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Improved bounds on the size of permutation codes

under Kendall τ -metric

Farzad Parvaresh, Reza Sobhani, Alireza Abdollahi, Javad Bagherian, Fatemeh Jafari

and Maryam Khatami

Abstract

In order to overcome the challenges caused by flash memories and also to protect against errors related to

reading information stored in DNA molecules in the shotgun sequencing method, the rank modulation is proposed.

In the rank modulation framework, codewords are permutations. In this paper, we study the largest size P (n, d)
of permutation codes of length n, i.e., subsets of the set Sn of all permutations on {1, ..., n} with the minimum

distance at least d ∈ {1, . . . ,
(
n

2

)
} under the Kendall τ -metric. By presenting an algorithm and some theorems,

we managed to improve the known lower and upper bounds for P (n, d). In particular, we show that P (n, d) = 4
for all n ≥ 6 and 3

5

(
n

2

)
< d ≤ 2

3

(
n

2

)
. Additionally, we prove that for any prime number n and integer r ≤ n

6
,

P (n, 3) ≤ (n − 1)! − n− 6r√
n2 − 8rn+ 20r2

√
(n− 1)!

n(n− r)!
. This result greatly improves the upper bound of P (n, 3)

for all primes n ≥ 37.

Index Terms

Rank modulation, Kendall τ -Metric, Permutation codes.

I. INTRODUCTION

In order to overcome the challenges caused by flash memories and also to protect against errors related

to reading information stored in DNA molecules in the shotgun sequencing method, the rank modulation is

proposed (see [15] and [16], respectively). In the rank modulation framework, codewords are permutations.

Within this framework, permutation codes were extensively examined using three metrics: the Kendall τ -

metric [1], [15], [20], [21], [25], the Ulam metric [18] and the ℓ∞ metric [17], [19]. This study specifically

concentrates on permutation codes under the Kendall τ -metric.

A Permutation Code (PC) of length n represents a non-empty subset of Sn, which includes all permu-

tations of the set [n] := {1, 2, . . . , n}. In the context of a permutation π := [π(1), π(2), . . . , π(i), π(i +
1), . . . , π(n)] ∈ Sn, an adjacent transposition, denoted as (i, i+1) for 1 ≤ i ≤ n−1, transforms π into the

permutation [π(1), π(2), . . . , π(i+ 1), π(i), . . . , π(n)]. The Kendall τ -distance between two permutations,

ρ and π in Sn, is defined as the minimum number of adjacent transpositions required to express ρπ−1

as their product. In the context of the Kendall τ -metric, a PC of length n with minimum distance d can

correct up to d−1
2

errors induced by charge-constrained errors, as cited in [15].

A central question in the theory of PCs is determining the value of P (n, d), that is the size of the largest

code in Sn with minimum Kendall τ -distance d, for d ≤
(
n

2

)
. The exact value of P (n, d) is determined

for d ∈ {1, 2} and 2
3

(
n

2

)
< d ≤

(
n

2

)
[7] and also for n = 5 and for n = 6 when d 6= 3 [25]. Furthermore,

The work has been partially presented in IEEE Workshop on Communication and Information Theory (IWCIT) 2022 [2].

F. Parvaresh is with Department of Electrical Engineering University of Isfahan, Isfahan, Iran

R. Sobhani is with Department of Applied Mathematics and Computer Science, Faculty of Mathematics and Statistics, University of

Isfahan, Isfahan 81746-73441, Iran

A. Abdollahi, J. Bagherian, F. Jafari and M. Khatami are with Department of Pure Mathematics, Faculty of Mathematics and Statistics,

University of Isfahan, Isfahan 81746-73441, Iran

A. Abdollahi and F. Parvaresh are also with School of Mathematics, Institute for Research in Fundamental Sciences (IPM), 19395-5746

Tehran, Iran.

E-mail addresses: a.abdollahi@math.ui.ac.ir (A. Abdollahi), bagherian@sci.ui.ac.ir (J. Bagherian), math fateme@yahoo.com (F. Jafari),

m.khatami@sci.ui.ac.ir (M. Khatami), f.parvaresh@eng.ui.ac.ir (F. Parvaresh), r.sobhani@sci.ui.ac.ir (R. Sobhani).

http://arxiv.org/abs/2406.06029v1
mailto: a.abdollahi@math.ui.ac.ir
mailto: bagherian@sci.ui.ac.ir
mailto: math_fateme@yahoo.com
mailto: m.khatami@sci.ui.ac.ir
mailto: f.parvaresh@eng.ui.ac.ir
mailto: r.sobhani@sci.ui.ac.ir


2

n [1, Theorem 1.1] Theorem I.2

37 36!− 15 36!− 62
41 40!− 16 40! − 330
43 42!− 17 42! − 456
47 46!− 18 46!− 2537
53 52!− 20 52!− 155518
59 58!− 22 58!− 195360
61 60!− 23 60!− 323371

TABLE I: Comparing the upper bounds of P (n, 3) obtained from Theorems [1, Theorem 1.1] and Theorem I.2.

several researchers have presented bounds on P (n, d) (see [1], [3], [7], [15], [20], [21], [25]).

In this paper, we present a theorem supporting the value of P (n, d) as follows:

Theorem I.1. P (n, d) = 4, for all n ≥ 6 and 3
5

(
n

2

)
< d ≤ 2

3

(
n

2

)
.

Moreover, we achieved significant improvements on the lower bound of P (n, d) when n ∈ {7, 8} by

constructing new PCs from the subgroups of Sn (see Table II, below) and, in particular, we establish

P (7, 12) = 7.

Utilizing sphere packing bound (see [15, Theorems 12 and 13]), P (n, 3) ≤ (n− 1)!. In [9, Corollary 2.5

and Theorem 2.6] and [7, Corollary 2], it is proved that if n > 4 is a prime number or 4 ≤ n ≤ 10,

then P (n, 3) ≤ (n − 1)! − 1. Enhancing this, in [1, Theorem 1.1], we improved the upper bound to

P (n, 3) ≤ (n− 1)!− ⌈n
3
⌉ + 2 ≤ (n− 1)!− 2 for all primes n ≥ 11. Here we prove an additional upper

bound on P (n, 3) as follows:

Theorem I.2. For a prime number n and integer r ≤ n
6
,

P (n, 3) ≤ (n− 1)!− n− 6r√
n2 − 8rn+ 20r2

√
(n− 1)!

n(n− r)!
. (I.1)

The upper bound for P (n, d) derived from [1, Theorem 1.1] outperforms that from Theorem I.2 for

all prime numbers 11 ≤ n ≤ 31. However, considering that every prime number greater than 5 can be

written in the form of 6n + 1 or 6n + 5, the following corollary shows that Theorem I.2 significantly

enhances the upper bound of P (n, 3) for all prime numbers n ≥ 37.

Corollary I.3. Let r ≥ 6. If n = 6r + 1 is a prime number, then

P (n, 3) < (6r)!− (1.61)(5r + 5)
r−4

2 ,

and if n = 6r + 5 is a prime number, then

P (n, 3) < (6r + 4)!− 5(1.61)(5r + 9)
r−4

2 .

In Table I, a comparison is made between the upper bounds of P (n, 3) obtained from [1, Theorem 1.1]

and Theorem I.2 for prime numbers 37 ≤ n ≤ 61.

