New table of bounds on permutation codes under Kendall τ -metric

Alireza Abdollahi

Department of Pure Mathematics Faculty of Mathematics and Statistics University of Isfahan Isfahan 81746-73441 Iran

The 11th Iran Workshop on Communication and Information Theory (IWCIT), Sharif University of Technology, Tehran, Iran, May 3,4, 2023.

This is a joint work done in CSG Research Group (Code-Scheme-Group)

Figure : right to left: Jafari, Parvaresh, Khatami, Sobhani, Bagherian, Abdollahi

CSG Research group Home Page: https://csg.ui.ac.ir/

Rank Modulation I

In order to overcome the challenges posed by flash memories, the rank modulation scheme was proposed in [A. Jiang, R. Mateescu, M. Schwartz, and J. Bruck, Correcting charge-constrained errors in the rank-modulation scheme, IEEE Trans. Inform. Theory, **56** (2010), 2112-2120. (first appeared in ISIT 2008)]

Figure : right to left: Bruck, Schwartz, Mateescu, Jiang

A. Abdollahi Permutation codes under Kendall au-metric

Definition (Rank Modulation)

Use the relative order of cell levels to represent data.

Figure : Figures are taken from (FMS2014_Tutorial_Part3_Jiang.pdf) in A. Jiang's Home Page

Example: Every rank has one cell

Figure : Figure is taken from (FMS2014_Tutorial_Part3_Jiang.pdf) in A. Jiang's Home Page

This corresponds to the permutation [5, 3, 4, 6, 1, 2] (representated by array) or (1, 5)(2, 3, 4, 6) as product of cycles.

Codewords are permutations of the set $[n] := \{1, 2, \dots, n\}$.

The set of all permutations of [n] is denoted by S_n .

Codewords are permutations of the set $[n] := \{1, 2, \dots, n\}$.

The set of all permutations of [n] is denoted by S_n .

A permutation code is a non-empty subset of S_n .

Codewords are permutations of the set $[n] := \{1, 2, \dots, n\}$.

The set of all permutations of [n] is denoted by S_n .

A permutation code is a non-empty subset of S_n .

Definition

The Kendall distance between two permutations σ and τ denoted by $d_{\kappa}(\sigma, \tau)$ is the minimum number of adjacent transpositions (i, i + 1) such that their product is equal to $\sigma \cdot \tau^{-1}$, where the τ^{-1} is the inverse of τ and the composition \cdot of two permutations is done from the right i.e. the value of $\sigma \cdot \tau^{-1}$ at $\ell \in [n]$ is equal to the value of τ^{-1} at $\sigma(\ell)$.

Example

 $d_{\mathcal{K}}([2,1,3,4,5],[1,2,3,5,4]) = d_{\mathcal{K}}((1,2),(4,5)) = 2,$ $d_{\mathcal{K}}([2,3,1,5,4],[2,1,3,5,4]) = d_{\mathcal{K}}((1,2,3)(4,5),(4,5)(1,2)) = 1.$

Definition

The Kendall distance between two permutations σ and τ denoted by $d_{\kappa}(\sigma, \tau)$ is the minimum number of adjacent transpositions (i, i + 1) such that their product is equal to $\sigma \cdot \tau^{-1}$, where the τ^{-1} is the inverse of τ and the composition \cdot of two permutations is done from the right i.e. the value of $\sigma \cdot \tau^{-1}$ at $\ell \in [n]$ is equal to the value of τ^{-1} at $\sigma(\ell)$.

Example

 $d_{\mathcal{K}}([2,1,3,4,5],[1,2,3,5,4]) = d_{\mathcal{K}}((1,2),(4,5)) = 2,$ $d_{\mathcal{K}}([2,3,1,5,4],[2,1,3,5,4]) = d_{\mathcal{K}}((1,2,3)(4,5),(4,5)(1,2)) = 1.$

Main problem of coding theory for PC

Find $P(n, d) := \max\{|C| \mid \emptyset \neq C \subseteq S_n d_K(C) \ge d\}$ or find "good" lower or upper bounds for P(n, d). Here $d_K(C) := \min\{d_K(\sigma, \tau) \mid \sigma \neq \tau, \sigma, \tau \in C\}.$

- P(n,1) = n!.
- $P(n,2) = \frac{n!}{2}$.

