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Abstract

Permutation arrays under the Kendall-7 metric have been considered for error-correcting
codes. Given n and d € [1, (g)], the task is to find a large permutation array of permutations
on n symbols with pairwise Kendall-r distance at least d. Let P(n,d) denote the maximum
size of any permutation array of permutations on n symbols with pairwise Kendall-7 distance d.
Using new recursive techniques, new automorphisms, and programs that combine randomness
and greedy strategies, we obtain several improved lower bounds for P(n,d).

1 Introduction

In 1, 2, B 8 10, I1], permutation arrays under the Kendall-T metric were studied. This comple-
mented many studies of permutation arrays under other metrics, such as the Hamming metric [3]
[4] [6], Chebyshev metric [9] and several others [7]. The use of the Kendall-7 metric was motivated
by applications of error correcting codes and rank modulation in flash memories [§].

Let o and 7 be two permutations (or strings) over an alphabet ¥ C [1...n] = {1,2,...,n}. The
Kendall-T distance between o and 7, denoted by d(c, ), is the minimum number of adjacent trans-
positions (bubble sort operations) required to transform o into 7. For an array (set) A of permuta-
tions (strings), the pairwise Kendall-7 distance of A, denoted by d(A), is min{ d(o,7) | o,m € A }.
An array A of permutations on [1...n] with d(A) = d will be called a (n,d)-PA. Let P(n,d) denote
the maximum cardinality of any (n,d)-PA A.

Vijayakumaran [10] showed several lower bounds for P(5,d) and P(6,d) using integer linear
programming. Buzaglo and Etzion [5] showed many new bounds, including that P(7,3) > 588 using
two permutation representatives and a set of permutations generated by specific automorphism
operations. We also show results using automorphisms, namely those given in Table [l Details of
these automorphisms are shown in Section 4.

We also used other programs to compute good lower bounds:

1. Programs which find a maximum size clique in a graph.

2. Programs which combine randomness with a Greedy approach.

That is, the first constructs a graph with a node for each permutation on n symbols and an edge
connecting two nodes whose permutations are at Kendall-7 distance at least d. The set of nodes
(permutations) in a maximum size clique in this graph is a (n, d)-PA. The second initially chooses
randomly a specified size set of permutations at pairwise Kendall-7 distance d, and then proceeds
through all remaining permutations in lexicographic order and adds them to the set if they have
Kendall-7 distance at least d.
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In Tables [l and 2] are given sporadic results obtained by these techniques. Blank positions in
our tables signify other papers have the best lower bounds known e.g. [5], [10]. All other lower
bounds we give are larger than previous lower bounds, except for the two noted in Table [

lnd| 3 | 4 | 5] 6 7 [8] 9 |
6 | 1020
7 | 588%) | 336 | 126 | 84 42
8 | 3,752 | 2,240 | 672 | 448 | 168
9 1,008 288

Table 1: Improved lower bounds on P(n,d) by automorphisms. (The bounds for P(6,3) and P(7,3)
are from [10] and [5], respectively.)

lnd| 3 | 4 | 5 | 6 | 7 | 8 | 9 |
8 115 57
9 | 26,831 | 15492 | 3,882 | 2497 608
10 | 233,421 | 133,251 | 29,113 | 18344 | 5629 | 3,832 | 1489
11 247,014 | 153,260 | 42,013 | 28,008 | 9,747
12 73,068
nd | 10 [ 11 | 12 [ 13 [ 14 | 15 |

7 13 8 7 4

8 43 26 21 15 12 8

9 | 195 100 77 46 37 24

10 1,066 491 370 195 152 89
11 6,890 2,861 2,108 | 1,005 | 768 409
12 | 50,649 | 19,227 | 13,935 | 6,087 | 4,564 | 2,239

Table 2: Improved lower bounds by random Greedy.
In [2] Barg and Mazumdar described their Theorem 4.5, which is given below:
Theorem 1. [2] Let m = ((n — 2)"*t —1)/(n — 3), where n — 2 is a prime power. Then
n!
Pn,2t+1) > ———.
(204 1) 2 1 ym
This was improved by Wang, Zhang, Yang, and Ge in [11].