The subsequent sections are organized as follows: In Section II, we provide the definitions and notations

of PCs and summarize important results regarding bounds on P (n, d). Section III presents a new table of

values for lower bounds of P (n, d) for n ∈ {5, 6, 7, 8}. In Section IV, we first prove Theorem I.1, and

subsequently, using a specific method, we determine the exact value of P (7, 12). Finally, in Section V,

we proceed to prove Theorem I.2.

II. PRELIMINARIES

In this section, we first present some definitions and notations for PCs under Kendall τ -metric. Subse-

quently, we summarize key known results about the bounds used to determine the best known bounds on

PCs under Kendall τ -metric in Table II.
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Let n be a positive integer and let Sn denote the symmetric group on n letters, i.e., the set of all n!
permutations of [n]. Throughout this paper, for a permutation π ∈ Sn, we employ the vector notation of π as

[π(1), π(2), . . . , π(i), π(i+1), . . . , π(n)]. The composition of two permutations π and σ in Sn, denoted by

σπ, is defined as σπ(i) = π(σ(i)) for all i ∈ [n]. The identity element of Sn is denoted by ξ := [1, 2, . . . , n].
For distinct elements i, j ∈ [n], (i, j), which is called transposition, is the permutation obtained from

exchanging i and j in ξ. For a permutation π ∈ Sn, let I(π) := |{(i, j) ∈ [n]2 | i < j ∧π−1(i) > π−1(j)}|.
In view of the parity of I(π), π is called an even or odd permutation. For a set Q, |Q| denotes the size

of the set Q.

For two permutations π and ρ in Sn, dK(ρ, π) denotes the Kendall τ -distance between ρ and π. There exists

a well-known equivalent expression for dK(ρ, π) [15] as follows: dK(ρ, π) = |{(i, j) ∈ [n]2 | ρ−1(i) <
ρ−1(j) ∧ π−1(i) > π−1(j)}|. A PC C of length n is called an (n, d)-PC, if dK(π, σ) ≥ d for all distinct

elements π, σ ∈ C. The largest size of a (n, d)-PC is denoted by P (n, d). It is known that P (n, 1) = n!,
P (n, 2) = n!

2
and if 2

3

(
n

2

)
< d ≤

(
n

2

)
, then P (n, d) = 2 (see [7, Theorem 10]). In the following, we review

some results that determine the best known bounds on P (n, d).
For a positive integer r and a permutation σ ∈ Sn, the ball of radius r which centered at σ in Sn under the

Kendall τ -distance is denoted by Br(σ) defined by Br(σ) := {π ∈ Sn | dK(σ, π) ≤ r}. Since the Kendall

τ -metric is right invariant (i.e., for every three permutations σ, π, ρ ∈ Sn we have dK(σ, π) = dK(σρ, πρ)
[7]), the size of a ball of radius r is independent of its center and we denote it by BK(r). The Gilbert-

Varshamov bound and sphere-packing bound for PCS under Kendall τ -metric are as follows:

Proposition II.1. [15, Theorems 12 and 13]

n!

BK(d− 1)
≤ P (n, d) ≤ n!

BK(⌊d−1
2
⌋) .

Let σ and τ be two permutations with dK(σ, τ) = 1. Then the double ball of radius r centered at σ and

τ , denoted by DBr(σ, τ), is defined by DBr(σ, τ) := Br(σ)∪Br(τ). The size of DBr(ξ, [2, 1, 3, . . . , n])
is denoted by DBn,r. There are two useful results for bounds on P (n, d), when d is even, as follows:

Proposition II.2. For all n and t ≥ 1,

(1) [7, Corollaries 5 & 6] P (n, 2(t+ 1)) ≤ n!

DBn,t

. Especially P (n, 4) ≤ n!

2(n− 1)
.

(2) [15, Theorem 21] P (n, 2t) ≥ 1
2
P (n, 2t− 1).

The best known relation for the lower bound on P (n, 3) is as follows:

Proposition II.3. P (n, 3) ≥ n!

2n− 1
[15, p. 2116] and in particular if n − 2 is a prime power, then

P (n, 3) ≥ n!

2n− 2
[3, Theorem 4.5].

Remark II.4. By the part (ii) of Proposition II.2 and Proposition II.3, P (n, 4) ≥ n!

2(2n− 2)
if n − 2 is

a prime power and P (n, 4) ≥ n!

2(2n− 1)
otherwise.

There is an important improvement of the lower bound on P (n, d), when n− 2 is a prime power and

d > 4 as follows:

Proposition II.5. [20, Theorem 18] Let m = ((n − 2)t+1 − 1)/(n − 3), where n − 2 is a prime power.

Then P (n, 2t+ 1) ≥ n!

(2t+ 1)m
and so P (n, 2t+ 2) ≥ n!

2(2t+ 1)m
.

If 1
2

(
n

2

)
< d ≤ 2

3

(
n

2

)
, then the following bound may turn out to be better than the sphere packing upper

bound or part (1) of Proposition II.2.
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Proposition II.6. [20, Theorem 23] If P (n, 2t) ≥ M , then 2
(
M

2

)
t ≤

(
n

2

)
⌊M

2
⌋⌈M

2
⌉ and if P (n, 2t+1) ≥ M ,

then (2t + 2)(
(
⌊M

2
⌋

2

)
+
(
⌈M

2
⌉

2

)
) + (2t+ 1)⌊M

2
⌋⌈M

2
⌉ ≤

(
n

2

)
⌊M

2
⌋⌈M

2
⌉.

III. CONSTRUCTING PERMUTATION CODES FROM COSETS OF SUBGROUPS

In this section, we initially devise an algorithm that determines the largest (n, d)-PC under Kendall

τ -metric constructed by a subgroup and some of its left cosets (see Remark III.1, below) among all

subgroups of Sn for integers n and d. Employing GAP [10] through this algorithm allows us to discover

new (n, d)-PCs under Kendall τ -metric, as detailed in Appendix VI, which improve the lower bounds

of P (n, d) when n ∈ {7, 8}. Subsequently, Table II is presented, illustrating the best-known bounds on

P (n, d) for n ∈ {5, 6, 7, 8}. Recently, several improved lower bounds for P (n, d) have been obtained

in [4], using recursive techniques, automorphisms, and programs that combine randomness and greedy

strategies. Notably, the bold and italic entries in the table represent results from the current paper and [4],

respectively. Also the blue entries shows the best known of lower bounds for P (n, d), n ∈ {7, 8}.

Remark III.1. If H is a subgroup of a finite group G and g ∈ G, then Hg := {hg | h ∈ H} and gH :=
{gh | h ∈ H} are called a right coset of H and a left coset of H , respectively, with the representative g. It

is known that if X be the set of right (left) cosets of H in G, i.e., X := {Hg | g ∈ G} (X := {gH | g ∈ G}),

then X partitions G, i.e., G = ∪X∈XX and X ∩X ′ = ∅ for all distinct elements X and X ′ of X, and

|X| = |G|/|H|.
Description of Algorithm 1: Algorithm 1 takes two input integers, n and d. It initializes G and T as

the symmetric group on the set [n] and all subgroups of G, respectively (using GAP [10], access to

all subgroups of G is possible with “ConjugacyClassesSubgroups(G)”). The algorithm comprises three

functions: ∆, Λ, and Θ. The first two return the minimum Kendall τ -distance between elements of a

subgroup and a subset, respectively. The third function returns the minimum Kendall τ -distance between g
and all elements of a set M . Notice that if H is a subgroup, then since the Kendall τ -metric is right invariant

and hh−1
0 ∈ H for all elements h, h0 ∈ H , min{dK(h, h0) | h 6= h0, h, h0 ∈ H} = min{dK(h, ξ) | h ∈ H}.

