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Abstract
Let M(n, d) be the maximum size of a permutation code of length n and distance d . In
this note, the permutation codewords of a classical code C are considered. These are the
codewords with all different entries in C . Using these codewords for Reed–Solomon codes,
we present some good permutation codes in this class of codes. As a consequence, since these
codes are subsets of Reed–Solomon codes, decoding algorithms known for Reed–Solomon
codes can also be used as a decoding algorithm for them.

Keywords Permutation codes · Reed–Solomon codes · Automorphism groups

Mathematics Subject Classification 05A05 · 94B25 · 05E18

1 Introduction

Permutation codes are defined as subsets of the symmetric group Sn consisting of all permuta-
tions on n letters {1, 2, . . . , n}. The length of a permutation code in Sn is n. Permutation codes
have been proposed for application in the transmission of data over powerlines [11,24,30]
and in the design of block ciphers [7]. When a permutation code is used in a powerline com-
munication, the capability of its error correction depends on its minimumHamming distance.
For reliable and efficient communication it is necessary to find codes, for a given length and
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minimum distance, with size as large as possible. Let M(n, d) denote this maximum size. In
recent works, numerous techniques have been developed to derive lower and upper bounds
on M(n, d), [1,5,6,8,11,12,15–17,22,24,27]. Also, in [2,3], some techniques for obtaining
new permutation codes from old ones have been presented.

In this paper, we find good permutation codes by considering all codewords of a Reed–
Solomon code, say C , that are permutations, denoted by P(C). In fact, we compute value
vectors of all permutation polynomials of degree at most k−1 as a subset of a Reed–Solomon
code of dimension k over Fq . An advantage of the method is that we work on codewords of
a linear code over Fq instead of computing permutation polynomials and their value vectors.
Another advantage is that, since these codes are subsets of Reed–Solomon codes, decoding
algorithms known for Reed–Solomon codes can also be used as a decoding algorithm for
them. We also develop a theory on the structure of P(C) and present an algorithm for
determining |P(C)|. Precisely, we prove that P(C) is a union of some cosets of Perm(C),
the permutation group of the codeC , in the symmetric group Sq . The technique of considering
unions of cosets of some permutation groups in Sn is also used in [1,27] for constructing
good permutation codes.

2 Main result

Apermutation code of length n is a subset of the symmetric group Sn . The Hamming distance
between two permutations σ and τ is defined to be the number of moved points of the permu-
tation στ−1. Note that we say the permutation α moves i if α(i) �= i . The minimum distance
of a permutation code is the minimum of distances between all two distinct permutations in
it.

A code C of length n over the finite field Fq is a subset of Fn
q . The code C is said to

be linear if it is an Fq -subspace of Fn
q . The weight of an element of Fn

q is defined to be the
number of its nonzero entries. The Hamming distance between two elements x, y of Fn

q is
defined to be the weight of x − y. The minimum distance of a code C is the minimum of
distances between all two distinct elements of C . By an (n, M, d)q code we mean a code of
length n, cardinality M and minimum of distances between all pairs of distinct d over Fq .
When the code is linear, we use the notation [n, k, d]q where k is the dimension ofC over Fq

instead of its cardinality. The maximum size of a code of length n and distance d over Fq is
denoted by Aq(n, d). The Singleton bound states that Aq(n, d) ≤ qn−d+1. Codes achieving
this bound are called Maximum Distance Separable (MDS) codes.

The following definition is a key for the main result of this paper.

Definition 1 Let C be a code of length q over Fq . A codeword c = (c1, c2, . . . , cq) in C
is said to be a permutation codeword if all of its components are distinct. The set of all
permutation codewords of C is denoted by P(C).

It is clear that P(C) can be viewed as a subset of the symmetric group Sq . Our strategy is
to consider P(C) as a permutation code, where C is a suitably chosen code of length q over
Fq . In this case P(C) has minimum distance at least as large as the minimum distance of the
corresponding code C , and hence we are interested in good codes C with large P(C).

