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Improved Permutation Arrays for Kendall Tau Metric∗
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Abstract

Permutation arrays under the Kendall-τ metric have been considered for error-correcting
codes. Given n and d ∈ [1,

(

n

2

)

], the task is to find a large permutation array of permutations
on n symbols with pairwise Kendall-τ distance at least d. Let P (n, d) denote the maximum
size of any permutation array of permutations on n symbols with pairwise Kendall-τ distance d.
Using new recursive techniques, new automorphisms, and programs that combine randomness
and greedy strategies, we obtain several improved lower bounds for P (n, d).

1 Introduction

In [1, 2, 5, 8, 10, 11], permutation arrays under the Kendall-τ metric were studied. This comple-
mented many studies of permutation arrays under other metrics, such as the Hamming metric [3]
[4] [6], Chebyshev metric [9] and several others [7]. The use of the Kendall-τ metric was motivated
by applications of error correcting codes and rank modulation in flash memories [8].

Let σ and π be two permutations (or strings) over an alphabet Σ ⊆ [1...n] = {1, 2, ..., n}. The
Kendall-τ distance between σ and π, denoted by d(σ, π), is the minimum number of adjacent trans-
positions (bubble sort operations) required to transform σ into π. For an array (set) A of permuta-
tions (strings), the pairwise Kendall-τ distance of A, denoted by d(A), is min{ d(σ, π) | σ, π ∈ A }.
An array A of permutations on [1...n] with d(A) = d will be called a (n, d)-PA. Let P (n, d) denote
the maximum cardinality of any (n, d)-PA A.

Vijayakumaran [10] showed several lower bounds for P (5, d) and P (6, d) using integer linear
programming. Buzaglo and Etzion [5] showed many new bounds, including that P (7, 3) ≥ 588 using
two permutation representatives and a set of permutations generated by specific automorphism
operations. We also show results using automorphisms, namely those given in Table 1. Details of
these automorphisms are shown in Section 4.

We also used other programs to compute good lower bounds:

1. Programs which find a maximum size clique in a graph.

2. Programs which combine randomness with a Greedy approach.

That is, the first constructs a graph with a node for each permutation on n symbols and an edge
connecting two nodes whose permutations are at Kendall-τ distance at least d. The set of nodes
(permutations) in a maximum size clique in this graph is a (n, d)-PA. The second initially chooses
randomly a specified size set of permutations at pairwise Kendall-τ distance d, and then proceeds
through all remaining permutations in lexicographic order and adds them to the set if they have
Kendall-τ distance at least d.
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In Tables 1 and 2 are given sporadic results obtained by these techniques. Blank positions in
our tables signify other papers have the best lower bounds known e.g. [5], [10]. All other lower
bounds we give are larger than previous lower bounds, except for the two noted in Table 1.

n:d 3 4 5 6 7 8 9

6 102(∗)

7 588(∗) 336 126 84 42
8 3,752 2,240 672 448 168
9 1,008 288

Table 1: Improved lower bounds on P (n, d) by automorphisms. (The bounds for P (6, 3) and P (7, 3)
are from [10] and [5], respectively.)

n:d 3 4 5 6 7 8 9

8 115 57
9 26,831 15,492 3,882 2,497 608
10 233,421 133,251 29,113 18,344 5,629 3,832 1,489
11 247,014 153,260 42,013 28,008 9,747
12 73,068

n:d 10 11 12 13 14 15

7 13 8 7 4
8 43 26 21 15 12 8
9 195 100 77 46 37 24
10 1,066 491 370 195 152 89
11 6,890 2,861 2,108 1,005 768 409
12 50,649 19,227 13,935 6,087 4,564 2,239

Table 2: Improved lower bounds by random Greedy.

In [2] Barg and Mazumdar described their Theorem 4.5, which is given below:

Theorem 1. [2] Let m = ((n − 2)t+1 − 1)/(n − 3), where n− 2 is a prime power. Then

P (n, 2t+ 1) ≥
n!

t(t+ 1)m
.

This was improved by Wang, Zhang, Yang, and Ge in [11].

Theorem 2. [11] Let m = ((n− 2)t+1 − 1)/(n − 3), where n− 2 is a prime power. Then

P (n, 2t+ 1) ≥
n!

(2t+ 1)m
.

For example, by choosing t = 1 and n = 11, one obtains, by Theorem 2, P (11, 3) ≥ 1,330,560.
Theorem 2 applies only when n is two greater than a power of a prime. To compute good lower
bounds for P (n, d) when n is not two greater than a power of a prime, one needs other techniques.
The lower bounds given by Theorem 2 are close to corresponding upper bounds when the Kendall-τ
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distance is small, but not so close when the Kendall-τ distance is close to n. Our Theorems 6 and
7, described below, give better lower bounds when the Kendall-τ distance is close to n.

The following theorem from [8] allows one to obtain good lower bounds for even Kendall-τ
distances.

Theorem 3. [8] For all n ≥ 1 and even d ≥ 2, we have P (n, d) ≥ 1
2P (n, d− 1).

Theorem 4. [8] For all n, d ≥ 1 we have P (n+ 1, d) ≤ (n + 1) · P (n, d).