Hence, in order to reduce computer calculations, the algorithm define a separate function for calculating

the minimum kendall τ -distance between elements of a subgroup. It initializes two lists D and L to be

empty lists. All subgroups of G that are (n, d)-PCs are added to the list D. For each H ∈ D, the algorithm

initializes a list LH as the set of left transversal set H in G (i.e., {xH | x ∈ L(H)} is the set of all left

cosets of H in G). The goal is to find the largest subset SH of LH such that ξ ∈ SH and ∪x∈SH
xH is an

(n, d)-PC. For the latter, it first initializes two lists MH and SH to be list of elements of H and empty list,

respectively. Next, for all j ∈ LH , if jH is an (n, d)-PC and if the minimum Kendall τ -distance between

j and all elements of M is at least d, then it add j to the set SH and M := M ∪ jH . Note that if there

exist x, y ∈ T such that xH and yH are two (n, d)-PC and dK(xh, y) ≥ d for all h ∈ H , then the right

invariant property of the Kendall τ -metric implies that xH ∪ yH is an (n, d)-PC. With this procedure, the

algorithm creates the subset SH of LH to achieve its goal. Finally, for each subgroup H of G, it adds

the list [H,SH ] to L. Now by considering the elements of the list L we can find the largest (n, d)-PC is

created by the algorithm 1.
It is worth noting that the construction of PCs using certain subgroups of symmetric groups and their

right cosets under the Hamming metric has already been explored (see, for instance, [5]). Since the

Hamming metric on Sn is left and right invariant, for adding each right (left) coset to the previously

created PC of a certain subgroup and its right (left) cosets, it is enough to check the minimum distance

of the representative of that coset with the previous PC. Also, in Algorithm 1, because the Kendall τ -

metric is only right invariant, adding the left cosets to the previously constructed PC is used to reduce

the calculations.

IV. THE VALUE OF P (n, d) FOR CERTAIN VALUES OF d

Within this section, we initially establish the proof for Theorem I.1 and subsequently ascertain the exact

value of P (7, 12). The proof of Theorem I.1 relies on the following straightforward lemma.
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Algorithm 1: Construction (n, d)-PCs from the sub-

groups and some their cosets.

Input: Integer numbers n and d.

Output: A list of elements as [H,SH ] such that

∪x∈{ξ}∪SH
xH is an (n, d)-PC.

1: G← symmetric group on n letters

2: T ← all subgroups of G
3: ∆← a function whose input is a

subgroup H
4: S ← []
5: for all i in H do

6: add Kendall τ -distance between ξ and i to S
7: end for

8: return(minimum of the list S)

9: end function

10: Λ← a function whose input is the

subset N
11: S ← []
12: for all i and j in N do

13: add Kendall τ -distance between i and j to S
14: end for

15: return(minimum of the list S)

16: end function

17: Θ← a function whose inputs are a subset M
and an element g of G

18: S ← []
19: for all i in M do

20: add Kendall τ -distance between g and i to S
21: end for

22: return(minimum of the list S)

23: end function

24: D ← []
25: for all i in T do

26: if ∆(i) ≥ d then add i to the list D
27: end if

28: end for

29: L← []
30: for all H in D do

31: LH ← left transversal set H in G
32: MH ← elements of H
33: SH ← []
34: for all j in LH do

35: if Λ(elements of (jH)) ≥ d and

Θ(M, j) ≥ d then

38: add j to the set SH

39: M ← union of MH and the left coset jH
of H in G

40: end if

41: end for

42: add [H,SH ] to the set L
43: end for

Lemma IV.1. Let n ≥ 5 be an integer. If n ≡ 0, 2 (mod 3) (n ≡ 1 (mod 3)), then there exist 3 non-empty

subsets with the same sumset which partitions [n] ([n] \ {1}), respectively.

Proof. If n is 5, 6, 7, 8, 9 and 10, respectively, then
{
{5}, {1, 4}, {3, 2}

}
,
{
{6, 1}, {5, 2}, {3, 4}

}
,{

{2, 7}, {3, 6}, {4, 5}
}

,
{
{8, 4}, {7, 3, 2}, {1, 5, 6}

}
,
{
{6, 5, 4}, {9, 1, 2, 3}, {8, 7}

}
and

{
{10, 8}, {9, 2, 7}, {3, 4, 6, 5}

are the partitions of [n] or [n] \ {1} satisfying the lemma. Now suppose that n > 10. Hence there exist

t > 0 and r ∈ {5, 6, 7, 8, 9, 10} such that n = 6t + r. Note that if n ≡ 1 (mod 3), then r ∈ {7, 10}.
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TABLE II: Best known lower bound (LB) and upper bound (UP) on P (n, d).

n/d 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17-18

5 LB=UB 20i 12i 6i 5i 2c 2c 2c 2c – – – – – – –

6
UB

LB

116b

102i
64i

64i
26i

26i
20i

20i
11i

11i
7i

7i
4i

4i
4i

4i
2c

2c
2c

2c
2c

2c
– – – –

7

UB

LB

LB

OLB

716b

–

–

588c

420c

336

315

294f

186a

126

126

110d

120c

84

84

55c

66a

42

42

34d

45c

–

28

17f

28a

–

15

14d

21c

13

12

7a

10

8

8

2a

7

7

7

2a

4g

4

4

2a

4g

–

4

2a

2c

–

–

2c

2c

–

–

2c

2c

–

–

2c

8

UB

LB

LB

OLB

5039c

3752

3696

2688h

2880c

2240

2184

1344a

1152a

672

672

142a

720c

448

392

76a

363a

168

168

33a

242c

115

112

20a

141a

57

48

12a

99c

43

48

7a

64a

26

24

6a

47c

21

24

4a

32a

15

14

3a

25c

12

14

3a

10g

8

8

1a

8g

–

8

1a

4g

–

4

1a

Key to the superscripts used in Table

superscript a Sphere packing bound

superscript b Sphere packing bound+[1, Theorem 3.5]

superscript c [7, Corollary 5 or Theorems 10,12 or 13]

superscript d Lower bounds from [15]

superscript f [15, Theorem 21]

superscript g [20, Theorem 23]

superscript h P (n, 3) ≥ n!

2n−1
[15]

superscript i [25, Table II]

an entry in bold Tables III and IV and Theorem IV.6

an entry in italic Lower bounds from [4]

blue entries Best known lower bounds for P (n, d), n ∈ {7, 8}

Consider t+ 1 subsets Θ1,...,Θt+1 of [n] as follows:

1, . . . , r︸ ︷︷ ︸
Θ1

, r + 1, . . . , r + 6︸ ︷︷ ︸
Θ2

, . . . , n− 11, . . . , n− 6︸ ︷︷ ︸
Θt

, n− 5, . . . , n︸ ︷︷ ︸
Θt+1

Clearly, for all 2 ≤ i ≤ t + 1, Θi = {ki + 1, ki + 2, . . . , ki + 6}, where ki = r + (i − 2)6 + 1. Hence, 3

sets Θi1 := {ki + 1, ki + 6}, Θi2 := {ki + 2, ki + 5} and Θi3 := {ki + 3, ki + 4} with the same sumset

partition the set Θi. Therefore, since r ∈ {5, 6, 7, 8, 9, 10}, corresponding to each set Θi, 1 ≤ i ≤ t + 1,

there exists a partition of 3 sets Θi1, Θi2 and Θi3 with the same sumset for Θi. Let ∆j := ∪t+1
i=1Θij for

all j ∈ {1, 2, 3}. So ∆1, ∆2 and ∆3 with the same sumset partition [n] or [n] \ {1} if n ≡ 0, 2 (mod 3)

or n ≡ 1 (mod 3), respectively. This completes the proof.

