
Pe gives the only probability model justifying this summary.

2. Properties of exponential families. Consider a sample Xl, X 2 , ••• , X n

from Pe, where it is assumed () E RP. The maximum likelihood estimate of () is
a value {} which maximizes IT Pe(Xi). If X is finite this is an intuitively plausible
procedure. It also has the Bayesian justification of being the (approximate) mode
of the posterior distribution. Finally, it has quite a good track record in applied
problems. The log-likelihood function is

n

Ln(fJ) = fJ' L b(Xi) - n 1f;(fJ), 1f;(fJ) = -log a(fJ).
i=l
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From the standard theory of maximum likelihood estimation in regular exponen­
tial families (see for example, Barndorf-Nielsen (1978) or Brown (1987)), we have
(i) Ln(B) is strictly concave in B.

(ii) 'lj;(O) is analytic and \1 'lj;(O) = Ea(b(x», \12 'lj;(O) = cova(b(x», \12 'lj;(O) is
positive definite.

(iii) With probability one, there is an integer no = no(X1 , X 2 , • ••) such that the
MLE {j exists for all n ~ no. If the MLE exists, it is unique.

Crain (1974, 1976) gives results proving that, for continuous carriers,

• If the number of observations is larger than dim El, then the MLE exists .
• If dim El is allowed to grow with the sample size, then the "nonparamet­

ric density estimator" f*(x) = a(O*)eo*(x} (0* the MLE) converges to the
true sampling density. When X is finite this is clear, for eventually El be­
comes the set of all functions and f* (x) is then the frequency cell count for
a multinomial.

(iv) A necessary and sufficient condition for the existence of the MLE is that
n

hi = ~ 2: b(Xi) E int Hull (K), where K=range {b(x); x E X} C RP.
i=l

(v) The MLE {j exists iff the equations

1 n

EI/(b(X» = - L b(Xd
n i=l

have a solution. When a solution exists it is unique and is the MLE. Thus,
the MLE is that value of () that makes the theoretical expectation of t equal
its observed average.

(vi) The MLE is almost surely a consistent estimate of 0, and as n tends to infinity.
Further, for large n, the difference between {} and (J has an approximate
normal distribution:

This allows confidence intervals for (J, by using \]2 '1/;(8) -1 for the covariance
matrix.

(vii) We have Po(dx) = a(fJ)eO'bdx. The sufficient statistics are hi. Following
Crain (1974), consider a second expansion:

If the bi are orthogonal with respect to dx, then

In practice, ewill not have a nice closed form expression. It will have to
be determined numerically. There is a reasonable discussion of Newton-Raphson
(called the method of scoring) in C. R. Rao's (1965) book. Beran (1979) suggests
some other procedures as does Crain (1976).
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There has not been a lot of work on a reasonable Bayesian analysis for these
models. Consonni and Dawid (1985) develop some ideas which may generalize. A
second starting place is to consider, as in Diaconis and Ylvisaker (1979), conjugate
priors, and then their mixtures. There is probably some nice mathematics along
the lines of Diaconis and Ylvisaker (1983), but bringing in some group theory.

3. Introducing covariates. A. P. Dempster (1971) has suggested a reasonable
method of enlarging standard exponential families to include covariates. Suppose
X is a finite homogeneous space. We observe pairs (Xi, Zi), 1 ::; i ::; n where
Xi E X and Zi E RP is a covariate. Suppose that b1 , b2 , ••• ,bq is a basis for the
model as above. The analog of Dempster's suggestion is the following family of
probability densities (with respect to the uniform measure dx):

Here, of course Q is a normalizing constant and <Pij are p · q parameters to be
estimated. This amounts to the usual log-linear expansion

P
with Q = E <PijXj. Dempster discusses some of the calculus of such families, as

j=l

well as some of the numerical and philosophical problems associated to such mod-
els. Dempster's analysis is an early version of the currently popular generalized
linear model (GLM). See McCullagh and Nelder (1983). It may be that some of
these analyses can be easily run in GLM.
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