Using Theorems 4 and 2 we have P (14, 11) ≥ P (15, 11)/15 ≥ 15!/(11 · 402234 · 15) ≈ 19, 703.2

Theorem 5. [8] For all n, d > 1 we have P (n+ 1, d) ≥ ⌈n+1
d

⌉P (n, d).

For example, to compute a lower bound for P (14, 11) one can use, iteratively, Theorem 5 to
obtain P (14, 11) ≥ ⌈1411⌉ · ⌈

13
11⌉ ·P (12, 11) = 4 ·P (12, 11). By computation (using the random greedy

algorithm) we have P (12, 11) ≥ 19, 277, so P (14, 11) ≥ 76, 908. We next give generalizations of
Theorem 5 that yield improvements.

Let Sn,m be the set of permutations on [1...n] with the restriction that the first n−m symbols are
in sorted order, for a given m < n. A set A ⊆ Sn,m with Kendall-τ distance d is called a (n,m, d)-PA
or (n,m, d)-array. Let P (n,m, d) denote the maximum cardinality of any (n,m, d)-array A.

Theorem 6. For any m < n and d, P (n, d) ≥ P (n,m, d) · P (n−m,d).

Proof. Let A be a (n,m, d)-array and B be a (n −m,d)-array. For each permutation π in A and
each permutation τ in B, form the permutation (π, τ) by substituting the n − m symbols in the
order given by τ for the first n−m symbols, given in order, in π.

It is easily seen that d((π, τ), (ρ, σ)) ≥ d, if either π 6= ρ or σ 6= τ . That is, for π, ρ ∈ A, if
π 6= ρ, then d(π, ρ) ≥ d. Clearly, changing the order of the other n −m symbols, which appear in
order in permutations in A, does not make the distance smaller. A symmetric argument applies
when σ, τ are different permutations in the (n−m,d)-array B.

In [8] Theorem 5 was proved using the set {1, d+1, 2d+1, . . . , ⌈n+1
d

⌉d+ 1}, which corresponds
to a (n + 1, 1, d)-array. In general, a (n,m, d)-array can be much larger than one obtained by the

iterative use of Theorem 5. For example, for all n, we give (n, 2, 3)-arrays with n(n+1)
6 permutations,

when n−1 is not divisible by 3. Also, for n = 14 we computed a (14, 2, 11)-array with 5 permutations
τ1, . . . , τ5 shown in Table 3. Thus, using Theorem 6 we obtain P (14, 11) ≥ 5·P (12, 11) ≥ 5·19, 277 =
96, 135 which is a better lower bound than obtained by Theorem 5.

One can also improve on Theorem 6. For each permutation, say τ in a (n,m, d)-array A, one
can generally find a larger set of permutations than in the best (n−m,d)-array. Let Pτ (n, d) denote
the maximum cardinality of any (n, d) PA with the highest m symbols in the same positions as in
τ , but where the other n−m symbols can be in any order. We also denote it by P (n, d; i1, . . . , im),
where i1, . . . , im are the fixed positions of symbols n−m+ 1, . . . , n, not necessarily in that order.

Theorem 7. For any (n,m, d)-array A, P (n, d) ≥
∑

τ∈A Pτ (n, d).

Proof. Let A be a (n,m, d)-array and, for each permutation π ∈ A, let τ be a permutation in an
(n, d)-PA with the highest m symbols in the same position as in π. Form the new permutation
(π, τ) by substituting the n−m symbols in the order given by τ for the first n−m symbols, given
in order, in π.

It is easily seen, as in the proof of Theorem 6, that d((π, τ), (ρ, σ)) ≥ d, if either π 6= ρ or
σ 6= τ .
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 Pτi(14, 11)

τ1 0 0 0 0 0 0 13 14 0 0 0 0 0 0 47,851
τ2 0 0 14 0 0 0 0 0 0 0 0 0 0 13 36,250
τ3 0 13 0 0 0 0 0 0 0 0 0 0 0 14 19,227
τ4 13 14 0 0 0 0 0 0 0 0 0 0 0 0 19,227
τ5 0 0 0 0 0 0 0 0 0 0 0 0 14 13 19,227

Table 3: (14, 2, 11)-array with 5 permutations τ1, . . . , τ5. Since the first 12 symbols in all τi
are sorted, they are replaced by zeros. The last column contains lower bounds for
Pτi(14, 11), i = 1, . . . , 5.

For example, we saw the result P (14, 11) ≥ 96, 125 using Theorem 6, with a (14, 2, 11)-array with
five permutations τi, i = 1, . . . , 5. We computed lower bounds for Pτi(14, 11), see the last column
in Table 3. By Theorem 7, we obtain the improved lower bound of P (14, 11) ≥

∑5
i=1 Pτi(14, 11) ≥

141, 782.

2 Bounds for P (n,m, d)

There are n!
(n−m)! permutations in Sn,m for finding P (n,m, d). When m is small, this is relatively

small compared to the n! permutations to explore for finding P (n, d). Also, P (n,m, d) generalizes
P (n, d) as P (n, d) = P (n, n, d). Finding exact values or bounds for P (n,m, d) is an interesting
problem in its own right. Clearly, P (n, 1, d) = ⌈n/d⌉. In general, by Theorem 5

P (n,m, d) ≥
⌈n

d

⌉

·

⌈

n− 1

d

⌉

· · · · ·

⌈

n−m+ 1

d

⌉

. (1)

We denote by ε the identity permutation (1, 2, . . . , n).