Proof of Theorem I.1. It follows from [20, Theorem 23] that if P (n, d) ≥ 5, then we must have
(
5
2

)
d ≤

6×
(
n

2

)
and therefore d ≤ 3

5

(
n

2

)
. So for all 3

5

(
n

2

)
< d ≤ 2

3

(
n

2

)
, P (n, d) ≤ 4. Since P (n, d+ 1) ≤ P (n, d),

it is enough to show that there exists an (n, ⌊2/3
(
n

2

)
⌋)-PC of size 4.

Let N :=
∑n−1

i=1 i =
(
n

2

)
. It follows from Lemma IV.1 that there exist pairwise distinct subsets ∆1,∆2

and ∆3 of [n− 1] or [n− 1] \ {1} such that if n− 1 ≡ 0, 2 (mod 3) or n− 1 ≡ 1 (mod 3), respectively,

then
∑

j∈∆i
j = N

3
or

∑
j∈∆i

j = N−1
3

, for all i ∈ {1, 2, 3}. Now, suppose that for n ≥ 6, the subsets

∆1,∆2 and ∆3 of [n − 1] are determined. Corresponding to each ∆i, we introduce a permutation αi as

follows: let ri := |∆i|, ∆′
i := {n− j | j ∈ ∆i} and Θi := [n] \∆′

i. Suppose that j1 < j2 < · · · < jri and

l0 < l1 < · · · < ln−ri−1 are all elements of ∆′
i and Θi, respectively. Let αi ∈ Sn such that αi(t) = jt

and αi(n − s) = ls for all t ∈ {1, . . . , ri} and s ∈ {0, . . . , n − ri − 1}. Let αx and αy be two distinct

permutations corresponding to distinct subsets ∆x and ∆y, x, y ∈ {1, 2, 3}. In view of the definition of

αx, if i < j are two elements of [n], then α−1
x (i) < α−1

x (j) if and only if i ∈ ∆′
x. So, since ∆′

x∩∆′
y = ∅,
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we have (i, j) ∈ [n]2 satisfies α−1
x (i) < α−1

x (j) and α−1
y (i) > α−1

y (j), if and only if (i, j) ∈ A∪B, where

A := {(i, j) | i < j, i ∈ ∆′
x} and B := {(i, j) | i > j, j ∈ ∆′

y}. Hence

dK(αx, αy) = |{(i, j) |α−1
x (i) < α−1

x (j) ∧ α−1
y (j) > α−1

y (i)}|
= |A ∪B| = |A|+ |B|.

Therefore, dK(αx, αy) =
∑

i∈∆x
i +

∑
i∈∆y

i and so dK(αx, αy) is equal to 2N
3

if n − 1 ≡ 0, 2 (mod 3)

and otherwise is equal to
2(N−1)

3
= ⌊2

3
N⌋. Also it is easy to see that

dK(ξ, αx) = |{(i, j) | i < j ∧ α−1
x (i) > α−1

x (j)}|
= |{(i, j) | i < j, i ∈ Θx}|,

and therefore dK(ξ, αx) is equal to N − N
3
= 2

3
N if n − 1 ≡ 0, 2 (mod 3) and is equal to N − N−1

3
=

2N+1
3

> ⌊2N
3
⌋ if n− 1 ≡ 1 (mod 3). Hence, {ξ, α1, α2, α3} is an (n, ⌊2N

3
⌋)-PC of size 4. This completes

the proof.

Example IV.2. Let n = 14. Suppose ∆1 := {2, 7, 8, 13}, ∆2 := {3, 6, 9, 12} and ∆3 := {4, 5, 10, 11}.

Then ∆1,∆2,∆3 have the same sumset 30 and partitions {2, 3, . . . , 13}. Hence by the proof of TheoremI.1,

{ξ, α1, α2, α3} is a (14, 60)-PC, where

α1 = [1, 6, 7, 12, 14, 13, 11, 10, 9, 8, 5, 4, 3, 2],

α2 = [2, 5, 8, 11, 14, 13, 12, 10, 9, 7, 6, 4, 3, 1],

α3 = [3, 4, 9, 10, 14, 13, 12, 11, 8, 7, 6, 5, 2, 1].

Definition IV.3. A permutation code C is called equidistance (called EPC for short) under Kendall τ -

distance whenever all two distinct permutations in C have the same Kendall τ -distance. The maximum

size of the largest EPC of length n and Kendall τ -distance d denoted by EP (n, d). Also we denote by

P (n, d,m, d′), the size of the largest PC with minimum Kendall τ -distance d in Sn such that contains an

EPC of size m and Kendall τ -distance d′.

The problem of determining bounds on EPCs under the Hamming metric back to the 1970s, beginning

with a question of Bolton in [6]. Various studies, including [12], [13], [22], [24], have explored this topic

due to its applications in powerline communications and balanced scheduling. For a brief overview of

EPCs under the Hamming metric, you can refer to [8, Section VI.44.5]. However there is no special study

on EPCs under the Kendall τ -metric, and only in [25, p. 3160], the number of permutations that have the

same distance with the identithy element has been studied. In the subsequent discussion, we leverage the

notion of EPCs under the Kendall τ -metric to demonstrate that P (7, 12) = 7.

Proposition IV.4. 1) For each 1 ≤ d ≤
(
n

2

)
and σ ∈ Sn, there exists an element π ∈ Sn such that

dK(σ, π) = d.

2) If d is an odd number, then EP (n, d) = 2.

3) EP (n, d) = 2, for all 2/3
(
n

2

)
< d ≤

(
n

2

)
.

4) EP (n, 2/3
(
n

2

)
) = 4.

Proof. First, we show that for each 1 ≤ t ≤
(
n

2

)
, there exists a subset A ⊆ [n− 1] such that

∑
a∈A a = t.

If t < n, then there is nothing to prove. So we assume t ≥ n. Since t ≤
(
n

2

)
, there exists i ∈ [n] such

that
∑i

j=1(n− j) ≤ t ≤
∑i+1

j=1(n− j). Suppose that s = t−
∑i

j=1(n− j). So either s = 0 or s < n− i.
Hence, if s = 0, then A = {n, n− 1, . . . , n− i} and if s < n− i, then A = {n, n− 1, . . . , n− i, s}.

Let d ≤
(
n

2

)
and A ⊆ [n − 1] such that

∑
a∈A a =

(
n

2

)
− d. Also let |A| = r, ∆ := {n − j | j ∈ A}

and Θ := [n] \ ∆. Suppose that j1 < j2 < · · · < jr and l0 < l1 < · · · < ln−r−1 are all elements of

∆ and Θ, respectively. Let α ∈ Sn such that α(t) = jt and α(n − s) = ls for all t ∈ {1, . . . , r} and

s ∈ {0, . . . , n−r−1}. It is easy to see that |{(i, j) ∈ [n]2 | i < j∧α−1(i) > α−1(j)}| =
(
n

2

)
−
∑

a∈A a = d.
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Therefore d = dK(ξ, α) = dK(σ, ασ) and this completes the proof of part (1). Since the composition of

two odd (even) permutations is an even permutation, the right invariant property of the Kendall τ -metric

implies that the Kendall τ -distance between two permutations of the same parity is even. Hence the part

(2) follows from part (1). Also the part (3) follows from the part (1) and [7, Theorem 10] and the part

(4) follows from the proof of Theorem I.1. This completes the proof.