The permutation group of a code C of length n is the maximal subgroup � of Sn with
the property that for any γ ∈ � we have γ (C) = C , where γ (C) is the code obtained by
permuting the coordinates of C according to the permutation γ . We denote the permutation
group of a code C , by Perm(C). The following proposition deals with the relation between
P(C) and Perm(C).
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Proposition 1 For any code of length q over Fq , P(C) is a union of some right cosets of
Perm(C) in Sq and hence |Perm(C)| | |P(C)|.
Proof First note that, for any σ ∈ Perm(C) and c ∈ P(C) we have σ(c) ∈ P(C). Equiva-
lently, we have Perm(C) ⊆ Perm(P(C)) (in general, for codes C and D with D ⊆ C , it
is not true that Perm(C) ⊆ Perm(D)). Now, Perm(C) acts faithfully on the set P(C) and
hence Perm(C)P(C) = P(C). Therefore P(C) is a union of some right cosets of Perm(C)

in Sq . This completes the proof. ��
Reed–Solomon (RS) codes are famous examples of linear MDS codes [14,25]. Write

Fq = {0, w,w2, . . . , wq−1}, where w is a primitive element of Fq and let Fq [x] be the set
of all polynomials with coefficients in Fq . The Reed–Solomon code of distance d over Fq ,
denoted by RS(q, d), is the linear space

RS(q, d) := {(P(0), P(w), . . . , P(wq−1)) | P(x) ∈ Fq [x], deg(P(x)) ≤ q − d}.
It is known that RS(q, d) is a [q, q − d + 1, d]q MDS code.

It has been proved in [10] (see also [4]) that the permutation group of the code C =
RS(q, d) with dimension 2 ≤ k = q − d + 1 ≤ q − 2 is the group of affine permutations
and has size q(q − 1). On the other hand, when C = RS(q, d) and 3 ≤ d ≤ q − 1, P(C)

contains

{(Q(0), Q(w), . . . , Q(wq−1)) | Q(x) = ax + b ∈ Fq [x], a, b ∈ Fq , a �= 0},
which is the set of affine permutations and has size q(q − 1). Hence P(C) is not empty.

Corollary 1 Let q be a prime power. Then P(RS(q, q−1)) is a (q, q(q−1), q−1)q optimal
permutation code.

Proof It is known thatM(n, d) ≤ n!
(d−1)! and henceM(q, q−1) ≤ q(q−1). But P(RS(q, q−

1)) has size at least q(q − 1). Therefore we have |P(RS(q, q − 1))| = q(q − 1) and
P(RS(q, q − 1)) is an optimal permutation code. ��
Corollary 2 Let q be a prime power and 3 ≤ d ≤ q − 1. Then

q(q − 1) | |P(RS(q, d))|.
Proof It follows from Proposition 1 and the fact that P(RS(q, d)) is not empty. ��
Remark 1 A permutation polynomial over Fq is a polynomial in Fq [x] that permutes the
elements of Fq . When C = RS(q, d), then P(C) is in fact the set of value vectors of all
permutation polynomials of degree at most q−d and hencewhenwe compute P(C)we are in
fact computing the value vectors of all permutation polynomials of degree atmost q−d . There
is a large body of knowledge related to the problem of finding all permutation polynomials
of a given degree, see for example [9,19,20,23]. However, there are some advantages in
computing P(C) instead of computing the value vectors of permutation polynomials. First is
that computing permutation polynomials and their value vectors is not always straightforward.
Second is that, since we look at the permutation code as a subset of a Reed–Solomon code,
decoding algorithms for Reed–Solomon codes presented in the literature (for example those
in [13,21,29]), can also be used as a decoding algorithm for them.

To obtain permutation codes from permutation codewords of a classical code C , we need
to calculate P(C). A computational problem now is how to compute P(C) or how to find
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|P(C)|. More precisely, for large values of q and small values of d (large dimensions), the
problem of finding P(C) or |P(C)| becomes complicated. For example, the CPU time for
calculation of P(C) where C is the [32, 6, 27]32 Reed–Solomon code is about 32 hours on
a 2 GHz CPU.