Proposition 8. P (n,m, d) ≥ 2 if d ≤ mn−m(m+1)/2. The bound for d is tight for all n > m ≥ 1.

Proof. Let π = (n, n−1, . . . , n−m+1, 1, 2 . . . , n−m). The bubble sort for π uses n−1 transpositions
for symbol n, n− 2 transpositions for symbol n− 1, etc. Then d(ε, π) = (n − 1) + (n− 2) + · · ·+
(n−m) = nm− (1 + 2 + · · · +m) = mn−m(m+ 1)/2.

The bound is tight since for any permutation σ 6= π, d(ε, σ) < mn−m(m+ 1)/2.

We improve the bound in Equation 1 for m = 2.

Theorem 9. For any d ≥ 1,
(a) P (n, 2, d) ≥ 3 if d ≤ n+ ⌊n/3⌋ − 2.
(b) P (n, 2, d) ≥ 5 if d ≤ n− 2.

Proof. (a) Let τ1 = (n − 1, n, 1, 2, . . . , n − 2), τ2 = (1, . . . , x − 1, n − 1, x, . . . , n − 2, n) and τ3 =
(1, . . . , x, n, x + 1, . . . , n − 1) where x = ⌊n/3⌋, see an example in Table 4. Transformation of τ1
to τ2 requires n − 1 transpositions for symbol n − 1 and x − 1 transpositions for symbol n. Then
d(τ1, τ2) = n+x−2 ≥ d. Similarly d(τ1, τ3) = (n−2)+x ≥ d, and d(τ2, τ3) = (n−x)+(n−x−2) =
2n− 2x− 2 ≥ n+ x− 2 ≥ d.
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1 2 3 4 5 6 7 8 9

τ1 8 9 1 2 3 4 5 6 7
τ2 1 2 9 3 4 5 6 7 8
τ3 1 2 3 8 4 5 6 7 9

Table 4: P (9, 2, 10) ≥ 3.

(b) Suppose n = 2k. Consider 5 permutations τi, i = 1, . . . , 5 where symbols n − 1 and n are
placed at positions 1 and 2 for τ1, n − 1 and n for τ2, k and k + 1 for τ3, 1 and n for τ4, n and 1
for τ5, see an example in Table 5. We show that d(τi, τj) ≥ n − 2 if 1 ≤ i < j ≤ 5. For all pairs
i, j ∈ {1, 2, 4, 5} with i < j, transformation of τi to τj requires n − 2 transpositions for only one
of two symbols n− 1 or n. Transformation of τ3 to any τi, i = 1, 2, 4 requires k − 1 transpositions
for each symbol n− 1 and n. Transformation of τ3 to any τ5 requires k − 1 transpositions for each
symbol n− 1 and n after transposition of n− 1 and n.

1 2 3 4 5 6 7 8 9 10 11 12

τ1 11 12 0 0 0 0 0 0 0 0 0 0
τ2 0 0 0 0 0 0 0 0 0 0 11 12
τ3 0 0 0 0 0 11 12 0 0 0 0 0
τ4 11 0 0 0 0 0 0 0 0 0 0 12
τ5 12 0 0 0 0 0 0 0 0 0 0 11

Table 5: P (12, 2, 10) ≥ 5. The first 10 symbols in all τi are in the sorted order and replaced by
zeros.

1 2 3 4 5 6 7 8 9 10 11 12 13

τ1 12 13 0 0 0 0 0 0 0 0 0 0 0
τ2 0 0 0 0 0 0 0 0 0 0 0 12 13
τ3 0 0 0 0 0 13 12 0 0 0 0 0 0
τ4 12 0 0 0 0 0 0 0 0 0 0 0 13
τ5 13 0 0 0 0 0 0 0 0 0 0 0 12

Table 6: An example for P (13, 2, 11) ≥ 5.

Similarly, a (n, 2, n− 2)-array can be constructed for n = 2k+1 where symbols n and n− 1 are
placed at positions k and k + 1 for τ3, see an example in Table 6.

We have constructed a program for computing P (n,m, d) for various values of n,m, and d. For
each of the

(

n
m

)

positions for m symbols out of n, and each of the possible m! orders of the m
symbols, the program uses the random/Greedy strategy described earlier. That is, it chooses a
specified number of random choices first and then tries adding all remaining possible permutations
in increasing order. When m is small, the program finds solutions quickly. It allows one to compute
P (15, 12), for example, without examining all 15! permutations of 15 symbols. That is, by Theorem
6 one can first compute, for example, P (15, 3, 12), which as shown in Table 9 is at least 12, and
then compute P (12, 12).