Lemma IV.5. EP (7, 12) = 7 and P (7, 11, 6, 12) = 7.

Proof. Let C be an (7, 12)−EPC under the Kendall τ− metric of maximum size. Without loss of generality

we may assume that ξ ∈ C as Kendall τ -metric is right invariant. Let A := {σ ∈ Sn | dK(ξ, σ) = 12}.

Using GAP [10], |A| = 531. It is sufficient that we find the maximum EPC with Kendall τ -distance 12

in A. Let Ai, 2 ≤ i ≤ 7, be the set of all subsets of size i in A such that the Kendall τ -distance between

any pair of distinct elements in any of them is equal to 12. Using GAP, |A2| = 27697, |A3| = 172629,

|A4| = 131777, |A5| = 10862, |A6| = 9 and |A7| = 0. So, the size of largest EPC in A is 6 and therefore

|C| = 7.

Suppose that C is a (7, 11)-PC such that contains an EPC C̄ of size 6 and the Kendall τ -distance 12. Without

loss of generality we may assume that ξ ∈ C̄. According to the proof of the first part, C̄ ∈ M := {{ξ} ∪
A |A ∈ A5}. So there are 10862 distinct cases for C̄. Let BM := {σ ∈ Sn | dK(m, σ) ≥ 11, ∀ m ∈ M},

for all M ∈ M. Using GAP, for all M ∈ M, 0 ≤ |BM | ≤ 14 and if |BM | 6= 0 and b1, b2 ∈ BM then

dK(b1, b2) < 11. This completes the proof.

Theorem IV.6. P (7, 12) = 7 and 8 ≤ P (7, 11) ≤ 10.

Proof. Let C be a (7, d)−PC under the Kendall τ−metric and Σ :=
∑

c1,c2∈C
dK(c1, c2). By a same

argument as in the proof of [20, Theorem 23], it can be seen that Σ ≤
(
n

2

)
⌈ |C|

2
⌉⌊ |C|

2
⌋. By Theorem II.6,

P (7, 12) ≤ 8. As shown in Table II, P (7, 12) ≥ 7. Then it is sufficient that we show P (7, 12) 6= 8.

Suppose for a contradiction that C be an (7, 12)−PC of size 8. So we must have Σ ≤ 336. On the

other hand, since EP (7, 12) = 7 and |C| = 8, there exist c1, c2 in C such that dK(c1, c2) > 12. Hence,

Σ ≥
(
8
2

)
× 12 + 1 = 337 that is a contradiction. So P (7, 12) = 7.

As shown in Table II, P (7, 11) ≥ 8. Theorem II.6 implies that P (7, 11) ≤ 12. Suppose for a contradiction

that C be an (7, 11)−PC of size 12 or 11. Let C1 := C ∩An and C2 := C\C1, where An denotes the set of

all even permutation in Sn. Without loss of generality we may assume that |C1| ≥ |C2|. Since the Kendall

τ -distance between two permutations of the same parity is even, if c1 and c2 are two distinct elements in

C1 or C2, then dK(c1, c2) ≥ 12. So
(|C1|

2

)
× 12 +

(|C2|
2

)
× 12 + 11× |C1| × |C2| ≤ Σ.

If |C| = 12 and 11, then Σ ≤ 756 and 630, respectively. Hence it can be seen that if |C| = 12, then C1 and

C2 must be two (7, 12)−EPC of sizes 6 and also if |C| = 11, then C1 and C2 must be two (7, 12)−EPC

of sizes 6 and 5, respectively. Therefore if |C| ∈ {11, 12}, then C is an (7, 11)−PC such that contains a

(7, 12)−EPC of size 6 that is contradict with Lemma IV.5, This completes the proof.

V. NEW UPPER BOUND OF P (n, 3)

In this section, we will follow the definitions and notations outlined in [1]. Specifically, we adopt the

following definitions: Let H be a subgroup of a finite group G and X = {Ha1, . . . , Ham} be the set of

right cosets of H in G. Fix the ordering on X as Hai < Haj whenever i < j. Then ρGX is the map from

G to GLm(Z) (the group of all m×m invertible matrices with integer entries) defined by g → Pg, where

Pg is the m×m matrix whose (i, j) entry is 1 if Haig = Haj and 0 otherwise. Furthermore, if Y ⊆ G,

then Ŷ ρG
X represents the element

∑
y∈Y yρ

G
X =

∑
y∈Y Py in Matm(Z), the set of all m×m matrices over

Z.
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By a number partition λ of n (with the length m) we mean an m-tuple (λ1, . . . , λm) of positive integers

such that λ1 ≥ · · · ≥ λm and n =
∑m

i=1 λi. According to [1, Definition 3.1 and Remark 3.2], the Young

subgroup corresponding to a partition (λ1, . . . , λm) of a positive integer n refers to the subgroup H of

Sn defined as H := S∆1
× · · · × S∆m

= {σ1 · · ·σm | σi ∈ ∆i, 1 ≤ i ≤ m}, where (∆1, . . . ,∆m) =
({1, . . . , λ1}, {λ1 + 1, . . . , λ1 + λ2}, . . . , {n− λm + 1, . . . , n}), and S∆i

denotes the symmetric group on

the set ∆i for all i = 1, . . . , m.

Lemma V.1. Let H be the Young subgroup of Sn corresponding to the partition λ := (n − r, 1, . . . , 1︸ ︷︷ ︸
r

)

and X be the set of right cosets of H in Sn. If S = {(i, i+ 1) | 1 ≤ i ≤ n− 1} and T := S ∪ {ξ}, then

T̂ ρ
Sn
X is a symmetric matrix A = (aij)ℓ×ℓ, where ℓ = n!

(n−r)!
, with the following properties:

1) aii ≥ n− 2r for all i ∈ [ℓ].
2) aij ∈ {0, 1} for all i 6= j ∈ [ℓ].
3)

∑ℓ

j=1 aij = n for all i ∈ [ℓ].

Proof. In view of [1, Remark 3.2], without loss of generality we may assume that λ is the partition

{[n− r], {n− r + 1}, {n− r + 2}, . . . , {n}} of n and therefore H ∼= Sn−r. Let F := {(f1, f2, . . . , fr) ∈
[n]r | ∀ i 6= j, fi 6= fj}. Corresponding to each ordered r-tuple F = (f1, . . . , fr) ∈ F , let SF

n := {σ ∈
Sn | σ(n−r+1) = f1, σ(n−r+2) = f2, . . . , σ(n) = fr}. Clearly, SF

n = Hg, where g = (n−r+1, f1)(n−
r+2, f2) · · · (n, fr), is a right coset of H and if F and F̄ are two distinct elements of F , then SF

n ∩SF̄
n = ∅.

Hence, since |F| = ℓ, in view of Remark III.1, X = {SF
n |F ∈ F} is the set of all right cosets of H in

Sn. Suppose that F1, F2, . . . , Fℓ are all ordered r-tuples in F . Fix the ordering of X such that SFi
n < S

Fj
n

if i < j, for all i, j ∈ [ℓ]. In view of [1, Definition 2.10], the (i, j) entry of T̂ ρ
Sn
X is equal to |Oij|, where

Oij := {t ∈ T |SFi
n t = S

Fj
n }. Since Oij = Oji for all i, j ∈ [ℓ], A is a symmetric matrix. Let (i, i+1) ∈ T

and let F = (f1, . . . , fr) and F̄ = (f̄1, . . . , f̄r) be two distinct elements of F . The sufficient condition for

SF
n (i, i + 1) = SF

n is {i, i + 1} ∩ {f1, . . . , fr} = ∅. So ass ≥ n − 2r for all s ∈ [ℓ]. Now suppose for a

contradiction that there exists (j, j + 1) ∈ T \ {(i, i + 1)} such that SF
n (i, i + 1) = SF̄

n = SF
n (j, j + 1).