- P(n,1) = n!.
- $P(n,2) = \frac{n!}{2}$.
- if ²/₃(ⁿ) < d ≤ (ⁿ/₂), then P(n, d) = 2. [S. Buzaglo and T. Etzion, Bounds on the size of permutation codes with the Kendall *τ*-metric, IEEE Trans. Inform. Theory, **61** (2015), No. 6, 3241-3250.]

- P(n,1) = n!.
- $P(n,2) = \frac{n!}{2}$.
- if ²/₃(ⁿ) < d ≤ (ⁿ/₂), then P(n, d) = 2. [S. Buzaglo and T. Etzion, Bounds on the size of permutation codes with the Kendall *τ*-metric, IEEE Trans. Inform. Theory, **61** (2015), No. 6, 3241-3250.]

•
$$P(3,3) = 2$$
, $P(4,3) = 5$, $P(4,4) = 3$.

• P(5,3) = 20, P(5,4) = 12, P(5,5) = 6, P(5,6) = 5. P(6,4) = 64, P(6,5) = 26, P(6,6) = 20, P(6,7) = 11, P(6,8) = 7, P(6,9) = P(6,10) = 4. [S. Vijayakumaran, Largest permutation codes with the Kendall τ -metric in S_5 and S_6 , IEEE Comm. Letters, **20** (2016), No. 10, 1912-1915.]

- P(n,1) = n!.
- $P(n,2) = \frac{n!}{2}$.
- if ²/₃(ⁿ) < d ≤ (ⁿ/₂), then P(n, d) = 2. [S. Buzaglo and T. Etzion, Bounds on the size of permutation codes with the Kendall *τ*-metric, IEEE Trans. Inform. Theory, **61** (2015), No. 6, 3241-3250.]

•
$$P(3,3) = 2$$
, $P(4,3) = 5$, $P(4,4) = 3$.

• P(5,3) = 20, P(5,4) = 12, P(5,5) = 6, P(5,6) = 5. P(6,4) = 64, P(6,5) = 26, P(6,6) = 20, P(6,7) = 11, P(6,8) = 7, P(6,9) = P(6,10) = 4. [S. Vijayakumaran, Largest permutation codes with the Kendall τ -metric in S_5 and S_6 , IEEE Comm. Letters, **20** (2016), No. 10, 1912-1915.]

The "least" unknown value of P(n, d)—II

The "least" unknown value of P(n, d)

- P(6,3) ≥ 102. [S. Vijayakumaran, Largest permutation codes with the Kendall *τ*-metric in S5 and S6, IEEE Comm. Letters, 20 (2016), No. 10, 1912-1915.]
- P(6,3) ≤ 116. [A. Abdollahi, J. Bagherian, F. Jafari, M. Khatami, F. Parvaresh and R. Sobhani, New upper bounds on the size of permutation codes with minimum Kendall *τ*-metric of three, to appear in Cryptogr. Commun.]

The "least" unknown value of P(n, d)—II

The "least" unknown value of P(n, d)

- P(6,3) ≥ 102. [S. Vijayakumaran, Largest permutation codes with the Kendall *τ*-metric in S5 and S6, IEEE Comm. Letters, 20 (2016), No. 10, 1912-1915.]
- P(6,3) ≤ 116. [A. Abdollahi, J. Bagherian, F. Jafari, M. Khatami, F. Parvaresh and R. Sobhani, New upper bounds on the size of permutation codes with minimum Kendall *τ*-metric of three, to appear in Cryptogr. Commun.]