As shown in Table 11 these are useful for obtaining improved lower bounds for P (n, d) when
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the Kendall-τ distance d is close to n. We give lower bounds for P (n,m, d), for 8 ≤ d ≤ 15 and
10 ≤ n ≤ 20 in Tables 7, 8, 9, and 10.

n:m 2 3 4 5 6

10 5 14 37 113 335
11 5 16 55 186 645
12 6 21 73 285 1145
13 6 26 99 428 1920
14 8 31 130 625 3117
15 8 37 172 884 4872
16 10 45 219 1233 7367
17 10 52 278 1676 10828
18 13 61 344 2227 15567
19 13 71 426 2939 21862
20 15 80 517 3805 30196

n:m 2 3 4 5 6

10 3 9 24 63 162
11 5 15 34 99 301
12 5 16 46 149 523
13 6 18 59 219 861
14 6 22 78 315 1383
15 7 26 100 445 2119
16 8 31 128 610 3165
17 8 36 162 824 4613
18 10 42 201 1097 6589
19 10 49 244 1427 9179
20 12 55 292 1827 12581

Table 7: Lower bounds for P (n,m, 8) (left) and P (n,m, 9) (right).

n : m 2 3 4 5 6

10 3 7 19 48 125
11 5 10 27 76 226
12 5 13 37 116 394
13 6 16 50 167 644
14 6 18 64 241 1011
15 6 21 83 342 1570
16 6 25 103 467 2337
17 8 30 129 629 2239
18 8 35 158 829 3185
19 10 40 192 1084 4405
20 10 46 233 4184 6017

n : m 2 3 4 5 6

10 3 6 13 27 73
11 3 7 16 41 128
12 3 10 22 61 214
13 5 11 31 96 344
14 5 13 37 120 539
15 5 17 55 163 810
16 6 20 70 220 1193
17 6 23 86 366 1716
18 7 26 106 472 2413
19 8 31 127 618 3362
20 8 35 151 789 4571

Table 8: Lower bounds for P (n,m, 10) (left) and P (n,m, 11) (right).

3 Improved Lower Bounds by Theorems 5, 6, and 7.

Each of the improved lower bounds given in Table 11 is explained in this section. Many of the
computations described took weeks on Apple MacBook Air computers with an M1 or M2 processor.

• By Theorem 7, P (12, 5) ≥ P (12, 5; 2) + P (12, 5; 7) + P (12, 5; 12) ≥ 318, 641 + 334, 200 +
246, 968 = 899, 809.

• By Theorem 7, P (12, 7) ≥ P (12, 7; 3) + P (12, 7; 10) ≥ 2 · 64, 649 = 129, 298.

• By Theorem 7, P (12, 8) ≥ P (12, 8; 3) + P (12, 8; 11) ≥ 44, 042 + 41049 = 85, 091.

• By Theorem 7, P (13, 9) ≥ P (13, 9; 3) + P (13, 9; 12) ≥ 124, 047 + 112, 717 = 236, 764
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n : m 2 3 4 5 6

10 2 6 13 26 58
11 3 7 17 40 101
12 3 9 23 59 168
13 3 10 30 84 273
14 5 13 37 117 420
15 5 16 45 159 622
16 5 17 58 216 919
17 6 20 72 287 1323
18 6 22 87 375 1859
19 6 25 103 485 2580
20 8 30 125 620 3503

n : m 2 3 4 5 6

10 2 4 10 20 37
11 2 6 13 28 63
12 3 7 16 40 103
13 3 9 22 56 163
14 3 10 27 79 247
15 5 12 35 106 370
16 5 15 44 141 533
17 5 16 52 181 757
18 6 18 63 242 1058
19 6 20 73 308 1447
20 6 23 90 390 1965

Table 9: Lower bounds for P (n,m, 12) (left) and P (n,m, 13) (right).

n : m 2 3 4 5 6

10 2 4 10 16 30
11 2 4 11 23 51
12 3 6 15 34 85
13 3 7 18 48 133
14 3 9 24 65 203
15 3 10 30 88 298
16 5 13 38 118 431
17 5 15 46 153 609
18 5 16 54 197 844
19 6 18 63 254 1163
20 6 20 75 323 1568

n : m 2 3 4 5 6

10 2 4 6 12 19
11 2 4 10 20 31
12 2 5 12 21 48
13 3 6 15 30 72
14 3 7 16 40 107
15 3 9 23 52 154
16 3 10 29 84 221
17 5 12 35 109 385
18 5 14 41 138 530
19 5 16 41 174 720
20 5 17 46 220 961

Table 10: Lower bounds for P (n,m, 14) (left) and P (n,m, 15) (right).

• By Theorem 7, P (14, 9) ≥ P (14, 9; 2, 6, 8)+P (14, 9; 2, 3, 5)+P (14, 9; 1, 5, 6)+P (14, 9; 1, 6, 8)+
P (14, 9; 4, 7, 8)+P (14, 9; 4, 9, 10)+P (12, 9; 8)+P (12, 9; 9)+P (13, 9; 4, 5)+P (12, 9; 3)+P (14, 9; 3, 5, 7)+
P (14, 9; 3, 5, 14)+P (14, 9; 2, 4, 14)+P (14, 9; 2, 7, 9)+P (13, 9; 4, 5)+P (12, 9; 7)+2∗P (12, 9; 4)+
P (13, 9; 3, 5)+P (13, 9; 2, 3)+P (12, 9; 3)+P (13, 9; 3, 4)+ ≥ 51, 871+26, 347+19, 878+31, 130+
39, 622 + 42, 132 + 18, 649 + 18, 397 = 19, 914 + 17, 294 + 48, 029 + 28, 367 + 25, 367 + 52, 958 +
19, 915 + 18, 807 + 36, 794 + 28, 348 + 16, 073 + 17, 294 + 18, 542 = 575, 728

• By Theorem 7, P (13, 10) ≥ P (13, 10; 2) + P (13, 10; 12) ≥ 2 ∗ 79, 104 = 158, 208.