Since F 6= F̄ we have P1 := {f1, . . . , fr} ∩ {i, i + 1} 6= ∅ and {f1, . . . , fr} ∩ {j, j + 1} 6= ∅. Suppose

that i ∈ P1 and fm = i for some m ∈ [r]. Then for all σ ∈ SF
n ,

(
σ(i, i + 1)

)
(n − r + m) = i + 1 and(

σ(j, j + 1)
)
(n − r +m) is equal to j if i = j + 1 and is equal to i if {i, i + 1} ∩ {j, j + 1} = ∅. So

SF
n (i, i+ 1) 6= SF

n (j, j + 1) that is a contradiction. Now suppose that i+ 1 ∈ P1 and fd = i+ 1 for some

d ∈ [r]. then by the same argument it can be seen that
(
σ(i, i+1)

)
(n− r+ d) 6=

(
σ(j, j+1)

)
(n− r+ d),

for all σ ∈ SF
n . Hence, SF

n (i, i + 1) 6= SF
n (j, j + 1) that is a contradiction. Hence, aij ∈ {0, 1} for all

i 6= j ∈ [ℓ]. Note that for each x ∈ [ℓ], since ∪ℓ
y=1Oxy = T and Oxy ∩ Oxy′ = ∅ for all y 6= y′ ∈ [ℓ], we

have
∑ℓ

j=1 aij = n for all i ∈ [ℓ]. This completes the proof.

Here, we provide some notations used in the proof of Theorem I.2. The transposition of a matrix or

vector is denoted by ·t. The inner product of two vectors x = (x1, . . . , xn)
t and y = (y1, . . . , yn)

t in Rn

is defined as 〈x, y〉 := xty =
∑n

i=1 xiyi, the notation ‖ x ‖:=
√
〈x, x〉 denotes the 2-norm of vector x and

the notation ‖ x ‖1:=
∑n

i=1 |xi| denotes the 1-norm of vector x, where |a| denotes the absolute value of

real number a.

Definition V.2. [11] A polyhedral cone is a subset C ⊂ Rn of the form C := {x ∈ Rn |Ax ≤ 0}, for a

matrix A ∈ Rm×n and column vector 0 of order n× 1 whose entries are equal to 0.

Remark V.3. Let C = {x ∈ Rn |Ax ≤ 0} be a polyhedral cone for a non-singular matrix A ∈ Rn×n .

In view of [11, p. 104-105], the vector d ∈ Rn is called an extreme ray of C, if there exists 1 ≤ i ≤ n
such that Aid = 0 and aid ≤ 0, where ai denotes the i-th row of the matrix A and Ai is the submatrix of

A obtained by removing ai. We say that two extreme rays d and d
′ of C are equivalent, and denote it by

d ∼ d
′, if one is a positive multiple of the other. In view of [11, p. 101-105], the number of equivalence
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classes of extreme rays in C is finite. Also according to [11, p. 105], if {w1, . . . ,ws} is a complete set of

representatives of all equivalence classes of extreme rays in C, then C = {
∑s

i=1 λiwi | λi ≥ 0}.

Theorem V.4. Let r and n be integers such that r < n
4

and n ∤ (n− r)!. Then

P (n, 3) ≤ (n− 1)!− n− 6r√
n2 − 8rn+ 20r2

√
(n− 1)!

n(n− r)!
.

Proof. Let C be a PC in Sn with minimum Kendall τ -distance 3. Let H be the Young subgroup of Sn

corresponding to the partition λ := (n − r, 1, . . . , 1︸ ︷︷ ︸
r

) and Y be the set of right cosets of H in Sn. If

S = {(i, i + 1) | 1 ≤ i ≤ n − 1} and T := S ∪ {ξ}, then by Lemma V.1, T̂ ρ
Sn
Y is a matrix A = (aij)ℓ×ℓ,

ℓ = n!
(n−r)!

, with properties specified in Lemma V.1. Theorem [1, 2.14] implies that the optimal value of

the objective function of the following integer programming problem gives an upper bound on |C|

Maximize

ℓ∑

i=1

xi,

subject to A(x1, . . . , xℓ)
t ≤ |H|1 = (n− r)!1,

xi ∈ Z, xi ≥ 0, i ∈ {1, . . . , ℓ},
where 1 is a column vector of order ℓ×1 whose entries are equal to 1. Let ααα be a feasible solution for the

above linear inequality system that achieves the optimum of the objective function and βββ := (n−r)!
n

1. It

follows from the part (3) of Lemma V.1 that the sum of every row in A is equal to n and so Aβββ = (n−r)!1.

Since n ∤ (n−r)! we have ααα 6= βββ. It is clear that
∑ℓ

i=1 αi ≤ (n−1)!, where αi denotes the i-th entry of ααα,

and suppose that
∑ℓ

i=1 αi = (n− 1)!− k for a non-negative integer k. Consider two vectors
−→
βββααα := ααα−βββ

and −1. We let

µ :=

〈
−1,

−→
βββααα

〉

‖ −1 ‖‖ −→
βββααα ‖

=
〈−1,ααα− βββ〉

‖ −1 ‖‖ ααα− βββ ‖

=
〈−1,ααα〉+ 〈−1,−βββ〉
‖ −1 ‖‖ ααα− βββ ‖

=
ℓ (n−r)!

n
−∑ℓ

i=1 αi

√
ℓ
√∑ℓ

i=1(αi − βi)2

=
k

√
ℓ
√∑ℓ

i=1(αi − βi)2
,

where βi denotes the i-th entry of βββ. Since for each i ∈ [ℓ], αi is an integer number, we have |αi−βi| ≥ 1
n

.

Hence,

k ≥ µ
√
ℓ

√
ℓ

n2
= µ

ℓ

n
=

(n− 1)!

(n− r)!
µ. (V.1)

Let C := {x ∈ Rℓ |Ax ≤ (n − r)!1} = {x ∈ Rℓ |A(x − βββ) ≤ 0}. In view of Definition V.2, C is a

polyhedral cone. Note that since r < n
4
, Lemma V.1 implies that A = (aij)ℓ×ℓ is a matrix such that

aii >
∑ℓ

i 6=j=1 aij for all 1 ≤ i ≤ ℓ. Therefore Levy-Desplanques Theorem [14, p. 125] implies A is a

non-singular matrix. Also, since λ0u+ (1− λ0)v ∈ C for all u,v ∈ C and λ0 ∈ [0, 1], C is a convex set.

It is clear that βββ,ααα ∈ C and so the vector
−→
βββααα belongs to C. Suppose that {w1, . . . ,ws} is a complete set

of representatives of all equivalence classes of extreme rays in C such that ‖ wi ‖= 1 for all 1 ≤ i ≤ s.
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Since
−→
βββααα ∈ C, it follows from Remark V.3 that there exist non-negative real numbers λ1, . . . , λs such that−→

βββααα =
∑s

i=1 λiwi. Then

µ =

〈
−1,

−→
βββααα

〉

‖ 1 ‖‖ −→
βββααα ‖

=
〈−1,

∑s

i=1 λiwi〉
‖ −1 ‖‖

∑s
i=1 λiwi ‖

.