Conjecture

P(6,3) = 102. A possible way to attack the conjecture is to solve a specific binary linear programming problem with 720 indeterminates and 720 constraints given in [S. Vijayakumaran, Largest permutation codes with the Kendall τ -metric in S_5 and S_6 , IEEE Comm. Letters, **20** (2016), No. 10, 1912-1915.]

The "least" unknown value of P(n, d)—II

The "least" unknown value of P(n, d)

- P(6,3) ≥ 102. [S. Vijayakumaran, Largest permutation codes with the Kendall *τ*-metric in S5 and S6, IEEE Comm. Letters, 20 (2016), No. 10, 1912-1915.]
- P(6,3) ≤ 116. [A. Abdollahi, J. Bagherian, F. Jafari, M. Khatami, F. Parvaresh and R. Sobhani, New upper bounds on the size of permutation codes with minimum Kendall *τ*-metric of three, to appear in Cryptogr. Commun.]

Conjecture

P(6,3) = 102. A possible way to attack the conjecture is to solve a specific binary linear programming problem with 720 indeterminates and 720 constraints given in [S. Vijayakumaran, Largest permutation codes with the Kendall τ -metric in S_5 and S_6 , IEEE Comm. Letters, **20** (2016), No. 10, 1912-1915.]

Our main result

Theorem

$$P(n,d) = 4$$
 for all $n \ge 6$ and $\frac{3}{5} \binom{n}{2} < d \le \frac{2}{3} \binom{n}{2}$.

Sketch of Proof (Upper bound)

It follows from Theorem 23 of [X. Wang, Y. Zhang, Y. Yang and G. Ge, New bounds of permutation codes under Hamming metric and Kendall's τ -metric, Des. Codes Cryptogr., 85 (2017), No. 3, 533-545.] that if $P(n, d) \ge 5$, then we must have $\binom{5}{2}d \le 6 \times \binom{n}{2}$ and so $d \le \frac{3}{5}\binom{n}{2}$. Therefore $P(n, d) \le 4$.

Our main result

Theorem

$$P(n,d) = 4$$
 for all $n \ge 6$ and $\frac{3}{5} \binom{n}{2} < d \le \frac{2}{3} \binom{n}{2}$.

Sketch of Proof (Upper bound)

It follows from Theorem 23 of [X. Wang, Y. Zhang, Y. Yang and G. Ge, New bounds of permutation codes under Hamming metric and Kendall's τ -metric, Des. Codes Cryptogr., 85 (2017), No. 3, 533-545.] that if $P(n, d) \ge 5$, then we must have $\binom{5}{2}d \le 6 \times \binom{n}{2}$ and so $d \le \frac{3}{5}\binom{n}{2}$. Therefore $P(n, d) \le 4$.

Sketch of Proof (Lower bound)

We need the following lemma: Since $P(n, d + 1) \leq P(n, d)$, it is enough to show that there exists an $P(n, \lfloor \frac{2}{3} \binom{n}{2} \rfloor) \geq 4$ or equivalently show that there exists a subset C of S_n of size 4 such that $d_K(C) \geq \lfloor \frac{2}{3} \binom{n}{2} \rfloor$.

Our main result

Theorem

$$P(n,d) = 4$$
 for all $n \ge 6$ and $\frac{3}{5} {n \choose 2} < d \le \frac{2}{3} {n \choose 2}$.

Sketch of Proof (Upper bound)

It follows from Theorem 23 of [X. Wang, Y. Zhang, Y. Yang and G. Ge, New bounds of permutation codes under Hamming metric and Kendall's τ -metric, Des. Codes Cryptogr., 85 (2017), No. 3, 533-545.] that if $P(n, d) \ge 5$, then we must have $\binom{5}{2}d \le 6 \times \binom{n}{2}$ and so $d \le \frac{3}{5}\binom{n}{2}$. Therefore $P(n, d) \le 4$.

Sketch of Proof (Lower bound)

We need the following lemma: Since $P(n, d + 1) \leq P(n, d)$, it is enough to show that there exists an $P(n, \lfloor \frac{2}{3} \binom{n}{2} \rfloor) \geq 4$ or equivalently show that there exists a subset C of S_n of size 4 such that $d_K(C) \geq \lfloor \frac{2}{3} \binom{n}{2} \rfloor$.