• By Theorem 7, P (14, 10) ≥ P (14, 10; 5, 14)+P (14, 10; 8, 14)+P (14, 10; 6, 7)+P (14, 10; 1, 11)+
P (14, 10; 1, 12)+P (14, 10; 1, 2) ≥ 94, 643+95, 052+102, 965+93, 157+89, 021+50, 649 ≥ 525, 427

• By Theorem 7, P (13, 11) ≥ P (13, 11; 2) + P (13, 11; 13) ≥ 31, 809 + 19, 227 = 51, 046.

• By Theorem 7, P (14, 11) ≥ P (14, 11; 7, 8)+P (14, 11; 14, 3)+P (14, 11; 13, 14)+P (14, 11; 1, 2)+
P (14, 11; 1, 14) ≥ 47, 851 + 36, 250 + 3 ∗ 19, 227 = 141, 782.

• By Theorem 7, P (15, 11) ≥ P (15, 11; 1, 7, 9) + P (15, 11; 9, 10, 15) + P (15, 11; 11, 14, 15) +

7



n:d 5 7 8 9 10 11 12 13 14 15

12 899,809 129,298 85,091
13 236,764 158,208 51,046 29,859 14,158 10,756 5,527
14 595,728 525,427 141,782 100,813 52,565 41,673 15,674
15 1,049,633 524,817 105,130 83,346 37,104
16 2,099,266 1,049,634 267,828 173,432 74,208
17 244,051

Table 11: Improved lower bounds using Theorems 5, 6 and 7. Blanks indicate other methods have
the best lower bounds known e.g. [11] or, for n=12, the best lower bounds are in Table
2.

P (15, 11; 8, 9, 11)+P (15, 11; 6, 10, 15)+P (15, 11; 5, 7, 13)+P (15, 11; 5, 6, 15)+P (15, 11; 4, 12, 14)+
P (15, 11; 4, 5, 6)+P (15, 11; 3, 14, 15)+P (15, 11; 2, 7, 11)+P (15, 11; 1, 13, 15)+P (15, 11; 1, 2, 3)+
P (15, 11; 1, 2, 15)+P (15, 11; 1, 2, 15)+P (15, 11; 1, 2, 13)+P (15, 11; 1, 9, 11) ≥ 70, 509+47, 069+
36, 430+93, 986+85, 010+138, 475+47, 027+107, 707+45, 837+145, 804+3∗19227+31, 861+
69, 377 ≥ 1, 049, 633

• By Theorem 4, P (16, 11) ≥ 2 ∗ P (15, 11) ≥ 2 ∗ 1, 049, 633 = 2, 099, 266

• By Theorem 7, P (13, 12) ≥ P (13, 12; 7) ≥ 29, 859.

• By Theorem 7, P (14, 12) ≥ P (14, 12; 7, 8)+P (14, 12; 13, 14)+P (14, 12; 14, 2)+P (14, 12; 1, 14)+
P (14, 12; 1, 2) ≥ 35, 709 + 13, 935 + 23, 299 + 19, 227 + 19, 227 = 100, 813.

• By Theorem 3, P (15, 12) ≥ 1
2P (15, 11) ≥ 524, 817.

• By Theorem 4, P (16, 12) ≥ 2 ∗ P (15, 12) ≥ 1, 049, 634

• By Theorem 7, P (13, 13) ≥ P (13, 13; 7) ≥ 14, 158.

• By Theorem 7 P (14, 13) ≥ P (14, 13; 7, 13) + P (14, 13; 6, 14) + P (14, 13; 3, 4) ≥ 23, 388 +
14, 073 + 15, 104 ≥ 52, 565.

• By Theorem 5, P (15, 13) ≥ 2 ∗ P (14, 13) ≥ 2 ∗ 52, 565 = 105, 130.

• By Theorem 6, P (16, 13) ≥ P (12, 13) ∗ P (16, 4, 13) ≥ 6, 087 ∗ 44 = 267, 828.

• By Theorem 7, P (13, 14) ≥ P (13, 14; 7) ≥ 10, 756.

• By Theorem 7, P (14, 14) ≥ P (14, 14; 1, 3) + P (14, 14; 4, 14) + P (14, 14; 6, 11) ≥ 8, 036 +
10, 060 + 23, 577 = 41, 673

• By Theorem 5, P (15, 14) ≥ 2 ∗ P (14, 14) ≥ 2 ∗ 41, 673 = 83, 346.

• By Theorem 6, P (16, 14) ≥ P (12, 14) ∗ P (16, 4, 14) ≥ 4, 564 ∗ 38 = 173, 432.

• By Theorem 7, P (13, 15) ≥ P (13, 15; 7) ≥ 5, 527.

• By Theorem 7, P (14, 15) ≥ P (14, 15; 6, 14) + P (14, 15; 14, 6) + P (14, 15; 2, 3) ≥ 5, 493 +
5, 493 + 4, 688 = 15, 674.