Theorem 2. [11] Let m = ((n — 2)'™! —1)/(n — 3), where n — 2 is a prime power. Then

n!
Pn2t+1)> ——.
(0,264 1) 2 Gy
For example, by choosing t = 1 and n = 11, one obtains, by Theorem 2, P(11,3) > 1,330,560.
Theorem [2] applies only when n is two greater than a power of a prime. To compute good lower
bounds for P(n,d) when n is not two greater than a power of a prime, one needs other techniques.
The lower bounds given by Theorem [2lare close to corresponding upper bounds when the Kendall-7



distance is small, but not so close when the Kendall-7 distance is close to n. Our Theorems [6] and
[0, described below, give better lower bounds when the Kendall-7 distance is close to n.

The following theorem from [8] allows one to obtain good lower bounds for even Kendall-7
distances.

Theorem 3. [§] For alln > 1 and even d > 2, we have P(n,d) > £P(n,d —1).
Theorem 4. [§] For alln,d > 1 we have P(n+1,d) < (n+1) - P(n,d).

Using Theorems [ and [2 we have P(14,11) > P(15,11)/15 > 15!/(11 - 402234 - 15) ~ 19,703.2
Theorem 5. [§] For all n,d > 1 we have P(n+ 1,d) > ["TH]P(n,d).

For example, to compute a lower bound for P(14,11) one can use, iteratively, Theorem [ to
obtain P(14,11) > [13]-[£]- P(12,11) = 4. P(12,11). By computation (using the random greedy
algorithm) we have P(12,11) > 19,277, so P(14,11) > 76,908. We next give generalizations of
Theorem [B] that yield improvements.

Let Sy, be the set of permutations on [1...n] with the restriction that the first n—m symbols are
in sorted order, for a given m < n. A set A C S,, ,, with Kendall-7 distance d is called a (n, m, d)-PA

or (n,m,d)-array. Let P(n,m,d) denote the maximum cardinality of any (n,m, d)-array A.
Theorem 6. For any m <n and d, P(n,d) > P(n,m,d) - P(n —m,d).

Proof. Let A be a (n,m,d)-array and B be a (n — m,d)-array. For each permutation 7 in A and
each permutation 7 in B, form the permutation (7, 7) by substituting the n — m symbols in the
order given by 7 for the first n — m symbols, given in order, in .

It is easily seen that d((m,7),(p,0)) > d, if either m # p or 0 # 7. That is, for 7,p € A, if
m # p, then d(m, p) > d. Clearly, changing the order of the other n — m symbols, which appear in
order in permutations in A, does not make the distance smaller. A symmetric argument applies
when o, 7 are different permutations in the (n — m,d)-array B. O

In [§] Theorem Bl was proved using the set {1,d+1,2d+1,..., ["TH]d + 1}, which corresponds
to a (n+ 1,1,d)-array. In general, a (n,m,d)-array can be much larger than one obtained by the
iterative use of Theorem [l For example, for all n, we give (n, 2, 3)-arrays with % permutations,
when n—1 is not divisible by 3. Also, for n = 14 we computed a (14, 2, 11)-array with 5 permutations
T1,...,75 shown in TableBl Thus, using Theorem[6lwe obtain P(14,11) > 5-P(12,11) > 5-19,277 =
96, 135 which is a better lower bound than obtained by Theorem [Bl

One can also improve on Theorem [6l For each permutation, say 7 in a (n, m,d)-array A, one
can generally find a larger set of permutations than in the best (n—m, d)-array. Let Pr(n,d) denote
the maximum cardinality of any (n,d) PA with the highest m symbols in the same positions as in
T, but where the other n —m symbols can be in any order. We also denote it by P(n,d;i1,...,in),
where 41, ...,%, are the fixed positions of symbols n —m + 1,...,n, not necessarily in that order.

Theorem 7. For any (n,m,d)-array A, P(n,d) > > ., Pr(n,d).

Proof. Let A be a (n,m,d)-array and, for each permutation m € A, let 7 be a permutation in an
(n,d)-PA with the highest m symbols in the same position as in 7. Form the new permutation
(m,7) by substituting the n — m symbols in the order given by 7 for the first n — m symbols, given
in order, in 7.