Since ‖ ∑s
i=1 λiwi ‖≤

∑s
i=1 λi ‖ wi ‖,

µ ≥
∑s

i=1 λi 〈−1,wi〉
‖ −1 ‖ (

∑s
i=1 λi ‖ wi ‖)

,

and since ‖ wi ‖= 1 for all 1 ≤ i ≤ s,

µ ≥
s∑

i=1

λi 〈−1,wi〉
(
∑s

j=1 λj) ‖ −1 ‖

=
s∑

i=1

λi∑s

j=1 λj

〈−1,wi〉
‖ −1 ‖ ≥

s∑

i=1

λi∑s

j=1 λj

µ0 = µ0, (V.2)

where µ0 := min

{〈−1,wi〉
‖ −1 ‖

∣∣ 1 ≤ i ≤ s

}
.

Suppose that µ0 =
〈−1,wr〉
‖ −1 ‖ for some 1 ≤ r ≤ s. Hence it follows from Remark V.3 that there

exists i ∈ [n] such that Aiwr = 0 and aiwr ≤ 0, where ai is the i-th row of the matrix A and Ai

is the matrix obtained by removing ai of the matrix A. According to the properties of the matrix A,

without loss of generality, we may assume that i = ℓ. Suppose that ρρρ is the ℓ-th column of Aℓ and J
is the (ℓ− 1)× (ℓ− 1) matrix obtained by removing the column ρρρ of the matrix Aℓ. Levy-Desplanques

Theorem implies J is a non-singular matrix. Hence, Aℓ(x1, . . . , xℓ)
t = J(x1, . . . , xℓ−1)

t+ρρρxℓ = 0 implies

(x1, . . . , xℓ−1)
t = −J−1ρρρxℓ.

In the sequal, we show that aℓ(J
−1ρρρ,−1)t ≤ 0 and therefore by placing xℓ = −1 we have (−J−1ρρρxℓ, xℓ)

t ∼
wr. It follows from [23, Theorem 1] and Lemma V.1 that if ∆ := min{|Jii|−

∑ℓ−1
j=1,j 6=i |Jij| | 1 ≤ i ≤ ℓ−1},

then ‖ J−1 ‖∞:= max{
∑ℓ−1

j=1 |(J−1)ij | | 1 ≤ i ≤ ℓ − 1} ≤ 1
∆

. So Lemma V.1 implies ‖ J−1 ‖∞≤ 1
n−4r

.

Also if |A| := (|aij|)n×n for a matrix A = (aij)n×n, then we have

‖ J−1ρρρ ‖1= tr(|J−1ρρρ|1) ≤ tr(|J−1|ρρρ1).

Since the inverse of a symmetric matrix is a symmetric matrix, J−1 is a symmetric matrix. Suppose that

ρi denotes the i-th entry of ρρρ. It follows from Lemma V.1 that ρi ∈ {0, 1} for all 1 ≤ i ≤ ℓ − 1 and if

τ := {i ∈ [ℓ− 1] | ρi = 1}, then the size of τ is at most 2r. Then we have

tr(|J−1|ρρρ1) =

ℓ−1∑

i=1

∑

j∈τ

|(J−1)ij|

=
∑

j∈τ

ℓ−1∑

i=1

|(J−1)ij|

=
∑

j∈τ

ℓ−1∑

i=1

|(J−1)ji|

≤
∑

j∈τ

‖ J−1 ‖∞≤ 2r ‖ J−1 ‖∞,
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and therefore,

‖ J−1ρρρ ‖1≤
2r

n− 4r
. (V.3)

So, parts (1) and (2) of Lemma V.1 and r <
n

4
imply that

aℓ(J
−1ρρρ,−1)t ≤‖ J−1ρρρ ‖1 −(n− 2r) ≤ 0

and so (J−1ρρρ,−1)t ∼ wr. Hence,

µ0 =
〈−1, (J−1ρρρ,−1)t〉

‖ 1 ‖‖ (J−1ρρρ,−1)t ‖ =
1− 〈1, J−1ρρρ〉√
ℓ
√
1+ ‖ J−1ρρρ ‖2

≥ 1− ‖ J−1ρρρ ‖1√
ℓ
√

1+ ‖ J−1ρρρ ‖21
. (V.4)

Hence, relations (V.3) and (V.4) imply

µ0 ≥
n− 6r√

ℓ
√
n2 − 8rn+ 20r2

, (V.5)

and therefore the result follows from relations (V.1), (V.2) and (V.5). This completes the proof.

Proposition V.5. For integers n ≥ 10 and r ≤ n

2
, if n ∤ (n− r)!, then n is a prime number.

Proof. Suppose for a contradiction that n is not prime. Hence there exist n1, n2 ∈ N \ {1} such that

n = n1n2. Suppose first that n1 6= n2 and n1 < n2. If n2 ≤ n− r, then n|(n− r)! that is a contradiction.

So n2 > n− r. Since r ≤ n
2
,

n

2
≤ n− r < n2 =

n

n1
,

and therefore n1 < 2 that is a contradiction. Now suppose that n = n2
1. Since n ∤ (n − r)!, n − r < 2n1

and so
n2
1

2
=

n

2
≤ n− r < 2n1,

and therefore n1 < 4 that is a contradiction. This completes the proof.

Remark V.6. In view of Proposition V.5, the only numbers that satisfy the assumptions of Theorem V.4

are prime numbers. Thus, given that P (n, 3) ≤ (n − 1)!, Theorem V.4 is interchangeable with Theorem

I.2.

Proof of Corollary I.3: First suppose that n = 6r+1 ≥ 37 is a prime number. It follows from inequality

I.1 that

P (6r + 1, 3) ≤ (6r)!−
√

(6r)(6r − 1) · · · (5r + 2)

48r3 + 32r2 + 10r + 1
.

Clearly,
(5r + 2)(5r + 3)(5r + 4)

48r3 + 32r2 + 10r + 1
> 2.6. Therefore,

P (6r + 1, 3) < (6r)!−
√
2.6(5r + 5)

r−4

2

< (6r)!− ⌈6r + 1

3
⌉ + 2.

Now suppose that n = 6r + 5 ≥ 41 is a prime number. It follows from inequality I.1 that

P (6r + 5, 3) ≤ (6r + 4)!− 5

√
(6r)(6r − 1) · · · (5r + 6)

48r3 + 160r2 + 250r + 125
.
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Clearly,
(5r + 6)(5r + 7)(5r + 8)

48r3 + 160r2 + 250r + 125
> 2.6. Therefore,

P (6r + 5, 3) < (6r + 4)!− 5
√
2.6(5r + 9)

r−4

2

< (6r + 4)!− ⌈6r + 5

3
⌉ + 2.