• By Theorem 7, P (15, 15) ≥ P (15, 15; 3, 4, 7, 8) + 3 ∗ P (11, 15) + P (15, 15; 4, 5, 6, 7) + 3 ∗
P (14, 15; 6, 7, 8)+P (13, 15 : 2, 10)+P (15, 15; 2, 3, 4, 13)+P (3, 5, 7, 11)+P (15, 15, 2, 4, 10, 11)+
2P ∗ (13, 15; 2, 3) + P (12, 15; 3) + 4 ∗ P (12, 15; 2) + P (14, 15; 3, 4, 5) ≥ 4, 279 + 3 ∗ 409 + 1, 787 +
3 ∗ 1, 848 + 1, 738 + 1, 964 + 7, 798 + 5, 773 + 2 ∗ 879 + 895 + 4 ∗ 743 + 1, 369 ≥ 37, 104.
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• By Theorem 5, P (16, 15) ≥ 2 ∗ P (16, 15) ≥ 74, 208.

• By Theorem 6, P (17, 15) ≥ P (12, 15) ∗ P (17, 5, 15) ≥ 2, 239 ∗ 109 = 244, 051.

4 Automorphism Lower Bounds

It is known that for a permutation π(x) : Fq → Fq, where Fq denotes a finite field of order q, the
operations of multiplying by a non-zero constant a, adding a constant c, and adding to the argument
a constant b, each yield another permutation on Fq. That is, aπ(x+ b) + c, for all non-zero a and
all b, c ∈ Fq, is again a permutation. We use this to search for sets of permutations at specified
Kendall-τ distance d. That is, the search can be done for a set of representative permutations and
expanded into a full set of permutations using operations on the representatives. Our program
verifies that the full set of permutations has the stipulated Kendall-τ distance.

Example. Use the operation π(x) + c on the following 17 representatives. This gives 102
permutations for P (6, 3).

0 1 2 3 5 4 0 1 2 4 5 3 0 1 3 5 4 2 0 1 5 4 2 3 0 2 3 4 1 5 0 2 4 5 1 3
0 2 5 3 4 1 0 3 1 4 2 5 0 3 2 5 1 4 0 3 4 2 5 1 0 3 5 4 1 2 0 4 1 5 3 2
0 4 2 1 3 5 0 4 5 3 2 1 0 5 2 1 3 4 0 5 3 1 2 4 0 5 4 2 1 3

Example. Use the operations aπ(x) + c on the following 14 representatives. This gives 1, 008
permutations for P (9, 7).

0 1 2 4 8 3 7 5 6 0 1 2 7 8 5 3 4 6 0 1 3 4 7 2 8 6 5 0 1 3 8 2 6 7 4 5
0 1 3 8 4 6 5 7 2 0 1 4 5 6 7 3 8 2 0 1 4 5 8 2 7 6 3 0 1 6 2 3 4 7 8 5
0 1 6 2 8 7 5 4 3 0 1 6 4 5 2 3 8 7 0 1 6 7 3 4 8 5 2 0 1 7 2 4 6 8 5 3
0 1 7 4 8 3 5 2 6 0 1 8 5 7 4 6 3 2

Example. Use the operations aπ(x) + c on the following 8 representatives. This gives 576
permutations for P (9, 8).

0 1 2 3 8 4 6 5 7 0 1 2 5 8 6 3 7 4 0 1 4 5 2 8 6 7 3 0 1 5 3 2 4 6 8 7
0 1 5 6 4 8 3 7 2 0 1 6 4 7 2 5 8 3 0 1 6 7 3 2 8 5 4 0 1 8 3 6 5 7 2 4

Example. Use the operations aπ(x) + c on the following four representatives. This gives 288
permutations for P (9, 9).

0 1 2 6 5 8 7 4 3 0 1 3 8 4 5 2 6 7 0 1 4 6 5 3 7 2 8 0 1 5 2 4 7 3 6 8

Example. Use the operations π(x) + c on the following 12 representatives. This gives 84
permutations for P (7, 6).

0 1 3 6 5 4 2 0 1 4 2 3 6 5 0 1 6 2 5 4 3 0 2 3 4 1 5 6 0 2 3 6 5 1 4
0 3 4 6 1 2 5 0 3 5 4 1 2 6 0 4 5 6 3 1 2 0 5 2 4 3 6 1 0 5 3 6 1 2 4
0 6 3 5 4 2 1 0 6 4 2 1 3 5

Example. Use the operation aπ(x) + c on 8 permutations. This gives 448 permutations for
P (8, 6).
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0 1 7 4 5 6 2 3 0 2 1 5 3 4 6 7 0 2 6 4 7 3 1 5 0 3 7 5 4 2 1 6
0 5 4 6 7 1 2 3 0 7 3 1 2 6 5 4 0 7 5 4 3 6 1 2 0 7 6 4 2 1 3 5

Example. Use the operation aπ(x) + c on 67 permutation representatives. This gives 3,752
permutations for P (8, 3).