It is easily seen, as in the proof of Theorem [B that d((mw,7),(p,0)) > d, if either m # p or
oF#T. O



1 2 3456 7 8910 11 12 13 14| P, (14,11)
7110 0 000013140 0 0 O 0O O] 47851
10 014000 0 00 O O O 013 36,250
=013 0000 O OO0 O O O O 14| 19,227
71314 0000 0O 00 O O O O O] 19,227
0 0 0000 O OO0 O O O 14 13| 19,227

Table 3: (14,2, 11)-array with 5 permutations 71,...,75. Since the first 12 symbols in all 7;

are sorted, they are replaced by zeros. The last column contains lower bounds for
P.(14,11),i=1,...,5.

For example, we saw the result P(14,11) > 96, 125 using Theorem [0l with a (14,2, 11)-array with
five permutations 7,7 = 1,...,5. We computed lower bounds for P, (14,11), see the last column
in Table 3l By Theorem [l we obtain the improved lower bound of P(14,11) > Z?:l P.(14,11) >
141, 782.

2 Bounds for P(n,m,d)

There are (n_"—;n), permutations in S, ,, for finding P(n,m,d). When m is small, this is relatively

small compared to the n! permutations to explore for finding P(n,d). Also, P(n,m,d) generalizes
P(n,d) as P(n,d) = P(n,n,d). Finding exact values or bounds for P(n,m,d) is an interesting
problem in its own right. Clearly, P(n,1,d) = [n/d]. In general, by Theorem

P(n’m’d)zEwwn;f‘”“w%w-" (1)

We denote by e the identity permutation (1,2,...,n).

Proposition 8. P(n,m,d) > 2 ifd < mn—m(m+1)/2. The bound for d is tight for alln > m > 1.

Proof. Let m = (n,n—1,...,n—m+1,1,2...,n—m). The bubble sort for 7 uses n—1 transpositions
for symbol n, n — 2 transpositions for symbol n — 1, etc. Then d(e,7) = (n—1)+ (n —2)+--- +
(n—m)=nm—-(1+24+---4+m)=mn—m(m+1)/2.

The bound is tight since for any permutation o # 7, d(e,0) < mn —m(m + 1)/2. O

We improve the bound in Equation [l for m = 2.

Theorem 9. For any d > 1,
(a) P(n,2,d) >3 ifd<n+|n/3| —2.
(b) P(n,2,d) >5ifd <n-—2.

Proof. (a) Let 4 = (n—1,n,1,2,....,n —2),o = (1,...,2 — 1,n—1,2,...,n—2,n) and 73 =
(1,...,z,n,z+1,...,n — 1) where x = |[n/3], see an example in Table dl Transformation of 7
to Ty requires n — 1 transpositions for symbol n — 1 and = — 1 transpositions for symbol n. Then
d(ti,m2) =n+x—2 > d. Similarly d(ry,73) = (n—2)+2z > d, and d(12,73) = (n—2z)+(n—z—2) =
n—2x—-2>n+x—2>d.



123456789
891234567
(129345678
75(1238456709

Table 4: P(9,2,10) > 3.

(b) Suppose n = 2k. Consider 5 permutations 7;,7 = 1,...,5 where symbols n — 1 and n are
placed at positions 1 and 2 for 7, n — 1 and n for 7, k and k + 1 for 73, 1 and n for 74, n and 1
for 75, see an example in Table Bl We show that d(7;,7;) > n —2if 1 <4i < j < 5. For all pairs
i,j € {1,2,4,5} with ¢ < j, transformation of 7; to 7; requires n — 2 transpositions for only one
of two symbols n — 1 or n. Transformation of 73 to any 7,7 = 1,2,4 requires k — 1 transpositions
for each symbol n — 1 and n. Transformation of 73 to any 75 requires k — 1 transpositions for each
symbol n — 1 and n after transposition of n — 1 and n.