Sketch of Proof (Constructing Permutations)

We need the following lemma: Let $n \ge 5$ be an integer. If $n \equiv 0, 2 \pmod{3}$ ($n \equiv 1 \pmod{3}$), then there exist 3 non-empty subsets with the same sumset which partitions $[n] ([n] \setminus \{1\})$, respectively.

If n is 5, 6, 7, 8, 9 and 10, respectively, then
{{5}, {1,4}, {3,2}}, {{6,1}, {5,2}, {3,4}}, {{2,7}, {3,6},
{4,5}}, {{8,4}, {7,3,2}, {1,5,6}}, {{6,5,4}, {9,1,2,3},
{8,7} and {{10,8}, {9,2,7}, {3,4,6,5}} are the partitions
of [n] or [n] \ {1} satisfying the lemma.

- If *n* is 5, 6, 7, 8, 9 and 10, respectively, then $\{\{5\}, \{1,4\}, \{3,2\}\}, \{\{6,1\}, \{5,2\}, \{3,4\}\}, \{\{2,7\}, \{3,6\}, \{4,5\}\}, \{\{8,4\}, \{7,3,2\}, \{1,5,6\}\}, \{\{6,5,4\}, \{9,1,2,3\}, \{8,7\}\}$ and $\{\{10,8\}, \{9,2,7\}, \{3,4,6,5\}\}$ are the partitions of [n] or $[n] \setminus \{1\}$ satisfying the lemma.
- Now suppose that n > 10. Hence there exist t > 0 and $r \in \{5, 6, 7, 8, 9, 10\}$ such that n = 6t + r. Note that if $n \equiv 1 \pmod{3}$, then $r \in \{7, 10\}$.

- If *n* is 5, 6, 7, 8, 9 and 10, respectively, then $\{\{5\}, \{1,4\}, \{3,2\}\}, \{\{6,1\}, \{5,2\}, \{3,4\}\}, \{\{2,7\}, \{3,6\}, \{4,5\}\}, \{\{8,4\}, \{7,3,2\}, \{1,5,6\}\}, \{\{6,5,4\}, \{9,1,2,3\}, \{8,7\}\}$ and $\{\{10,8\}, \{9,2,7\}, \{3,4,6,5\}\}$ are the partitions of [n] or $[n] \setminus \{1\}$ satisfying the lemma.
- Now suppose that n > 10. Hence there exist t > 0 and $r \in \{5, 6, 7, 8, 9, 10\}$ such that n = 6t + r. Note that if $n \equiv 1 \pmod{3}$, then $r \in \{7, 10\}$.
- Consider t + 1 subsets $\Theta_1, \dots, \Theta_{t+1}$ of [n] as follows:

$$\underbrace{1,\ldots,r}_{\Theta_1},\underbrace{r+1,\ldots,r+6}_{\Theta_2},\ldots,\underbrace{n-11,\ldots,n-6}_{\Theta_t},\underbrace{n-5,\ldots,n}_{\Theta_{t+1}}$$

- If *n* is 5, 6, 7, 8, 9 and 10, respectively, then $\{\{5\}, \{1,4\}, \{3,2\}\}, \{\{6,1\}, \{5,2\}, \{3,4\}\}, \{\{2,7\}, \{3,6\}, \{4,5\}\}, \{\{8,4\}, \{7,3,2\}, \{1,5,6\}\}, \{\{6,5,4\}, \{9,1,2,3\}, \{8,7\}\}$ and $\{\{10,8\}, \{9,2,7\}, \{3,4,6,5\}\}$ are the partitions of [n] or $[n] \setminus \{1\}$ satisfying the lemma.
- Now suppose that n > 10. Hence there exist t > 0 and $r \in \{5, 6, 7, 8, 9, 10\}$ such that n = 6t + r. Note that if $n \equiv 1 \pmod{3}$, then $r \in \{7, 10\}$.
- Consider t + 1 subsets $\Theta_1, \dots, \Theta_{t+1}$ of [n] as follows:

$$\underbrace{1,\ldots,r}_{\Theta_1},\underbrace{r+1,\ldots,r+6}_{\Theta_2},\ldots,\underbrace{n-11,\ldots,n-6}_{\Theta_t},\underbrace{n-5,\ldots,n}_{\Theta_{t+1}}$$