Here the complexity of finding |P(C)|, is reduced a little for some classes of codes
including RS(q, d). Let C be a [q, k, d]q code and G = (gi j )k×q , a generator matrix for C .
Set A := {(i, j) | 1 ≤ i < j ≤ q} and write A := {u1, . . . , us}, where s = q(q − 1)/2
and ut = (at , bt ) for 1 ≤ t ≤ s. Assume that L = (li j )k×s is a k × s matrix over Fq with
li j = gia j −gib j . Let D be the linear code generated by L , k′ be its dimension, and FW (D) be
the set of those codewords in D whose weights equals s. We have the following proposition
now.

Proposition 2 With notation as above, we have |P(C)| = qk−k′ |FW (D)|.
Proof It can simply be verified that c = [α1, . . . , αk]G lies in P(C) if and only if d =
[α1, . . . , αk]L lies in FW (D). Now we can assume that the first k − k′ rows of L are zero
and hence α1, . . . , αk−k′ can freely be chosen in Fq . The proof is now completed. ��

Now, if C contains the all-one vector then we can choose G such that its first row is the
all-one vector. In this way, the first row of L becomes the zero vector and hence the dimension
of D reduces at least by 1. Note that the codes RS(q, d) contain the all-one vector and hence
we have k′ ≤ k − 1 for them. In fact, one can see that for MDS codes containing the all-one
vector, we have k′ = k − 1.

In what follows, we now list the size of P(C) for some Reed–Solomon codes over Fq

with different q which lead to some good permutation codes. As mentioned in Remark 1,
codewords of these codes are in fact value vectors of all permutation polynomials of degree
at most q − d . All of the codes we construct can also be constructed from the known results
on permutation polynomials of small degree (see [9,18,23,26]). The text file of these codes
(except the last) can be found in [28]. In that files, each code has been presented as a collection
of representatives of some cosets of AGL(1, q) in Sq .

(1) Let q = 16, d = 10 and C be the Reed–Solomon code of length 16 and dimension
7 over F16. Then |P(C)| = 222,720 and hence M(16, 10) ≥ 222,720. The previous
known lower bound for M(16, 10) was 164,880 [1]. We should note that one of the
referees, based on the method described in [16], kindly provided us with an unpublished
permutation code of length 16, size 362880 and distance 10, in his (her) comments. Also
the code can be obtained from permutation polynomials of degree at most 6 over F16.

(2) Let q = 25, d = 20 and C be the Reed–Solomon code of length 25 and dimension
6 over F25. Then |P(C)| = 192,000 and hence M(25, 20) ≥ 192,000. The previous
known lower bound for M(25, 20) was 15600 [1]. The code can also be obtained from
permutation polynomials of degree at most 5 over F25.

(3) Let q = 27, d = 22 and C be the Reed–Solomon code of length 27 and dimension
6 over F27. Then |P(C)| = 522,288 and hence M(27, 22) ≥ 522,288. The previous
known lower bound for M(28, 22) was 275,184 [22]. The code can also be obtained
from permutation polynomials of degree at most 5 over F27.

(4) Let q = 32, d = 27 and C be the Reed–Solomon code of length 32 and dimension 6
over F32. Then |P(C)| = 1,388,800 and hence M(32, 27) ≥ 1,388,800. The previous
known lower bound for M(33, 27) was 327,360 [22]. The code can also be obtained
from permutation polynomials of degree at most 5 over F32 (see [9,23]).

(5) Let q = 32, d = 25 and C be the Reed–Solomon code of length 32 and dimension 8
over F32. Then we have |P(C)| = 32 ∗ |FW (D)| = 3,420,416, where D is the linear
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[496, 7]32-code obtained from the method described in Proposition 2 from the code C .
Hencewe haveM(32, 27) ≥ 3,420,416. The previous known lower bound forM(32, 25)
was 1,309,440 [22]. In this case, we could not find P(C) and we just know |P(C)|. The
code can also be obtained from permutation polynomials of degree at most 7 over F32.
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