1 23 45 6 7 8 91011 12
(1112 0 0 0 0 0 0 0 0 0 O
10 00 00 0 OO0 O0 01112
10 00 001112 0 0 0 0 O
7|11 0 0 0 0 0 0 0 0 0 0 12
7112 00 0 0 0 000 0 011

Table 5: P(12,2,10) > 5. The first 10 symbols in all 7; are in the sorted order and replaced by

Zeros.
1 23 45 6 7 8 9101112 13
(1213 0 0 0 0 0 0 0O 0 0 0 O
10 0000 0O O0OOO O 01213
10 000 01312 0 0 0 0 0 O
7|12 00 0 0 0 000 0 0 013
7113 00 00 0000 0 0 012

Table 6: An example for P(13,2,11) > 5.

Similarly, a (n,2,n — 2)-array can be constructed for n = 2k 4+ 1 where symbols n and n — 1 are
placed at positions k£ and k + 1 for 73, see an example in Table [0 O

We have constructed a program for computing P(n,m,d) for various values of n,m, and d. For
each of the (:1) positions for m symbols out of n, and each of the possible m! orders of the m
symbols, the program uses the random/Greedy strategy described earlier. That is, it chooses a
specified number of random choices first and then tries adding all remaining possible permutations
in increasing order. When m is small, the program finds solutions quickly. It allows one to compute
P(15,12), for example, without examining all 15! permutations of 15 symbols. That is, by Theorem
one can first compute, for example, P(15,3,12), which as shown in Table @ is at least 12, and
then compute P(12,12).

As shown in Table [[1] these are useful for obtaining improved lower bounds for P(n,d) when



the Kendall-7 distance d is close to n. We give lower bounds for P(n,m,d), for 8 < d < 15 and
10 <n <20 in Tables [ 8, @, and IO

‘ n:m ‘ 2 ‘ 3 ‘ 4 ‘ 5 ‘ 6 ‘ ‘ n:m ‘ 2 ‘ 3 ‘ 4 ‘ 5 ‘ 6 ‘
10 514 | 37 113 335 10 319 24 63 162
11 5116 | 55 186 645 11 5115 | 34 99 301
12 6|21 | 73 285 1145 12 51 16 | 46 149 523
13 6|26 | 99 428 1920 13 6 | 18 | 59 219 861
14 8 | 31| 130 | 625 3117 14 6| 22| 78 315 1383
15 8 | 37 | 172 | 884 4872 15 7126 | 100 | 445 2119
16 | 10 | 45 | 219 | 1233 | 7367 16 8 | 31 | 128 | 610 3165
17 | 10 | 52 | 278 | 1676 | 10828 17 8 136 | 162 | 824 4613
18 | 13 | 61 | 344 | 2227 | 15567 18 | 10 | 42 | 201 | 1097 | 6589
19 | 13 | 71 | 426 | 2939 | 21862 19 | 10 | 49 | 244 | 1427 | 9179
20 | 15 | 80 | 517 | 3805 | 30196 20 | 12 | 55 | 292 | 1827 | 12581

Table 7: Lower bounds for P(n,m,8) (left) and P(n,m,9) (right).

ln:m | 2] 3] 4] 5 | 6 ln:m[2]3] 4] 5 | 6 |
10 3719 48 | 125 10 [3]6 ] 13]27] 73
11 5110 | 27 | 76 | 226 11 [ 3] 7 |16 | 41 | 128
12 5113 37 | 116 | 394 12 [3]10| 22 | 61 | 214
13 6|16 | 50 | 167 | 644 13 |5 ] 11| 31 | 96 | 344
14 6|18 | 64 | 241 | 1011 14 | 5|13 | 37 | 120 | 539
15 6|21 | 83 | 342 | 1570 15 | 5|17 | 55 | 163 | 810
16 6 | 25 | 103 | 467 | 2337 16 | 6|20 | 70 | 220 | 1193
17 | 8|30 | 129 | 629 | 2239 17 | 6|23 | 8 | 366 | 1716
18 8|35 | 158 | 829 | 3185 18 | 726|106 | 472 | 2413
19 | 10 | 40 | 192 | 1084 | 4405 19 | 8|31 | 127 | 618 | 3362
20 | 10 | 46 | 233 | 4184 | 6017 20 | 8|35 | 151 | 789 | 4571

3 Improved Lower Bounds by Theorems 5, 6, and 7.

Table 8: Lower bounds for P(n,m,10) (left) and P(n,m,11) (right).