0 1 2 3 4 5 6 7 0 1 2 5 3 6 7 4 0 1 3 5 7 2 6 4 0 1 5 4 3 6 2 7 0 1 6 2 7 3 4 5
0 1 6 3 4 2 7 5 0 1 6 7 4 5 2 3 0 1 7 3 2 5 6 4 0 1 7 5 3 2 4 6 0 1 7 5 6 3 4 2
0 2 3 5 1 4 7 6 0 2 3 5 7 6 4 1 0 2 3 6 5 4 7 1 0 2 4 1 6 5 7 3 0 2 4 5 6 3 1 7
0 2 5 1 7 4 3 6 0 2 5 3 4 6 7 1 0 2 5 4 3 1 6 7 0 2 5 6 4 1 7 3 0 2 6 4 3 5 1 7
0 2 6 4 7 1 5 3 0 3 1 5 4 7 2 6 0 3 2 4 1 7 6 5 0 3 2 5 4 7 1 6 0 3 2 6 1 4 5 7
0 3 6 2 4 5 1 7 0 3 7 4 5 6 2 1 0 3 7 5 4 2 1 6 0 4 1 6 2 3 5 7 0 4 2 7 3 1 5 6
0 4 2 7 5 6 1 3 0 4 5 6 2 1 3 7 0 4 6 1 7 2 3 5 0 4 6 2 5 3 7 1 0 4 6 2 7 1 5 3
0 4 7 5 2 3 1 6 0 4 7 6 3 5 2 1 0 5 1 6 7 4 3 2 0 5 1 7 3 6 2 4 0 5 2 1 6 3 7 4
0 5 2 3 6 4 1 7 0 5 2 6 4 3 7 1 0 5 3 1 4 6 2 7 0 5 3 2 6 1 7 4 0 5 3 4 1 2 7 6
0 5 3 7 6 1 4 2 0 5 4 6 2 7 1 3 0 5 4 6 3 1 2 7 0 5 6 3 1 2 7 4 0 5 6 3 7 4 1 2
0 5 7 6 4 3 1 2 0 6 1 5 2 3 4 7 0 6 2 4 3 7 5 1 0 6 3 1 7 4 5 2 0 6 3 7 2 4 5 1
0 6 4 3 5 7 1 2 0 6 5 1 7 3 2 4 0 6 7 1 3 5 4 2 0 6 7 5 3 2 1 4 0 7 1 2 3 4 5 6
0 7 1 3 5 4 6 2 0 7 1 4 3 6 2 5 0 7 3 4 2 1 5 6 0 7 3 6 1 4 2 5 0 7 4 6 3 1 2 5
0 7 4 6 5 2 3 1 0 7 5 1 2 3 6 4

Example. Use the operation aπ(x) + c on 12 permutation representatives. This gives 672
permutations for P (8, 5).

0 2 3 6 5 4 7 1 0 2 4 3 1 5 6 7 0 3 2 1 6 4 7 5 0 3 5 1 6 2 7 4 0 5 7 2 4 6 1 3
0 6 3 4 5 2 1 7 0 6 3 7 1 5 2 4 0 6 5 4 7 3 1 2 0 7 1 5 4 6 2 3 0 7 3 6 4 2 1 5
0 7 4 1 2 6 5 3 0 7 5 6 4 1 3 2

Example. Use the operation aπ(x) + c on 40 permutation representatives. This gives 2,242
permutations for P (8, 4).

0 1 4 5 7 6 3 2 0 1 7 3 2 5 6 4 0 2 1 3 7 4 5 6 0 2 1 5 7 4 6 3 0 2 1 6 7 5 4 3
0 2 3 6 1 5 4 7 0 2 4 3 5 6 1 7 0 2 5 3 7 4 6 1 0 2 7 1 4 5 3 6 0 2 7 3 1 4 6 5
0 2 7 3 6 5 1 4 0 2 7 6 1 4 5 3 0 3 2 1 5 7 4 6 0 3 5 6 4 7 1 2 0 3 5 7 6 1 2 4
0 3 6 2 5 1 7 4 0 4 1 6 2 3 5 7 0 4 1 7 6 2 3 5 0 4 2 1 5 6 3 7 0 4 2 5 7 6 3 1
0 4 2 7 1 5 6 3 0 4 3 1 7 5 6 2 0 4 3 5 6 1 7 2 0 5 2 1 6 3 7 4 0 5 3 2 6 1 7 4
0 5 3 2 7 1 4 6 0 5 4 2 1 3 6 7 0 5 4 7 6 2 3 1 0 5 6 2 1 7 4 3 0 5 6 4 1 3 2 7
0 5 7 1 6 4 2 3 0 5 7 3 2 4 6 1 0 6 1 2 4 3 5 7 0 6 7 2 4 3 1 5 0 7 1 2 6 3 5 4
0 7 2 5 1 4 6 3 0 7 2 5 3 6 4 1 0 7 4 3 1 5 2 6 0 7 5 1 4 2 3 6 0 7 5 6 2 1 4 3

Example. Use the operation aπ(x)+ c on 3 permutation representatives. This gives 168 permu-
tations for P (8, 7).