Sketch of Proof (Constructing Permutations) case $n-1 \equiv 0,2 \pmod{3}$

• $N := \sum_{i=1}^{n-1} i = \binom{n}{2}.$

Sketch of Proof (Constructing Permutations) case $n-1 \equiv 0,2 \pmod{3}$

•
$$N := \sum_{i=1}^{n-1} i = \binom{n}{2}.$$

• pairwise disjoint subsets Δ_1, Δ_2 and Δ_3 of [n-1] such that $\sum_{j \in \Delta_i} j = \frac{N}{3}$ for all $i \in \{1, 2, 3\}$.

•
$$N := \sum_{i=1}^{n-1} i = \binom{n}{2}$$
.

- pairwise disjoint subsets Δ_1, Δ_2 and Δ_3 of [n-1] such that $\sum_{j \in \Delta_i} j = \frac{N}{3}$ for all $i \in \{1, 2, 3\}$.
- Corresponding to each Δ_i , we construct a permutation α_i .

•
$$N := \sum_{i=1}^{n-1} i = \binom{n}{2}.$$

- pairwise disjoint subsets Δ_1, Δ_2 and Δ_3 of [n-1] such that $\sum_{j \in \Delta_i} j = \frac{N}{3}$ for all $i \in \{1, 2, 3\}$.
- Corresponding to each Δ_i , we construct a permutation α_i .
- $r_i := |\Delta_i|, \ \Delta'_i := \{n j \mid j \in \Delta_i\}$ and $\Theta_i := [n] \setminus \Delta'_i$.

•
$$N := \sum_{i=1}^{n-1} i = \binom{n}{2}.$$

- pairwise disjoint subsets Δ_1, Δ_2 and Δ_3 of [n-1] such that $\sum_{j \in \Delta_i} j = \frac{N}{3}$ for all $i \in \{1, 2, 3\}$.
- Corresponding to each Δ_i , we construct a permutation α_i .
- $r_i := |\Delta_i|, \ \Delta'_i := \{n j \mid j \in \Delta_i\} \text{ and } \Theta_i := [n] \setminus \Delta'_i.$
- Suppose that $j_1 < j_2 < \cdots < j_{r_i}$ and $l_0 < l_1 < \cdots < l_{n-r_i-1}$ are all elements of Δ'_i and Θ_i , respectively.

•
$$N := \sum_{i=1}^{n-1} i = \binom{n}{2}.$$

- pairwise disjoint subsets Δ_1, Δ_2 and Δ_3 of [n-1] such that $\sum_{j \in \Delta_i} j = \frac{N}{3}$ for all $i \in \{1, 2, 3\}$.
- Corresponding to each Δ_i , we construct a permutation α_i .
- $r_i := |\Delta_i|, \ \Delta'_i := \{n j \mid j \in \Delta_i\} \text{ and } \Theta_i := [n] \setminus \Delta'_i.$
- Suppose that $j_1 < j_2 < \cdots < j_{r_i}$ and $l_0 < l_1 < \cdots < l_{n-r_i-1}$ are all elements of Δ'_i and Θ_i , respectively.
- Define α_i as follows: $\alpha_i(t) = j_t$ and $\alpha_i(n-s) = l_s$ for all $t \in \{1, \ldots, r_i\}$ and $s \in \{0, \ldots, n-r_i-1\}$.