Each of the improved lower bounds given in Table [IT] is explained in this section. Many of the
computations described took weeks on Apple MacBook Air computers with an M1 or M2 processor.

e By Theorem [, P(12,5) > P(12,5;2) + P(12,5;7) + P(12,5;12) > 318,641 + 334,200 +
246,968 = 899, 809.

e By Theorem [7] P(12,7)
e By Theorem [7] P(12,8)
e By Theorem [7] P(13,9)

> P
> P
> P

(12,7:3) + P(12,7;10) > 2 - 64,649 = 129, 298.
(12,8:3) + P(12,8;11) > 44,042 + 41049 = 85, 091.
(13,9:3) + P(13,9;12) > 124,047 + 112,717 = 236, 764



ln:m 2] 3] 4] 5] 6 | |[nxm[2[3]4] 5] 6 |
10 [2]6 13| 2 | 58 10 [2]4[10] 20 [ 37
11 | 3| 7 | 17 | 40 | 101 11 [ 2] 6 13| 28 | 63
12 [ 3] 9 |23 |59 | 168 12 | 3] 7 [16| 40 | 103
13 | 3]10| 30 | 84 | 273 13 [ 3] 9 22| 5 | 163
14 | 5| 13| 37 | 117 | 420 14 | 3]10 |27 | 79 | 247
15 | 5|16 | 45 | 159 | 622 15 | 5|12 | 35| 106 | 370
16 | 5|17 | 58 | 216 | 919 16 | 5|15 | 44 | 141 | 533
17 | 6|20 | 72 | 287 | 1323 17 | 5|16 | 52 | 181 | 757
18 | 6| 22| 87 | 375 | 1859 18 | 6 | 18 | 63 | 242 | 1058
19 | 6|25 | 103 | 485 | 2580 19 | 6|20 | 73| 308 | 1447
20 | 8]30] 125 | 620 | 3503 20 | 6] 23|90 | 390 | 1965

Table 9: Lower bounds for P(n,m,12) (left) and P(n,m,13) (right).

ln:m [2[3]4] 5] 6 | [nxm[2[3]4] 5] 6 |
10 [2]4]10] 16 | 30 10 [2]4]6 ] 1219
11 | 2|4 (11| 23 | 51 11 | 2|4 10| 20 | 31
12 |36 | 15| 34 | 8 12 | 2|5 | 12| 21 | 48
13 | 3] 7 [ 18| 48 | 133 13 [ 3] 6 |15 30 | 72
14 |39 |24 65 | 203 14 | 3] 7 |16 | 40 | 107
15 | 3]10 |30 | 88 | 298 15 | 3] 9 |23 52 | 154
16 | 5|13 | 38 | 118 | 431 16 | 3|10 |29 | 84 | 221
17 | 5|15 | 46 | 153 | 609 17 | 5|12 | 35 | 109 | 385
18 | 5|16 | 54 | 197 | 844 18 | 5| 14 | 41 | 138 | 530
19 | 6|18 | 63 | 254 | 1163 19 | 5|16 | 41 | 174 | 720
20 | 6|20 | 75| 323 | 1568 20 | 5|17 | 46 | 220 | 961

Table 10: Lower bounds for P(n,m,14) (left) and P(n,m,15) (right).

e By Theorem[7] P(14,9) > P(14,9:2,6,8)+P(14,9;2,3,5)+P(14,9;1,5,6)+P(14,9; 1,6, 8)+
P(14,9;4,7,8)+P(14,9;4,9,10)+ P(12,9; 8)+P(12,9; 9)+P(13,9; 4, 5)+ P (12, 9; 3)+ P (14, 9; 3,5, 7)+
P(14,9;3,5,14)+ P(14,9; 2,4, 14) + P(14,9; 2,7,9) 4+ P(13,9; 4, 5) + P(12,9; 7) + 2 P(12,9; 4) +
P(13,9;3,5)+ P(13,9;2,3) + P(12,9; 3) + P(13,9; 3,4)+ > 51,871+ 26,347+ 19,878+ 31,130+
39,622 + 42,132 + 18,649 + 18,397 = 19,914 + 17,294 + 48, 029 + 28, 367 + 25, 367 + 52, 958 -+
19,915 + 18,807 + 36,794 + 28,348 + 16,073 + 17,294 + 18,542 = 575,728

e By Theorem [ P(13,10) > P(13,10;2) + P(13,10;12) > 2 % 79,104 = 158, 208,

e By Theorem[7 P(14,10) > P(14,10;5,14)+P(14,10;8, 14)+P(14,10;6, 7)+P(14,10; 1,11)+
P(14,10;1,12)+P(14,10; 1,2) > 94, 643+95, 0524102, 965493, 157+89, 021450, 649 > 525, 427

e By Theorem [7] P(13,11) > P(13,11;2) + P(13,11;13) > 31,809 + 19,227 = 51, 046.

