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Best Known bounds of the permutation codes under Kendall 𝜏-metric 

 

Definition: A Permutation Code of length 𝑛 is  a non-empty subset of 𝑆𝑛, the set of all permutations of 

[𝑛]: = {1,2, … , 𝑛}. Given a permutation 𝜋: = [𝜋(1), 𝜋(2), … , 𝜋(𝑖), 𝜋(𝑖 + 1), … , 𝜋(𝑛)] ∈  𝑆𝑛,  an 

adjacent transposition, (𝑖, 𝑖 +  1), for some 1 ≤  𝑖 ≤  𝑛 − 1,  applied to 𝜋 will result in the permutation 

[𝜋(1), 𝜋(2), … , 𝜋(𝑖 + 1), 𝜋(𝑖), … , 𝜋(𝑛)]. For two permutations 𝜌, 𝜋 ∈  𝑆𝑛, the Kendall 𝜏-distance 

between 𝜌 and 𝜋, 𝑑𝐾(𝜌, 𝜋), is defined as the minimum number of adjacent transpositions needed to 

write   𝜌𝜋−1 as their product. Note that 𝑑𝐾(𝜌, 𝜋) ≤ (
𝑛

2
) for all  𝜌, 𝜋 ∈  𝑆𝑛. The maximum size of a 

permutation code of length 𝑛 and minimum Kendall τ-distance at least 𝑑 is denoted by 𝑃(𝑛, 𝑑). 

 

In the following, we present the best known bounds of  𝑃(𝑛, 𝑑). Note that the green color shows the 

exact value of 𝑃(𝑛, 𝑑) and the blue and yellow colors show the best known upper and lower bounds of 

𝑃(𝑛, 𝑑), respectively. Also the withe color shows the previously known bounds which are not currently 

the best one. 

 

 

Note: There exist some results on the exact value of 𝑃(𝑛, 𝑑) as follows: 

✓ 𝑃(𝑛, 1) = 𝑛!. 

✓ 𝑃(𝑛, 2) =
𝑛!

2
. 

✓ If 2/3 (
𝑛
2

) < 𝑑 ≤ (
𝑛
2

) , then 𝑃(𝑛, 𝑑) = 2 (see [4]). 

✓ If 𝑛 ≥ 6 and  3/5 (
𝑛

2
) < 𝑑 ≤ 2/3 (

𝑛

2
) , then 𝑃(𝑛, 𝑑) = 4 (see [2]). 

 

Then, for each 𝑛 ≥ 3 ,  we present   the best known bounds on 𝑃(𝑛, 𝑑) for all 3 ≤ 𝑑 ≤ 3/5 (
𝑛
2

). 

 

• 𝑃(3,3) = 2 (see [5]) 

• 𝑃(4,3) = 5 and  𝑃(4,4) = 3 (see [5]) 

 

 

 

• 𝑛 = 5  (see [6]) 
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𝑑 3 4 5 6 

𝑃(5, 𝑑) 20 12 6 5 

 

 

 

• 𝑛 = 6   

𝑑 3 4 5 6 7 8 9 

𝑃(6, 𝑑) ≥ 102[6] 64[6] 26[6] 20[6] 11[6] 7[6] 4[6] 

≤ 116[1] 

 

 

 

• 𝑛 = 7 

𝑑 3 4 5 6 7 8 

Lower Bound 588[4] 336[3] 126[2]-[3] 84[2]-[3] 42[2]-[3] 28[2] 

315[2] 

110[4] 55[4] 34[4] 17[4] 

294[4] 

Upper Bound 719[4] 420[4] 186[4] 120[4] 66[4] 45[4] 

716[1] 

𝑑 9 10 11 12 

Lower Bound 15[2] 13[3] 8[2]-[3] 7[2]-[3] 

12[2] 

14[4] 2[2] 2[2] 

7[4] 

Upper Bound 28[4] 21[4] 12[4] 8[4] 
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• 𝑛 = 8 

𝑑 3 4 5 6 7 8 9 10 

Lower 

Bound 

3752[3] 2240[3] 672[2]- [3] 448[3] 168[2]- [3] 115[3] 57[3] 48[2] 

3696[2] 2184[2]  392[2]  112[2] 48[2] 43[3] 

Upper 

Bound 

5039[2] 2880[2] 1152[2] 720[2] 363[2] 242[2] 141[2] 99[2] 

𝑑 11 12 13 14 15 16 

Lower 

Bound 

26[3] 24[2] 15[3] 14[2] 8[3]-[2] 8[2] 

24[2] 21[3] 14[2] 12[3]   

Upper 

Bound 

64[2] 47[2] 32[2] 25[2] 10[2] 8[2] 
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