This completes the proof.
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VI. APPENDIX

Tables III and IV contain information on the generators of subgroup H in Sn (i. e., a subset of the

elements H such that every element of the H can be expressed as a combination of finitely many elements

of the subset and their inverses) and SH for n ∈ {7, 8} as obtained from Algorithm 1, along with additional

software checking details. In these tables, Cd
n indicates the size of the set of all subgroups of Sn that are

(n, d)-codes under Kendall τ -metric and λH indicates the number of left cosets of H that are (n, d)-codes

under Kendall τ -metric. In fact in these tables, for every pair (n, d), ∪x∈SH∪ξxH forms a new (n, d)-PC.

http://www.gap-system.org
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d |Cd
7 | Generators of H |H | λH Elements of SH

4 5565
[4, 2, 1, 3, 7, 5, 6]
[3, 5, 2, 6, 7, 1, 4]

21 240

[1, 2, 3, 7, 4, 6, 5]
[1, 2, 3, 5, 7, 6, 4]
[1, 2, 6, 3, 4, 7, 5]
[1, 2, 4, 7, 3, 5, 6]
[1, 2, 5, 4, 3, 7, 6]
[1, 2, 5, 6, 3, 4, 7]
[1, 2, 4, 6, 5, 3, 7]
[1, 2, 6, 7, 5, 3, 4]
[1, 2, 7, 4, 6, 5, 3]
[1, 4, 2, 3, 6, 7, 5]
[1, 6, 2, 7, 4, 3, 5]
[1, 5, 2, 7, 6, 3, 4]
[1, 6, 4, 2, 3, 5, 7]
[1, 6, 5, 2, 3, 7, 4]

5 3651
[3, 4, 1, 2, 6, 5, 7]
[5, 2, 1, 7, 3, 4, 6]

42 57
[1, 2, 5, 3, 7, 6, 4]
[1, 2, 7, 6, 4, 3, 5]

6 2811
[7, 2, 1, 5, 6, 4, 3]
[3, 4, 2, 5, 7, 1, 6]

21 166
[1, 2, 3, 7, 6, 5, 4]
[1, 2, 7, 4, 6, 5, 3]
[1, 6, 2, 5, 4, 7, 3]

7 1684
[6, 2, 4, 3, 7, 1, 5]
[1, 3, 6, 5, 7, 2, 4]

42 3 −

8 1181 [2, 5, 7, 3, 4, 1, 6] 7 624
[1, 2, 7, 6, 3, 5, 4]
[1, 5, 7, 2, 4, 3, 6]
[1, 5, 6, 3, 2, 7, 4]

9 686 [2, 5, 7, 4, 1, 3, 6] 3 1418

[1, 7, 2, 4, 6, 5, 3]
[1, 6, 3, 4, 7, 5, 2]
[4, 6, 2, 1, 7, 3, 5]
[3, 6, 5, 1, 2, 7, 4]

10 475 [2, 4, 7, 5, 3, 6, 1] 6 92 [3, 6, 4, 2, 5, 1, 7]

11 219 [6, 5, 3, 7, 2, 1, 4] 2 1400
[1, 7, 3, 5, 6, 4, 2]
[5, 4, 3, 2, 1, 7, 6]
[7, 2, 1, 4, 6, 5, 3]

12 163 [2, 4, 7, 6, 3, 5, 1] 7 40 −
13 83 [1, 7, 6, 4, 5, 3, 2] 2 198 [6, 2, 4, 5, 7, 3, 1]
14 66 [6, 5, 3, 4, 2, 1, 7] 2 266 [7, 5, 1, 4, 3, 6, 2]

TABLE III: New (7, d)−codes and some details of software checking.
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d |Cd
7 | Generators of H |H | λH Elements of SH

3 105236
[4, 2, 5, 1, 3, 8, 7, 6]
[8, 6, 3, 4, 1, 7, 2, 5]

336 120

[1, 2, 3, 4, 5, 8, 7, 6]
[1, 2, 3, 4, 6, 8, 5, 7]
[1, 2, 3, 7, 4, 5, 6, 8]
[1, 2, 3, 8, 4, 7, 5, 6]
[1, 2, 3, 7, 4, 8, 6, 5]
[1, 2, 3, 6, 5, 4, 8, 7]
[1, 2, 3, 8, 5, 4, 6, 7]
[1, 2, 3, 8, 6, 4, 5, 7]
[1, 2, 3, 7, 5, 8, 4, 6]
[1, 2, 3, 7, 8, 6, 5, 4]

4 89682
[7, 1, 8, 3, 4, 2, 6, 5]
[6, 5, 4, 2, 3, 8, 1, 7]

168 240

[1, 2, 3, 4, 8, 5, 7, 6]
[1, 2, 3, 4, 6, 8, 7, 5]
[1, 2, 3, 7, 4, 5, 8, 6]
[1, 2, 3, 5, 8, 4, 6, 7]
[1, 2, 3, 6, 5, 4, 8, 7]
[1, 2, 3, 6, 7, 4, 5, 8]
[1, 2, 3, 8, 7, 4, 6, 5]
[1, 2, 3, 5, 7, 6, 4, 8]
[1, 2, 3, 8, 5, 7, 6, 4]
[1, 2, 3, 6, 8, 7, 5, 4]
[1, 2, 5, 4, 3, 6, 8, 7]
[1, 2, 8, 5, 4, 3, 6, 7]

5 66442
[7, 2, 8, 6, 5, 4, 1, 3]
[6, 4, 3, 5, 2, 8, 7, 1]

336 16 [1, 2, 3, 8, 4, 7, 5, 6]

6 54709
[8, 3, 4, 6, 5, 7, 1, 2]
[5, 2, 4, 8, 3, 1, 6, 7]

56 672

[1, 2, 3, 8, 4, 6, 7, 5]
[1, 2, 3, 7, 6, 4, 8, 5]
[1, 2, 3, 5, 8, 6, 7, 4]
[1, 2, 6, 5, 3, 4, 8, 7]
[1, 2, 7, 5, 3, 6, 8, 4]
[1, 2, 7, 8, 6, 3, 5, 4]

7 37499
[8, 5, 4, 1, 6, 3, 7, 2]
[7, 2, 1, 3, 6, 8, 5, 4]

56 390
[1, 2, 7, 6, 3, 4, 5]
[1, 2, 4, 6, 7, 8, 5, 3]

8 29249
[5, 3, 6, 1, 2, 8, 7, 4]
[7, 2, 6, 8, 4, 5, 3, 1]

56 390 [1, 2, 4, 8, 5, 7, 3, 6]

9 18352
[4, 1, 7, 6, 8, 3, 5, 2]
[5, 1, 7, 3, 2, 6, 4, 8]

48 12 −

10 13529
[6, 1, 3, 5, 7, 2, 4, 8]
[8, 7, 1, 6, 3, 2, 4, 5]

24 260 [1, 2, 7, 6, 5, 3, 8, 4]

11 8135
[5, 6, 8, 7, 1, 2, 4, 3]
[1, 3, 7, 8, 5, 2, 4, 6]

12 212 [2, 8, 3, 1, 6, 4, 7, 5]

12 6163
[7, 8, 5, 6, 3, 4, 1, 2]
[4, 8, 5, 2, 7, 3, 6, 1]

24 12 −

13 3169 [4, 6, 1, 5, 8, 3, 7, 2] 7 708 [3, 7, 4, 6, 2, 5, 1, 8]
14 2324 [4, 6, 1, 5, 8, 3, 7, 2] 7 708 [3, 7, 4, 6, 2, 5, 1, 8]
15 810 [4, 6, 7, 8, 1, 3, 5, 2] 8 168 −

16 607
[4, 7, 6, 8, 1, 2, 3, 5]
[7, 4, 5, 3, 2, 1, 8, 6]

8 96 −

17 252 [7, 3, 8, 2, 6, 1, 5, 4] 4 112 −
18 189 [7, 3, 8, 2, 6, 1, 5, 4] 4 112 −

TABLE IV: New (8, d)−codes and some details of software checking.
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