e By Theorem[7l P(14,11) > P(14,11;7,8)+P(14,11;14,3)+P(14,11;13,14)+P(14,11;1,2)+
P(14,11; 1, 14) > 47,851 + 36,250 + 3 * 19, 227 = 141, 782.

e By Theorem [, P(15,11) > P(15,11;1,7,9) + P(15,11;9,10,15) + P(15,11;11,14,15) +



nd| 5 [ 7 [ 8 ] 9 | 10 | 11 [ 12 | 13 | 14 [ 15 |

12 [899,809129,298[85,001

13 236,764 |158,208| 51,046 | 29,859 | 14,158 | 10,756 | 5,527
14 595,728 |525,427| 141,782 | 100,813 | 52,565 | 41,673 | 15,674
15 1,049,633 | 524,817 |105,130| 83,346 | 37,104
16 2,009,266 1,049,634 267,828 | 173,432 | 74,208
17 244,051

Table 11: Improved lower bounds using Theorems [Bl [ and [[l Blanks indicate other methods have
the best lower bounds known e.g. [II] or, for n=12, the best lower bounds are in Table

2l

P(15,11;8,9,11)+P(15,11;:6, 10, 15)+P(15, 11; 5,7, 13)+P(15, 11; 5,6, 15)+ P(15, 11; 4, 12, 14)+
P(15,11;4,5,6)+ P(15,11; 3,14, 15)+ P(15,11; 2,7, 11) + P(15,11; 1,13, 15) + P(15,11; 1,2, 3) +
P(15,11;1,2,15)+ P(15,11; 1, 2,15) + P(15,11; 1,2, 13) + P(15,11; 1,9, 11) > 70,509+ 47,069+
36,430+ 93,986+ 85, 010+ 138, 475447, 027+ 107, 707+ 45, 837 + 145, 804 + 3% 19227+ 31, 861+
69,377 > 1,049, 633

e By Theorem @, P(16,11) > 2% P(15,11) > 2 % 1,049, 633 = 2,099, 266
e By Theorem [} P(13,12) > P(13,12;7) > 29, 859.

e By Theorem[T] P(14,12) > P(14,12;7,8)+P(14,12;13,14)+ P(14,12; 14, 2)+ P (14, 12; 1, 14)+
P(14,12;1,2) > 35,709 + 13,935 + 23,299 + 19, 227 + 19, 227 = 100, 813.

By Theorem [3, P(15,12) > $P(15,11) > 524,817.

By Theorem @ P(16,12) > 2 x P(15,12) > 1,049, 634
By Theorem [7, P(13,13) > P(13,13;7) > 14, 158.
(14,13) >

e By Theorem [ P(14,13) > P(14,13;7,13) + P(14,13;6,14) + P(14,13;3,4) > 23,388 +
14,073 + 15,104 > 52, 565.

By Theorem [, P(15,13) > 2  P(14,13) > 2 52,565 — 105, 130.
By Theorem B, P(16,13) > P(12,13) % P(16,4,13) > 6,087 * 44 = 267, 828.
By Theorem [7] P(13,14) > P(13,14;7) > 10, 756.

e By Theorem [1, P(14,14) > P(14,14;1,3) + P(14,14;4,14) + P(14,14;6,11) > 8,036 +
10,060 + 23,577 = 41,673

By Theorem B P(15,14) > 2 x P(14,14) > 2% 41,673 = 83, 346.
By Theorem B, P(16,14) > P(12,14) * P(16,4,14) > 4,564 = 38 = 173, 432.
By Theorem [7] P(13,15) > P(13,15;7) > 5,527.