•
$$N := \sum_{i=1}^{n-1} i = \binom{n}{2}.$$

- pairwise disjoint subsets Δ_1, Δ_2 and Δ_3 of [n-1] such that $\sum_{j \in \Delta_i} j = \frac{N}{3}$ for all $i \in \{1, 2, 3\}$.
- Corresponding to each Δ_i, we construct a permutation α_i.
- $r_i := |\Delta_i|, \ \Delta'_i := \{n j \mid j \in \Delta_i\} \text{ and } \Theta_i := [n] \setminus \Delta'_i.$
- Suppose that $j_1 < j_2 < \cdots < j_{r_i}$ and $l_0 < l_1 < \cdots < l_{n-r_i-1}$ are all elements of Δ'_i and Θ_i , respectively.
- Define α_i as follows: $\alpha_i(t) = j_t$ and $\alpha_i(n-s) = l_s$ for all $t \in \{1, \ldots, r_i\}$ and $s \in \{0, \ldots, n-r_i-1\}$.
- $d_K(\alpha_x, \alpha_y) = \sum_{i \in \Delta_x} i + \sum_{i \in \Delta_y} i = \frac{2N}{3}.$

•
$$N := \sum_{i=1}^{n-1} i = \binom{n}{2}.$$

- pairwise disjoint subsets Δ_1, Δ_2 and Δ_3 of [n-1] such that $\sum_{j \in \Delta_i} j = \frac{N}{3}$ for all $i \in \{1, 2, 3\}$.
- Corresponding to each Δ_i , we construct a permutation α_i .
- $r_i := |\Delta_i|, \ \Delta'_i := \{n j \mid j \in \Delta_i\}$ and $\Theta_i := [n] \setminus \Delta'_i$.
- Suppose that $j_1 < j_2 < \cdots < j_{r_i}$ and $l_0 < l_1 < \cdots < l_{n-r_i-1}$ are all elements of Δ'_i and Θ_i , respectively.
- Define α_i as follows: $\alpha_i(t) = j_t$ and $\alpha_i(n-s) = l_s$ for all $t \in \{1, \ldots, r_i\}$ and $s \in \{0, \ldots, n-r_i-1\}$.
- $d_{\mathcal{K}}(\alpha_x, \alpha_y) = \sum_{i \in \Delta_x} i + \sum_{i \in \Delta_y} i = \frac{2N}{3}.$
- $d_K(\xi, \alpha_x) = |\{(i, j) \mid i < j \land \alpha_x^{-1}(i) > \alpha_x^{-1}(j)\}| = |\{(i, j) \mid i < j, i \in \Theta_x\}| = \frac{2N}{3}$

•
$$N := \sum_{i=1}^{n-1} i = \binom{n}{2}.$$

- pairwise disjoint subsets Δ_1, Δ_2 and Δ_3 of [n-1] such that $\sum_{j \in \Delta_i} j = \frac{N}{3}$ for all $i \in \{1, 2, 3\}$.
- Corresponding to each Δ_i, we construct a permutation α_i.
- $r_i := |\Delta_i|, \ \Delta'_i := \{n j \mid j \in \Delta_i\}$ and $\Theta_i := [n] \setminus \Delta'_i$.
- Suppose that $j_1 < j_2 < \cdots < j_{r_i}$ and $l_0 < l_1 < \cdots < l_{n-r_i-1}$ are all elements of Δ'_i and Θ_i , respectively.
- Define α_i as follows: $\alpha_i(t) = j_t$ and $\alpha_i(n-s) = l_s$ for all $t \in \{1, \ldots, r_i\}$ and $s \in \{0, \ldots, n-r_i-1\}$.
- $d_{\mathcal{K}}(\alpha_x, \alpha_y) = \sum_{i \in \Delta_x} i + \sum_{i \in \Delta_y} i = \frac{2N}{3}.$
- $d_{\mathcal{K}}(\xi, \alpha_x) = |\{(i, j) \mid i < j \land \alpha_x^{-1}(i) > \alpha_x^{-1}(j)\}| = |\{(i, j) \mid i < j, i \in \Theta_x\}| = \frac{2N}{3}$

Thanks for your attention