0 5 3 1 4 6 2 7 0 6 1 3 2 5 7 4 0 7 3 1 2 6 5 4

Example. Use the operation π(x) + c on the following 48 permutations. This gives 336 permu-
tations for P (7, 4).
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0 1 2 4 3 6 5 0 1 2 5 4 6 3 0 1 3 2 6 5 4 0 1 3 4 2 5 6 0 1 4 5 6 2 3
0 1 5 3 6 2 4 0 1 6 2 3 4 5 0 1 6 5 2 4 3 0 2 1 3 5 4 6 0 2 3 4 1 6 5
0 2 3 6 5 4 1 0 2 4 1 5 3 6 0 2 4 6 5 1 3 0 2 5 1 6 3 4 0 2 5 3 4 1 6
0 2 5 6 4 3 1 0 2 6 1 4 3 5 0 3 1 5 2 4 6 0 3 1 6 5 4 2 0 3 2 5 1 6 4
0 3 2 6 1 4 5 0 3 4 1 6 2 5 0 3 4 2 5 1 6 0 3 4 5 6 1 2 0 3 6 5 4 2 1
0 4 2 1 6 3 5 0 4 2 5 3 6 1 0 4 3 1 5 2 6 0 4 3 6 2 5 1 0 4 5 1 2 3 6
0 4 6 1 3 2 5 0 4 6 5 1 2 3 0 5 1 2 3 4 6 0 5 2 4 1 6 3 0 5 3 1 4 6 2
0 5 3 6 2 1 4 0 5 4 1 6 3 2 0 5 4 3 6 2 1 0 5 6 1 4 2 3 0 6 1 4 2 5 3
0 6 1 5 3 4 2 0 6 2 5 3 1 4 0 6 3 1 4 2 5 0 6 3 2 4 5 1 0 6 3 5 1 2 4
0 6 4 2 3 1 5 0 6 4 5 3 2 1 0 6 5 2 4 1 3

Example. Use the operation π(x) + c on the following 18 permutations. This gives 126 permu-
tations for P (7, 5).

0 1 4 2 5 3 6 0 1 4 6 3 2 5 0 1 5 2 6 4 3 0 2 1 3 5 4 6 0 2 4 5 6 3 1
0 2 6 4 1 3 5 0 3 1 5 6 4 2 0 3 2 4 5 1 6 0 3 2 6 1 4 5 0 3 5 4 6 2 1
0 4 3 1 5 2 6 0 4 3 6 2 1 5 0 4 5 1 6 3 2 0 5 1 3 4 2 6 0 5 3 2 6 1 4
0 6 1 2 5 3 4 0 6 5 2 4 1 3 0 6 5 3 4 1 2

5 Patterns for P (n,m, d)

In this section, let us, for convenience, describe general patterns for strings (permutations) in
P (n, 2, d) and P (n, 3, d), by replacing the symbols [1 . . . n−2] ([1 . . . n−3], respectively), which are
in order, by blank symbols, i.e. ’-’.

For example, for P (5, 2, 3), we have the set

{ 4 5 - - - , - 5 4 - - , - - 4 5 - , - - - 5 4 , 4 - - - 5 , 5 - - - 4 }.

It is easy to verify that the Kendall-τ distance between any two strings in this set is at least 3.
This set agrees with that found by our program, namely P (5, 2, 3) ≥ 6.

Also, for P (10, 2, 3), we have the set

{ 9 10 - - - - - - - - , - 10 9 - - - - - - -, - - 9 10 - - - - - - , - - - 10 9 - - - - -,
- - - - 9 10 - - - -, - - - - - 10 9 - - -, - - - - - - 9 10 - -, - - - - - - - 10 9 -,
- - - - - - - - 9 10, 9 - - - 10 - - - - -, 10 - - - 9 - - - - -, - - 9 - - - 10 - - -,
- - 10 - - - 9 - - - - - - 9 - - - - 10 -, - - - 10 - - - - 9 -, - - - - - 9 - - - 10,
- - - - - 10 - - - - 9, 9 - - - - - 10 - - -, 10 - - - - - 9 - - -, - 9 - - - - - - - 10,
- 10 - - - - - - - 9 }.

It is easy to verify that the Kendall-τ distance between any two strings in this set is at least 3.
This set agrees with that found by our program, namely P (10, 2, 3) ≥ 21.

These examples show that sets of strings that form a (n, 2, 3)-array contain easily recognized
patterns. It is an interesting open question if such patterns can be determined for other choices of
n,m, and d.

Along these lines, for d = 3, consider π1(a, b, c) = . . . , n − 1, . . . , n, . . . and π2(a, b, c) =
. . . , n, . . . , n − 1, . . ., where a, b, c denote the number of symbols in the 3 gaps represented by the
“. . .”. We will use π1(a, b, c) for a = 0, 2, 4, . . . and b = 0, 3, 6, . . ., and π2(a, b, c) for a = 1, 3, 5, . . .
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and b = 0, 3, 6, . . ., for each choice of a and b for which the resulting string has length at most n.

Using π1(a, b, c) and π2(a, b, c), it can be observed that P (n, 2, 3) ≥ n(n+1)
6 , for n 6≡ 1 mod 3

and P (n, 2, 3) ≥ (n+2)(n−1)
6 for n ≡ 1 mod 3. Similarly, for Kendall-τ distance 4 and for n = 2k+1,

use π1(a, b, c) for a = 0, 2, 4, . . . and b = 0, 4, 8, . . .; π2(a, b, c) for a = 0, 2, 4, . . . and b = 3, 7, 11, . . ..
Using these patterns, it can be observed that P (4k+1, 2, 4) ≥ 2k2+k for k ≥ 1 and P (4k+3, 2, 4) ≥
2k2 + 3k + 1 for k ≥ 0.

6 Conclusions and Open Questions

Theorems 6 and 7 improve many lower bounds. All of the bounds shown in Tables 1, 2, and
11 are improvements on previous results. The techniques described can be used to obtain other
improvements, with sufficient time. Many of our computations required weeks.

Our work on good patterns for (n,m, d)-arrays is continuing. We conjecture that (n,m, d)-
arrays can be used to compute improved lower bounds for P (n, d), for all n, and for d close to
n.
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