By Theorem [1, P(14,15) > P(14,15:6,14) + P(14,15;14,6) + P(14,15;2,3) > 5,493 +
5,493 + 4, 688 = 15, 674.

e By Theorem [7, P(15,15) > P(15,15;3,4,7,8) + 3 %« P(11,15) + P(15,15;4,5,6,7) + 3 x
P(14,15,6,7,8) + P(13,15 : 2,10) + P(15,15;2,3,4,13) + P(3,5,7,11) + P(15, 15,2, 4,10, 11) +
2P (13,15;2,3) + P(12,15;3) + 4 % P(12,15:2) + P(14,15:3,4,5) > 4,279 + 3 % 400 + 1, 787 +
31,8484 1,738 +1,964 + 7,798 + 5,773 + 2 % 879 + 895 + 4 x 743 + 1,369 > 37,104.



e By Theorem [, P(16,15) > 2% P(16,15) > 74, 208.
e By Theorem B, P(17,15) > P(12,15) * P(17,5,15) > 2,239 % 109 = 244, 051.

4 Automorphism Lower Bounds

It is known that for a permutation w(z) : F, — F,, where [, denotes a finite field of order ¢, the
operations of multiplying by a non-zero constant a, adding a constant ¢, and adding to the argument
a constant b, each yield another permutation on F,. That is, an(z + b) + ¢, for all non-zero a and
all b,c € Fy, is again a permutation. We use this to search for sets of permutations at specified
Kendall-7 distance d. That is, the search can be done for a set of representative permutations and
expanded into a full set of permutations using operations on the representatives. Our program
verifies that the full set of permutations has the stipulated Kendall-7 distance.

Ezample. Use the operation 7(z) + ¢ on the following 17 representatives. This gives 102
permutations for P(6, 3).

012354 012453 013542 015423 023415 024513
025341 031425 032514 034251 035412 041532
042135 045321 052134 053124 054213

Ezample. Use the operations ar(z) 4+ ¢ on the following 14 representatives. This gives 1,008
permutations for P(9,7).

012483756 012785346 013472865 013826745
013846572 014567382 014582763 016234785
016287543 016452387 016734852 017246853
017483526 018574632

Ezample. Use the operations arm(z) + ¢ on the following 8 representatives. This gives 576
permutations for P(9, 8).

012384657 012586374 014528673 015324687
015648372 016472583 016732854 018365724

Ezample. Use the operations ar(z) + ¢ on the following four representatives. This gives 288
permutations for P(9,9).

012658743 013845267 014653728 015247368

Ezample. Use the operations m(z) + ¢ on the following 12 representatives. This gives 84
permutations for P(7,6).

0136542 0142365 0162543 0234156 0236514
0346125 0354126 0456312 0524361 0536124
0635421 0642135

Ezample. Use the operation arn(z) + ¢ on 8 permutations. This gives 448 permutations for
P(8,6).



01745623
05467123

02153467 02647315

07312654

07543612

03754216
07642135

Ezample. Use the operation am(x) + ¢ on 67 permutation representatives. This gives 3,752
permutations for P(8,3).

Example.

01234567
01634275
02351476
02517436
02647153
03624517
04275613
04752316
05236417
056376142
05764312
06435712
07135462
07465231

02365471
06345217
07412653

01457632
02361547
02736514
03625174
04271563
05327146
05716423
07251463

01253674
01674523
02357641
02534671
03154726
03745621
04562137
04763521
05264371
05462713
06152347
06517324
07143625
07512364

02431567
06371524
07564132

01732564
02435617
02761453
04162357
04317562
05421367
05732461
07253641

01357264
01732564
02365471
02543167
03241765
03754216
04617235
05167432
05314627
05463127
06243751
06713542
07342156

03216475
06547312

02137456
02537461
03215746
04176235
04356172
05476231
06124357
07431526

01543627
01753246
02416573
02564173
03254716
04162357
04625371
05173624
05326174
056631274
06317452
06753214
07361425

Use the operation an(z) + ¢ on 12 permutation representatives.
permutations for P(8,5).

03516274
07154623

02157463
02714536
03564712
04215637
056216374
05621743
06724315
07514236

01627345
01756342
02456317
02643517
03261457
04273156
04627153
056216374
05341276
056637412
06372451
07123456
07463125

05724613
07364215

Ezample. Use the operation ar(z) + ¢ on 40 permutation representatives. This gives 2,242
permutations for P(8,4).

02167543
02731465
03576124
04257631
056326174
05641327
07126354
07562143

This gives 672

Ezample. Use the operation ar(z)+ ¢ on 3 permutation representatives. This gives 168 permu-

tations for P(8,7).
05314627 06132574 07312654

Ezample. Use the operation m(z) 4+ ¢ on the following 48 permutations. This gives 336 permu-
tations for P(7,4).
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0124365
0153624
0236541
0256431
0326145
0421635
0461325
05636214
0615342
0642315

0142536
0264135
0431526
0612534

0125463
0162345
0241536
0261435
0341625
0425361
0465123
0541632
0625314
0645321

0146325
0315642
0436215
0652413

0132654
0165243
0246513
0315246
0342516
0431526
0512346
0543621
0631425
0652413

0152643
0324516
0451632
0653412

0134256
0213546
0251634
0316542
0345612
0436251
0524163
0561423
0632451

0213546
0326145
0513426

0145623
0234165
0253416
0325164
0365421
0451236
0531462
0614253
0635124

Ezample. Use the operation 7(x) 4 ¢ on the following 18 permutations. This gives 126 permu-
tations for P(7,5).

0245631
0354621
0532614

5 Patterns for P(n,m,d)

In this section, let us, for convenience, describe general patterns for strings (permutations) in
P(n,2,d) and P(n,3,d), by replacing the symbols [1...n—2] ([1...n — 3], respectively), which are

in order, by blank symbols, 7.e. ’-’.
For example, for P(5,2,3), we have the set
{45---, -54--, --45-, ---54, 4---5,5---41}
It is easy to verify that the Kendall-7 distance between any two strings in this set is at least 3.
This set agrees with that found by our program, namely P(5,2,3) > 6.

Also, for P(10,2,3), we have the set

{910-------- , -109------- . --910------ , ---109----- ,
2910 — - 109---, ------ 910--, ~------ 109 -,
-------- 910, 9---10----- 10---9----e --9---10---,
--10---9---  ---9----10-, ---10----9- ----- 9---10,
----- 10----9, 9-----10---, 10-----9--- -9--———-_10,
10— - 9.

It is easy to verify that the Kendall-7 distance between any two strings in this set is at least 3.
This set agrees with that found by our program, namely P(10,2,3) > 21.

These examples show that sets of strings that form a (n,2,3)-array contain easily recognized
patterns. It is an interesting open question if such patterns can be determined for other choices of
n,m, and d.

Along these lines, for d = 3, consider m(a,b,c) = ...,n — 1,...,n,... and ma(a,b,c) =

.yny...,m—1,..., where a,b,c denote the number of symbols in the 3 gaps represented by the
“...7. We will use mi(a,b,c) for a =0,2,4,... and b = 0,3,6,..., and m(a,b,c) for a = 1,3,5,...
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and b=0,3,6,..., for each choice of a and b for which the resulting string has length at most n.

Using 71 (a, b, c¢) and my(a, b, c), it can be observed that P(n,2,3) > %, for n 2 1 mod 3
and P(n,2,3) > % for n = 1 mod 3. Similarly, for Kendall-7 distance 4 and for n = 2k +1,
use 71(a,b,c) for a =0,2,4,... and b =0,4,8,...; ma(a,b,c) for a =0,2,4,... and b= 3,7,11,....
Using these patterns, it can be observed that P(4k+1,2,4) > 2k?+k for k > 1 and P(4k+3,2,4) >
2k2 + 3k + 1 for k> 0.

6 Conclusions and Open Questions

Theorems [0 and [f] improve many lower bounds. All of the bounds shown in Tables [l 2 and
[ are improvements on previous results. The techniques described can be used to obtain other
improvements, with sufficient time. Many of our computations required weeks.

Our work on good patterns for (n,m,d)-arrays is continuing. We conjecture that (n,m,d)-
arrays can be used to compute improved lower bounds for P(n,d), for all n, and for d close to
n.
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